Quantum Computation CMU 15-859BB, Fall 2018

WEEK 1 WORK:  SEPT. 4 — SEPT. 12
12-HOUR WEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [#]




1. [Gates for universal classical computation.]

(a) Show that any Boolean function f : {0,1}" — {0,1} can be computed by a classical
Boolean circuit using the following set of logic gates: 2-bit AND, 2-bit OR, and NOT.
(Hint: look up DNF' formula.)

(b) Show that any Boolean function f : {0,1}" — {0,1} can be computed by a classical
Boolean circuit using the following single logic gate: 2-bit NAND. Also show this for the
following single logic gate: 2-bit NOR.

(c) Show that there are infinitely many Boolean functions f : {0,1}" — {0, 1} that cannot
be computed by a classical Boolean circuit using the following set of logic gates: 2-bit
AND, 2-bit OR.

(d) Show that there are infinitely many Boolean functions f : {0,1}" — {0,1} that cannot
be computed by a classical Boolean circuit using the following set of logic gates: 2-bit
XOR, and NOT.



2. [Reviewing big-0O.] Review “big-O” notation, e.g., by reading this, or reading the first part
of Chapter 6 here, or by watching this.
I will use sometimes one more piece of notation: “O-tilde”, or “soft big-O notation”. Basically,
O(g(n)) means “big-O of g(n), ignoring logarithmic factors”. More formally, we say that
f(n) =0(g(n)) if f(n) =O(g(n) - (log g(n))c) for some constant c. Some exercises for you:

Is n® = O(n?)?

(
(2)?
(

=0
=0

f) Is 3" = O(2")?
(g) Is 3" -n? = O(3")?
(h) Is 3" - n2 = O(3")?


https://en.wikipedia.org/wiki/Big_O_notation
http://www.cs.cmu.edu/~aada/courses/15251f17/www/notes/notes_all_but_sols.pdf
https://www.youtube.com/watch?v=Z0sovxyD7-Q

3. [Computational arithmetic.]

(a)
(b)

Watch this lecture on how to multiply two n-bit numbers in 5(71) steps using the Fast
Fourier Transform. (Budget 1 hour at 1.25x or 1.5x speed.)

Consider the “long division algorithm” for integers that you learn in grade school. Given
two numbers C and D, it outputs the (integer) quotient @@ = [C/D| and the remainder
R = C mod D. Argue that if C' and D are both at most n digits, then this algorithm
will compute ) and R in at most 6(n2) operations.

(Remark: in fact, there’s a sophisticated way to efficiently reduce integer division to
integer multiplication, meaning that integer division can actually be done in O(n) oper-
ations. The infamous “Pentium bug” was due to messing up this reduction.)

[*x] Consider the following task: Given positive integers B and C, compute the inte-
ger B¢. Show that this task is not solvable “in P”; that is, there is no algorithm that
can do this in O(n®"stnt) gperations when B and C' are n-bit numbers. (Hint.)

[*x] Consider the following task: Given positive integers B, C, and D, compute the
integer B¢ mod D. This is called the modular exponentiation problem. Show that this
task 4s solvable “in P”.! If B, C, and D are all n-bit numbers, show that it can be
done in O(n?) steps. (In fact, it can be done in O(n?) steps using the sophisticated
multiplication and division algorithms.)

(Hint: One key fact to use is
P-Q mod D = (P mod D) - (Q mod D) mod D.

Given this, first think about computing B mod D, B% mod D, B* mod D, B® mod D,
B'6 mod D, etc. If C happens to be a power of 2, you should be in good shape. What
should you do if C is, say, 24?7 What should you do if C' is (when represented in base 2)
10101010101010107)

1Some evidence. . .


https://www.youtube.com/watch?v=YCPnXtk8bMw&index=24&list=PLm3J0oaFux3aafQm568blS9blxtA_EWQv 
https://www.khanacademy.org/math/arithmetic-home/multiply-divide/mult-digit-div-2/v/partial-quotient-method-of-division-2
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.wolframalpha.com/input/?i=12345678901234567890123456789012345678901234567890+to+the+power+of+12345678901234567890123456789012345678901234567890
http://goo.gl/ndV7RL

4. [Simulating a biased coin.] The usual way to obtain a model of probabilistic computation
is to take a standard model of deterministic computation (e.g., Turing Machines, Boolean
circuits, your favorite programming language) and add a new “FLIP;/,” operation, which by
definition returns 0 with probability 1/2 and returns 1 with probability 1/2.

