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1 Problem

As mentioned previously, period finding is a rephrasing of Simon’s algorithm, but instead of
using the Fourier transform over Zn2 , we will use the Fourier transform over ZN . Moreover,
an efficient quantum algorithm for period finding will “essentially” give us Shor’s algorithm
[Sho97] for efficient factorization – the details will be presented next lecture.

Definition 1.1 (Period-Finding Problem). Given is some f : ZN → “colors” (i.e. the image
of f is some “unstructured” set). Pictorially, f can be imagined as an array:

R G B Y R G B Y · · ·︸ ︷︷ ︸
length N

As usual, we have oracle access to f , and we denote the oracle by Of . For this problem, it is
most convenient to work with the oracle which behaves as follows:

Of (|x〉|b〉) = |x〉|b⊕ f(x)〉,

where b is an m-qubit string. We have the promise that f is periodic; namely for some
s ∈ ZN \ {0}, f(x) = f(x+ s) for all x ∈ ZN . Otherwise, all of f ’s values are assumed to be
distinct: that is, we never have f(x) = f(y) if x and y don’t differ by a multiple of s. The
goal of the problem is to find s.

Remark 1.2. Classically, we can actually solve this problem very efficiently. Note that the
condition on s implies that s divides N . Assuming N = 2n, then s must lie in the set
{1, 2, 4, . . . , N}. So we obtain an efficient classical algorithm by simply testing if s = 1 is f ’s
period, then if s = 2 is f ’s period, etc. This requires us to test n = logN values of s, so the
query complexity, and run-time, is O(n).

So, why do we care about solving this quantumly? Shor’s algorithm [Sho97] for factoring
will actually look at a variant where f is “almost-periodic”. So we will not necessarily know
that s divides N . However, the quantum algorithm we develop today will generalize to
account for this case.
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2 The Algorithm

Here is the quantum algorithm that we will use to solve this problem:

• Prepare the state 1√
N

∑
x∈ZN |x〉, i.e. the uniform superposition of all the kets |x〉.

• Attach the state |0m〉, thereby obtaining
(

1√
N

∑
x∈ZN |x〉

)
⊗ |0m〉 = 1√

N

∑
x∈ZN |x〉|0

m〉.

• Query the oracle Of on the current input. The state of the system will now be

1√
N

∑
x∈ZN

|x〉|f(x)〉. (1)

• Measure the color register, i.e. the registers corresponding to the |0m ⊕ f(x)〉 part of
the output of Of .

• Apply FN to the remaining n qubits.

• Measure the remaining n qubits.

• Then, we do a little bit of “classical” computation with the output, which will be made
clear later on.

To aid with the analysis of the algorithm, we will use the following notation:

Notation 2.1. For each color c, define fc : ZN → {0, 1} by

fc(x) =

{
1 iff(x) = c,

0 otherwise.

Thus, fc is the indicator function for the event that f(x) = c.

Thus, (1) can be rewritten as∑
colors c

1√
N

∑
x∈ZN

(fc(x)|x〉)⊗ |f(x)〉. (2)

Indeed, if fc(x) = 0 then the term |x〉|f(x)〉 disappears from the sum, so we only count
|x〉|f(x)〉 for the one color c such that f(x) = c. Moreover, we comment at that in the
summation (2), the number of nonzero terms of the form (fc(x)|x〉) is precisely N

s
, which is

the number of distinct values x ∈ ZN that map to the color c under f .
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3 Analysis

The first question that we should ask is: what do we get when we perform the color mea-
surement? That is, with what probability do we measure a fixed color c? Using (2), we see
that this probability is precisely∑

x∈ZN

(
1√
N
fc(x)

)2

=
1

N

∑
x∈ZN

fc(x)2 =
1

N

∑
x∈ZN

fc(x)

= E
x∈RZN

[fc(x)] = Pr
x∈RZN

[f(x) = c]

= fraction of f outputs which have color c

=
1

s
.

