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Abstract

We give a strongly explicit construction of 𝜖-approximate 𝑘-designs for the orthogonal group O(𝑁)
and the unitary group U(𝑁), for 𝑁 = 2𝑛. Our designs are of cardinality poly(𝑁𝑘/𝜖) (equivalently,
they have seed length 𝑂(𝑛𝑘 + log(1/𝜖))); up to the polynomial, this matches the number of design
elements used by the construction consisting of completely random matrices.

1 Introduction

The main new result in our work is the following:

Theorem 1.1. Let 𝑁 = 2𝑛 and let G(𝑛) denote either the orthogonal group O(𝑁) or the unitary
group U(𝑁). Then for any 𝑘 = 𝑘(𝑛), there is an explicit 𝜖-approximate 𝑘-design for G(𝑛) of cardinal-
ity poly(𝑁𝑘/𝜖); i.e., samplable using a seed of just 𝑂(𝑛𝑘 + log(1/𝜖)) truly random bits. Moreover, these
designs are strongly explicit in the following sense: (i) each output matrix is given by an 𝑛-qubit circuit
consisting of 𝑆 = poly(𝑛𝑘) log(1/𝜖) gates, each gate being either CNOT or one of a few fixed and explicitly
specified 1-qubit gates; (ii) the algorithm that takes as input a seed and outputs the associated circuit runs
in deterministic poly(𝑆) time.

In the unitary case, similar results in the literature only discuss the regime 𝑘 ≤ poly(𝑛) [HL09, Sen18],
or have polynomially worse seed length [BHH16, Haf22]. In contrast, our result holds for all 𝑘 (even
exponentially large as a function of 𝑛, or larger), and achieves a seed length which matches, up to constant
factors, that of a random construction. The original motivation for our work was the orthogonal case,
where the only prior works we know of are [KM15, HHJ21], which we discuss below. Our Theorem 1.1
provides the efficient orthogonal designs needed for Kothari and Meka’s near-optimal pseudorandom
generators for spherical caps [KM15].

Let us now discuss the general context for our result.

Derandomization. Let 𝒢 be a class of objects, and assume informally that each object has “size” 𝑁Θ(1)

(think, e.g., of strings of length 𝑁 , or 𝑁×𝑁 matrices). To choose an object from the uniform probability
distribution on 𝒢 typically requires using Ω(𝑁) truly random bits. A broad goal in derandomization is
to identify a useful notion of “pseudorandomness” for probability distributions on 𝒢, and then to show
that one can sample from such a distribution using just 𝑟 ≪ 𝑁 truly random bits.1 An additional goal is
for the sampling algorithm to be efficient ; i.e., the sampled object should be produced by a deterministic
poly(𝑟)-time algorithm, given the truly random seed of length 𝑟. In this case, since the sampler has
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1In this introduction, we refer to sampling uniformly from a set of size 𝑅 as “using log2 𝑅 truly random bits”.
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only 2𝑟 possible outcomes yet the total number of objects is exponential in 𝑁 , it must be the case that
the sampler represents the output objects in a “succinct” way. Informally, if it is possible to efficiently
compute with objects represented in this succinct way, the sampler is said to be “strongly explicit”.

Exact 𝑘-wise independence. One of the most common and useful notions of pseudorandomness is
that of bounded independence. For random objects with 𝑁Θ(1) “entries” (“coordinates”/“dimensions”),
it often suffices for applications if the objects are merely “𝑘-wise independent” for some 𝑘 ≪ 𝑁 . This
means that the object looks truly random whenever only 𝑘 entries are inspected. In this case one may
hope that the object can be sampled using a random seed of length just 𝑂(𝑘 log𝑁) bits.

The paradigmatic example of this comes from 𝑘-wise independent length-𝑁 Boolean strings. Using
results from coding theory [ABI86], it has long been known that 𝑂(𝑘 log𝑁) random bits suffice to effi-
ciently sample a precisely 𝑘-wise independent string 𝑥 ∈ {0, 1}𝑁 (meaning that (𝑥𝑖1 , . . . ,𝑥𝑖𝑘) is perfectly
uniformly distributed on {0, 1}𝑘 for any 𝑖1, . . . , 𝑖𝑘).

For other kinds of random objects, obtaining exact 𝑘-wise independence seems extremely difficult.
Take the case of random permutations, where 𝜋 ∈ 𝑆𝑁 is said to be 𝑘-wise independent if (𝜋(𝑖1), . . . ,𝜋(𝑖𝑘))

is uniformly distributed on
(︀
[𝑁 ]
𝑘

)︀
for any distinct 𝑖1, . . . , 𝑖𝑘. While simple efficient methods for generating

2- and 3-wise independent permutations using 𝑂(log𝑁) random bits are known, for any constant 𝑘 ≥ 4
the best known efficient construction uses Θ(𝑁) random bits [FPY15]. The situation is similar for random
unitary matrices, where 𝑈 ∈ U(𝑁) is said to be drawn from a 𝑘-design if E[𝑈 𝑖1𝑗1 · · ·𝑈 𝑖𝑘𝑗𝑘 ] is equal to
what it would be if 𝑈 were Haar-distributed on U(𝑁) (and similarly if any subset of the entries 𝑈 𝑖𝑡𝑗𝑡 in
the product were replaced with their complex conjugates). Here it is known how to efficiently construct
exact 2-designs using 𝑂(log𝑁) bits [DLT02], and exact 3-designs using 𝑂(log2𝑁) bits [Web16], but good
constructions of exact 𝑘-designs for 𝑘 ≥ 4 are lacking (see, e.g., [BNZZ19]).

