
Quantum Computation CMU 15-859BB, Fall 2018

Week 6 work: Oct. 11 — Oct. 18
12-hour week

Obligatory problems are marked with [∗∗]



1. [CCNOT.] In class we showed how to simulate classical AND, OR, NOT, and FANOUT
gates using only CSWAP gates (and ancillas that could be |0〉 or |1〉). Show how to do the
same using only CCNOT gates (controlled-CNOT gates, aka Toffoli gates).



2. [Controlled-Controlled-U .] Let U be a d-dimensional qudit gate (i.e., a unitary d × d
matrix). Define the “controlled-controlled-U” gate, which operates on 2 qubits and a qudit
(call these the Control1 qubit, the Control2 qubit, and the Target qudit) as follows:

|00〉 ⊗ |y〉 7→ |00〉 ⊗ |y〉 ,
|01〉 ⊗ |y〉 7→ |01〉 ⊗ |y〉 ,
|10〉 ⊗ |y〉 7→ |10〉 ⊗ |y〉 ,
|11〉 ⊗ |y〉 7→ |11〉 ⊗ (U |y〉).

(a) [∗∗] How many rows/columns does this controlled-controlled-U gate have? (I.e., what is
the dimension of space on which it operates?)

(b) [∗∗] Prove that the gate is unitary.

(c) [∗∗] Suppose V is a (unitary) qudit gate with V 2 = U . Show that controlled-controlled-U
can be implemented as follows:

� Controlled-V on Control2 and Target.

� CNOT, with Control1 the control and Control2 the target.

� Controlled-V † on Control2 and Target.

� CNOT, with Control1 the control and Control2 the target.

� Controlled-V on Control1 and Target.

Figure 1: Building controlled-controlled-U

(Remark: Earlier we saw the 1-qubit
√

NOT gate. If you take this to be V in the above
construction, you see that CCNOT can be built out of 2-qubit gates. Interestingly, the
classical CCNOT gate cannot be computed by any circuit of classical 2-bit gates!)



3. [Deutsch’s Algorithm.] David really enjoys the fact that one can easily take a classical
circuit computing a Boolean function F , and convert it into a quantum circuit which imple-
ments the same Boolean function when given “classical inputs” — but which also can accept
quantum superpositions of classical inputs. For a whole bunch of small Boolean functions,
David built a small quantum circuit that implements that function.

Unfortunately, David forgot to label his quantum circuits, and now he forgets which one com-
putes what! David runs across an old circuit Q± he built which evidently “sign-implements”
some 1-bit Boolean function F : {0, 1} → {0, 1}. That is1, for each x ∈ {0, 1} it holds that
Q± |x〉 = (−1)F (x) |x〉 — but David doesn’t know what F is. Of courses there are only four
possibilities: F (x) ≡ 0, F (x) ≡ 1, F (x) = x, and F (x) = NOT(x). Let’s call the first two
possibilities “constant functions” and the second two possibilities “nonconstant functions”.

(a) [∗∗] Show that it is possible for David to tell whether F is a constant function or a
nonconstant function by just using Q± once. Specifically, you should describe a 1-qubit
circuit, which may have various gates but only one instance of Q± in it. Your circuit
start with a qubit initialized to |0〉, and should end with a measurement gate. And it
should have the property that based on the measurement outcome, David can know with
100% certainty whether F is a constant function or a nonconstant function.

(Hint: Use the good old Rotate, Compute, Rotate paradigm.)

(b) [∗∗] Show that if you have access to a classical circuit C computing one of the four
possible F ’s, and you only run one bit through it, you cannot gain any information at
all about whether F is a constant function or a nonconstant function.

1Let’s ignore ancillas, as always.



4. [Classical Query Complexity.] Pythia is holding a strange contest. She is selling a sealed
(classical) circuit C that computes some Boolean function F : {0, 1}n → {0, 1}. She promises
that F 6≡ 0; that is, there is at least one string x such that F (x) = 1. You can buy as many
copies of C as you want, but each copy costs a drachma.

