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1 Short Summary

We have discussed in the past, general methods to lower bound the quantum query com-
plexity. Now we discuss a way to convert the lower bounds given by the general adversary
method [HLS07] into an upper bound [Rei09]. In this lecture we will cover the proof that
leads to this result. Two key ingredients are Span Programs and how one defines their
complexity.

2 Recall Span Programs

Let w ∈ {0, 1}N be a string and F : {0, 1}N 7→ {0, 1} be a function. A span program
computes P for given w. Let {|vi〉}mi=1 be vectors in Rd that are columns of a matrix V and
let |τ〉 ∈ Rd be another vector called target. V is split into 2N blocks, the 2kth and 2kth + 1
block each have vectors corresponding to wk = 0 and wk = 1 resp.

Given w the span program makes available some N blocks, call the these set of vectors in
the block avail(w) and the rest unavail(w). For example w1 = 0, w2 = 1, . . . , wN = 1 makes
available the blocks 1, 4, . . . 2N and the rest 2, 3, . . . 2N − 1 become unavailable. Given a
span program the function P (w) = 1 iff |τ〉 ∈ span{|vi〉 : |vi〉 ∈ avail(w)}

Suppose P computes F : D⊆{0,1}N 7→ {0, 1}, then

� For y ∈ F−1(1), a positive witness is |α〉 ∈ Rm s.t.

αi = 0 ∀i ∈ unavail(y) (1)

V |α〉 = |τ〉 (2)

we define it’s size to be || |α〉 ||2.

� For z ∈ F−1(0), a negative witness is 〈β| ∈ Rd s.t.

〈β | vi〉 = 0 ∀i ∈ avail(y) (3)

〈β | τ〉 = 1 (4)

we define it’s size to be || 〈β|V ||2.
An extended span program is a span program along with positive and negative witnesses for
all possible inputs w. We can define the complexity of an extended span program as follows
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� Let |αy〉 be a positive witness for y ∈ F−1(1) then the YES complexity is defined as
T1 ≡ max

y∈F−1(1)
{size(|αy〉)}.

� Let |βy〉 be a negative witness for y ∈ F−1(0) then the NO complexity is defined as
T0 ≡ max

y∈F−1(0)
{size(|βy〉)}

� The overall complexity of the span program is T =
√
T0T1

3 Reichardt’s Theorem II

Theorem 3.1. If a span program P with complexity T computes F , then there exists a
quantum query algorithm for F making O(T ) queries of the oracle O±f .

Fact 3.2. The complexity T for the span program P to compute the function F is equal to
the adversary lower bound Adv±(F )

Example 3.3. Let F = ORN i.e. OR on N bits. Define a span program with vectors such
that, for wi = 1, the block in V has one vector |vi〉 = [1] and the for wi = 0, the block in V
a null vector |vi〉 = φ. Then

1. YES complexity T1 = 1

2. NO complexity T0 = N

3. The overall complexity is T =
√
T0T1 =

√
N

We now come to the proof of Theorem 3.1.

Proof. Let |τ̃〉 = |τ〉
c
√
T1

and define Ṽ ∈ Rd×m+1 as

Ṽ =
[
|τ̃〉 V

]
(5)

For the Grover case Ṽ = [1
c

1 1 . . . 1].
For now the algorithm will work in the Rm+1 space and any intermediate state is given

by a vector |s〉 =
∑m

i=0 αi |i〉 where each 〈i | j〉 = δij. Define

K = ker(Ṽ ) = {|u〉 ∈ Rm+1 | Ṽ |u〉 = 0} (6)

For the Grover case K consists of all vectors of mean 0.
Define RK to be the reflection through K. Then RK is a unitary operator on reals, i.e.

an orthogonal matrix. For the Grover case RK flips a vector in Rm+1 across its mean.
Given w ∈ {0, 1}N , let

Aw = span{|i〉 0 ≤ i ≤ m i ∈ avail(w)} (7)
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by definition |τ̃〉 ∈ Aw and is always available. Let RAw be the reflection through Aw, which
mean we negate all the entries of a vector in Rm+1 that are at the unavailable coordinates,
so RAw = −O±w .

