
Quantum Computation CMU 15-859BB, Fall 2018

Week 4 work: Sept. 27 — Oct. 4
9-hour week

Obligatory problems are marked with [∗∗]



1. [Quantum circuit practice.] Consider the following quantum circuit operating on 3 qubits:

(a) [∗∗] Determine with proof the state of the three qubits at the end of the circuit’s oper-
ation.

(b) [∗∗] Suppose the top two qubits are measured. Determine the probabilities of the possible
outcomes, and what state the third qubit collapses to in each of the four cases.



2. [Fun with gates.] The following questions concern 2-qubit circuits. We desginate the 2
qubits “A” and “B”.

(a) Suppose that (for some physical reason) you are able to build a device that effects the
CNOT operation with the A qubit as the ‘control’ and the B qubit as the ‘target’; yet,
you aren’t able to build a device that does the CNOT the other way around. Show how
to nevertheless implement a CNOT with the A qubit as the ‘target’ and the B qubit as
the ‘control’, assuming you can also build and use Hadamard gates.

(b) Suppose you now can build CNOT gates that work in both of the two ways. Using only
CNOT gates, show how to build a SWAP gate.



3. [Implausible consequences of superstrong nonlocality.] The usual terminology for the
CHSH game is as follows:

� Alice’s referee’s challenge is called x and is either 1 (Red) or 0 (Yellow);

� Bob’s referee’s challenge is called y and is either 1 (Green) or 0 (Orange);

� Alice’s response is called a ∈ {0, 1} (rather than Solid/Dotted);

� Bob’s response is called b ∈ {0, 1} (rather than Solid/Dotted);

� the “success condition” is a+ b = x · y (mod 2).

Now suppose that Alice and Bob could build magic “non-local boxes” that would allow them
to succeed at the CHSH game with 100% probability.1 That is, even though Alice and Bob
are spatially distant: Alice can put a bit x ∈ {0, 1} into the box and get back a bit a ∈ {0, 1};
Bob can put a bit y ∈ {0, 1} into the box and get back a bit b ∈ {0, 1}; and, these bits will
always satisfy a+ b = x · y (mod 2).

(a) Assume that Alice and Bob are spatially distant, but they have access to n of these
magic “non-local boxes”. Assume also that Alice knows N bits x1, . . . , xN ∈ {0, 1}, Bob
knows N bits y1, . . . , yN ∈ {0, 1}, and they have a desire to compute the “inner product
mod 2” function of their bits,

IP2(x1, . . . , xN , y1, . . . , yN ) = x1 · y1 + · · ·+ xN · yN (mod 2).

Show that by using the non-local boxes, and then allowing one classical bit of commu-
nication from Alice to Bob, they can jointly learn the value IP2(x1, . . . , xN , y1, . . . , yN ).

(b) Recall that every Boolean function f : {0, 1}m → {0, 1} can be computed by a Boolean
circuit using fan-in-2 AND gates and fan-in-1 NOT gates. (Normally fan-in-2 OR gates
are also allowed, but these are technically superfluous, since g ∨ h = ¬(¬g ∧¬h).) Show
that every Boolean function f : {0, 1}m → {0, 1} can also be computed by a polynomial
modulo 2.

(c) Suppose that we have a Boolean function on 2n inputs, f : {0, 1}2n → {0, 1}, where use
the notation xi for the first n input variables and the notation yi for the second n. Prove
that it is possible to express f as

f(x1, . . . , xn, y1, . . . , yn) =
N∑
j=1

Aj(x) ·Bj(y) (mod 2),

whereA1(x), . . . , AN (x) are each products of zero or more xi’s, and similarlyB1(y), . . . , BN (y)
are each products of zero or more yi’s. (The product of zero terms is considered to be 1.)
For example, if n = 2 and f is the function EQ indicating equality of the two 2-bit strings
formed by x and y, it holds that

EQ(x1, x2, y1, y2) = 1 · 1 +x1 · 1 +x2 · 1 + 1 · y1 + 1 · y2 +x1x2 · 1 +x1 · y2 +x2 · y1 + 1 · y1y2

modulo 2.

1Recall that these generate “no-signaling” joint distributions, and therefore do not yield any ability to do faster-
than-light communication.