Pythia promises you fame and fortune if you can build a (classical) circuit S that outputs a
string x such that F (x) = 1. The inputs to your circuit S are simply ancillas. You should
think of each copy of C that you buy as a big gate that can be used in your circuit S. You
are not allowed to “peer into the inner workings of C”; you can only incorporate it into your
circuit as a “black box”.

(a) [∗∗] Prove that you can attain fame and fortune by spending 2n−1 drachmas. Actually,
it would be too annoying for me to make you describe a circuit, so instead describe
classical deterministic pseudocode that incorporates calls to a “subroutine” C. Your
code should take no input, make at most 2n − 1 calls to C, and end by outputting an x
such that F (x) = 1.

(b) [∗∗] Prove rigorously that it is impossible for you to attain fame and fortune without
spending at least 2n − 1 drachmas. To be very precise, show that any circuit S incor-
porating fewer than 2n − 1 copies of C cannot be correct, in the sense that there exists
an F for which S fails. (No wishy-washiness in your solution; it should be an airtight
proof.)

(c) [∗∗] The famous “SAT” problem in theoretical computer science is equivalent to the
following: Given as input the (description of) an n-input Boolean circuit C, with the
promise that there is at least one string x∗ ∈ {0, 1}n such that C(x∗) = 1, output any
string x such that C(x) = 1. If you were able to show that there is no classical algorithm
solving this problem in fewer than 2n−1 steps, then you would have shown P 6= NP, and
real-world fame and fortune would truly be yours. How come your solution to part (b)
does not achieve this?



5. [Linear Algebra Modulo 2.] The integers modulo 2 constitute what’s called a “field”
in mathematics: a set of numbers (namely 0 and 1) for which all the standard operations
of plus, minus, times, and division-by-nonzero work as expected. This “field” is sometimes
denoted F2. (Other examples of fields include the real numbers, the complex numbers, the
rational numbers, and the integers modulo p whenever p is prime.) It’s a wonderful fact that
pretty much all of linear algebra works just as well when the underlying scalars come from any
fixed field, like F2. The set of all n-dimensional vectors in this case is denoted Fn

2 . (You’re
most used to the cases Rn and Cn, when the scalars are reals and complexes, respectively.)

(a) [∗∗] There’s pretty much only one pitfall to watch out for: Show that the “dot product”
in Fn

2 , namely the operation ~u · ~v =
∑n

i=1 uivi (mod 2 of course), doesn’t act like an
“inner product”, in the sense that it’s perfectly possible to have ~u · ~u = 0 even though
~u 6= ~0. Because of this, notions like “orthogonal basis” or “~u and ~v are perpendicular”
don’t make as much sense in Fn

2 . (We still frequently use the dot product operation
anyway, though.)

(b) [∗∗] Recall that a set of vectors ~u1, . . . , ~uk is said to be linearly independent if the
only linear combination c1~u1 + · · · + ck~uk that equals ~0 is the trivial one with c1 =
c2 = · · · = ck = 0. As usual, the span (set of all linear combinations) of a set of k
linearly independent vectors is called a k-dimensional subspace. Show that in Fn

2 , every
k-dimensional subspace contains exactly 2k vectors.

(c) [∗∗] As usual in linear algebra, one can study solutions of systems of linear equations
like Ax = 0 (where A ∈ Fm×n

2 is a matrix and x is a vector of n unknowns) or, more
generally, Ax = b (where b ∈ Fn

2 is a fixed right-hand side). The usual facts about
Gaussian Elimination apply. Show that the set of solutions x to Ax = 0 forms a subspace
of dimension equal to n− r, where r is the maximum size of a linearly independent set
of rows of A.

(d) [∗∗] For a more general system Ax = b, prove that either there is no solution, or else
there are 2n−r solutions, where again, r is the maximum size of a linearly independent
set of rows of A.



