Quantum Computation CMU 15-859BB, Fall 2018

WEEK 5 WORK:  SEPT. 4 — OcrT. 11
9-HOUR WEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [#]




1. [Ground-to-satellite quantum teleportation?] [+x] Read the 2017 Nature paper by
Jian-Wei Pan’s group on the experiment to do quantum teleportation between Earth and a
satellite. (A couple of Wikipedia articles I found helpful during the reading: Coincidence
counting, Spontaneous parametric down-conversion (SPDC).) What do you think? In my
opinion, there were two major aspects of the full quantum teleportation experiment that
were missing. Write a two-paragraph critique.

(One piece of technical knowledge you will find helpful: Let |¢)) and |i) be two quantum states,
where we think of |¢)) as the ideal “ground truth” and |) as some potentially noisy /inaccurate
version of |1). The fidelity between |P) and 1)) is defined to be |(¥|P)[%; in other words, the
probability you’d get |¢) if you measured |1) in a orthonormal basis where one of the basis
vectors was [1).)


https://arxiv.org/ftp/arxiv/papers/1707/1707.00934.pdf
https://en.wikipedia.org/wiki/Coincidence_counting_(physics)
https://en.wikipedia.org/wiki/Coincidence_counting_(physics)
https://en.wikipedia.org/wiki/Spontaneous_parametric_down-conversion

2. [Principle of Deferred Measurement.] The point of this problem is to show that if one
has a quantum circuit with (partial) measurement gates in the middle, one can (without
much loss in efficiency) replace it with an equivalent quantum in which all the measurement
gates are at the end. This is nice, because a very useful simplifying assumption in quantum
computation is that measurement gates only occur at the end of the computation.

So suppose we have some n-qubit quantum circuit, and we look at the first intermediate
measurement gate that is applied; say (without loss of generality) it is applied to the 1st
qubit, at time step t. Let |¢) denote the quantum state just prior to time ¢. Now when the
measurement gate is applied, two things happen: First, one classical bit of information —
call it b — appears on the measurement gate’s readout. Second, the state collapses according

to the usual rules.
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(a) [*%] Suppose we do the following: First, we introduce a new (n + 1)st qubit, initialized
in the state |0). Second, we replace the measurement gate on qubit #1 at time ¢ with
a CNOT gate whose control qubit is #1 and whose target qubit is #(n + 1). Finally,
we immediately apply a measurement gate to the (n + 1)st qubit, and treat its readout
as “b”. Assume we then henceforth ignore the (collapsed) (n + 1)st qubit. Show that
this gives an exact simulation of the original circuit’s operation. (Hint: you may want
to somehow write |¢)) = a |0) @ [1ho) + B |1) ® |¢1).)
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Remark: As we saw in class, operations that are applied to disjoint sets of qubits com-
mute (this was the (U®I)-(IQV) = (I®V)-(U®I) = U®V stuff in the case of applying
unitary gates, and similarly for the commuting of partial measurements). Thus, if we're



never going to do anything with that (n + 1)st qubit again, we can imagine that instead
of measuring it immediately (just after time ¢), we instead delay its measurement to the
very end of the computation. In this way, we’ve effectively deferred the first intermediate
measurement of the quantum circuit to the end. By repeating this for all intermediate
measurement gates, we can always move all measurement gates to the end (at the cost
of adding one extra qubit and CNOT per deferral).

[*x] Let’s look back at the original circuit and see “what was done” with the first qubit
after it was measured. In some cases, that measurement gate was there because we
genuinely wanted to know the 1 bit of classical information, b. In other cases, we don’t
care about b’s value per se; rather, we just want to do different subsequent quantum
operations to the other qubits, depending on whether b = 0 or b = 1. (The Quantum
Teleportation scenario is a bit like this.) In other words, the rest of the quantum circuit
might include something like

do U € CY* to qubits 2 and 3 if b= 1, else do nothing.

Given that the post-measurement qubit’s state is precisely |b), one can instead think of
the above conditional-instruction as a “controlled-U gate applied to qubits 1 (control),
2 and 3 (targets)”, rather than as some interactive intervention wherein U is applied or
not applied, depending on the readout b.

