Quantum Computation (CMU 18-859BB, Fall 2015)

Lecture 15: Reichardt’s Theorem II: Evaluation of Span Programs
October 28, 2015
Lecturer: Ryan O’Donnell Scribe: Vikesh Siddhu

1 Short Summary

We have discussed in the past, general methods to lower bound the quantum query com-
plexity. Now we discuss a way to convert the lower bounds given by the general adversary
method [HLS07] into an upper bound [Rei09]. In this lecture we will cover the proof that
leads to this result. Two key ingredients are Span Programs and how one defines their
complexity.

2 Recall Span Programs

Let w € {0,1}" be a string and F : {0,1} ~ {0,1} be a function. A span program
computes P for given w. Let {|v;)}™, be vectors in R? that are columns of a matrix V' and
let |7) € R? be another vector called target. V is split into 2N blocks, the 2k and 2k + 1
block each have vectors corresponding to wy, = 0 and wy = 1 resp.

Given w the span program makes available some IV blocks, call the these set of vectors in
the block avail(w) and the rest unavail(w). For example w; = 0,wy = 1,...,wy = 1 makes
available the blocks 1,4,...2N and the rest 2,3,...2N — 1 become unavailable. Given a
span program the function P(w) = 1 iff |7) € span{|v;) : |v;) € avail(w)}

Suppose P computes F : DSOBY 5 {01}, then

e For y € F~1(1), a positive witness is |a) € R™ s.t.

a; =0 Vi€ unavail(y) (1)
Vie) =|7) (2)
we define it’s size to be || |a) [|?.
e For z € F71(0), a negative witness is (] € R? s.t.
(Blviy =0 Vieavail(y) (3)
(B]7) =1 (4)
we define it’s size to be || (3| V]2

An extended span program is a span program along with positive and negative witnesses for
all possible inputs w. We can define the complexity of an extended span program as follows

1

e Let |ay) be a positive witness for y € F~!(1) then the YES complexity is defined as
Ty = max {size(|ay))}.
eF-1(1)

e Let |3,) be a negative witness for y € F~'(0) then the NO complexity is defined as
Ty= o {siel]5,)}

yeF—1

e The overall complexity of the span program is T' = /1yT}

3 Reichardt’s Theorem I1I

Theorem 3.1. If a span program P with complexity T computes I, then there exists a
quantum query algorithm for F' making O(T') queries of the oracle O]jf.

Fact 3.2. The complexity T for the span program P to compute the function F' is equal to
the adversary lower bound Adv*(F)

Example 3.3. Let F = ORy i.e. OR on N bits. Define a span program with vectors such
that, for w; =1, the block in V has one vector |v;) = [1] and the for w; = 0, the block in V
a null vector |v;) = ¢. Then

1. YES complexity T1 = 1
2. NO complezity Ty = N
3. The overall complezity is T = /ToT; = VN

We now come to the proof of Theorem 3.1.

Proof. Let |T) = c\';% and define V € R&>™+1 a5

V=[17|V] (5)

For the Grover case V = (211 ...1].
For now the algorithm will work in the R™*! space and any intermediate state is given
by a vector |s) = > """ «; |i) where each (i|j) = ¢;;. Define

K =ker(V) = {|u) € R™ | V |u) = 0} (6)

For the Grover case K consists of all vectors of mean 0.
Define R to be the reflection through K. Then Ry is a unitary operator on reals, i.e.
an orthogonal matrix. For the Grover case Ry flips a vector in R™™! across its mean.
Given w € {0, 1}, let

A, =span{|i) 0 <i<mi € avail(w)} (7)

by definition |7) € A, and is always available. Let R4, be the reflection through A, which
mean we negate all the entries of a vector in R™*! that are at the unavailable coordinates,
so Ry, = —OF.

Let U = Ra, Rk, computing R is a 0 query step and computing R4, takes 1 query (well
2 query if you un-compute the garbage).

We now describe a fake algorithm that to give some intuition behind how computes F
on w using O(T") queries.

1. Initialize the state |¢)) = |0)
2. Fort=1,2,...CT apply U to |¢)
3. Measure |¢) in standard basis, output 1 iff you observe |0)
The basic idea is that
(i) If w is a YES instance, then U fixes |0)
(ii) If w is a NO instance, then U7 |1)) is far from |0)

The first idea can also be stated as, if y € F~'(1) then |0) is 99% in K and A,, hence
U fixes 99% of |0).

Fact 3.4. The accurate fact is 3 |n) of length < .01 s.t. |0) — |n) is an eigen vector of U.

