Quantum Computation

(CMU 18-859BB, Fall 2015)

Lecture 15: Reichardt's Theorem II: Evaluation of Span Programs
October 28, 2015

Lecturer: Ryan O'Donnell Scribe: Vikesh Siddhu

1 Short Summary

We have discussed in the past, general methods to lower bound the quantum query complexity. Now we discuss a way to convert the lower bounds given by the general adversary method [HLS07] into an upper bound [Rei09]. In this lecture we will cover the proof that leads to this result. Two key ingredients are Span Programs and how one defines their complexity.

2 Recall Span Programs

Let $w \in \{0,1\}^N$ be a string and $F: \{0,1\}^N \mapsto \{0,1\}$ be a function. A span program computes P for given w. Let $\{|v_i\rangle\}_{i=1}^m$ be vectors in \mathbb{R}^d that are columns of a matrix V and let $|\tau\rangle \in \mathbb{R}^d$ be another vector called *target*. V is split into 2N blocks, the $2k^{th}$ and $2k^{th} + 1$ block each have vectors corresponding to $w_k = 0$ and $w_k = 1$ resp.

Given w the span program makes available some N blocks, call the these set of vectors in the block avail(w) and the rest unavail(w). For example $w_1 = 0, w_2 = 1, ..., w_N = 1$ makes available the blocks 1, 4, ..., 2N and the rest 2, 3, ..., 2N - 1 become unavailable. Given a span program the function P(w) = 1 iff $|\tau\rangle \in \text{span}\{|v_i\rangle : |v_i\rangle \in \text{avail}(w)\}$

Suppose P computes $F: \mathcal{D}^{\subseteq \{0,1\}^N} \mapsto \{0,1\}$, then

• For $y \in F^{-1}(1)$, a positive witness is $|\alpha\rangle \in \mathbb{R}^m$ s.t.

$$\alpha_i = 0 \quad \forall i \in \text{unavail}(y)$$
 (1)

$$V |\alpha\rangle = |\tau\rangle \tag{2}$$

we define it's *size* to be $|| |\alpha\rangle ||^2$.

• For $z \in F^{-1}(0)$, a negative witness is $\langle \beta | \in \mathbb{R}^d$ s.t.

$$\langle \beta | v_i \rangle = 0 \quad \forall i \in \text{avail}(y)$$
 (3)

$$\langle \beta \,|\, \tau \rangle = 1 \tag{4}$$

we define it's size to be $||\langle \beta | V ||^2$.

An extended span program is a span program along with positive and negative witnesses for all possible inputs w. We can define the complexity of an extended span program as follows

- Let $|\alpha_y\rangle$ be a positive witness for $y \in F^{-1}(1)$ then the YES complexity is defined as $T_1 \equiv \max_{y \in F^{-1}(1)} \{ \operatorname{size}(|\alpha_y\rangle) \}.$
- Let $|\beta_y\rangle$ be a negative witness for $y \in F^{-1}(0)$ then the NO complexity is defined as $T_0 \equiv \max_{y \in F^{-1}(0)} \{ \operatorname{size}(|\beta_y\rangle) \}$
- The overall complexity of the span program is $T = \sqrt{T_0 T_1}$

3 Reichardt's Theorem II

Theorem 3.1. If a span program P with complexity T computes F, then there exists a quantum query algorithm for F making O(T) queries of the oracle O_f^{\pm} .

Fact 3.2. The complexity T for the span program P to compute the function F is equal to the adversary lower bound $Adv^{\pm}(F)$

Example 3.3. Let $F = OR_N$ i.e. OR on N bits. Define a span program with vectors such that, for $w_i = 1$, the block in V has one vector $|v_i\rangle = [1]$ and the for $w_i = 0$, the block in V a null vector $|v_i\rangle = \phi$. Then

- 1. YES complexity $T_1 = 1$
- 2. NO complexity $T_0 = N$
- 3. The overall complexity is $T = \sqrt{T_0 T_1} = \sqrt{N}$

We now come to the proof of Theorem 3.1.