Approximate 𝑘-wise independence. Given these issues, it is natural to seek 𝜖-approximate 𝑘-wise
independence (𝑘-designs). Here it is important to carefully define the precise notion of “approximate”,
as different natural notions are often only equivalent if one is willing to change 𝜖 by a factor that is
exponential in 𝑘. For example, in the context of Boolean strings in {±1}𝑁 , a weak notion of (𝜖, 𝑘)-wise
independence is that |E[𝑥𝑖1 · · ·𝑥𝑖𝑘 ]| ≤ 𝜖 for all 𝑘-tuples of distinct values 𝑖1, . . . , 𝑖𝑘. Naor and Naor [NN93]
showed that 𝑂(log(𝑛𝑘/𝜖)) random bits suffice to explicitly generate such a distribution, where we write
𝑛 = log2𝑁 . However, to get the stronger guarantee that every 𝑘 bit positions are 𝜖-close to the uni-
form distribution in statistical distance, one needs (𝜖2−𝑘, 𝑘)-wise independence (see, e.g., [AGHP92]),
and hence the number of random bits used in known constructions is 𝑂(𝑘 + log(𝑛/𝜖)). In general, for
𝑞-ary rather than 2-ary (Boolean) strings, the seed-length penalty becomes 𝑂(𝑘 log 𝑞). So if, e.g., one
wants a distribution on Z𝑁

𝑁 in which every 𝑘 coordinates have statistical difference 𝜖 from uniform where
𝑁 = 2𝑛,2 then the best known explicit constructions use 𝑂(𝑘𝑛+ log(1/𝜖)) random bits.

In this work, we give a common framework for randomness-efficient generation of approximately 𝑘-
wise independent distributions over groups, particularly subgroups of the unitary group. Our framework
applies to, e.g., the group of 𝑞-ary strings Z𝑁

𝑞 (realized as diagonal matrices with 𝑞th roots of unity as the
diagonal entries), the permutation group 𝑆𝑁 (realized as 𝑁 ×𝑁 permutation matrices), the orthogonal
group O(𝑁), and the unitary group U(𝑁) (with 𝑁 = 2𝑛). We will not discuss strings further in this
work, as they are already very well studied. We first describe prior work on the other three groups, and
then explain our new general method.

Permutations. Explicit approximate 𝑘-wise independent permutations have found a wide variety of ap-
plications; e.g., in cryptography [KNR09], hashing/dimensionality reduction [LK10, KN14], and explicit
constructions of expanders [MOP22]. One method for creating them was initiated by Gowers [Gow96],
who showed that a random 𝑛-qubit circuit composed of poly(𝑛, 𝑘) log(1/𝜖) “classical” 3-qubit gates (i.e.,
permutations on {0, 1}3) yields an 𝜖-approximate 𝑘-wise independent permutation on 𝑆2𝑛 . (Note that
since the circuit size is polynomial rather than linear in 𝑛𝑘, the randomness-efficiency of [Gow96] is

2Cf. achieving 𝜖-approximate 𝑘-wise independent permutations from 𝑆𝑁 .
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polynomially worse than the 𝑂(𝑛𝑘 + log(1/𝜖)) random bits needed by a non-explicit random construc-
tion.) Gowers’s technique was to lower-bound the spectral gap of the random walk on a related graph by

1/poly(𝑛, 𝑘). (See [HMMR05, BH08] for improvement of the spectral gap to 1/ ̃︀𝑂(𝑘2𝑛2).) Subsequently,
using techniques related to space-bounded walks in graphs [Rei08], Kaplan–Naor–Reingold [KNR09] de-
randomized this “truly random walk” to achieve efficient 𝜖-approximate 𝑘-wise independent permutations
on 𝑆2𝑛 with seed length 𝑂(𝑘𝑛 + log(1/𝜖)), matching the (inexplicit) random bound. Around the same
time, Kassabov [Kas07] got the same seed length (without requiring 𝑁 to be a power of 2) via a sophis-
ticated construction of a constant-size generating set for any 𝑆𝑁 that makes the resulting Cayley graph
an expander.

Unitary matrices. Introduced to the quantum computing literature in [DCEL09], explicit 𝜖-approximate
𝑘-designs for the unitary group have had a wide variety of applications, from randomized benchmarking of
quantum gate sets [ZZP17], to efficient state and process tomography [HKOT23], to understanding quan-
tum state and unitary complexity [RY17, BCHJ+21]. Previously, works on constructing approximate
unitary designs have chiefly focused on achieving “strongly explicitness” rather than on randomness-
efficiency. In particular, the goal has been to show that a truly random 𝑛-qubit quantum circuit com-
posed of 𝑆 = poly(𝑛, 𝑘) log(1/𝜖) gates (i.e. each gate is a Haar random unitary operator on a constant
number of uniformly randomly chosen qubits) constitutes an 𝜖-approximate 𝑘-design for U(2𝑛). The
breakthrough in this area came from the work of Brandão, Harrow, and Horodecki [BHH16], who showed
that 𝑆 = 𝑂(𝑛2𝑘10.5 log(1/𝜖)) suffices for 𝑘 ≤ 2Ω(𝑛). (See also [HL09] for an earlier construction using
poly(𝑛, 𝑘) log(1/𝜖) gates when 𝑘 = 𝑂(𝑛/ log 𝑛), and [Sen18] for a construction in the 𝑘 = poly(𝑛) regime.)
Further work has been done on improving the circuit depth and the exponent on 𝑘; see [Haf22]. As far
as we are aware, ours is the first work to derandomize these results and achieve a seed length that is
linear rather than polynomial in 𝑛 and 𝑘 and works for all 𝑘, thus matching the non-explicit random
construction. As an example application of our result for unitary matrices, by applying [BCHJ+21] we
get an efficient deterministic procedure for outputting 2𝑂(𝑛𝑘) 𝑛-qubit unitary circuits such that at least
2Ω(𝑛𝑘) of them have quantum circuit complexity Ω( 𝑛

log𝑛𝑘) (provided 𝑘 ≤ 2Ω(𝑛)).

