
Quantum Computation (CMU 18-859BB, Fall 2015)

Lecture 1: Introduction to the Quantum Circuit Model
September 9, 2015

Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Overview of what is to come

1.1 An incredibly brief history of quantum computation

The idea of quantum computation was pioneered in the 1980s mainly by Feynman [Fey82,
Fey86] and Deutsch [Deu85, Deu89], with Albert [Alb83] independently introducing quantum
automata and with Benioff [Ben80] analyzing the link between quantum mechanics and
reversible classical computation. The initial idea of Feynman was the following: Although
it is perfectly possible to use a (normal) computer to simulate the behavior of n-particle
systems evolving according to the laws of quantum, it seems be extremely inefficient. In
particular, it seems to take an amount of time/space that is exponential in n. This is
peculiar because the actual particles can be viewed as simulating themselves efficiently. So
why not call the particles themselves a “computer”? After all, although we have sophisticated
theoretical models of (normal) computation, in the end computers are ultimately physical
objects operating according to the laws of physics. If we simply regard the particles following
their natural quantum-mechanical behavior as a computer, then this “quantum computer”
appears to be performing a certain computation (namely, simulating a quantum system)
exponentially more efficiently than we know how to perform it with a normal, “classical”
computer. Perhaps we can carefully engineer multi-particle systems in such a way that
their natural quantum behavior will do other interesting computations exponentially more
efficiently than classical computers can.

This is the basic idea behind quantum computers. As it turns out, you can get (seemingly)
exponential speedups for a (seemingly) small number of natural computational problems
by carefully designing a multi-particle quantum system and letting it evolve according to
the (100-year old, extremely well-confirmed) laws of quantum mechanics. By far the most
spectacular example is Shor’s factoring algorithm [Sho97], an algorithm implementable on a
quantum computer that can factor any n-digit integer (with high probability) in roughly n2

time. This is contrast to the fact that the fastest known “classical” algorithm for factoring
n-digit integers seems to require roughly 2n1/3

time, and in fact the presumed computational
difficulty of factoring is relied upon in an enormous number of real-world cryptographic
applications (e.g., the computations done whenever you type https:// into your browser).

1.2 Plans for this course and this lecture

Very briefly, in this course we will:

1

• Mathematically formulate the tiny bit of quantum mechanics that is relevant for the
field of quantum computation. (We should mention that this course will be heavily
slanted towards theoretical computer science and mathematics, and will contain almost
no physics.)

• See some quantum algorithms that solve certain computational problems much faster
than they are known to be solvable classically.

• Investigate the limits of quantum computation. (It is not the case that quantum com-
putation automatically provides speedup over classical computation for all problems,
or even for a wide class of problems.)

• Study some quantum information theory.

The goal for this first lecture is to give a lightning-fast, as-barebones-as-possible definition
of the quantum circuit model of computation. After this lecture, you will theoretically know
all you need to know in order to implement and analyze, e.g., Shor’s algorithm. (Of course, we
will subsequently make a more thorough and leisurely development of quantum computation
before actually getting around to sophisticated algorithms.)

90% of the understanding of the quantum circuit model is achieved by reviewing three
purely “classical” topics: classical Boolean circuits; reversible classical circuits; and random-
ized computation. The first and third of these topics should be very familiar to anyone who
has studied the basics of theoretical computer science. And the second topic is very cute and
elementary. Once we have these three concepts in hand, quantum circuits become practically
just a tiny “twist” on randomized computation — what you might get if you tried to invent
a model of randomized computation in which “probabilities” can be negative. . .

2 Classical Boolean circuits

Several models of computation/algorithms are studied in the classical theory of computation:
Turing Machines, high-level programming languages, and Boolean circuits. It turns out that
for the study of quantum computation, the Boolean circuit model is by far the easiest model
to generalize (being as it the closest model of the physical reality of computers).

We begin with the following well known fact, stating that any computational task (mod-
eled by a Boolean function) we might want to do is doable with an AND/OR/NOT Boolean
circuit.

Proposition 2.1. Any Boolean function f : {0, 1}n → {0, 1}m is computable by a Boolean
circuit C using just AND, OR, and NOT gates. I.e., AND, OR, and NOT gates are uni-
versal.