Proof. Let $|\tilde{\tau}\rangle = \frac{|\tau\rangle}{c\sqrt{T_1}}$ and define $\tilde{V} \in \mathbb{R}^{d\times m+1}$ as

$$\tilde{V} = [|\tilde{\tau}\rangle | V] \tag{5}$$

For the Grover case $\tilde{V} = [\frac{1}{c} \ 1 \ 1 \ \dots 1]$.

For now the algorithm will work in the \mathbb{R}^{m+1} space and any intermediate state is given by a vector $|s\rangle = \sum_{i=0}^{m} \alpha_i |i\rangle$ where each $\langle i | j\rangle = \delta_{ij}$. Define

$$K = \ker(\tilde{V}) = \{ |u\rangle \in \mathbb{R}^{m+1} \mid \tilde{V} \mid u\rangle = 0 \}$$
 (6)

For the Grover case K consists of all vectors of mean 0.

Define R_K to be the reflection through K. Then R_K is a unitary operator on reals, i.e. an orthogonal matrix. For the Grover case R_K flips a vector in \mathbb{R}^{m+1} across its mean.

Given $w \in \{0,1\}^N$, let

$$A_w = \operatorname{span}\{|i\rangle \ 0 \le i \le m \ i \in \operatorname{avail}(w)\}$$
 (7)

by definition $|\tilde{\tau}\rangle \in A_w$ and is always available. Let R_{A_w} be the reflection through A_w , which mean we negate all the entries of a vector in \mathbb{R}^{m+1} that are at the unavailable coordinates, so $R_{A_w} = -O_w^{\pm}$.

Let $U = R_{A_w} R_K$, computing R_K is a 0 query step and computing R_{A_w} takes 1 query (well 2 query if you un-compute the garbage).

We now describe a fake algorithm that to give some intuition behind how computes F on w using O(T) queries.

- 1. Initialize the state $|\psi\rangle = |0\rangle$
- 2. For $t = 1, 2, \dots CT$ apply U to $|\psi\rangle$
- 3. Measure $|\psi\rangle$ in standard basis, output 1 iff you observe $|0\rangle$

The basic idea is that

- (i) If w is a YES instance, then U fixes $|0\rangle$
- (ii) If w is a NO instance, then $U^{CT} | \psi \rangle$ is far from $| 0 \rangle$

The first idea can also be stated as, if $y \in F^{-1}(1)$ then $|0\rangle$ is 99% in K and A_y , hence U fixes 99% of $|0\rangle$.

Fact 3.4. The accurate fact is $\exists |\eta\rangle$ of length $\leq .01 \text{ s.t. } |0\rangle - |\eta\rangle$ is an eigen vector of U.

Proof. Let $|\alpha_y\rangle$ be a YES instance, let $|\eta\rangle = \frac{|\alpha_y\rangle}{c\sqrt{T_1}}$, we know $||\alpha_y\rangle||^2 \le T_1$ which implies, for $c \ge 100$

$$\sqrt{\langle \eta \mid \eta \rangle} \le \frac{1}{c} \le .01 \tag{8}$$

 $U = R_{A_y} R_K$ where R_K is the reflection through $K = \ker(\tilde{V})$ and R_{A_y} is the reflection through A_w . Notice

1. $(|0\rangle - |\eta\rangle)$ is in the kernel of \tilde{V} so $R_K(|0\rangle - |\eta\rangle) = (|0\rangle - |\eta\rangle)$

$$\tilde{V}(|0\rangle - |\eta\rangle) = |\tilde{\tau}\rangle - \frac{1}{c\sqrt{T_1}}\tilde{V}|\alpha_y\rangle \tag{9}$$

$$= |\tilde{\tau}\rangle - \frac{1}{c\sqrt{T_1}}|\tau\rangle \tag{10}$$

$$= |\tilde{\tau}\rangle - |\tilde{\tau}\rangle \tag{11}$$

$$=0 (12)$$

2. $(|0\rangle - |\eta\rangle)$ is in A_y because by definition $|0\rangle \in A_y$ and $|\eta\rangle \propto |\alpha_y\rangle$ and $|\alpha_y\rangle$ is in A_y , so $R_{A_y}(|0\rangle - |\eta\rangle) = (|0\rangle - |\eta\rangle)$

Hence
$$U$$
 fixes $|0\rangle - |\eta\rangle$

The **second idea** states, if $z \in F^{-1}(0)$ then $|0\rangle$ is far from states fixed by U.