Orthogonal Matrices. It is natural to think that designs for O(𝑁) and U(𝑁) should be related (and in-
deed orthogonal designs have played a role in randomized benchmarking for quantum circuits [HFGW18]).
However there is no obvious reduction between the tasks of constructing 𝜖-approximate 𝑘-designs for the
two groups. The first paper we are aware of that attempts to explicitly construct approximate orthogonal
designs is [KM15]. That work used explicit orthogonal designs with 𝑂(𝑘𝑛+ log(1/𝜖)) seed length as the
core pseudorandom object underlying its state-of-the-art pseudorandom generator for linear threshold
functions on S𝑛−1. Unfortunately, there was an error in their construction of these designs.3 Fixing
this error was a key motivation for the present work, and indeed our Theorem 1.1 provides the crucial
ingredient needed for the pseudorandom generators of [KM15].

Some of our technical ideas for handling the orthogonal group are drawn from the work of Haferkamp
and Hunter-Jones, who showed (Theorem 9 of [HHJ21]) that truly random local orthogonal 𝑛-qudit
circuits of size poly(𝑛, 𝑘) log(𝑞/𝜖) constitute 𝜖-approximate 𝑘-designs for O(𝑞𝑛), provided 𝑞 ≥ 8𝑘2. This
result has suboptimal randomness complexity because of the polynomial rather than linear dependence
on 𝑛 and 𝑘, and only gives approximate 𝑘-designs for small values of 𝑘.

1.1 Our framework

As stated earlier, we are interested in 𝑘-wise independent distributions over groups, particularly the
symmetric, orthogonal, and unitary groups. For each such group G, the notion of “𝑘-wise independence”
is defined through a certain representation 𝜌𝑘 of the group. Informally, we say a distribution 𝒫 on G is

3The error is in the interpretation of the main result of [BG12] that is used to establish Corollary 6.1 of [KM15].
Corollary 6.1 claims that the spectral gap established by [BG12] for SU(𝑁) is independent of 𝑁 , but this is in error [Kot22];
indeed, as noted in [BHH16] after their Corollary 7, “the proof [in [BG12]] does not give any estimate of the dependency of
the spectral gap on 𝑁 .”
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approximately 𝑘-wise independent if

E
𝑔∼𝒫

[𝜌𝑘(𝑔)] ≈ E
𝑔∼G

[𝜌𝑘(𝑔)], (1)

where on the right-hand side 𝑔 is drawn from the Haar distribution on G.4

Let us consider our three example groups G, starting with the orthogonal group O(𝑁). In this case,
the associated representation 𝜌𝑘 is on (C𝑁 )⊗𝑘, and it maps 𝑅 ∈ O(𝑁) to 𝑅⊗𝑘. In other words, specialized
to the orthogonal group, Equation (1) asserts that 𝒫 is an approximate 𝑘-design on O(𝑁) provided

E
𝑅∼𝒫

[𝑅⊗𝑘] ≈ E
𝑅∼O(𝑁)

[𝑅⊗𝑘]. (2)

As matrices, the entries of 𝜌𝑘(𝑅) = 𝑅⊗𝑘 are degree-𝑘 monomials in the entries of 𝑅, and thus Equation (1)
(qualitatively) implies that any degree-𝑘 polynomial in the entries of 𝑅 has approximately the same
expectation under 𝒫 as it has under the Haar distribution. This is the usual meaning of approximate
𝑘-wise independence in theoretical computer science, and is often how the notion is used in applications.
For the unitary matrices 𝑈 we wish to consider polynomials in both the entries of 𝑈 and their complex
conjugates; thus the appropriate representation of U(𝑁) is 𝜌𝑘,𝑘 on (C𝑁 )⊗2𝑘 defined by

𝜌𝑘,𝑘(𝑈) = 𝑈⊗𝑘 ⊗ 𝑈
⊗𝑘
. (3)

Actually, to unify notation we will work with 𝜌𝑘,𝑘 even when studying the orthogonal group O(𝑁) ≤
U(𝑁); in this case of course 𝜌𝑘,𝑘 is equivalent to 𝜌2𝑘, and we won’t be concerned with the difference
between 𝑘 and 2𝑘. (Note that if 𝑘 is odd then the expectation of any degree-𝑘 monomial in the entries of
𝑅, 𝑅 ∼ O(𝑁), is trivially 0.) Finally, for the symmetric group 𝑆𝑁 ≤ U(𝑁) we could again use 𝜌𝑘,𝑘, but
previous work has (implicitly) used an alternative representation, which we’ll call 𝒲𝑘. To define it, let
[𝑁 ](𝑘) denote the set of sequences of distinct indices 𝑖1, . . . , 𝑖𝑘 ∈ [𝑁 ] and let C[𝑁 ](𝑘) denote the (complex)

vector space with orthonormal basis vectors |𝑖1 · · · 𝑖𝑘⟩. Then the representation 𝒲𝑘 is defined on 𝜋 ∈ 𝑆𝑁

via 𝒲𝑘(𝜋) |𝑖1 · · · 𝑖𝑘⟩ = |𝜋(𝑖1) · · ·𝜋(𝑖𝑘)⟩. This representation 𝒲𝑘 is the one usually associated to 𝑘-wise
independence on 𝑆𝑁 , with the analogue of Equation (1) asserting that E𝜋∼𝒫 [(𝜋(𝑖1), . . . ,𝜋(𝑖𝑘))] is close
to being uniformly distributed on [𝑁 ](𝑘) for each (𝑖1, . . . , 𝑖𝑘) ∈ [𝑁 ](𝑘).