A more liberal augmentation would be to allow the “FLIP,” operation for any rational value
0 < p < 1, which by definition returns 0 with probability 1 — p and returns 1 with probability
p. This problem is about exploring the difference between the two models.

(a)

(b)

In one sense, general FLIP), operations are more powerful than FLIP; /; operations. Show
that if you only get FLIP;/, operations, it’s impossible to ezactly simulate a FLIP; /3
gate.

[**] However, in another sense, FLIP, operations are not fundamentally more powerful
than FLIP;/, operations. Writing in pseudocode, prove that for any € > 0, there is
a simple subroutine using only deterministic computation and FLIP; /5 operations that
almost ezactly simulates a FLIP, 3 operation, in the following sense: Your subroutine
should return a value r € {0, 1, FAIL}, and it should have the following two properties:
(i) Pr[r = FAIL] <¢; and, (ii) Pr[r =1 | r # FAIL] = 1/3 exactly.

(Remark: This problem is doable for any rational value of p, not just 1/3; but I expect
that once you solve it for 1/3, you'll get the idea of how to do it for any p.)

Implement and test your solution in your favorite programming language, with e = 2759,

(Requires a bit of sophistication in Theoretical Computer Science thinking.) Suppose
that you augment deterministic computation by allowing a FLIP,, operation for any real
0 < p < 1. Further, the algorithm designer only needs to mathematically specify each p
used; the algorithm itself doesn’t have to “calculate” p or anything. (Think, e.g., of
FLIPy operations.) You might imagine the algorithm is given a “magic coin” with
bias p, for any p of the algorithm designer’s choosing. Does this give fundamentally
increased power over deterministic computation?



5. [Dealing with error in randomized computation.] Suppose you are trying to write a
computer program C to compute a certain Boolean function f : {0,1}" — {0, 1}, mapping n
bits to 1 bit. (For example, perhaps f specifies that f(z) = 1 if and only if x represents a
prime number written in base 2.) If C' is a deterministic algorithm, then there is an obvious
definition for “C' successfully computes f”; namely, it should be that C'(z) = f(x) for all
inputs z € {0,1}". But what if C' is a probabilistic algorithm?

The best thing is if C' is a zero-error algorithm for f, with failure probability p. This means:

e on every input z, the output of C(x) is either f(x) or is “?”

e on every input z we have Pr[C(z) =7 <p

Important note: The second condition is not about what happens for a random input .
Instead, it demands that for every input z the probability of failure is at most p, where the
probability is only over the internal “coin flips” of C.

(a) [*%] If you have a zero-error algorithm C for f with failure probability 90% (quite high!),
show how to convert it to a zero-error algorithm C’ for f with failure probability at
most 27°%. The “slowdown” should only be a factor of a few thousand.

(b) [#*] Alternatively, show how to convert C' to an algorithm C” for f which: (i) always
outputs the correct answer, meaning C”(x) = f(x); (ii) has expected running time only
a few powers of 2 worse than that of C. (Hint: look up the mean of a geometric random
variable.)

The second best thing is if C is a one-sided error algorithm for f, with failure probability p.
There are two kinds of such algorithms, “no-false-positives” and “no-false-negatives”. For
simplicity, let’s just consider “no false-negatives” (the other case is symmetric); this means. . .

e on every input x, the output C(z) is either 0 or 1
e on every input x such that f(x) = 1, the output C(z) is also 1
e on every input z such that f(z) =0, we have Pr[C(z) =1] <p

(¢) [#x] If you have a no-false-negatives algorithm C' for f with failure probability 90%
(quite high!), show how to convert it to a no-false-negatives algorithm C’ for f with
failure probability at most 27°%°. The “slowdown” should only be a factor of a few
thousand.