Remark 2.2. The AND and OR gates mentioned in this proposition take 2 input bits and
produce 1 output bit. The NOT gate takes 1 input bit and produces 1 output bit.

2

Remark 2.3. Once we know that every Boolean function is computable by some circuit, we
usually become interested in computing it efficiently ; i.e., with a circuit C of small size. The
size of the circuit, size(C), is defined to be the number of gates it uses. Circuit size fairly
closely corresponds to running time in the Turing Machine (sequential algorithm) model.
For example, it is known that a circuit of size s can be evaluated in time O(s log s) by a
Turing Machine, and conversely, a Turing Machine operating in time t on length-n inputs
can be converted to an n-input circuit of size O(t log t).

Here is a simple example of a circuit computing the XOR function, f(x1, x2) = x1 ⊕ x2:

The lines in this diagram are called “wires”, and the things inside the rectangles are called
“gates”. In the diagram we have followed a traditional circuit-theory convention by allowing
wires to “branch”; i.e., split into two copies. In reality, some physical mechanism must exist
at these branches, and in the future it will be convenient to make this explicit. So we will
introduce a new kind of gate called a DUPE (duplicate) gate which takes 1 input bit and
outputs 2 duplicate copies of that bit. We will then redraw the above diagram as follows:

With this convention, it would be more accurate to say that AND, OR, NOT, and DUPE
gates are universal for Boolean circuit computation.

It is also a well known fact that one can get smaller universal gate sets; in fact, one
can replace AND/OR/NOT gates with just NAND gates. (Recall that NAND(x1, x2) =
NOT(AND(x1, x2)).) To see this, first note that we can eliminate OR gates using De Mor-
gan’s rule: OR(x1, x2) = NOT(AND(NOT(x1),NOT(x2))). Then we can eliminate AND
gates in favor of NAND gates via AND(x1, x2) = NOT(NAND(x1, x2)). Finally, we need to
show that NOT gates can be eliminated using NAND gates. One way to implement NOT(x1)
with a NAND gate is as follows:

3

On the lower left in this diagram, we have what is called an ancilla bit: an input that is
“hardwired” to the constant bit 1, for the purposes of assisting the computation. It’s actually
possible to implement NOT(x1) using NAND and DUPE without the use of ancillas (specif-
ically, via NAND(DUPE(x1))). However the above method gives us a good opportunity to
introduce the notion of ancillas.

What we have just shown is the following:

Proposition 2.4. Boolean NAND and DUPE gates (along with the use of ancillas) are
universal for computation.

Remark 2.5. In fact, we have shown something stronger: Not only can every AND/OR/NOT/DUPE
circuit C be converted to an equivalent AND/OR/NOT circuit C’, this conversion can
be done very efficiently ; there is an efficient algorithm carrying out the conversion, and
size(C ′) = O(size(C)).

2.1 Bra-ket notation

We take this opportunity to introduce a bit of unusual notation that will play an essential
role in the remainder of the course. This is the “bra-ket” notation invented by Paul Dirac.
Actually, we will postpone the mathematical definitions to the next lecture; for now we
will just introduce it as pure symbolism. We will henceforth enclose bits and bit-strings in
asymmetrical brackets called kets, writing |0〉 and |1〉 instead of 0 and 1. We will also usually
eliminate internal brackets when writing strings; e.g., writing |011〉 instead of |0〉 |1〉 |1〉. As
a small example of this notation, we will redraw the previous diagram as follows:

4

3 Reversible computation

In actual physical reality, a theoretical bit (|0〉 or |1〉) is implemented by a particle or bunch of
particles (e.g., high or low voltage on a physical wire). Similarly, a gate is implemented by a
physical object (a “switch” or some other gadget) that manipulates the bit-representations.
We then would ideally like to think of the circuit as a “closed physical system”. Unfor-
tunately, for a typical AND/OR/NOT/DUPE circuit, this is not possible. The reason is
that the laws of physics governing microscopic systems (both classical and quantum) are
reversible with respect to time, but this is not true of most gates we would like to physically
implement.