A first way to try to achieve approximate 𝑘-wise independence on G ∈ {𝑆𝑁 ,O(𝑁),U(𝑁)} is through
a Markov chain. Suppose 𝑃 ⊂ G is a set (closed under inverses) of size poly(𝑛), where 𝑛 = log2𝑁 .
Consider the random walk on G that starts at 1 and multiplies by a uniformly random element of 𝑃
at each step. We may hope that after, say, poly(𝑛, 𝑘) log(1/𝜖) steps, the resulting distribution 𝒫 on G
is close enough to the Haar distribution on G that Equation (1) holds. As alluded to earlier, results
of this form were previously shown for G = 𝑆2𝑛 (starting with [Gow96]) and for G = U(2𝑛) (starting
with [BHH16]). One significant contribution of the present work is to generalize the latter to apply also
to O(2𝑛) (or, more precisely and essentially equivalently, its connected subgroup SO(2𝑛)). Specifically,
in Sections 3 to 5, our goal will essentially be to show the following:

Theorem 1.2. Fix 𝑛 ≥ 4 and let 𝑃𝑛 ⊂ SO(2𝑛) denote the 𝑂(𝑛2)-sized multiset of all 𝑛-qubit circuits

consisting of 1 gate, either CNOT (on 2 qubits) or Q =

[︂
3/5 −4/5
4/5 3/5

]︂
on 1 qubit, and then closed under

negation and inverses. Then for any 𝑘 ≥ 1,⃦⃦⃦⃦
E

𝑔∼𝑃𝑛

[𝜌𝑘,𝑘(𝑔)] − E
𝑔∼SO(2𝑛)

[𝜌𝑘,𝑘(𝑔)]

⃦⃦⃦⃦
op

≤ 1 − 1

𝑛 · poly(𝑘)
. (4)

A similar statement holds for SU(2𝑛) with the 1-qubit H, S, and T gates replacing Q.

4Here and throughout, whenever G is a compact Lie group we write 𝑔 ∼ G to denote that 𝑔 is drawn according to the
Haar distribution; in particular, this is the uniform distribution if G is finite.
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(See Theorem 3.1 for more details. In Section 2 we will pass from SO(2𝑛) and SU(2𝑛) to O(2𝑛) and
U(2𝑛); our analysis in Sections 3 to 5 is carried out in the “special” versions of these groups for technical
reasons which will become clear in Section 3, specifically Section 3.1.) As we discuss in Section 3.1, the
high-level approach we take to establish Theorem 1.2 extends an approach from [HHJ21].

Given this result, we could improve the right-hand side to 𝜖/2𝑛𝑘 by forming 𝑔 as a product of 𝑛 ·
poly(𝑘) · log(2𝑛𝑘/𝜖) = poly(𝑛, 𝑘) · log(1/𝜖) uniformly randomly elements from 𝑃𝑛. (See Definition 2.2,
where we give a precise definition of an “𝜖-approximate 𝑘-design,” for a discussion of why 𝜖/2𝑛𝑘 is the
right bound for the right-hand-side.) The resulting distribution on O(2𝑛) would be an 𝜖-approximate
𝑘-design, but unfortunately, drawing from this distribution would require a seed of poly(𝑛, 𝑘) · log(1/𝜖)
truly random bits, which leaves something to be desired from the standpoint of randomness-efficiency.

To improve this and match the randomness-efficiency of the random construction, one may attempt
to apply the method of “pseudorandom walks on consistently labeled graphs” from [Rei08, RTV06], or
“derandomized squaring” from [RV05]. This is the approach taken in [KNR09] for the symmetric group,
where the evolving value of 𝒲𝑘(𝜋) |𝑖1 · · · 𝑖𝑘⟩ can be thought of as a random walk on a graph with vertex
set [𝑁 ](𝑘). In the setting of Theorem 1.2 there is no graph. Nevertheless, in Section 6 we will show how
derandomized squaring can be slightly generalized to obtain the following result (a similar generalization
appeared recently in [JMRW22]):

Theorem 1.3. (Abbreviated version of Theorem 6.21.) Given 𝑐, 𝛿, 𝜖, there is a strongly explicit determin-

istic algorithm that outputs a sequence 𝒫 of 𝑂(𝑐/ poly(𝛿𝜖)) “monomials” over the symbols 𝑢1, . . . , 𝑢𝑐, 𝑢
†
1, . . . , 𝑢

†
𝑐,

each of length 𝑂(log(1/𝜖)/ poly(𝛿)), such that ‖avg𝑚∈𝒫{𝑚(𝒰)}‖op ≤ 𝜖 whenever 𝒰 = (𝑈1, . . . , 𝑈𝑐) is a

sequence of unitaries with
⃦⃦⃦

avg𝑖∈[𝑐]{𝑈𝑖}
⃦⃦⃦
op

≤ 1 − 𝛿. (Here 𝑚(𝒰) denotes the product of 𝑈𝑖’s and 𝑈†
𝑖 ’s

obtained by substituting 𝑢𝑖 = 𝑈𝑖 in 𝑚.)