Let U = RAwRK , computing RK is a 0 query step and computing RAw takes 1 query (well
2 query if you un-compute the garbage).

We now describe a fake algorithm that to give some intuition behind how computes F
on w using O(T ) queries.

1. Initialize the state |ψ〉 = |0〉

2. For t = 1, 2, . . . CT apply U to |ψ〉

3. Measure |ψ〉 in standard basis, output 1 iff you observe |0〉

The basic idea is that

(i) If w is a YES instance, then U fixes |0〉

(ii) If w is a NO instance, then UCT |ψ〉 is far from |0〉

The first idea can also be stated as, if y ∈ F−1(1) then |0〉 is 99% in K and Ay, hence
U fixes 99% of |0〉.
Fact 3.4. The accurate fact is ∃ |η〉 of length ≤ .01 s.t. |0〉 − |η〉 is an eigen vector of U .

Proof. Let |αy〉 be a YES instance, let |η〉 = |αy〉
c
√
T1

, we know || |αy〉 ||2 ≤ T1 which implies, for
c ≥ 100 √

〈η | η〉 ≤ 1

c
≤ .01 (8)

U = RAyRK where RK is the reflection through K = ker(Ṽ ) and RAy is the reflection
through Aw. Notice

1. (|0〉 − |η〉) is in the kernel of Ṽ so RK(|0〉 − |η〉) = (|0〉 − |η〉)

Ṽ (|0〉 − |η〉) = |τ̃〉 − 1

c
√
T1
Ṽ |αy〉 (9)

= |τ̃〉 − 1

c
√
T1
|τ〉 (10)

= |τ̃〉 − |τ̃〉 (11)

= 0 (12)

2. (|0〉 − |η〉) is in Ay because by definition |0〉 ∈ Ay and |η〉 ∝ |αy〉 and |αy〉 is in Ay, so
RAy(|0〉 − |η〉) = (|0〉 − |η〉)

Hence U fixes |0〉 − |η〉
The second idea states, if z ∈ F−1(0) then |0〉 is far from states fixed by U .
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Fact 3.5. If w ∈ F−1(0) then ∃ |u〉 s.t. ProjAw
(|u〉) = |0〉 and || |u〉 || ≤ 2cT and |u〉 ⊥ K.

Proof. Let 〈βw| be a NO witness for w, define

〈u| ≡ c
√
T1 〈βw| Ṽ (13)

Clearly Ṽ |u〉 6= 0, hence |u〉 ⊥ ker(Ṽ ) =⇒ |u〉 ⊥ K. Rewrite |u〉 as follows

〈u| = c
√
T1{〈0| 〈βw | τ̃〉+ 〈βw|V } (14)

= 〈0|+ c
√
T1 〈βw|V (15)

where the second equality follows from eq. (4) which states 〈τ | βw〉 = 1 and |τ̃〉 = |τ〉
c
√
T1

.
Notice

(a) 〈βw|V , the second term in the rhs of eq. (15) is a linear combination of unavailable
vectors (since |βw〉 is orthogonal to all available vectors)

(b) || 〈βw|V ||2 ≤ T0 (since size of 〈βw| is at most T0)

Lets switch back to kets |u〉 = [〈u|]† where † is the conjugate-transpose (since everything is
real here, it is just the transpose). Using (a) we conclude ProjAw

|u〉 = |0〉, using (b) we
conclude

|| |u〉 || ≤
√

1 + c2T0T1 ≤ 1 + c
√
T0T1 ≤ 2cT (16)

Another key idea is the Kitaev Phase Estimation, which we shall delve into a little later.
Before going further we review a few facts about orthogonal matrices from the 19th century.
Let U ∈ Rm×m then

� U offers a decomposition of Rm s.t

Rm = H1 ⊕H2 . . .
1 dim spaces where U is I

. . . Hk ⊕Hk+1 . . .
1 dim spaces where U is −I

. . . Hr ⊕Hr+1 ⊕ . . .
2 dim spaces where U=R(θ)