 $\textbf{Fact 3.5.} \ \textit{If } w \in F^{-1}(0) \ \textit{then} \ \exists \ |u\rangle \ \textit{s.t.} \ \textit{Proj}_{A_w}(|u\rangle) = |0\rangle \ \textit{and} \ ||\ |u\rangle \ || \leq 2cT \ \textit{and} \ |u\rangle \ \bot \ \textit{K.}$

Proof. Let $\langle \beta_w |$ be a NO witness for w, define

$$\langle u| \equiv c\sqrt{T_1} \, \langle \beta_w | \, \tilde{V} \tag{13}$$

Clearly $\tilde{V}|u\rangle \neq 0$, hence $|u\rangle \perp \ker(\tilde{V}) \implies |u\rangle \perp K$. Rewrite $|u\rangle$ as follows

$$\langle u| = c\sqrt{T_1} \{ \langle 0| \langle \beta_w | \tilde{\tau} \rangle + \langle \beta_w | V \}$$
 (14)

$$= \langle 0| + c\sqrt{T_1} \langle \beta_w | V \tag{15}$$

where the second equality follows from eq. (4) which states $\langle \tau | \beta_w \rangle = 1$ and $|\tilde{\tau}\rangle = \frac{|\tau\rangle}{c\sqrt{T_1}}$. Notice

- (a) $\langle \beta_w | V$, the second term in the rhs of eq. (15) is a linear combination of unavailable vectors (since $|\beta_w\rangle$ is orthogonal to all available vectors)
- (b) $||\langle \beta_w | V ||^2 \leq T_0$ (since size of $\langle \beta_w |$ is at most T_0)

Lets switch back to kets $|u\rangle=[\langle u|]^{\dagger}$ where † is the conjugate-transpose (since everything is real here, it is just the transpose). Using (a) we conclude $\operatorname{Proj}_{A_w}|u\rangle=|0\rangle$, using (b) we conclude

$$||u\rangle|| \le \sqrt{1 + c^2 T_0 T_1} \le 1 + c\sqrt{T_0 T_1} \le 2cT$$
 (16)

Another key idea is the Kitaev Phase Estimation, which we shall delve into a little later. Before going further we review a few facts about orthogonal matrices from the 19^{th} century. Let $U \in \mathbb{R}^{m \times m}$ then

• U offers a decomposition of \mathbb{R}^m s.t

$$R_m = H_1 \oplus H_2 \dots H_k \oplus H_{k+1} \dots H_r \oplus H_{r+1} \oplus \dots$$
1 dim spaces where U is \mathbb{I} 1 dim spaces where U is $-\mathbb{I}$ 2 dim spaces where $U = R(\theta)$ (17)

where $R(\theta)$ is a 2-D rotation by $\theta \in (-\pi, \pi]$. In other words, there are eigen spaces of U with eigen value +1 (the identity spaces), -1 (the reflection space) and $e^{i\theta}$ (the 2-d rotation space)

• Let A, B be subspaces of \mathbb{R}^m and R_A, R_B be reflection through these spaces, construct $U = R_A R_B$. Let H be a 2-d θ rotation subspaces of U, then it is true, that $H \cap A$ and $H \cap B$ are 1 dimensional subspaces of \mathbb{R}^m and the angle between $H \cap A$ and $H \cap B$ is $\theta/2$

Lemma 3.6. Suppose
$$|u\rangle \in H$$
, $u \perp (H \cap B)$ then $||proj_{A \cap H}(|u\rangle)|| \leq \frac{|\theta|}{2}||u\rangle||$

Proof. Using Figure (1) we see that
$$||\operatorname{proj}_{A\cap H}(|u\rangle)|| = \sin\frac{\theta}{2}||u\rangle|| \le \frac{\theta}{2}||u\rangle||$$

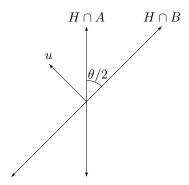


Figure 1: Intersecting subspaces $H \cap A$, $H \cap B$

Corollary 3.7. Let P_{δ} be the projection onto all 2-d rotation subspaces of U with angle $\theta \leq \delta$, then

$$||P_{\delta}[Proj_{A}(|u\rangle)]|| \leq \frac{\delta}{2}||u\rangle|| \tag{18}$$

Proof. Apply lemma (3.6) subspace by subspace to $\operatorname{Proj}_A(|u\rangle) = |v\rangle$ where it is given that $|u\rangle \perp B$.