Take for example an AND gate. Suppose its output is |0〉. Can we infer what its inputs
were? The answer is no — they could have been |00〉, |01〉, or |10〉. The AND process is
not reversible: information sometimes needs to be deleted; “entropy” is lost. According to
the 2nd Law of Thermodynamics, a physical system consisting of a single AND gate cannot
be “closed”; its operation must dissipate some energy — typically as escaping heat. On the
other hand, a NOT gate is theoretically “reversible”: its output can be determined from its
input; no information is created or destroyed in switching |0〉 to a |1〉 or vice versa. Thus,
in principle, it is possible to construct a completely closed physical system implementing a
NOT gate, without the need for energy dissipation.

These issues were studied in the 1960s and 1970s by Landauer [Lan61] and Bennett [Ben73],
among others. They raised the question of whether there are Boolean gates that are both
reversible and universal. If so, then by using them it would be possible — at least according
to the theoretical laws of physics — to have circuits doing general computation without
dissipating any energy. On one hand, as we will see shortly, it is possible to find universal
reversible gates. On the other hand, it turned out that from a practical point of view, the
energy dissipation of standard electronic circuits did not prove to be a major problem (al-
though laptops sometimes do get rather hot in your lap). On the other other hand, it turns
out to be important for the quantum circuit model that universal reversible computation is
possible. So we will now explain how to do it. We begin with a definition:

Definition 3.1. A Boolean gate G is said to be reversible if it has the same number of
inputs as outputs, and its mapping from input strings to output strings is a bijection.

Thus a NOT gate is reversible, whereas most other “standard” gates (e.g., AND, OR,
NAND, and DUPE) cannot be reversible since they do not have an equal number of inputs
and outputs.

Let’s introduce a new, simple, reversible gate, the CNOT (controlled-NOT) gate. It has
2 input bits and 2 output bits, and is drawn like this:

•

Its behavior is as follows:
x1 • x1
x2 x1 ⊕ x2

5

That is, the first input bit x1 is always passed through directly; the second bit gets NOT
applied to it if and only if the “control” bit x1 is |1〉. To be even more explicit, CNOT has
the following truth table:

CNOT:

input output
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

You can see that this mapping is indeed a bijection, confirming that CNOT is a reversible
gate.

We now describe a small but important generalization, called the CCNOT (controlled-
controlled-NOT) or Toffoli gate. The below diagram indicates how this 3-input, 3-output
gate is drawn, as well as its behavior:

x1 • x1

x2 • x2

x3 AND(x1, x2)⊕ x3
In other words, the first two inputs to a CCNOT gate are passed through directly, and the
third input is negated if and only if the first two “control” input bits are both |1〉.1 Explicitly,
we have the following truth table, showing that CCNOT is reversible:

CCNOT:

input output
|000〉 |000〉
|001〉 |001〉
|010〉 |010〉
|011〉 |011〉
|100〉 |100〉
|101〉 |101〉
|110〉 |111〉
|111〉 |110〉

Remark 3.2. The three examples of reversible gates we have seen so far — NOT, CNOT,
CCNOT — also have the extra property that they are their own inverse; i.e., applying them
twice in succession restores the original bits. This is a bit of a coincidence, insofar as it is
not a property we insist on for reversible gates. We merely insist that reversible gates have
some inverse gate; the inverse doesn’t have to be the gate itself.

The CCNOT gate is extremely handy: as the following two pictures show, we can use
it to simulate both NAND gates and DUPE gates (assuming, as always, that ancillas are

1In general, we use the convention that attaching a dot to a k-input/k-output gate G with a vertical line
means creating a “controlled-G” gate. This is the (k + 1)-input/(k + 1)-output gate that passes through its
first, “control”, bit, and which either applies G or doesn’t depending on whether the control bit is |1〉 or |0〉.
Assuming that a NOT gate is drawn as ⊕, this explains the picture used for CNOT and CCNOT gates.

6

allowed):
x1 • x1

x2 • x2

|1〉 NAND(x1, x2)

|1〉 • |1〉
x2 • x2

|0〉 x2

}
DUPE(x2)

Note that, in addition to producing the desired NAND and DUPE outputs, these conversions
also produce extra, unneeded bits (namely, x1 and x2 in the NAND case, and the top |1〉
in the DUPE case). This is somewhat inevitable, given that reversible gates are required to
have equally many input and output bits. We call such unwanted outputs garbage.