In the above computations, we write x ∈R ZN to denote the distribution in which x is sampled
from ZN uniformly at random. We used the fact that fc(x)2 = fc(x) for all x since fc is {0, 1}-
valued. We also observed that Ex∈RZN [fc(x)] = Prx∈RZN [fc(x) = 1] since fc(x) for random x
is a {0, 1}-valued random variable, and then the simple fact that fc(x) = 1 ⇐⇒ f(x) = c
by the definition of fc to conclude Prx∈RZN [fc(x) = 1] = Prx∈RZN [f(x) = c].

Thus, we obtain a uniformly random color as our answer!
Given that we have observed a color c, what does the state (2) collapse to? Well, it’s the

substate that is consistent with the color c. This is the state(∑
x∈ZN

fc(x)|x〉

)
⊗ |c〉 normalized.

The normalizing factor is
√

s
N

, so the state is√
s

N

(∑
x∈ZN

fc(x)|x〉

)
⊗ |c〉

It will be most convenient for us to rewrite this state as

1√
N

∑
x∈ZN

√
sfc(x)|x〉. (3)

At this point, we will use the “powerful trick” that always seems to work when we analyze
quantum algorithms. This trick is, of course, the quantum Fourier transform. More precisely,
we will:

Apply the Quantum Fourier Tranform over ZN and measure.

Let us briefly recall what generally happens when we use this trick. If we have a function
g : G→ C such that Ex∈RG[|g(x)|2] = 1, where G is either Zn2 or ZN , then the following is a
valid quantum state:

1√
N

∑
x∈G

g(x)|x〉.
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· · ·

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

Figure 1: The function g = 2 · 1{1,5,9,13,...,}

If we apply the Fourier transform, which corresponds to applying HN if G = Zn2 and FN if
G = ZN , then the state we obtain is ∑

γ∈G

ĝ(γ)|γ〉.

Thus, when we measure, we observe γ ∈ G with probability |ĝ(γ)|2.
Remark 3.1. This procedure is called spectral sampling. The set {ĝ(γ)}γ∈G is called the
Fourier spectrum of g. This is *almost* always how exponential speed-ups are obtained in
quantum computing.

In our case, recalling (3), we should put g =
√
s · fc, as then 1√

N

∑
x∈ZN g(x)|x〉 is the

quantum state after measuring the color register.

Remark 3.2. For Simon’s algorithm, if we define

1y(x) =

{
1 x = y,

0 x 6= y
,

we had g =
√

2(1y + 1y+s), where f−1(c) = {y, y + s} for some color c.

Before continuing, let’s define the following notation which we will use throughout the
analysis:

Notation 3.3. For S ⊆ ZN , we define 1S : ZN → {0, 1} by

1S(x) =

{
1 if x ∈ S,
0 if x /∈ S.

Example 3.4. Say s = 4, c is Green, and f is Green on 1, 5, 9, 13, . . .. Then g =
√
s · fc =

2 · 1{1,5,9,13,...}. Figure 1 demonstrates what this function looks like.
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· · ·
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Figure 2: The function fGreen = 1{2,6,10,...}

· · ·

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
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Figure 3: The function fRed = 1{0,4,8,...}

Our algorithm outputs γ ∈ ZN with probability

|ĝ(γ)|2 = s · |fc(γ)|2.

So, the question now is: what are these Fourier coefficients? We have a periodic spike
function. It turns out that the Fourier transform of such a function is also a periodic spike
function.

To simplify our analysis, we would like to show that |fc(γ)|2 is independent of c. That
way, it will suffice to compute |fc(γ)|2 for one “nice” choice of c. Hence, we will prove the
following claim:

Claim 3.5. Let g : ZN → C and let t ∈ ZN . Define g+t : ZN → C by

g+t(x) = g(x+ t).

Then g and g+t have “essentially the same” Fourier coefficients. That is, they differ by a
multiplicative factor of magnitude 1, so they have the same magnitude.

Why is this helpful? Well, say fGreen = 1{2,6,10,...,} and fRed = 1{0,4,8,...,}. Then, these two
functions are shifts of each other, as fGreen = f+2

Red. It therefore suffices to study fc for a
single value of c, as desired. See figures 2 and 3.