* ¢
U

any
VvV

o @

So suppose we're in this case, where we don’t really care to know b, we’re simply doing
some “controlled-U” quantum gates based off the outcome. And suppose we apply the
Deferred Measurement trick from part (a). Since we don’t actually care to know the
classical bit b, do we really have to do the measurement of the (n+1)st qubit at the end?
(I.e., will the circuit work just as well if we ignore that qubit?) If yes, give an example
illustrating the necessity. If not, answer this: do we really have to do the CNOT, either?



3. [Borromean entanglement vs. non-Borromean entanglement.]

(a) The “GHZ state” is % |000) + % |111). Prove that this state is entangled (i.e., it is not

unentangled).

(b) Suppose Alice, Bob, and Charlie each hold one qubit of a GHZ state. Suppose Charlie
measures her bit. Prove that with 100% probability, Alice and Bob’s qubits become
unentangled.

Remarks: Had Charlie first taken her qubit to Jupiter and Alice and Bob never really
hear from her again, then they would have no way of distinguishing whether or not
Charlie actually does measure her qubit. Thus the “mixed” state that Alice and Bob’s
two qubits are in is said to be “unentangled” either way. By symmetry of the GHZ state
\% 1000) + % |111), we therefore have a funny situation: Any two of the three qubits
are not entangled, but all three of them are entangled.

(c) The 3-qubit “W state” is defined to be % |001) + % |010) + % |100). Prove that this
state is entangled, Furthermore, prove that if Charlie measures one of the three qubits,
there is a positive probability that the remaining two qubits are still entangled.



4. [The best counterfeiting attack on Wiesner’s quantum money scheme.] [xx| Solve
Problem 4(b) on the homework from Aaronson’s 2017 course at UT Austin.
Remarks: we saw the 5/8 procedure for part (a) in class. Also, by “discard (perform partial
trace over)”, you can read “measure the first qubit”. Finally, by “higher than what was
achieved in part a”, you should specifically achieve probability 3/4.


https://www.scottaaronson.com/qclec/ps4.pdf

5. [Entanglement swapping.| [#*x] After demonstrating one-qubit teleportation in class, 1
stated the following: Entangled states can also be teleported, and in fact, if Alice & Bob
share an EPR pair, and Alice & Charlie share an EPR pair, then Alice can prepare a third
EPR pair, teleport one half to Bob, teleport one half to Charlie, and in the end Bob and
Charlie will hold halves of an entangled EPR pair despite never physically interacting. I
didn’t actually prove that this works though. Do so.



6. [BB84 quantum key distribution.] Alice is at spy headquarters and Bob is an agent in
the field. Alice wants to convey a “one-time pad” to Bob; i.e., she wants to secretly convey
a purely random string k € {0,1}". They perform the following protocol.

e Alice prepares a random “Wiesner money state” |¢) of 4n qubits; i.e., 4n unentangled
qubits in which each [¢;) is randomly chosen to be either |0), |1), |+), or |—).

e Alice sends [1)) out to Bob along some fiber optic channel.

e Bob receives some 4n-qubit state |¢). (Ideally, |¢p) = |1), but....) Bob then sort of tries
to perform the “classical communication quantum money verification” routine described
in class, except he doesn’t wait for Alice to send him the bases to measure in. Rather,
as each qubit |¢;) flies in off the fiber optic channel, Bob randomly chooses b; € {0, 1}.
Then if b; = 0 he measures |¢;) in the standard basis, and if b; = 1 he measures |¢;) in
the sign basis.!

e Bob texts the string b € {0,1}*" to Alice.

e Alice texts the string a € {0, 1}*" to Bob, where a; = 0 if [1/;) was created in the standard
basis, a; = 1 if |1);) was created in the sign basis.

e At this point, Alice and Bob (and the rest of the world) know some subset of coordinates
S C{1,2,...,4n} for which a; = b;; i.e., for which Bob “guessed the right basis”. With
high probability, |S| = 2n.