As one more very minor note, the above conversions use both |0〉 ancillas and |1〉 ancillas.
We can also use CCNOT gates to generate |0〉’s from |1〉 ancillas as follows:

|1〉 • |1〉
|1〉 • |1〉

|1〉 |0〉

We have therefore established the following key theorem, which shows that we can do
universal computation reversibly.

Theorem 3.3. The CCNOT gate is universal, assuming ancilla inputs (all set to |1〉)
and garbage outputs are allowed; any standard AND/OR/NOT circuit for a function f :
{0, 1}n → {0, 1}m may be efficiently transformed into a reversible one that looks like Fig-
ure 1.

Remark 3.4. In reversible circuits we will always have n+ #ancillas = m+ #garbage.

Remark 3.5. “In practice”, when doing reversible computing we usually also allow ourselves
NOT and CNOT gates. (Given NOT gates, we may assume that all ancillas are fixed to |0〉
rather than |1〉, and this is actually a more traditional assumption.)

x1 • · · · f(x)1
x2 • • · · ·

... output
input ... · · · f(x)m

xn · · ·

|1〉 • · · · • garbage
ancillas ... · · ·

|1〉 · · · •





Figure 1: A typical reversible circuit using CCNOT gates. We remark that the output bits
need not be the “topmost” m bits on the right; we could designate any of the m bits on the
right as the outputs.

7

With “standard” circuits, the number of wires carrying a bit at any one “time” (vertical
slice) may vary. However with reversible circuits, this will always equal the number of
inputs+ancillas, as you can see above. Indeed, one sort of stops thinking about wires and
instead thinks of each input/ancilla bit being carried in its own register, which maintains
its “identity” throughout the computation. It’s very helpful to think of circuits not just
as diagrams but also as “lists of instructions performed on registers”, as in the following
description, which is completely equivalent to the diagram in Figure 1:

Input is in registers x1, x2, . . . , xn.
“Attach” c ancillas in xn+1, . . . , xn+c, initialized to |1〉.

• CCNOT(x1, x2, xn)

• CCNOT(x2, xn+1, xn+c)

• · · ·

• CCNOT(xn+c, xn+1, x1)

Output is in registers x1, . . . , xm.

4 Randomized computation

Although we are well used to it now, randomized computation is a bit like the “quantum
computation of the ’60s and ’70s” — a creative new twist on classical computation, seemingly
realizable in practice and potentially allowing for big speedups over deterministic computa-
tion, but one requiring its investigators to make a big investment in a new area of math (i.e.,
probability). Indeed, there are some computational tasks which we know how to provably
solve efficiently using randomized computation, but which we don’t know how to provably
solve efficiently using only deterministic computation. (An example: on input “n”, generate
an n-digit prime number.) Unlike with quantum computation, however, we believe this is
mainly due to our lack of skill in proving things, rather than an inherent major advantage of
randomized computation. (E.g., we know a deterministic algorithm that we believe efficiently
generates n-digit prime numbers; we just can’t prove its efficiency.)

It is very easy to upgrade the circuit model of computation to a randomized model: we

just introduce a single new gate called the COIN gate, drawn like this: COIN — or $ —.
It has 0 inputs and 1 output; the output is a “fair coin flip”, viz., |0〉 with probability 1

2
and

|1〉 with probability 1
2
.

Remark 4.1. You might also imagine allowing other kinds of randomized gates; for example,
a COIN 1

3
gate that outputs |1〉 with probability 1

3
and |0〉 with probability 2

3
. It turns out

that allowing such gates does not fundamentally change the model of randomized computing;
although a fair COIN gate cannot simulate a COIN 1

3
gate exactly, it can simulate it close-

to-exactly enough that it doesn’t really matter. For this reason we say that the plain COIN
gate is (effectively) universal for randomized computation. See Homework 1 for more details.

8

We will now describe how to “analyze” randomized circuits. Although our style of analysis
will be very simple and pedantic, it will be great practice for analyzing the closely related
quantum circuits. Here is an example randomized circuit:

x1 $ •
x2 |0〉

Alternatively, we could think of this circuit as the following “program”:

1. x1 initialized to $

2. x2 initialized to |0〉

3. CNOT(x1, x2)

As you can easily see, the output of this circuit is |00〉 with probability 1
2

(if the coin flip
is |0〉) and is |11〉 with probability 1

2
(if the coin flip is |1〉). Nevertheless, let’s patiently

“analyze” it.
The state of x1 after the coin flip — equivalently, after Line 1 of the program — is

1

2
probability of |0〉 , 1

2
probability of |1〉 . (1)

Let us introduce some funny notation for this:

Notation 4.2. We will write (1) as

1

2
· |0〉+

1

2
· |1〉 .