Proof. Let ω = e
2πi
N , so that χγ(x) = ωγ·x. We compute:

ĝ+t(γ) = E
x∈RZN

[g+t(x)χγ(x)∗]

= E
x∈RZN

[g(x+ t)χγ(x)∗] (∗)
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At this point, we make the change of variables y = x + t. For fixed t, if x is selected from
ZN uniformly at random, so is y. Thus,

(∗) = E
y∈RZN

[g(y)χγ(y − t)∗]

= E
x∈RZN

[g(y)χγ(y)∗χγ(−t)∗]

= χγ(−t)∗ E
y∈ZN

[g(y)χγ(y)∗]

= ωγtĝ(γ).

Recalling that ωγt is an N -th root of 1, we conclude that it is a complex number of magnitude
1. In the above computations, we used the important fact that χγ(x+y) = χγ(x)χγ(y) for all
x, y ∈ ZN , as well as the observation that χγ(−t)∗ does not depend on the randomly selected
y ∈R ZN .

This immediately yields the following corollary:

Corollary 3.6. |ĝ+t(γ)|2 = |ωγt|2|ĝ(γ)|2 = |ĝ(γ)|2.

Thus, the probability of sampling γ ∈ ZN is independent of t. In our case, this means
that when we do the spectral sampling at the end of the algorithm, it does not matter what
color we measured earlier. It is therefore no loss of generality to assume that, if c is the color
we sampled, f(0) = c, from whence it follows that fc = 1{0,s,2s,3s,...}.

What is so special about the set {0, s, 2s, . . .}? It’s precisely the subgroup of ZN generated
by the number s!

Remark 3.7. For Simon’s algorithm, we would study 1{0,s}, as {0, s} is the subgroup of Zn2
generated by s.

We are now prepared to analyze the Fourier coefficients of g.

Proposition 3.8. Let H = {0, s, 2s, . . .} ⊆ ZN and let h = 1H . Then

ĥ(γ) =

{
1
s

if γ ∈ {0, N
s
, 2N
s
, 3N
s
, . . .},

0 otherwise.

Remark 3.9. Observe that |{0, N
s
, 2N
s
, 3N
s
, . . .}| = s. To see this, recall that s · N

s
= N = 0

mod N , so the size of the set is at most s because aN
s

= (a+s)N
s

for all values of a. But if

r < s then r · N
s
6= 0 mod N , so if a, b < s with a < b then aN

s
6= bN

s
as otherwise (b−a)N

s
= 0

mod N even though b− a ≤ b < s. Thus, we conclude that there are precisely s values of γ
for which ĥ(γ) 6= 0.

Assuming the proposition, what do we conclude? Well, the state changes as follows.
Recalling that the state prior to applying the FN gate is (3), we have

1√
N

∑
x∈ZN

√
s · h(x)|x〉 FN−→

∑
γ∈ZN

√
s · ĥ(γ)|γ〉

measure−→ γ with probability s · |ĥ(γ)|2.
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Since ĥ(γ) = 1
s

iff γ ∈ H, we measure γ /∈ H with probability 0 and γ ∈ H with probability

s·
∣∣1
s

∣∣2 = 1
s
. That is, we sample a uniformly random γ ∈ H. Recalling that H = {0, N

s
, 2N
s
, . . .},

any γ ∈ H satisfies γs = 0 mod N . Thus, we conclude that we sample a uniformly random
γ such that γs = 0 mod N . This is just like what happened in Simon’s algorithm! There,
we sampled a uniformly random γ ∈ Zn2 such that γ · s = 0, so the only difference is that
now we consider multiplication modulo N instead of the dot product of two length n strings
modulo 2.

Now, we will prove Proposition 3.8.

Proof. We compute

ĥ(γ) = E
x∈RZN

[h(x) · χγ(x)∗] =
1

s
E

x∈RH
[χγ(x)∗] = (†).