Taking the 𝛿 of Theorem 1.3 to be the 1/ poly(𝑛, 𝑘) of Theorem 1.2, and the unitaries 𝒰 = (𝑈1, . . . , 𝑈𝑐)
to correspond to the 1-gate circuits of Theorem 1.2, we obtain strongly explicit 𝜖-approximate 𝑘-designs,
as described in Theorem 1.1, for the special orthogonal and special unitary groups. A simple modification
gives corresponding designs for the unitary and orthogonal groups, thus yielding Theorem 1.1.

1.2 Organization of this paper

In Section 2 we give the detailed argument explaining how an initial spectral gap of the sort given by
Theorem 1.2 and the generalized “derandomized squaring” result given by Theorem 1.3 together yield
efficient explicit approximate designs for the orthogonal and unitary groups. The rest of the paper is
devoted to establishing the two necessary ingredients Theorem 1.2 and Theorem 1.3. Section 3 gives our
general framework for establishing the initial spectral gap for the special unitary and special orthogonal
groups; as we explain there, a crucial step in this framework is establishing a spectral gap for a certain
“auxiliary” 𝑚-qubit random walk which was inspired by the analysis of [HHJ21]. Similar to [HHJ21], it
turns out that to analyze this auxiliary random walk, two quite different technical arguments are required
depending on whether the tensor power 𝑘 is “large” or “small” compared to the number of qubits 𝑚;
we give these two arguments in Section 4 and Section 5 respectively. Finally, we provide the necessary
analysis of the generalized “derandomized pseudorandom walks” in Section 6.

1.3 Notation and preliminaries

To give our constructions it will be convenient for us to use some of the language of quantum computing.
We will generally consider operators on C𝑁 , where 𝑁 = 2𝑛 for some 𝑛 ∈ N+. We identify C𝑁 = (C2)⊗𝑛

and think of the tensor factors as corresponding to 𝑛 “qubits”.

Notation 1.4. Let 𝑔 ∈ U(2ℓ), thought of as an ℓ-qubit “gate” and let 𝑒 = (𝑖1, . . . , 𝑖ℓ) be a sequence of ℓ
distinct elements of [𝑛], i.e. 𝑒 ∈ [𝑛]ℓ. (Here ℓ should be thought of as “much less than 𝑛”, in particular we
will be interested in constant ℓ.) We use the notation 𝑔𝑒 for the operator in U(𝑁) defined by applying 𝑔 on
qubits (i.e., tensor factors) 𝑖1, . . . , 𝑖ℓ (in that order) and applying the identity operator on the remaining
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𝑛 − ℓ qubits. When 𝑒 ∈
(︀
[𝑛]
ℓ

)︀
is a set rather than a sequence, we assume the increasing order on its

elements.

We write 𝐴† to denote the conjugate transpose of a complex matrix 𝐴, ‖𝐴‖op to denote the operator
norm and ‖𝐴‖1 to denote its Schatten 1-norm. We use bold font to denote random variables.

2 A general framework: Explicit 𝑘-wise independent permuta-
tions, orthogonal designs, and unitary designs

Let G(𝑛) be a subgroup of U(𝑛) (the key examples to keep in mind are the group of permutations
on 2𝑛 elements, the 2𝑛-dimensional orthogonal group, the 2𝑛-dimensional unitary group itself, and the
“special” versions of the latter two). In light of Theorem 1.3, given a probability distribution on a subset
of G(𝑛), we would like to understand how fast the associated random walk mixes vis-a-vis a particular
representation, namely the 𝑘-wise tensor product representation (since that representation corresponds
to 𝑘-wise independence).

Let 𝒫 be a probability distribution on G(𝑛) that is symmetric (meaning that 𝑔−1 = 𝑔† is distributed
as 𝒫 when 𝑔 is), and let 𝜌 be a unitary representation of G(𝑛). Note that since 𝜌 is unitary, E𝑔∼𝒫 [𝜌(𝑔)]
is a Hermitian operator with real eigenvalues lying in [−1, 1]. Since our goal is 𝑘-wise independence, the
representations that are of interest to us are 𝑘-wise tensor product representations:

Notation 2.1 (𝑘-wise tensor product representations). For any 𝑘 ∈ N+, we will write 𝜌𝑘,𝑘2𝑛 for the
(complex) representation of G(𝑛) defined by

𝜌𝑘,𝑘2𝑛 (𝑔) = 𝑔⊗𝑘,𝑘 := 𝑔⊗𝑘 ⊗ 𝑔⊗𝑘, (5)

where 𝑔 denotes the complex conjugation of matrix 𝑔.

There are several different definitions of 𝜖-approximate 𝑘-designs in the literature, all of which are
equivalent if one is willing to lose factors of 2𝑛𝑘 on 𝜖. For definiteness, we choose the 1-norm definition
from [HL09]. (One could also equivalently use the notion from Kothari–Meka [KM15], again up to 2𝑛𝑘

factors.)

Definition 2.2. A distribution 𝒫 on a finite subset of matrices from G(𝑛) is an 𝜖-approximate 𝑘-design
for G(𝑛) if ⃦⃦⃦⃦

E
𝑔∼𝒫

[𝜌𝑘,𝑘2𝑛 (𝑔)] − E
𝑔∼G(𝑛)

[𝜌𝑘,𝑘2𝑛 (𝑔)]

⃦⃦⃦⃦
1

≤ 𝜖 (6)

(where ‖·‖1 denotes the Schatten 1-norm). We remark that the above condition is implied by the following
operator-norm bound: ⃦⃦⃦⃦

E
𝑔∼𝒫

[𝜌𝑘,𝑘2𝑛 (𝑔)] − E
𝑔∼G(𝑛)

[𝜌𝑘,𝑘2𝑛 (𝑔)]

⃦⃦⃦⃦
op

≤ 𝜖/2𝑛𝑘, (7)

and indeed we will establish our approximate design results by going through the operator norm.

