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1 Question

In today’s lecture, we will try to answer the following question:

How many bits are in a qubit?

What’s the answer? Well, we’ll see... In reality, there’s more than one way to answer this
question. So we’ll have to be a little bit more precise if we want to say anything interesting.
In this lecture, we will motivate and formally state Holevo’s Theorem [Hol73], which does a
good job of answering our question.

We begin by considering the following scenario. We have two parties Alice and Bob, and
Alice has a string x 2 {0, 1}n that she would like to transmit to Bob. Classically, we would
do the following: Alice would store the string in some shared memory (say, a RAM), and
then Bob would read the string from the RAM.

Alice
x 2 {0, 1}n RAM

store read Bob
x 2 {0, 1}n

The above scheme works assuming the RAM is big enough, i.e. it can store at least n bits.
Now, since this is a quantum computation course, it is natural to ask if we can do better

quantumly, perhaps with respect to the number n? The previous scheme looks as follows in
the quantum setting:

Alice
x 2 {0, 1}n | 

x

i 2 Cd

compute measure Bob
x 2 {0, 1}n
(Hopefully)

In the above, Alice does some sort of computation to create the state | 
x

i 2 Cd, which
depends on her input x. The scheme works only if d � 2n. Otherwise there will exist
non-orthogonal vectors | 

x

i and | 
y

i for x 6= y. In the previous lecture, we showed that we
are only able to discriminate quantum states with probability 1 if they are orthogonal, so
we cannot have this if we want Bob to be guaranteed to recover the correct string x. Since
d � 2n, we require n qubits.

So, it seems like we’ve answered our question: we need n qubits to represent n bits. Are
we done? Well, we can say a little more.
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2 More General Scenario

First of all, it might happen that we don’t actually need n bits to represent x, even in the
classical setting. As a very simple case, it could very well happen that Bob already knows
x, so Alice needs to store 0 bits! To deal with this, we need some way to quantify how
much Bob knows about Alice’s input x. And to do this, we will need to quantify how much
uncertainty there is about Alice’s input. We will use the following uncertainty model:

Alice samples random message x 2 {0, 1}n with probability p(x).

If all the p(x)’s are positive, then we still need n bits to encode all the possible options
classically and, just as before, we require n qubits in the quantum setting. But, it is possible
that we could do better.

Let’s now try to turn our question around slighty. We will now think of d, the dimension-
ality of the quantum state prepared by Alice, as fixed in advance. Our question will now be:
How much information can Bob learn about x?

Before continuing, we remark that Alice need not send a vector. As we’ve seen in recent
lectures, quantum states are in the most general case represented by a density matrix, so
Alice may send �

x

2 Cd⇥d, a mixed state. Also, Bob can perform the more general quantum
measurements that we discussed recently. Hence, the scenario we will analyze is the following:1

• Alice samples X 2 ⌃ ✓ {0, 1}n, where X = x with probability p(x).

• Alice sends �
X

2 Cd⇥d.

• Bob picks POVM’s {E
y

}
y2�, where � ✓ {0, 1}n.

• Bob measures �
X

, and receives output “Y 2 �”, where Y = y given X = x with
probability tr(E

y

�
x

).

• Bob tries to infer X from Y .

Alice
X ⇠ ⌃

�
X

2 Cd⇥d

compute measure Bob
Y ⇠ �

The most natural thing to do is to put � = ⌃, and if Bob observes “y” he guesses “y”.
This is essentially without loss of generality, but we will still consider the situation where ⌃
and � may be di↵erent.

1We now think of Alice’s input, and therefore Bob’s measurement, as random variables. Hence the
capitalization.
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3 Analysis

What’s Bob’s perspective in this game? He sees �
x

with probability p(x), and he’s tasked with
discriminating between the di↵erent �

x

’s. This is very reminiscent of the state discrimination
problem we saw last time. However, in this case, we can try to come up with �

x

’s that are
very easy to discriminate from each other (recall that Alice and Bob are working together).

Bob sees the mixed state
8
>><

>>:

�
x1 with prob. p(x1),

�
x2 with prob. p(x2),

...

⌘
X

x2⌃

p(x)�
x

=: ⇢
B

.

Since each �
x

is a probability distribution over pure states, ⇢
B

is itself a probability
distribution over probability distributions of pure states. We do therefore obtain a probability
distribution over pure states, as one would expect.

Alice sees
8
>><

>>:

|x1i with prob. p(x1),

|x2i with prob. p(x2),
...

⌘
X

x2⌃

p(x)|xihx| =: ⇢
A

.

Note that ⇢
A

is precisely the diagonal matrix whose diagonal entries are given by p(x1), p(x2), . . ..
To determine the joint state, note that the parties see |xihx|⌦ �

x

with probability p(x).
Hence, the joint mixed system is

⇢ :=
X

x2⌃

p(x)|xihx|⌦ �
x

.