In the next lecture we will “make mathematical sense” of this notation using linear algebra,
but for this lecture you should be perfectly happy just treating it as some “formal notation”.

The state of x2 after Line 2 of the program is

1 probability of |0〉 , 0 probability of |1〉 ,

which we will write in our new notation as

1 · |0〉+ 0 · |1〉 = |0〉 .

Here we have used the “usual” laws and notation of arithmetic in the equality. (Again,
continue to think of this as shorthand notation.)

9

Finally, what happens at the end of the circuit, after Line 3? One could say that we
have:

State of x1 :
1

2
|0〉+

1

2
|1〉

State of x2 :
1

2
|0〉+

1

2
|1〉

While in some sense this is true (each “register” is equally likely to be |0〉 or |1〉), it’s grossly
misleading. It makes it looks as if the two bits are independent, when in fact they are
correlated. So the above analysis is true but incomplete; to truly capture the correlations
in the system we should say:

Joint state of x1, x2 :
1

2
|00〉+

1

2
|11〉 .

In our analyses of randomized circuits, we will keep track of the joint state of all registers
all along. For example, in the circuit we have been analyzing the joint state just prior to
Line 3 would be

1

2
|00〉+

1

2
|10〉 .

Let’s practice some more analysis of “r-bit circuits” (where “r” standards for “random-
ized”). For the purposes of practice we’ll invent a new randomized gate, CCOIN
(“controlled-coin”), which has 1 input and 1 output. Its behavior is the following:

CCOIN:

input output
|0〉 |0〉

|1〉

{
|0〉 with prob. 1

2

|1〉 with prob. 1
2

Now let’s extend the 2 r-bit circuit we had previously been analyzing, as follows:

x1 $ •

x2 |0〉 CCOIN

Equivalently, we are adding the instruction “4. CCOIN(x1, x2)” to our program. Now prior
to the CCOIN gate, the joint state of the system is

1

2
|00〉+

1

2
|11〉 . (2)

What is the state after the new CCOIN gate? Here is how you would say it in words:

Prior to the CCOIN gate, (2) tells us that there is a 1
2

probability that x1 is |0〉
and x2 is |0〉. In this case, the CCOIN does not touch x1, so it stays |0〉, and the
CCOIN gate leaves x2 as |0〉 as per its definition. Thus the final state in this case

10

is still |00〉. On the other hand, (2) tells us that there is a 1
2

probability that x1 is
|1〉 and x2 is |1〉. In this case, the CCOIN does not touch x1, so it stays |1〉, and
the CCOIN gate changes x2 to |0〉 with probability 1

2
and to |1〉 with probability

1
2
, as per its definition. Thus overall the final state is |00〉 with probability 1

2
, is

|10〉 with probability 1
2
· 1
2

= 1
4
, and is |11〉 with probability 1

2
· 1
2

= 1
4
.

Here is the math symbolism you would write to exactly model those words:

the final state is
1

2
|00〉+

1

2

(
1

2
|10〉+

1

2
|11〉

)
=

1

2
|00〉+

1

4
|10〉+

1

4
|11〉 .

As you can see, the natural “arithmetic” you would write with this formalism matches up
with the actual probabilistic calculations.

Let’s add a few more twists. Suppose that x3 is a new register that was in the system all
along (we forgot to tell you about it), initialized to |0〉 and never touched. Then we would
say that the final state of the system is

1

2
|000〉+

1

4
|100〉+

1

4
|110〉 .