Often we will study the operator E𝑔∼𝒫 [𝜌𝑘(𝑔)] through its “Laplacian”, which we define as follows:

Definition 2.3. We define the “Laplacian”

𝐿𝒫(𝜌) = 1− E
𝑔∼𝒫

[𝜌(𝑔)], (8)

a self-adjoint (since 𝒫 is symmetric) operator satisfying the following inequalities (in the PSD order):

0 ≤ 𝐿𝒫(𝜌) ≤ 2 · 1. (9)
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Notation 2.4. In the preceding definition, we abuse notation as follows: In place of 𝒫 we may write
a finite (multi)set 𝑃 ⊂ G(𝑛), in which case the uniform distribution on 𝑃 is understood. We may also
write “G(𝑛)” in place of 𝒫, in which case the uniform (Haar) distribution is understood. Finally, if 𝒫
now denotes a distribution on G(ℓ), and 𝐸 ⊆ [𝑛]ℓ, we write 𝒫 ×𝐸 for the distribution on G(𝑛) given by
choosing 𝑔 ∼ 𝒫, independently choosing 𝑒 ∼ 𝐸 (uniformly), and finally forming 𝑔𝑒.

Definition 2.5. Given a symmetric probability distribution 𝒫 as in Definition 2.3, we define its “lazy”
version, ̃︀𝒫, to be the distribution which is an equal mixture of 𝒫 and the point distribution supported
on the identity element 1 (note that ̃︀𝒫 is also a symmetric distribution). Similar to Definition 2.3, we
have that E𝑔∼ ̃︀𝒫 [𝜌(𝑔)] is a Hermitian operator but now with real eigenvalues lying in [0, 1], and we have
the PSD inequalities

0 ≤ 𝐿 ̃︀𝒫(𝜌) ≤ 1. (10)

Fact 2.6. In the setting of Definitions 2.3 and 2.5, 𝐿G(𝑛)(𝜌) is an orthogonal projection operator, and
for any symmetric 𝒫 we have that

ker𝐿G(𝑛)(𝜌) ⊆ ker𝐿𝒫(𝜌) (11)

always holds (because for every 𝑔0 in the support of 𝒫 we have 𝜌(𝑔0)Π = Π, where Π = E𝑔∼G(𝑛)[𝜌(𝑔)]).
From this, and Inequalities (9) and (10), we also get

𝐿G(𝑛)(𝜌) ≥ 1
2 · 𝐿𝒫(𝜌), (12)

𝐿G(𝑛)(𝜌) ≥ 𝐿 ̃︀𝒫(𝜌). (13)

As Inequalities (12) and (13) contain a surfeit of symbols, one may wish to read them respectively as

“(randomizing 𝑛 qubits) ≥ 1
2 · (𝒫-pseudorandomizing 𝑛 qubits) [vis-a-vis 𝜌]”, (14)

“(randomizing 𝑛 qubits) ≥ ( ̃︀𝒫-pseudorandomizing 𝑛 qubits) [vis-a-vis 𝜌]”, (15)

with the “”≥ 1
2 ·” part pronounced “is at least 1

2 as good as”.
It will be convenient to use the Laplacian operator in some of the steps in the following sections, even

though we ultimately want statements about the expectation operator. To convert between the two we
will use the following:

Fact 2.7. For any unitary representation 𝜌, 𝐿𝒫(𝜌) ≤ 𝜖 · 𝐿G(𝑛)(𝜌) is equivalent to⃦⃦⃦⃦
E

𝑔∼𝒫
[𝜌(𝑔)] − E

𝑔∼G(𝑛)
[𝜌(𝑔)]

⃦⃦⃦⃦
op

≤ 𝜖. (16)

2.1 Initial spectral gaps for 𝑆𝑁 , SO(𝑁) and SU(𝑁)

Here we summarize all of the non-trivial spectral gaps which we will amplify using Theorem 1.3.

Theorem 2.8 ([BH08]). For any 𝑘 ≥ 1, there is a (multi)set 𝑃𝑆2𝑛
of cardinality 𝑂(𝑛3) such that⃦⃦⃦⃦

E
𝑔∼𝑃𝑆2𝑛

[𝒲𝑘
2𝑛(𝑔)] − E

𝑔∼𝑆2𝑛
[𝒲𝑘

2𝑛(𝑔)]

⃦⃦⃦⃦
op

≤ 1 − 1̃︀𝑂(𝑘2𝑛2)
. (17)

Recall that the representation 𝒲𝑘
2𝑛 is defined on 𝑔 ∈ 𝑆2𝑛 via 𝒲𝑘

2𝑛(𝑔) |𝑖1 · · · 𝑖𝑘⟩ = |𝑔(𝑖1) · · · 𝑔(𝑖𝑘)⟩.
The set 𝑃𝑆2𝑛

mentioned above is the set of “simple 3-bit permutations”. This is the set of permuta-
tions 𝑓𝑖,𝑗1,𝑗2,ℎ, where 𝑖, 𝑗1, 𝑗2 ∈ [𝑛] are all distinct, and ℎ is a Boolean function on {0, 1}2, which maps
(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 to (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 ⊕ ℎ(𝑥𝑗1 , 𝑥𝑗2), 𝑥𝑖+1 . . . , 𝑥𝑛).