Recalling an earlier Piazza post, one can indeed verify that ⇢
B

= tr
A

(⇢) and ⇢
B

= tr
B

(⇢).
Now that we’re dealing with random variables and knowledge, we’ll turn to:

4 Classical Information Theory

For further reading on this subject, see [CT12]. In classical information theory, we typically
have some random variable X distributed according to P on some set ⌃. The most basic
question one can ask is:

How much information do you learn from seeing X?
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Example 4.1. Suppose that ⌃ = {0, 1}n.

• If P is the uniform distribution, then one gets n bits of info from seeing X.

• If P has all its probability on a single string x0 2 {0, 1}n, i.e. X = x0 with probability
1 and X = x with probability 0 for all x 6= x0, then we get 0 bits of information from
seeing X.

We can formalize this with the following definition:

Definition 4.2 (Shannon Entropy). The shannon entropy of a random variableX distributed
on a set ⌃ is

H(X) =
X

x2⌃

p(x) log
1

p(x)
,

where p(x) = Pr[X = x].

Example 4.3. Let’s verify that this definition matches our intuition, at least for the previous
two examples.

• If X is uniform, i.e. p(x) = 1/2n for all x 2 {0, 1}n, then

H(X) =
X

x2{0,1}n

1

2n
log

✓
1

1/2n

◆
= 2n

1

2n
log(2n) = n.

• If X has all its probability mass on a single string x0, then

H(X) = 1 · log(1/1) + (2n � 1) · 0 · log(1/0) = 0 + 0 = 0,

where we define
0 log(1/0) := lim

x!0+
x log(1/x) = 0.

We record here a couple important properties of the shannon entropy function:

• 0  H(X)  log |⌃|.

• H is concave.

So, returning to our earlier scenario, the largest amount of information Bob could hope to
learn is H(X). How much does he actually learn? We have two correlated random variables
X and Y . We want to know how much knowing Y tells us about X.

In general, if we have random variablesX and Y supported on the sets ⌃ and � respectively
with joint distribution P (x, y) = Pr[X = x, Y = y], we have

H(X, Y ) =
X

x2⌃,y2�

P (x, y) log
1

P (x, y)
.
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Example 4.4. Let ⌃ = � = {0, 1}n.

• Suppose X and Y are independent, uniform random variables. Then (X, Y ) is a random
2n-bit string. So H(X, Y ) = 2n.

• Suppose X is a uniform random variable and Y = X. Then Y is also a uniform
random variable. However, (X, Y ) is basically a random n-bit string. So H(X, Y ) = n.

In general, we note that if X and Y are independent, then H(X, Y ) = H(X) + H(Y ).
This seems reasonable, as seeing one of the random variables tells us nothing about the other,
so seeing half of the pair (X, Y ) only decreases tells us the shannon entropy of the random
variable that we observe, but the other random variable still has all of its entropy.

Conversely, if X and Y perfectly correlated, then H(X, Y ) = H(X) = H(Y ). Indeed,
seeing half of the pair (X, Y ) immediately tells us what the other half of the pair is, so the
amount of entropy in the pair is the same as the amount of entropy in the random variables
themselves.

We can formalize the notion of “how much does seeing one random variable tell me about
the other” as follows:

Definition 4.5 (Mutual Information). Themutual information I(X;Y ) between two random
variables X and Y is

I(X;Y ) = H(X) +H(Y )�H(X, Y ).

This is supposed to represent the amount of information you learn about X from knowing
what Y is. Since the definition is symmetric in X and Y , it also represents the amount of
information you learn about Y from knowing X.

Example 4.6. Let’s return to our earlier examples.

• If X and Y are independent then we see that

I(X;Y ) = H(X) +H(Y )�H(X, Y ) = H(X, Y )�H(X, Y ) = 0.

This intuitively makes sense, as seeing X tells us nothing about Y (and vice versa)
since X and Y are independent.

• If X and Y are perfectly correlated, then

I(X;Y ) = H(X) = H(Y ).

In this case, seeing X tells us everything there is to know about Y (and vice versa), so
the mutual information between the random variables is a large as possible.

The symmetry of this definition might be a bit surprising. However, the following example
might help explain exactly why this should be the case.
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Example 4.7. Suppose ⌃ = {0, 1}n and � = {0, 1}2n. Let Y be uniformly random on the
set �, and let X = (Y1, . . . , Yn

), i.e. it is the first n bits of Y . Then

I(X;Y ) = H(X) +H(Y )�H(X, Y ) = n+ 2n� 2n = n.

This makes sense regardless of the way that we look at it.

• Suppose I know X. Then, I know the first n bits of Y , i.e. I have n bits of information
about Y .

• Suppose I know Y . Then, I know all of X, and since X is an n-bit string, I have n
bits of information about X.

5 Quantum Information Theory

With this understanding of classical information theory, we can now rephrase our earlier
question. Indeed, the mutual information of X and Y is precisely what we are looking for!
Recall that we wanted to know how much information Bob can learn about X. Since Alice
and Bob see the joint distribution (X, Y ), Bob learns I(X;Y ) bits of information about X.
Note that I(X;Y ) depends on the �

x

’s for x 2 ⌃ and the E
y

’s for y 2 �.
As we are now looking at this scenario quantumly, we will in fact be studying quantum

information theory. For further reading on this subject, see [Wat11].
We now provide an important definition:

Definition 5.1 (Accessible Information). The accessible information is

Iacc(�, p) = max
over all
POVMs
{E

y

}
y2�

I(X;Y ).