Suppose we now added a CCNOT(x1, x2, x3) gate to the end of the circuit. What would the
new state be? Clearly we just go through the above state and change each of the bit-strings
according to CCNOT’s operation, leaving the probabilities unchanged:

1

2
|000〉+

1

4
|100〉+

1

4
|111〉 . (3)

Finally, suppose we now added a CCOIN(x1) instruction, so that the final circuit looked like
this:

x1 $ • • CCOIN

x2 |0〉 CCOIN •

x3 |0〉
Now we can calculate the final state as follows. We start with state (3) and proceed through
the “terms” (probabilistic cases) in it. For each one, the last two r-bits in the string will be
unchanged, since the final CCOIN gate only operates on x1. If the first r-bit is |0〉 then it
will stay |0〉, as per CCOIN’s definition. On the other hand, if the first r-bit is |1〉 then it will
become |0〉 with probability 1

2
and become |1〉 with probability 1

2
(generating two “terms”).

Then we simplify. The calculation is:

1

2
|000〉+

1

4

(
1

2
|000〉+

1

2
|100〉

)
+

1

4

(
1

2
|011〉+

1

2
|111〉

)
(4)

=
5

8
|000〉+

1

8
|100〉+

1

8
|011〉+

1

8
|111〉 . (5)

11

And indeed, had you been asked to compute the final joint state of the 3 r-bits in the above
circuit, however you analyzed it would ultimately be pretty close to our pedantic style, and
you would have indeed computed that there’s a 5

8
chance of ending with |000〉, a 0 chance of

ending with |001〉, a 1
8

chance of ending with |100〉, etc.

Remark 4.3. An obvious yet important takeaway from this kind of analysis is the following:
Suppose we have a circuit with n r-bit registers. At any time, the state of the circuit can be
written as ∑

x∈{0,1}n
px |x〉 ,

where the “coefficient” probabilities px are nonnegative and summing to 1.

4.1 On measurement

As a small note, we typically imagine that we provide the inputs to a randomized circuit,
and then we observe (or measure) the outputs. The probabilistic “state” of the registers
at some intermediate time in the circuit’s execution reflects only the uncertainty that we,
the observers, have about the registers’ values. Of course, in reality the registers always
have some definite value; it’s merely that these variables are “hidden” to us. Analytically,
once we observe one or more of the r-bits, the probabilistic state “collapses” to reflect the
information we learned.

For example, in the randomized circuit we analyzed in the previous section, the final
state (5) is

5

8
|000〉+

1

8
|100〉+

1

8
|011〉+

1

8
|111〉 .

Suppose for example we measure just the first register, x1. The probability we observe a |0〉
is

5

8
+

1

8
=

6

8
=

3

4
.

Supposing we do observe a |0〉, if we wanted to continue the analysis we would use the law
of conditional probability to deduce that the state of the system “collapses” to

5/8

3/4
|000〉+

1/8

3/4
|011〉 =

5

6
|000〉+

1

6
|011〉 .

Here, since we observed that the first bit was |0〉, only the strings consistent with that
outcome survive, and the remaining probabilities are renormalized.

5 Quantum computation

Finally we can introduce the (barest essentials) of the quantum circuit model of computation.
As mentioned, it is kind of like what you would get if you took randomized computation but
found a way to allow the “probabilities” to be negative. It can also arguably be described

12

as classical reversible computation augmented with the Hadamard gate H . In other
words, a typical quantum circuit with 5 qubit (quantum bit) registers might look like this:

x1 • · · ·

inputs: |0〉 or |1〉 x2 • · · · H •

x3 · · ·

|1〉 H • · · · •

outputs/garbage

ancillas
|1〉 H • · · ·




As usual, it is sufficient to just use CCNOT gates in addition to Hadamard gates, but for
convenience we also allow NOT and CNOT gates too.

Just as in randomized computation, to analyze such a circuit we need to keep track of
the joint state of all 5 qubits as time passes; i.e., as they proceed through the gates. Even
though each gate only affects a small subset of all qubits, nevertheless just as in randomized
computation we must track the state of all qubits at all times in order to keep track of the
“correlations”, which are called entanglement in the context of qubits.

Further, just as in randomized computation, at each time step the state of the 5 qubits
is given by an expression that looks like this:

α |00000〉+ β |00001〉+ γ |00010〉+ · · ·+ ω |11111〉 , (6)

where the 32 (in general, 2n) coefficients are possibly negative real numbers.2 Since
these numbers may be negative, we don’t call them probabilities any more; we call them
amplitudes (and a state like (6) is called a superposition of |00000〉 , . . . , |11111〉). Finally,
just as in Remark 4.3, there is a restriction on what amplitudes are possible; this restriction
is that the sum of their squares3 is always 1:

α2 + β2 + · · ·+ ω2 = 1.