(d) Return to the scenario from part (a), but instead that Alice knows n bits x1, . . . , xn ∈
{0, 1}, Bob knows n bits y1, . . . , yn ∈ {0, 1}, and they have a desire to compute a certain
Boolean function f : {0, 1}2n → {0, 1} applied to their two inputs,

f(x1, . . . , xn, y1, . . . , yn).

(They both know the function f .) Show that by using as many non-local boxes as they
want, and then allowing one classical bit of communication from Alice to Bob, they can
jointly learn the value f(x1, . . . , xN , y1, . . . , yN ).

Remark: It seems very implausible that Alice and Bob should be able to remotely
compute any joint function of arbitrarily long private input strings while only commu-
nicating one classical bit. This can be taken as evidence of the physical impossibility
of succeeding at the CHSH game with 100% probability. In fact, Brassard–Buhrman–
Linden–Méthot–Tapp–Unger showed that Alice and Bob could do this implausible task
even if their magic nonlocal boxes only succeeded at the CHSH game with probability
exceeding 1

2 + 1√
6
≈ 91%.



4. [A perfect magic trick.] Alice is on Mars, Bob is on Jupiter, Charlie is on Saturn. With
each of them is a referee. At the stroke of midnight, Pittsburgh time, each referee flips a fair
coin to choose a challenge that is either “top” (>) or “bottom” (⊥). Assume that among the
referees, there are an odd number of >’s.2 Alice, Bob, and Charlie are required to promptly
respond to their challenges with a “0” or “1”. They “succeed with the magic trick” under
the following conditions:

all three referee challenges were >: three responses have an even number of 1’s

referee challenges were one > and two ⊥’s: three responses have an odd number of 1’s

As usual, assume that the spatial distance between Alice, Bob, and Charlie prevents them
from communicating at all.

(a) [∗∗] Prove that if Alice, Bob, and Charlie respond deterministically to their challenges,
the probability with which they can succeed in the magic trick is at most 3/4.

(Remark: as with the CHSH game, from this one can also easily conclude that if Al-
ice, Bob, and Charlie can share classical random bits, they still cannot succeed with
probability more than 3/4.)

(b) [∗∗] Suppose that Alice, Bob, and Charlie prepare the following 3-qubit state on Earth
before the magic trick begins:

1

2
|000〉 − 1

2
|011〉 − 1

2
|101〉 − 1

2
|110〉 .

Alice takes the first qubit to Mars, Bob takes the second qubit to Jupiter, Charlie takes
the third qubit to Saturn. Now, when they receive their challenges, they each use the
following strategy: If they are challenged with >, they measure their qubit and respond
with the outcome. If they are challenged with ⊥, they first apply a Hadamard gate to
their qubit, and then they measure and respond with the outcome.

Prove that Alice, Bob, and Charlie succeed with the magic trick with 100% probability.

2In other words, the three challenges are either >>>, >⊥⊥, ⊥>⊥, or ⊥⊥>, with each of these possibilities being
equally likely. You might protest that there’s no way for the referees to immediately enforce this, since they are so
far apart. That’s true. So in practice what you do is have the referees and Alice/Bob/Charlie do the whole process
a bunch of times in quick succession. Then, when they’re all back on Earth comparing notes, they just throw out
the “rounds” in which the referees happened to pick an even number of >’s. Alternatively, if you assume that Alice,
Bob, and Charlie can’t spy on the referees, the referees can jointly and secretly choose their challenges from the four
possibilities while they’re still on Earth, before the magic trick begins.



5. [Hardy’s Paradox.] Alice and Bob prepare the following 2-qubit state:

|ψ〉 = (H ⊗H)

(
1√
3
|00〉+

1√
3
|01〉+

1√
3
|10〉

)
.

Alice now takes control of the first qubit and Bob takes control of the second qubit.

Each of Alice and Bob now flips a coin and does the following: If they flip Tails, they directly
measure their qubit; if they flip Heads, they first apply a Hadamard to their qubit and then
they measure.

(a) [∗∗] Prove the following statements:

If Alice flips T and Bob flips T, it’s possible A & B will measure 1, 1 respectively

If Alice flips T and Bob flips H, it’s impossible A & B will measure 1, 0 respectively

If Alice flips H and Bob flips T, it’s impossible A & B will measure 0, 1 respectively

If Alice flips H and Bob flips H, it’s impossible A & B will measure 1, 1 respectively

(b) [∗∗] Lucien says the following: “Let’s consider the situation before any coin flips or mea-
surement happens, and try to decide what outcomes the qubits are capable of producing
when measured.