_ o)

Proof. Let |a,) be a YES instance, let |n) = £, we know || |ay)
c > 100

Vinin) < - <.01 (8)

U = Ry, Ry where Rk is the reflection through K = ker(V') and Ry, is the reflection
through A,. Notice

||> < Ty which implies, for

—_

1. (|0) —|n)) is in the kernel of V so Rx([0) — 7)) = (]0) — |n))

7(0) = n)) = |7) - #ﬁv o) (9)
= 7) — = I7) (10)

2. (|0) —n)) is in A, because by definition |0) € A, and |n) |oy,) and |ay,) is in A, so
R4, (10) = |m) = (10) = [n))

Hence U fixes |0) — |n) O

The second idea states, if 2 € F~1(0) then |0) is far from states fixed by U.

3

Fact 3.5. If w € F~(0) then 3 |u) s.t. Proj, (|u)) =10) and |||u)|| < 2cT and |u) L K.
Proof. Let (B,| be a NO witness for w, define
(u| = /Ty (Bu| V (13)
Clearly V |u) # 0, hence |u) L ker(V) = |u) L K. Rewrite |u) as follows
(ul = e/ Ti{{0] (Bu | 7) + (Bu| V} (14)
= (0] + v T1 (Bu| V (15)

where the second equality follows from eq. (4) which states (7| 3,) = 1 and |7) = %
Notice

(a) (Bw|V, the second term in the rhs of eq. (15) is a linear combination of unavailable
vectors (since |f3,) is orthogonal to all available vectors)

(b) || {Bu| V|I* < Ty (since size of (B, is at most Tp)

Lets switch back to kets |u) = [(u|]" where T is the conjugate-transpose (since everything is

real here, it is just the transpose). Using (a) we conclude Proj, |u) = |0), using (b) we
conclude

H |U> || S \ 1 + 02T0T1 S 1 + cy/ TOT1 S 2T (16)

[

Another key idea is the Kitaev Phase Estimation, which we shall delve into a little later.

Before going further we review a few facts about orthogonal matrices from the 19*" century.
Let U € R™*™ then

e U offers a decomposition of R™ s.t

Rm: Hl@HQ Hk@Hk+1 Hrr@HrJrl@ (17)

1 dim spaces where U is I 1 dim spaces where U is —I 2 dim spaces where U=R(0)

where R(0) is a 2 — D rotation by 6 € (—m, 7]. In other words, there are eigen spaces
of U with eigen value +1 (the identity spaces), —1 (the reflection space) and e (the
2-d rotation space)

e Let A, B be subspaces of R™ and R4, Rp be reflection through these spaces, construct
U = RsRp. Let H be a 2-d 0 rotation subspaces of U, then it is true, that H N A and
H N B are 1 dimensional subspaces of R™ and the angle between H N A and H N B is
/2

Lemma 3.6. Suppose |u) € H, w L (H N B) then ||projsngy(|u))|| < @H |u) ||
Proof. Using Figure (1) we see that ||projqz(|u))|| = sin & |u) || < &|||u) || O

4

HNA HNB

0/2

Figure 1: Intersecting subspaces H N A, HN B

Corollary 3.7. Let Ps be the projection onto all 2-d rotation subspaces of U with angle
0 <4, then

|| Bs[Proja(ju)]]] < g\l ju) || (18)

Proof. Apply lemma (3.6) subspace by subspace to Proj,(|u)) = |v) where it is given
that |u) L B. O

We now make the second idea precise. If w € F~1(0) then |0) is far from states fixed
by U. Recall U = Ry, Rx and w € F71(0) = Proj,(|u)) = |0). Since |[0) L K we use
Corollary 3.7 and write

HPHO)HSgHWHS&T (19)
where the final inequality follows from eq. (16). By setting 6 = &7 and & < 100 we get
155 10) || < .01 (20)
In essence we have shown
e When w € F~*(0) then ||P5|0) || < .01

e When w € F~1(1) then ||P|0) || > .99, where P, is a projection onto the +1 eigen
space of U.

In order to distinguish whether w € F~1(0) or w € F~!(1), we must be able to tell whether
|0) is 99% in U’s rotation 0 eigen space or |0) is only < 1% in U’s rotation < ¢ subspace.
This can be achieved by Kitaev’s phase estimation algorithm. O

4 Phase Estimation

Phase Detection is actually a special case of a more general algorithm called Phase
Estimation, due to Kitaev[Kit97]. Here it the theorem:

Theorem 4.1. Let U be an unitary operation on R, given to a quantum algorithm as a
“black box“. Let 1)) be an eigenvector of U, also given (in a sense) as a “black box”. Say
the eigenvalue of) is €, where § € (—m, x| Then with only O(1/8) applications of U, it
is possible to distinguish the case 8 =0 from 6 > § with high probability.