We establish the following in Sections 3 to 5.
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Theorem 2.9 (Theorem 3.1 restated). For G(𝑛) ∈ {SO(2𝑛),SU(2𝑛)}, and any 𝑘 ≥ 1, there is a
(multi)set 𝑃𝐺 of cardinality 𝑂(𝑛2) such that⃦⃦⃦⃦

E
𝑔∼𝑃𝐺

[𝜌𝑘,𝑘2𝑛 (𝑔)] − E
𝑔∼G(𝑛)

[𝜌𝑘,𝑘2𝑛 (𝑔)]

⃦⃦⃦⃦
op

≤ 1 − 1

𝑛 · poly(𝑘)
. (18)

The sets 𝑃𝐺 for SO(2𝑛) and SU(2𝑛) are described in Section 3.4.1.
Our proof of Theorem 2.9 is itself a general framework that could potentially be used to obtain similar

results for other subgroups of the unitary group (for example, the sympletic group), even though we only
carry out the calculations for SO(2𝑛) and SU(2𝑛).

2.2 Explicit 𝑘-wise independent permutations, orthogonal designs, and uni-
tary designs

We can finally apply Theorem 1.3, so let’s write our above results in the notation of this theorem. Fix
𝑘 ≥ 1 and consider any of the 𝑃 (multi)sets described in Theorems 2.8 and 2.9.

Let 𝒰 = (𝜌(𝑔)−E𝑔∼G(𝑛)[𝜌(𝑔)] : 𝑔 ∈ 𝑃 ) be a sequence of unitaries, where 𝜌 is the appropriate unitary

representation (𝒲𝑘
2𝑛 for 𝑆2𝑛 and 𝜌𝑘,𝑘2𝑛 for SO(2𝑛) and SU(2𝑛)). For this choice of 𝒰 we have 𝑐 = |𝑃 | =

poly(𝑛). Notice that
⃦⃦⃦

avg𝑖∈[𝑐]{𝑈𝑖}
⃦⃦⃦
op

is exactly the left hand side of the equations in Theorems 2.8

and 2.9, so we know that this average is at most 1 − 𝛿 for 𝛿 = 1/ poly(𝑛, 𝑘) (as observed, this is actually

1/ ̃︀𝑂(𝑘2𝑛2) for 𝑆2𝑛 and 1/(𝑛poly(𝑘)) for SO(2𝑛) and SU(2𝑛)). Given 𝜖 > 0, applying Theorem 1.3
(with its “𝜖” parameter set to 𝜖/2𝑛𝑘) we obtain a sequence 𝒫 of cardinality poly(2𝑛𝑘/𝜖) that satisfies
‖avg𝑈∈𝒫{𝑈}‖op ≤ 𝜖. Additionally, 𝑈 ∈ 𝒫 is a product of at most poly(𝑛𝑘) log(1/𝜖) elements of 𝒰 , and

so it can be written as 𝜌(𝑔) −E𝑔∼G(𝑛)[𝜌(𝑔)], where 𝑔 is a product of at most poly(𝑛𝑘) log(1/𝜖) elements
of 𝑃 . This follows since for any 𝑔, 𝑔′ ∈ 𝑃 ,(︂

𝜌(𝑔) − E
𝑔∼G(𝑛)

[𝜌(𝑔)]

)︂(︂
𝜌(𝑔′) − E

𝑔∼G(𝑛)
[𝜌(𝑔)]

)︂
=

(︂
𝜌(𝑔 · 𝑔′) − E

𝑔∼G(𝑛)
[𝜌(𝑔)]

)︂
, (19)

where we use the fact that E𝑔∼G(𝑛)[𝜌(𝑔)] is an orthogonal projection operator, and that 𝜌 is a represen-
tation. We combine all of this in the following theorems:

Theorem 2.10. Let 𝜖 > 0. Then for any 𝑘 = 𝑘(𝑛), there is a set 𝒫𝑆2𝑛
that satisfies:⃦⃦⃦⃦

E
𝑔∼𝒫𝑆2𝑛

[𝒲𝑘(𝑔)] − E
𝑔∼𝑆2𝑛

[𝒲𝑘(𝑔)]

⃦⃦⃦⃦
op

≤ 𝜖/2𝑛𝑘. (20)

Additionally, this set satisfies the following properties:

� Its cardinality is poly(2𝑛𝑘/𝜖).

� Each element of 𝒫𝑆2𝑛
is given by an 𝑛-qubit circuit consisting of 𝑆 = poly(𝑛𝑘) log(1/𝜖) gates, which

are elements of 𝑃𝐺.

� The algorithm that takes as input a seed and outputs the associated circuit runs in deterministic
poly(𝑆) time.

Theorem 2.11. Let G(𝑛) ∈ {SO(2𝑛),SU(2𝑛)} and 𝜖 > 0. Then for any 𝑘 = 𝑘(𝑛), there is a set 𝒫𝐺 that
satisfies: ⃦⃦⃦⃦

E
𝑔∼𝒫𝐺

[𝜌𝑘,𝑘2𝑛 (𝑔)] − E
𝑔∼G(𝑛)

[𝜌𝑘,𝑘2𝑛 (𝑔)]

⃦⃦⃦⃦
op

≤ 𝜖/2𝑛𝑘. (21)

Additionally, this set satisfies the following properties:

� Its cardinality is poly(2𝑛𝑘/𝜖).
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� Each element of 𝒫𝐺 is given by an 𝑛-qubit circuit consisting of 𝑆 = poly(𝑛𝑘) log(1/𝜖) gates, which
are elements of 𝑃𝐺.