� One one hand, consider the first statement in (a). Since it’s possible that Alice will
flip Tails and Bob will flip Tails, we conclude that prior to any coin flips/measuring,
it’s possible for Alice’s qubit to register 1 after being directly measured.

� Now consider the second statement in (a). Since Alice’s qubit is capable of generating
a 1 when she flips Tails, it must be impossible for Bob’s qubit to produce a 0 when
he flips Heads, and consequently Hadamards-then-measures.

� Let’s repeat the previous two bullet points, interchanging ‘Alice’ and ‘Bob’. By
the first statement in (a), we conclude that prior to any coin flips/measuring, it’s
possible for Bob’s qubit to register a 1 when directly measured. Hence by the
third statement in (a), since Bob’s qubit is capable of generating a 1 when directly
measured, we conclude that it must be impossible for Alice’s qubit to produce a 0
when she Hadamards-then-measures.

� We’ve concluded that in case of flipping Heads, for both Alice and Bob it’s impossible
for them to register a 0 when they Hadamard-and-measure; i.e., they must both
register a 1 in this case. But this contradicts the fourth statement in (a).”

Critique the four bullet points above. Do you agree or disagree with Lucien?

(c) [∗∗] Read Scott Aaronson’s blog post from Sept. 25th, 2018, It’s hard to think when
someone Hadamards your brain. Critique his argument. Do you agree or disagree with
Scott?

https://www.scottaaronson.com/blog/?p=3975
https://www.scottaaronson.com/blog/?p=3975


6. [Multiplicative generators modulo a prime.] For this problem, first please recall Prob-
lem 5 from the previous homework. (You may cite its results.)

(a) Show that for any M ≥ 1, ∑
D|M

ϕ(D) = M,

where the sum is over all divisorsD ofM . (Hint: consider theM fractions 1
M , 2

M , . . . , M
M .

Suppose we put each of them into lowest terms, and then group together the ones with
denominator D. How many fractions go into D’s group?)

(b) [∗∗] Let A ∈ Z∗M . Define the order of A, denoted ordM (A), to be the smallest positive
integer R such that AR = 1 (mod M). Prove that ordM (A) divides evenly into ϕ(M).
Conclude that if P is prime then ordP (A) divides evenly into P − 1.

(c) Let P be a prime, let D be a divisor of D−1, and let NP (D) be the number of elements
of Z∗P with order D. Show that ∑

D|P−1

NP (D) = P − 1.

(d) Continuing part (c), show that if ordP (A) = D, then 1, A,A2, . . . , AD−1 are distinct
(mod P ) and that they all solve the equation xD−1 = 0 (mod P ). Since every degree-D
polynomial equation mod P has at most D solutions,3 this proves that 1, A,A2, . . . , AD−1

constitute all the numbers x satisfying xD = 1 (mod P ).

(e) Continuing part (d), show that if ordP (A) = D, then every element B ∈ Z
∗
P with

ordP (B) = D is of the form AK , where ordP (AK) = D. Show that these are precisely the
K with GCD(K,D) = 1. Therefore deduce that if there exists any A with ordP (A) = D,
then it must be that NP (D) = ϕ(D).

(f) Having shown that NP (D) is either 0 or ϕ(D) for each divisor D of P − 1, deduce from
parts (a) and (c) that we must in fact have NP (D) = ϕ(D) for each divisor D of P − 1.

(g) Conclude that NP (P − 1) = ϕ(P − 1) ≥ 1 and hence (for any prime P ) there exists
an A such that ordP (A) = P − 1; i.e., Z∗P = {A,A2, · · · , AP−1}. Such an A is called a
generator of the multiplicative group Z∗P .

3You can take this for granted; it’s because the integers modulo P form a field. In other words, besides the
standard addition, subtraction, and multiplication, they also allow for division (except for division by 0). Given this,
it’s not hard to show that whenever you have a solution α of a degree-D polynomial equation Q(x) = 0, you can
divide Q(x) by x− α. Since you can repeat this at most D times, the equation can have at most D solutions.