The second equality follows from the fact that h(x) is only ever nonzero on the set H which
has size s. We consider two cases:

Case 1. Suppose γ ∈ {0, N
s
, 2N
s
, . . .}. Then

χγ(x)∗ = ω−γ·x

Now, recall that x is a multiple of s, since s is assumed to be sampled from H. Similarly, if
γ is in {0, N

s
, 2N
s
, . . .}, γ is a multiple of N

s
. Thus,

χγ(x)∗ = ω−(multiple of N
s
)·(multiple of s) = ω−(multiple of N) = 1,

using that ω is an N -th root of unity. Thus, χγ(x)∗ = 1 for all x ∈ H, so

(†) =
1

s
· E
x∈H

[1] =
1

s
.

Case 2. We could, using some elementary arithmetic, directly compute Ex∈RH [χγ(x)∗] to
show that it is 0. However, we’ll be a bit more slick. We’ve already shown that our algorithm

outputs γ ∈ {0, N
s
, 2N
s
} with probability s ·

(
1
s

)2
= 1

s
. Since |{0, N

s
, 2N
s
, . . . , }| = s, there is no

probability left to give to the h̄(γ)’s! That is,

1 =
∑
γ∈ZN

s|ĥ(γ)|2 =
∑
γ∈H

s|ĥ(γ)|2 +
∑
γ /∈H

s|ĥ(γ)|2 = 1 +
∑
γ /∈H

s|ĥ(γ)|2

so ∑
γ /∈H

s|ĥ(γ)|2 = 0,

implying ĥ(γ) = 0 for all γ /∈ H.
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4 Summary

Let’s reviewed what we’ve accomplished. We know that f is promised to be of the form

R G B Y R G B Y · · ·︸ ︷︷ ︸
length N

That is, f is s-periodic. We have shown that, with one query to Of and O(n2) gates along
with a couple measurements, we get a uniformly random γ ∈ ZN such that γ · s = 0 mod N
(or, equivalently, such that γ ∈ {0, N

s
, 2N
s
, . . .}).

Well, what should we do? As is usually the case, we’ll want to repeat the algorithm some
number of times. But how many times show we repeat the algorithm to find s?

First of all, we observe that to find s, it actually suffices to find N
s

. After that, we can
divide through by N and take the reciprocal to compute s.

So, how do we find N
s

? For the time being, forget that N and s are powers of 2. Let
m = N

s
, so our algorithm samples a random integer multiple of m. Suppose we have two

random samples, which we can write am and bm. Note that

gcd(am, bm) = gcd(a, b)m.

So, if gcd(a, b) = 1, by taking the gcd of the two outputs am and bm, we will have found
m! Thus, the question becomes the following: If a and b are sampled from {0, 1, . . . , s− 1}
uniformly at random and independently, what’s the probability that gcd(a, b) = 1?

Claim 4.1. If a and b are sampled as above, Pr[gcd(a, b) = 1] ≥ Ω(1).

Proof. First condition on the event that a and b are not equal to zero. This event occurs

with large probability:
(
s−1
s

)2
which is at least 1/4. Fix a prime p. Observe that

Pr[p divides a and b] = Pr[p divides a] ·Pr[p divides b] since a and b are independent

= Pr[p divides a]2 since a and b are identically distributed

Note that at most a 1/p fraction of the elements in the set {1, 2, . . . , s− 1} are multiples of p.
Since we are conditioning on the event that a 6= 0, we conclude that Pr[p divides a] ≤ 1/p.
Therefore

Pr[p divides a and b] ≤ 1

p2
.

Thus,

Pr[gcd(a, b) > 1] = Pr[a and b share a prime factor]

≤
∑

primes p

1

p2
Union Bound

≤
∑
n≥2

1

n2
=
π2

6
− 1 ≈ 0.6,
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where we have used the famous number-theoretic fact that∑
n≥1

1

n2
= ζ(2) =

π2

6
,

where ζ denotes the Riemann zeta function.

Remark 4.2. Computing
∑

primes p
1
p2

exactly is an open problem.
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