The third best thing (in fact, the worst thing, but it’s still not so bad) is if C' is a two-sided
error algorithm for f, with failure probability p. This means:

e on every input x, the output C(z) is either 0 or 1

e on every input = we have Pr[C(x) # f(z)] <p

Remark: It is actually very very rare in practice for a probabilistic algorithm to have two-
sided error; in almost every natural case, an algorithm you design will have one-sided error
at worst.

(d) If you have a two-sided error algorithm C' for f with failure probability 40%, show how to
convert it to a two-sided error algorithm C’ for f with failure probability at most 27590,
The “slowdown” should only be a factor of a few dozen thousand. (Hint: look up the
Chernoff bound.)



6. [CMU Probabilistic Experience.]

(a) Play around with the IBM () Experience.

(b) [+*] Write a “coin-flipping experience” program in your favorite programming language.”
Your program should support a fixed number of coins n (you choice; say, 5 < n < 10),
each of which can be showing 0 (Heads) or 1 (Tails). It is assumed that all coins are
initialized to be 0/Heads. The input to your program should be the description of a
“circuit” (in any convenient format of your choice; e.g., a text file). A circuit is just an
arbitrary-length sequence of operations from the following set:

Flip i (randomly set coin i to 0 or 1 with probability 1/2 each)
Not i (turn over the ith coin; i.e., deterministically reverse its 0/1 status)
CNot ij (if coin 7 is 1 (Tails) then do a Not on coin j, else do nothing)
CSwap ij k (if coin 4 is 1 (Tails) then swap the values of coins j and k)

In the above, %, j, k stand for distinct coin numbers between 1 and n.
If you like, you can also implement the following operations:

CCNot ijk (if coins ¢ and j are both 1 then do ‘Not k’, else do nothing)
GenFlip ip (set coin i to 0 with probability 1 — p, to 1 with probability p)
GenlBit ipq (if coin 7 is 0 then make it 1 with probability p,

else if coin 7 is 1 then make it 0 with probability ¢q)

Given the input circuit description, your program should use (pseudo)randomness to
simulate one run of the circuit and output the resulting final outcome of the coins (a
length-n bitstring). (You should test your program with multiple runs to make sure it
works!)

2«Bonus points” if you do it in Scratch.


https://quantumexperience.ng.bluemix.net/qx/editor

7. [Abandoning realism.]

(a) [#x] Following on from the CMU Probabilistic Experience problem, make a new version
of your program that takes as input the description of a circuit, and calculates the prob-
abilities of each possible outcome. Your new program should output these probabilities
as a column of 2" numbers (adding up to 1). E.g., if n =5 then the output should be

Pricircuit would output 00000]
Pricircuit would output 00001]
Pricircuit would output 00010]

Pr]circuit would output 11111]

These numbers should be exactly calculated; they should not be obtained by simulating
your previous programming and taking an empirical average.® (Hint: it might help you
if your favorite programming language has built-in support for matrix multiplication.)

(b) Upgrade your program so that instead of assuming all coins are initialized to 0, your
program outputs one column of results for each of the 2™ possible initial settings of the
coins. (Thus your program should be outputting a 2" x 2" matrix, with rows and columns
indexed by length-n bitstrings, in which the entry in the xth column and yth row is the
probability that the circuit outputs y € {0,1}" given that its input is initialized to
x €40,1}™)

3“Bonus points” if you implement GenFlip and GenlBit and then give the output answers symbolically as a
polynomial functions of all the p’s and ¢’s.



8. [Miscellaneous.]

e Watch this video by 3B1B on the enormity of the number 22°6.
e Read this survey by Pomerance on factoring.
e Watch this surprisingly accurate PBS video on the Many Worlds Interpretation.

e Send an email to the instructor (odonnell@cs.cmu.edu) saying hello, what year and pro-
gram you're in, what your interest in the course is, and one of the following: (i) interesting
fact about yourself; (ii) your hometown; (iii) your favorite show.


https://www.youtube.com/watch?v=S9JGmA5_unY
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A51CA298BBF924DE7508A52B7C63D873?doi=10.1.1.80.9198&rep=rep1&type=pdf
https://www.youtube.com/watch?v=dzKWfw68M5U