This represents the best Bob can do given Alice’s choice of the �
x

’s and the distribution p.

The best overall that the parties can do is therefore

max
{�

x

}
x2⌃

Iacc(�, p),

which can be upper bounded by H(X)  log |⌃|. Our new goal is to relate Iacc(�, p) to the
amount of “quantum” information in the �’s. Recall that Bob “sees” the mixed state ⇢

B

.
But how much information is in a mixed state? To answer this question, we need to develop
the quantum analogue of Shannon’s classical coding theory.

So suppose we have the mixed state
8
>><

>>:

| 1i with prob. p1,

| 2i with prob. p2,
...
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One might initially be inclined to define the quantum entropy to be H(p), where p is
the distribution over the | 

j

i’s. However, that would be wrong! This is due to the non-
uniqueness of the representation of mixed states. For example, the above mixed state could
be indistinguishable from the mixed state

8
>><

>>:

|'1i with prob. q1,

|'2i with prob. q2,
...

even if we have H(p) 6= H(q).
Here is the “correct” way to define the quantum analogue of shannon entropy, due to

John von Neumann:

Definition 5.2 (Quantum Entropy). Given a mixed state, let ⇢ be the density matrix,
and suppose it has eigenvalues ↵1, . . . ,↵d

with corresponding eigenvectors |v1i, . . . , |vdi. We
define

H(⇢) :=
dX

i=1

↵
i

log
1

↵
i

= H(↵).

This quantity is often referred to as the von Neumann entropy, and is sometimes denoted
S(⇢).

Remark 5.3. One can equivalently define

H(⇢) = tr(⇢ log(1/⇢)).

While the matrix ⇢ log(1/⇢) might look a little scary, it can be simply thought of as the
matrix that has the same eigenvectors |v1i, . . . , |vdi as ⇢, but the corresponding eigenvalues
are now ↵1 log(1/↵1), . . . ,↵d

log(1/↵
d

) (with the same convention that 0 log(1/0) = 0). So

⇢ log(1/⇢) =
dX

i=1

↵
i

log
1

↵
i

|v
i

ihv
i

|.

Example 5.4. • Suppose

⇢ =

2

666664

1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

3

777775

Then H(⇢) = 0.
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• Suppose

⇢ =

2

6664

1/d 0 · · · 0
0 1/d · · · 0
...

...
. . .

...
0 0 · · · 1/d

3

7775

Then H(⇢) = log d. As a “cultural note” we remark that this state is often referred to
as the “maximally mixed state”.

Finally, we can answer the question: how much quantum information does Bob get?

Definition 5.5 (Quantum Mutual Information). If ⇢ is the joint state of two quantum
systems A and B then the quantum mutual information is

I(⇢
A

; ⇢
B

) = H(⇢
A

) +H(⇢
B

)�H(⇢).

Example 5.6. Suppose ⇢ = 1
d

P
d

i=1 |iihi|⌦ |iihi|. Then we can mechanically compute ⇢
A

as
follows:

⇢
A

= tr
B

(⇢) = tr
B

 
1

d

dX

i=1

|iihi|⌦ |iihi|
!

=
1

d

dX

i=1

tr
B

(|iihi|⌦ |iihi|)

=
1

d

dX

i=1

|iihi|tr(|iihi|)

=
1

d

dX

i=1

|iihi|.

At a more conceptual level, we could have immediately determined that ⇢
A

= 1
d

P
d

i=1 |iihi|, the
maximally mixed state, as follows. If Bob observes the state |iihi|, Alice’s system collapses to
|iihi|. Since Bob observes |iihi| with probability 1/d for i = 1, . . . , d, we conclude that Alice’s
mixed state is precisely given by the ensemble

8
>><

>>:

|1i with prob. 1/d,

|2i with prob. 1/d,
... ,

which is represented by the density matrix 1
d

P
d

i=1 |iihi|.
Similarly, we have ⇢

B

= 1
d

P
d

i=1 |iihi|. We thus have

H(⇢
A

) = H(⇢
B

) = log d.
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Moreover, observe that
H(⇢) = log d,

as ⇢ is essentially two perfectly correlated copies of the maximally mixed state. Hence,

I(⇢
A

; ⇢
B

) = log d+ log d� log d = log d.

Example 5.7. If ⇢ = ⇢
A

⌦ ⇢
B

, then I(⇢
A

; ⇢
B

) = 0.

We can now define how much quantum information Bob gets from seeing Alice’s state: it
is precisely I(⇢

A

; ⇢
B

). This is such an important quantity that it gets its own name.

Definition 5.8 (Holevo Information). The Holevo information is

�(�, p) := I(⇢
A

; ⇢
B

).

Next time, we will prove Holevo’s Theorem:

Theorem 5.9 (Holevo [Hol73]). Iacc(�, p)  �(�, p)  log d.
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