We now make the **second idea** precise. If $w \in F^{-1}(0)$ then $|0\rangle$ is far from states fixed by U. Recall $U = R_{A_w}R_K$ and $w \in F^{-1}(0) \implies \operatorname{Proj}_A(|u\rangle) = |0\rangle$. Since $|0\rangle \perp K$ we use Corollary 3.7 and write

$$||P_{\delta}|0\rangle|| \le \frac{\delta}{2}|||u\rangle|| \le \delta cT \tag{19}$$

where the final inequality follows from eq. (16). By setting $\delta = \frac{1}{CT}$ and $\frac{c}{C} \leq 100$ we get

$$||P_{\delta}|0\rangle|| \le .01 \tag{20}$$

In essence we have shown

- When $w \in F^{-1}(0)$ then $||P_{\delta}|| \ge .01$
- When $w \in F^{-1}(1)$ then $||P_0|0\rangle|| \ge .99$, where P_0 is a projection onto the +1 eigenspace of U.

In order to distinguish whether $w \in F^{-1}(0)$ or $w \in F^{-1}(1)$, we must be able to tell whether $|0\rangle$ is 99% in U's rotation 0 eigen space or $|0\rangle$ is only $\leq 1\%$ in U's rotation $\leq \delta$ subspace. This can be achieved by Kitaev's phase estimation algorithm.

4 Phase Estimation

Phase Detection is actually a special case of a more general algorithm called **Phase Estimation**, due to Kitaev[Kit97]. Here it the theorem:

Theorem 4.1. Let U be an unitary operation on \mathbb{R}^M , given to a quantum algorithm as a "black box". Let $|\psi\rangle$ be an eigenvector of U, also given (in a sense) as a "black box". Say the eigenvalue of $|\psi\rangle$ is $e^{i\theta}$, where $\theta \in (-\pi, \pi]$ Then with only $O(1/\delta)$ applications of U, it is possible to distinguish the case $\theta = 0$ from $\theta \geq \delta$ with high probability.

Let's be a bit more precise. Our algorithm (quantum circuit) will work with two registers; an M-dimensional register, and a "workspace" register of dimension $\Theta(1/\delta)$. (You can think of the workspace register as roughly $\log(1/\delta)$ additional qubits.) The circuit is allowed to use U gates on the first register, although it doesn't "know" what U is. (Actually, it will use controlled-U gates; there is a basic quantum circuit theorem, which we skipped, showing that one can construct controlled-U gates from U gates.) It is also assumed that the input to the circuit will be $|\psi\rangle \otimes |0\rangle$, where again, $|\psi\rangle$ is some ("unknown") eigenvector of U with eigenvalue $e^{i\theta}$. Then the Phase Detection circuit has the following properties:

- it contains at most $O(1/\delta)$ controlled-U operations;
- if $\theta = 0$, i.e. $|\psi\rangle$ is fixed by U, then the final state of the circuit will always be exactly $|\psi\rangle\otimes|0\rangle$, the same as the initial state;
- it $\theta \geq \delta$, then the final state will be of the form $|\psi\rangle \otimes |\phi\rangle$, where $|\langle \phi | 0\rangle| \leq 1/4$

Then, in a typical use of Phase Detection, you just measure at the end, and look at the second (workspace) register. If $\theta = 0$ then you will see $|0\rangle$ with probability 1, and if $\theta \geq \delta$ you will see $|0\rangle$ with probability at most 1/4.