6. [Real Quantum Computing.] So far in the course complex amplitudes have almost never
arisen, even though they may, according to the laws of quantum mechanics. Almost all of
our favorite quantum gates (NOT, H, Z, “Rotations”, CNOT, SWAP, CSWAP, CCNOT)
are represented by unitary matrices with real entries, meaning they never create states with
complex (non-real) amplitudes. We briefly mentioned the 1-qubit phase gate P , whose matrix

is

(
1 0
0 i

)
; i.e., it sends |0〉 to |0〉 and |1〉 to i |1〉.2 It’s a fact that if you want the ability to

generate all complex unitary transformations, it’s sufficient to: (i) be able to generate all real
unitary transformations; and, (ii) be able to apply the P gate.

For this problem, prove that “real amplitudes are sufficient for universal quantum compu-
tation”. Specifically, show how to take any quantum circuit that has T gates from the set
{real unitaries,measurements, P} and “simply” convert it to an equivalent3 quantum circuit
with no P gates (and hence where all internal states have only real amplitudes). Your new
circuit should have just one extra qubit, and it should still have T gates, though some of
these gates might act on more qubits than they previously did. (Hint: (a + bi) |x〉 versus
a |x〉 |0〉+ b |x〉 |1〉.)

2One more popular gate with complex entries is the “Y ” gate, which operates on 1 qubit via the matrix

(
0 −i
i 0

)
3With respect to measurement outcomes, assuming inputs are initialized to unentangled |0〉’s and |1〉’s.



7. [The Birthday Attack.]

(a) [∗∗] Let 1 ≤ k ≤ n be integers. Suppose that every time you press a button, a computer
prints out a random integer between 1 and n (inclusive). Show that if you press the
button k + 1 times, the probability that all the integers you see are distinct is

pk,n = (1− 1/n)(1− 2/n)(1− 3/n) · · · (1− k/n).

(b) [∗∗] Produce high quality plots of pk,n vs. k for each n = 10i, i = 1 . . . 6. In each case,
let k range from .1

√
n to 4

√
n.

(c) Prove that the function f : R → R defined by f(x) = 2x is convex. (This means
that if you connect the points (a, f(a)) and (b, f(b)) on the graph of f by a straight
line segment, the graph is below that straight line between x = a and x = b. It’s also
equivalent to the fact that just the midpoint value f(m) (for m = a+b

2 ) is below the

midpoint of the line segment, f(a)+f(b)
2 . You can prove the convexity claim either with

calculus, or else by proving the midpoint statement using the more lowbrow inequality
(A/
√

2−B/
√

2)2 ≥ 0 for well-chosen A and B.)

(d) Deduce that if 0 ≤ x ≤ 1, then 1 + x ≥ 2x.

(e) Deduce that if 0 ≤ x ≤ 1, then 1− x ≤ 2−x.

(f) Deduce that pk,n ≤ 2−
k(k+1)

2n .

(g) Deduce that if k ≥ 4
√
n, then pk,n ≤ 2−8.

(h) Show that if x1, x2 ≥ 0, then (1− x1)(1− x2) ≥ 1− x1 − x2.

(i) Show that pk,n ≥ 1− k(k+1)
2n . Deduce that pk,n ≥ 1− k2

n .

(j) Show that if k ≤ .1
√
n, then pk,n ≥ .99.

(k) [∗∗] Dan goes to the hardware store and buys N/2 differently colored buckets of paint
(N is even). He also buys N balls and an opaque urn. He groups the balls into N/2
pairs, and paints each pair a different color. He then puts all the balls into the urn.

You come along and start pulling balls out of the urn, at random. Show that there is
some absolute constant c > 0 such that the following is true: If you pull out fewer than
c
√
N balls, then the probability of you getting two balls of the same color is at most .01.



8. [The Probability of Coprimality.] Suppose that A and B are chosen independently and
uniformly at random from the set {1, 2, . . . , S}.

(a) For P a fixed prime, show that Pr[A,B both divisible by P ] ≤ 1/P 2.

(b) Show that

Pr[GCD(A,B) 6= 1] ≤
∑

primes P

1/P 2.

(c) Show that ∑
primes P

1/P 2 ≤ .99,

thereby concluding that “The probability that two random integers are coprime is at
least 1%.” (In fact, you don’t need calculus; e.g., there’s an elementary proof that∑

primes P≥5 1/P 2 ≤ 2/5, and hence
∑

primes P 1/P 2 ≤ .77. . . )