e At this point, if nothing strange has happened, the measurement outcomes r; Bob got
on the S-qubits should be the same as the original prepared states ¢; that Alice made.
Further, since we’ve conditioned on whether these outcomes are 0/1 outcomes or =+
outcomes, these common values (r; = ¢; : i € S) effectively amount to a shared random
string of length ~ 2n.

e Out of paranoia, Alice and Bob further do the following. One of them (say, Bob)
randomly partitions S into two sets C' and K (i.e., each coordinate in S is randomly
assigned to either C' or K; hence |C|,|K| ~ n with high probability). Then Bob texts
both C' and the outcomes (r; : i € C) to Alice.

e Finally, if Alice finds that any of these (r; : ¢ € C') do not match her g;, she texts
“ABANDON PROTOCOL” to Bob. Otherwise, Alice treats her info (¢; : i € K) as the
(hopefully secret) one-time pad “k” and Bob treats his info (r; : i € K) as the (hopefully
matching) one-time pad. Note that this info is (with high probability) about n bits long.

Of course, if the fiber optic channel and the text messages are completely secure then this
protocol succesffully produces a shared random one-time pad (and in fact the final “paranoia”
step is not necessary). But if we’re assuming completely secure text message transmission,
then we could have just had Alice directly text a one-time pad in the first place. (Or just
directly text the secret message!) So what we assume is that there is a malicious eavesdropper
Eve, who can potentially eavesdrop on all of the text messages, and who can potentially tap
the fiber optic channel. Of course, Eve has to be careful about tapping the quantum channel.
If she wants, she can capture qubits off it, measure them, and then send replacement qubits
down the channel. We will assume she can do this without Alice or Bob being able to directly
notice at all. But the point of this whole “BB84 Quantum Key Distribution” protocol is to
help Alice and Bob detect and evade this.

'Remark: The fact that Bob can immediately measure each qubit here, and does have to “store” the qubits for
any amount of time, is precisely the property that makes quantum key distribution actually real-life practical.


https://en.wikipedia.org/wiki/One-time_pad

(a)

Assume that Eve does not touch the quantum channel at all, but merely eavesdrops on
all the text messages. Write a short (informal) justification for why this in no way helps
her learn any bits of the final secret one-time pad.

Explain how if perfect qubit cloning were possible, Eve could successfully learn the final
one-time pad without Alice and Bob being able to detect her presence.

Explain some things Eve can do (in our actual No-Cloning world) that at least some-
what mess up Alice and Bob. E.g., Eve should have a reasonably large probability of
causing the following situation: Alice and Bob do not notice anything strange, yet their
“matching strings k” actually disagree on a couple of bits.

Nevertheless, write an informal explanation for why, no matter what Eve does, there is
only an exponentially small probability that Alice and Bob will end up: (i) not detecting
any tampering; and, (ii) either disagreeing on many bits of k, or having Eve know many
bits of k.

Of course, I have not given you a precise statement here, so your explanations will
necessarily be informal.



7. [ERER.

(a)

[**] Recall Problem 5(a) on Weekly Work #3, in which you needed to show that if P

and @) are positive integers, then there are some other integers C' and D such that
C-P+D-Q=GCD(P,Q).

Using this fact, show that if P and @) are distinct prime numbers, then the following
system of equations has an integer solution:

X =1 (mod) P

X =0 (mod) @,
as does the system

Y =0 (mod) P

Y =1 (mod) Q.

[*x] Continuing to assume henceforth that P and @ are distinct primes, deduce that for
any 0 < S < Pand 0 <7T < (@ there is an integer solution 0 < Z < P(@) to the system

Z = S(mod) P
Z =T (mod) Q.

[*x] Show that the solution 0 < Z < PQ to the above system is unique.

Conclude that when we think of the number system “integers modulo PQ, together with
the operations plus, minus, and times”, we can equivalently think of “pairs of integers
(S,T) where S is an integer modulo P and T is an integer modulo @ (and the plus,
minus, and times operations act component-wise on the pair)”.