(17)

where R(θ) is a 2−D rotation by θ ∈ (−π, π]. In other words, there are eigen spaces
of U with eigen value +1 (the identity spaces), −1 (the reflection space) and eiθ (the
2-d rotation space)

� Let A,B be subspaces of Rm and RA, RB be reflection through these spaces, construct
U = RARB. Let H be a 2-d θ rotation subspaces of U , then it is true, that H ∩A and
H ∩B are 1 dimensional subspaces of Rm and the angle between H ∩A and H ∩B is
θ/2

Lemma 3.6. Suppose |u〉 ∈ H, u ⊥ (H ∩B) then ||projA∩H(|u〉)|| ≤ |θ|
2
|| |u〉 ||

Proof. Using Figure (1) we see that ||projA∩H(|u〉)|| = sin θ
2
|| |u〉 || ≤ θ

2
|| |u〉 ||
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θ/2

H ∩A H ∩B

u

Figure 1: Intersecting subspaces H ∩ A, H ∩B

Corollary 3.7. Let Pδ be the projection onto all 2-d rotation subspaces of U with angle
θ ≤ δ, then

||Pδ[ProjA(|u〉)]|| ≤ δ

2
|| |u〉 || (18)

Proof. Apply lemma (3.6) subspace by subspace to ProjA(|u〉) = |v〉 where it is given
that |u〉 ⊥ B.

We now make the second idea precise. If w ∈ F−1(0) then |0〉 is far from states fixed
by U . Recall U = RAwRK and w ∈ F−1(0) =⇒ ProjA(|u〉) = |0〉. Since |0〉 ⊥ K we use
Corollary 3.7 and write

||Pδ |0〉 || ≤
δ

2
|| |u〉 || ≤ δcT (19)

where the final inequality follows from eq. (16). By setting δ = 1
CT

and c
C
≤ 100 we get

||Pδ |0〉 || ≤ .01 (20)

In essence we have shown

� When w ∈ F−1(0) then ||Pδ |0〉 || ≤ .01

� When w ∈ F−1(1) then ||P0 |0〉 || ≥ .99, where P0 is a projection onto the +1 eigen
space of U .

In order to distinguish whether w ∈ F−1(0) or w ∈ F−1(1), we must be able to tell whether
|0〉 is 99% in U ’s rotation 0 eigen space or |0〉 is only ≤ 1% in U ’s rotation ≤ δ subspace.
This can be achieved by Kitaev’s phase estimation algorithm.
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4 Phase Estimation

Phase Detection is actually a special case of a more general algorithm called Phase
Estimation, due to Kitaev[Kit97]. Here it the theorem:

Theorem 4.1. Let U be an unitary operation on RM , given to a quantum algorithm as a
“black box“. Let |ψ〉 be an eigenvector of U , also given (in a sense) as a ”black box”. Say
the eigenvalue of |ψ〉 is eiθ, where θ ∈ (−π, π] Then with only O(1/δ) applications of U , it
is possible to distinguish the case θ = 0 from θ ≥ δ with high probability.

Let’s be a bit more precise. Our algorithm (quantum circuit) will work with two registers;
an M -dimensional register, and a ”workspace” register of dimension Θ(1/δ). (You can think
of the workspace register as roughly log(1/δ) additional qubits.) The circuit is allowed to
use U gates on the first register, although it doesn’t “know” what U is. (Actually, it will
use controlled-U gates; there is a basic quantum circuit theorem, which we skipped, showing
that one can construct controlled-U gates from U gates.) It is also assumed that the input
to the circuit will be |ψ〉 ⊗ |0〉, where again, |ψ〉 is some (”unknown”) eigenvector of U with
eigenvalue eiθ. Then the Phase Detection circuit has the following properties:

� it contains at most O(1/δ) controlled-U operations;

� if θ = 0, i.e. |ψ〉 is fixed by U , then the final state of the circuit will always be exactly
|ψ〉 ⊗ |0〉, the same as the initial state;

� it θ ≥ δ, then the final state will be of the form |ψ〉 ⊗ |φ〉, where | 〈φ | 0〉 | ≤ 1/4

Then, in a typical use of Phase Detection, you just measure at the end, and look at the
second (workspace) register. If θ = 0 then you will see |0〉 with probability 1, and if θ ≥ δ
you will see |0〉 with probability at most 1/4.