Note that this restriction is indeed always satisfied at the input. For example, if the actual
input to the above quantum circuit is |101〉, then the initial state (when ancillas are included)
is |10111〉. Here the amplitude on |10111〉 is 1, the amplitude on the other 31 strings is 0,
and indeed 02 + · · ·+ 02 + 12 + 02 + · · ·+ 02 = 1.

Here are all the rules of how to analyze quantum circuits:

2Actually, they can even be complex numbers. However if we stick to quantum circuits containing only
Hadamard gates and reversible classical gates, then they will always just be real numbers. Further, it is
known that these two gates are universal for quantum computation, and hence real numbers are universal
for quantum computation. I.e., strictly speaking you don’t need to worry about complex numbers if you
don’t want to; though ultimately, it will be more convenient (and physically accurate) to allow them.

3Squared magnitudes, if they’re complex numbers

13

• CCNOT gates (and other classical reversible gates like NOT and CNOT) are analyzed
exactly as in randomized circuits.

• Hadamard gates H have the following input/output behavior: |0〉 7→ 1√
2
|0〉 +

1√
2
|1〉 and |1〉 7→ 1√

2
|0〉 − 1√

2
|1〉.

• Follow all the same arithmetic rules as for analyzing “r-bit (randomized) circuits”,
except say the word “amplitude” whenever you were going to say “probability”.

• At the end, when you measure the output bits, the rule is probabilistic: if the final
state is as in (6), then you “see”. . .

|00000〉 with probability α2,

|00001〉 with probability β2,

...

|11111〉 with probability ω2.

For now we will assume that you always measure all the qubits at the end of a circuit’s
computation, and nowhere else. The picture for a measurement is

That’s it! We could now, in theory, describe an enormous quantum circuit that carries
out Shor’s algorithm: it takes as input an n-bit integer, uses roughly n2 CCNOT and H
gates, and has the property that when you measure the final output qubits, they give (with
probability at least 99%) the binary encoding of the prime factorization of the input integer
(plus some garbage bits). Of course, that would be like if someone described a circuit for
computing the maximum flow in a graph immediately after explaining what a NAND gate
is. But it’s possible.

Remark 5.1. As mentioned in a footnote, it is a theorem that CCNOT and Hadamard gates
together are universal for quantum computation. But they are not the only gates that are
allowed by the physical laws of quantum computation. In the next lecture we will see just
what gates nature does allow. For now, though, we will mention that any classical reversible
gate is okay, and it’s convenient to allow NOT and CNOT.

In fact, it is not complete obvious that the reversible gates and the Hadamard gate
preserve the key property of quantum states — that the sum of the squares of the (magnitudes
of the) amplitudes is 1. You will check this on the homework. In fact, the set of gates that
quantum mechanics allows is exactly the set of linear transformations of amplitudes which
preserve this property.

Remark 5.2. Quantum circuits are at least as powerful/efficient as classical circuits, since
we can just not use Hadamard gates, and we’re precisely left with reversible classical com-
putation.

Remark 5.3. Quantum circuits are also at least as powerful/efficient as randomized circuits.
This will be mostly clear from the following example, which shows how quantum circuits can
generate COIN gates. (See the homework for a few clarifying details.)

14

Let us give an extremely basic example of a quantum circuit:

x1 |0〉 H

Here the single qubit x1 is initialized to |0〉. By definition, after the Hadamard gate, the
state of the register is

1√
2
|0〉+

1√
2
|1〉 . (7)

Finally, when the register is measured at the end, the measurement rule tells us that we

observe |0〉 with probability
(

1√
2

)2
= 1

2
and we observe |1〉 with probability

(
1√
2

)2
= 1

2
.

Thus the outcome is just like a fair coin flip. (This would also have been the case had
x1 been initialized to |1〉; in that case, we would still see the output |1〉 with probability(
− 1√

2

)2
= 1

2
.)