Now actually, it's not 100% immediate to finish Reichardt's theorem with Phase Detection, because the summary that we ended suggested applying it with $|\psi\rangle$ equal to this " $|0\rangle$ " vector, and $|0\rangle$ wasn't necessarily an eigenvalue of U, even in the YES case (in that case, it was only 99% equal to a 1-eigenvalue of U). Still, we're almost finished; I leave it as an exercise for the reader to complete the proof of Reichardt's theorem using the two facts we ended the summary one, plus the Phase Detection algorithm. (Hint: every input to Phase Detection can be written as a linear combination of U's orthogonal eigenvalues; so apply Phase Detection's guarantee to each, and use the fact that the Phase Detection algorithm is, like every quantum algorithm, a unitary linear transformation.)

We now give the proof of the Phase Detection theorem.

Proof. Let D be $8/\delta$ rounded up to the nearest integer power of 2, so $D = O(1/\delta)$. The workspace register will consist of exactly $d = \log 2D$ qubits, thought of as encoding an integer between 0 and D1. Now here is the algorithm:

• UniformSuperposition(workspace register) (this is just d little Hadamard gates, one on each workspace wire).

- for t = 1, ..., D 1do "controlled-U" on the first register, where the control condition is that the integer in the second register is at least t.
- UniformSuperposition⁻¹(workspace register).

That's it. You see it's indeed $O(1/\delta)$ applications of U. Let us now track the state of the registers throughout the algorithm.

- (a) Initial state: $|\psi\rangle \otimes |0\rangle$
- (b) After step 1:

$$|\psi\rangle\otimes\left(\frac{1}{\sqrt{D}}\sum_{j=0}^{D-1}|j\rangle\right)=\frac{1}{\sqrt{D}}\sum_{j=0}^{D-1}|\psi\rangle\otimes|j\rangle$$

(c) After step 2:

$$\frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} U^{j+1} |\psi\rangle \otimes |j\rangle = \frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} e^{i\theta(j+1)} |\psi\rangle \otimes |j\rangle \text{ since } |\psi\rangle \text{ is an } e^{i\theta} \text{ eigen vector of } U$$
$$= |\psi\rangle \otimes |\phi\rangle$$

where
$$|\phi\rangle = \frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} e^{i\theta(j+1)} |j\rangle$$
 and the final eq

Let us now consider the two cases we need to analyze for the theorem.

- Case 1: $\theta = 0$ In this case we simply have $|\phi\rangle = \frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} |j\rangle$ i.e., $|\phi\rangle$ is the uniform superposition in the second register. hus after step 3, it will turn back into $|0\rangle$. Hence the final state is indeed $|\psi\rangle \otimes |0\rangle$
- Case 2: $|\theta| \geq \delta$ since UniformSuperposition is a unitary transformation, it (and its inverse) preserve angles. It follows that the exact statement we must show is that $\langle \phi | \text{uniform superposition} \rangle^2 \leq 1/4$. The unsquared quantity on the left (which we must bound by 1/2) is

$$\left| \left(\frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} e^{-i\theta(j+1)} \left\langle j \right| \right) \left(\frac{1}{\sqrt{D}} \sum_{j=0}^{D-1} \left| j \right\rangle \right) \right| = \left| \frac{1}{D} \sum_{j=0}^{D-1} e^{-i\theta(j+1)} \right|$$

You should be able to see how this will work out; we have a unit complex number with angle $-\theta$ where $|\theta| \geq \delta$. We're averaging it over D rotations of itself, where $D \gg \frac{1}{\delta}$. It should come out close to 0. To be completely precise, the above quantity is exactly (by the formula for the sum of a geometric series)

$$\frac{1}{D} \frac{|1 - e^{-i\theta D}|}{|1 - e^{-i\theta}|}$$

We have $\frac{1}{D} \leq \frac{\delta}{8}$, the numerator above is trivially at most 2, and the denominator is at least $|\theta|/2$ (simple trig), which is at least $\delta/2$. So the above expression is indeed at most 1/2, as desired

References

- [HLS07] Peter Hoyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger. In *Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing*, STOC '07, pages 526–535, New York, NY, USA, 2007. ACM.
- [Kit97] A Yu Kitaev. Quantum computations: algorithms and error correction. *Russian Mathematical Surveys*, 52(6):1191, 1997.
- [Rei09] B. W. Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In *Foundations of Computer Science*, 2009. FOCS '09. 50th Annual IEEE Symposium, pages 544–551, October 2009.