Now actually, it’s not 100% immediate to finish Reichardt’s theorem with Phase Detec-
tion, because the summary that we ended suggested applying it with |ψ〉 equal to this “|0〉”
vector, and |0〉 wasn’t necessarily an eigenvalue of U , even in the YES case (in that case,
it was only 99% equal to a 1-eigenvalue of U). Still, we’re almost finished; I leave it as an
exercise for the reader to complete the proof of Reichardt’s theorem using the two facts we
ended the summary one, plus the Phase Detection algorithm. (Hint: every input to Phase
Detection can be written as a linear combination of U’s orthogonal eigenvalues; so apply
Phase Detection’s guarantee to each, and use the fact that the Phase Detection algorithm
is, like every quantum algorithm, a unitary linear transformation.)

We now give the proof of the Phase Detection theorem.

Proof. Let D be 8/δ rounded up to the nearest integer power of 2, so D = O(1/δ). The
workspace register will consist of exactly d = log 2D qubits, thought of as encoding an integer
between 0 and D1. Now here is the algorithm:

� UniformSuperposition(workspace register) (this is just d little Hadamard gates, one on
each workspace wire).
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� for t = 1, . . . , D − 1
do “controlled-U” on the first register, where the control condition is that the integer
in the second register is at least t.

� UniformSuperposition−1(workspace register).

That’s it. You see it’s indeed O(1/δ) applications of U . Let us now track the state of the
registers throughout the algorithm.

(a) Initial state: |ψ〉 ⊗ |0〉

(b) After step 1:

|ψ〉 ⊗
(

1√
D

D−1∑
j=0

|j〉
)

=
1√
D

D−1∑
j=0

|ψ〉 ⊗ |j〉

(c) After step 2:

1√
D

D−1∑
j=0

U j+1 |ψ〉 ⊗ |j〉 =
1√
D

D−1∑
j=0

eiθ(j+1) |ψ〉 ⊗ |j〉 since |ψ〉 is an eiθ eigen vector of U

= |ψ〉 ⊗ |φ〉

where |φ〉 = 1√
D

∑D−1
j=0 e

iθ(j+1) |j〉 and the final eq

Let us now consider the two cases we need to analyze for the theorem.

� Case 1: θ = 0 In this case we simply have |φ〉 = 1√
D

∑D−1
j=0 |j〉 i.e., |φ〉 is the uniform

superposition in the second register. hus after step 3, it will turn back into |0〉. Hence
the final state is indeed |ψ〉 ⊗ |0〉

� Case 2: |θ| ≥ δ since UniformSuperposition is a unitary transformation, it (and its
inverse) preserve angles. It follows that the exact statement we must show is that
〈φ | uniform superposition〉2 ≤ 1/4. The unsquared quantity on the left (which we
must bound by 1/2) is

|
(

1√
D

D−1∑
j=0

e−iθ(j+1) 〈j|
)(

1√
D

D−1∑
j=0

|j〉
)
| = | 1

D

D−1∑
j=0

e−iθ(j+1)|

You should be able to see how this will work out; we have a unit complex number with
angle −θ where |θ| ≥ δ. We’re averaging it over D rotations of itself, where D � 1

δ
.

It should come out close to 0. To be completely precise, the above quantity is exactly
(by the formula for the sum of a geometric series)

1

D

|1− e−iθD|
|1− e−iθ|
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We have 1
D
≤ δ

8
, the numerator above is trivially at most 2, and the denominator is

at least |θ|/2 (simple trig), which is at least δ/2. So the above expression is indeed at
most 1/2, as desired
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