However an interesting thing happens if, instead of measuring the register after the
Hadamard gate is applied, we first apply another Hadamard gate and then measure:

x1 |0〉 H H

Let us do the analysis here. Just prior to the second Hadamard gate, the state of the register
is as in (7). What is the new state after the second Hadamard gate? In words, we say almost
exactly the same thing we would say in the case of a probabilistic analysis:

With probability amplitude 1√
2
, the input is |0〉, in which case by definition the

Hadamard gate outputs |0〉 with probability amplitude 1√
2

and outputs |1〉 with

amplitude 1√
2
. On the other hand, with amplitude 1√

2
, the input is |1〉, in which

case by definition the Hadamard gate outputs |0〉 with amplitude 1√
2

and outputs

|1〉 with amplitude − 1√
2
. Thus the final state is. . .

1√
2

(
1√
2
|0〉+

1√
2
|1〉
)

+
1√
2

(
1√
2
|0〉 − 1√

2
|1〉
)

=

(
1

2
+

1

2

)
|0〉+

(
1

2
− 1

2

)
|1〉 = |0〉 !

Now when we measure the register, we will always see |0〉. It’s kind of like we “unflipped
the coin”. The positive/negative cancelation achieved here is precisely both the power and
the mystery of quantum computation.

Let us do one more complicated example for practice. We will analyze this circuit:

x1 |0〉 H • H

x2 |0〉

The initial state is |00〉.
After the first Hadamard gate, the state is 1√

2
|00〉+ 1√

2
|10〉 (the second qubit is always

unchanged).

15

After the CNOT gate, the state is

1√
2
|00〉+

1√
2
|11〉 . (8)

(As you can see, when applying classical gates, you really just need to change bit-strings
according to the gate’s definition; there’s no need to do any arithmetic.) This state (8) is
a famous entangled state; it is called an EPR pair after Einstein, Podolsky, and Rosen.4 If
we were to measure the two qubits at this point, we would see |00〉 with probability 1

2
and

|11〉 with probability 1
2
.

Finally, after the final Hadamard gate applied to state (8), we get

1√
2

(
1√
2
|00〉+

1√
2
|10〉

)
+

1√
2

(
1√
2
|01〉 − 1√

2
|11〉

)
=

1

2
|00〉+

1

2
|01〉+

1

2
|10〉 − 1

2
|11〉 .

That’s it. If we were to measure now, the rule tells us we would observe each of the four
outcomes |00〉 , |01〉 , |10〉 , |11〉 with probability 1

4
each.

5.1 On measurement

It is important to stress the following distinction with randomized computation. As men-
tioned, in the middle of a randomized circuit’s computation, the probabilistic state of the
registers only represents the uncertainty we (the analyzers) have about the bits’ values. How-
ever, it’s not like the bits have this state in Nature. Rather, the bits are actually in some
deterministic state; we just don’t know what it is.

This is not the case in quantum computation. According to the laws of physics, in the
middle of a quantum circuit’s computation, the superposition state that the n qubits are
in is literally the true state they’re in in Nature. They are not secretly in one of the basic
states; Nature is literally keeping track of the 2n amplitudes. (This gives you a hint of the
potential computational power of quantum mechanics!) In a later lecture we will describe
the theory that proves that this is the case, as well as the experimental work (including
outstanding work from earlier this month) that backs up the theory.

References

[Alb83] David Albert. On quantum-mechanical automata. Physics Letters A, 98(5):249–252,
1983.

[Ben73] Charles Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525–532, 1973.

4These three people wrote a paper together doubting that the laws of quantum mechanic could be true,
based on the nature of this state. However, EP&R were proven wrong.

16

[Ben80] Paul Benioff. The computer as a physical system: A microscopic quantum mechan-
ical Hamiltonian model of computers as represented by Turing machines. Journal
of Statistical Physics, 22(5):563–591, 1980.

[Deu85] David Deutsch. Quantum theory, the Church–Turing principle and the universal
quantum computer. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 400, pages 97–117, 1985.

[Deu89] David Deutsch. Quantum computational networks. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, volume
425, pages 73–90, 1989.

[Fey82] Richard Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6/7):467–488, 1982.

[Fey86] Richard Feynman. Quantum mechanical computers. Foundations of Physics,
16(6):507–531, 1986.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5(3):183–191, 1961.

[Sho97] Peter Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509,
1997.

17