Let’s be a bit more precise. Our algorithm (quantum circuit) will work with two registers;
an M-dimensional register, and a ”workspace” register of dimension ©(1/6). (You can think
of the workspace register as roughly log(1/d) additional qubits.) The circuit is allowed to
use U gates on the first register, although it doesn’t “know” what U is. (Actually, it will
use controlled-U gates; there is a basic quantum circuit theorem, which we skipped, showing
that one can construct controlled-U gates from U gates.) It is also assumed that the input
to the circuit will be |¢) ® |0), where again, |¢) is some ("unknown”) eigenvector of U with
eigenvalue €. Then the Phase Detection circuit has the following properties:

e it contains at most O(1/§) controlled-U operations;

e if) =0, i.e. |[¢) is fixed by U, then the final state of the circuit will always be exactly
|4) @ |0), the same as the initial state;

e it § > 0, then the final state will be of the form |¢)) ® |¢), where | (¢|0)| < 1/4

Then, in a typical use of Phase Detection, you just measure at the end, and look at the
second (workspace) register. If = 0 then you will see |0) with probability 1, and if 6 > §
you will see |0) with probability at most 1/4.

Now actually, it’s not 100% immediate to finish Reichardt’s theorem with Phase Detec-
tion, because the summary that we ended suggested applying it with |¢)) equal to this “|0)”
vector, and |0) wasn’t necessarily an eigenvalue of U, even in the YES case (in that case,
it was only 99% equal to a l-eigenvalue of U). Still, we're almost finished; I leave it as an
exercise for the reader to complete the proof of Reichardt’s theorem using the two facts we
ended the summary one, plus the Phase Detection algorithm. (Hint: every input to Phase
Detection can be written as a linear combination of U’s orthogonal eigenvalues; so apply
Phase Detection’s guarantee to each, and use the fact that the Phase Detection algorithm
is, like every quantum algorithm, a unitary linear transformation.)

We now give the proof of the Phase Detection theorem.

Proof. Let D be 8/ rounded up to the nearest integer power of 2, so D = O(1/9). The
workspace register will consist of exactly d = log 2D qubits, thought of as encoding an integer
between 0 and D1. Now here is the algorithm:

e UniformSuperposition(workspace register) (this is just d little Hadamard gates, one on
each workspace wire).

e fort=1,...,.D—1
do “controlled-U” on the first register, where the control condition is that the integer
in the second register is at least ¢.

e UniformSuperposition™!(workspace register).

That’s it. You see it’s indeed O(1/d) applications of U. Let us now track the state of the
registers throughout the algorithm.

(a) Initial state: |1) ® |0)

(b) After step 1:

(c) After step 2:

D-1 D-1
1 1
—) UM)y @ j) = Z WU |4) @ |4) since |1) is an ¢” eigen vector of U
VD = N
=[¢¥) ®|9)

where |¢) = f Z] e+]5) and the final eq

Let us now consider the two cases we need to analyze for the theorem.

e Case 1: 6 = 0 In this case we simply have |¢) = \F Z "|5) ie., |¢) is the uniform

superposition in the second register. hus after step 3, it Wlll turn back into |0). Hence
the final state is indeed |¢) ® |0)

e Case 2: |f| > ¢ since UniformSuperposition is a unitary transformation, it (and its
inverse) preserve angles. It follows that the exact statement we must show is that
(¢ | uniform superposition)® < 1/4. The unsquared quantity on the left (which we
must bound by 1/2) is

< Z z9(3+1)(%i‘j>)|_’126193+1

You should be able to see how this will work out; we have a unit complex number with
angle —6 where |0| > §. We're averaging it over D rotations of itself, where D > %.
It should come out close to 0. To be completely precise, the above quantity is exactly
(by the formula for the sum of a geometric series)

1 ’1 _ efi9D|
D |1 —e |

7

We have % < g, the numerator above is trivially at most 2, and the denominator is
at least |0]/2 (simple trig), which is at least /2. So the above expression is indeed at
most 1/2; as desired

References

[HLS07] Peter Hoyer, Troy Lee, and Robert Spalek. Negative weights make adversaries
stronger. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory
of Computing, STOC 07, pages 526-535, New York, NY, USA, 2007. ACM.

[Kit97] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys, 52(6):1191, 1997.

[Rei09] B. W. Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function. In Foundations of
Computer Science, 2009. FOCS °09. 50th Annual IEEE Symposium, pages 544—
551, October 2009.