� The algorithm that takes as input a seed and outputs the associated circuit runs in deterministic
poly(𝑆) time.

Ultimately we want designs for O(2𝑛) and U(2𝑛); we obtain them from the above via the following
simple corollary.

Corollary 2.12 (Theorem 1.1 restated). Let G(𝑛) ∈ {O(2𝑛),U(2𝑛)} and 𝜖 > 0. Then for any 𝑘 = 𝑘(𝑛),
there is a set 𝒫𝐺 that satisfies the conditions of Theorem 2.11.

Proof. To obtain the result for O(2𝑛), after sampling from 𝒫SO one samples 𝑏 as a uniformly random
±1 and multiplies the first column of the sampled matrix by 𝑏 (which only changes the cardinality of
the resulting 𝒫O by a factor of 2). For U(2𝑛), after sampling from 𝒫SU we sample a uniform random

unit-norm complex value 𝑢 from the (2𝑂(𝑛𝑘)/𝜖)-element set {1, 𝑒𝑖𝜖/2
𝑂(𝑛𝑘)

, 𝑒𝑖2𝜖/2
𝑂(𝑛𝑘)

, . . .} and multiply the
first column of the sampled matrix by 𝑢 (which only changes the cardinality of the resulting 𝒫U by a
factor of 2𝑂(𝑛𝑘)/𝜖.)

It is of note that we can apply the framework of this section, through Theorem 1.3, to obtain explicit
designs of any subgroup of the unitary group using any unitary representation, as long as one establishes
an initial gap first, like in Section 2.1.

3 Establishing an initial spectral gap for special orthogonal and
unitary groups

In the rest of the paper we consider a sequence of groups (G(𝑛))𝑛≥1 which is either (SO(2𝑛))𝑛≥1 or
(SU(2𝑛))𝑛≥1. We recall (see e.g. [Mec19, Section 1.3]) that these groups have associated Lie algebras g𝑛,
where

for G(𝑛) = SO(2𝑛), g𝑛 = {𝐻 ∈ R2𝑛×2𝑛 : 𝐻 skew-symmetric}, (22)

for G(𝑛) = SU(2𝑛), g𝑛 = {𝐻 ∈ C2𝑛×2𝑛 : 𝐻 skew-Hermitian, tr(𝐻) = 0}. (23)

When we need to specialize our discussion to a particular one of these two cases, we will do so explicitly;
most of our arguments go through for both settings (and many go through for the more general setting
in which G(𝑛) is any compact connected Lie group).

As discussed in Section 2, given Theorem 6.21, in order to construct an explicit 𝑘-design for G(𝑛)
it suffices to construct an explicit sequence 𝒰 = (𝑈1, . . . , 𝑈𝑐) of 2𝑛 × 2𝑛 matrices from G(𝑛) satisfying⃦⃦⃦
𝜌𝑘,𝑘2𝑛 (𝑈𝑖)

⃦⃦⃦
op

≤ 1 for all 𝑖 and
⃦⃦⃦

avg(𝜌𝑘,𝑘2𝑛 (𝒰))
⃦⃦⃦
op

≤ 1− 1
𝑛·poly(𝑘) (in fact, a spectral gap of poly(𝑛, 𝑘) would

also be sufficient). Constructing such a sequence for G(𝑛) as described above is the main goal of this
section and is accomplished in the following theorem:

Theorem 3.1. Let (G(𝑛))𝑛≥1 ∈ {(SO(2𝑛))𝑛≥1, (SU(2𝑛))𝑛≥1}. There is a fixed positive integer 𝑛0 = 4
and a finite multiset 𝑃𝑛0

⊂ G(𝑛0) such that for all sufficiently large 𝑛 and all 𝑘 ≥ 1, we have

∀𝑘 ∈ N+, 𝐿 ̃︀𝑃𝑛0
×([𝑛]

𝑛0
)(𝜌𝑘,𝑘2𝑛 ) ≥ 1

𝑛 · poly(𝑘)
· 𝐿G(𝑛)(𝜌

𝑘,𝑘
2𝑛 ). (24)

(We note that even without using the “pseudorandom walks” machinery of Section 6, as discussed in
Section 1.1, since Theorem 3.1 establishes an initial spectral gap of 1− 1

𝑛·poly(𝑘) , simply taking a product

of 𝑛 · poly(𝑘) · log(2𝑛𝑘/𝜖) uniform random draws from ̃︀𝑃𝑛0
would yield an 𝜖-approximate 𝑘-design for

G(𝑛) with seed length poly(𝑛, 𝑘) · log(1/𝜖). By combining Theorem 3.1 with Theorem 6.21 (i.e. using
pseudorandom walks) we are able to improve this to seed length 𝑂(𝑛𝑘 + log(1/𝜖)), thus matching the
random construction.)
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3.1 Overview of the proof of Theorem 3.1

Our proof of Theorem 3.1 refines and extends an approach from [HHJ21], and combines it with arguments
from [BHH16]. In this subsection we give a high-level overview of the structure of the proof, and in the
next subsection we give (a modular version of) the actual proof. Establishing the various modular pieces
will comprise the rest of the paper after Section 3.2.

In Theorem 4 of [HHJ21], Haferkamp and Hunter-Jones establish a spectral gap for non-local random
quantum circuits with truly (Haar) random two-qudit unitary gates over the unitary group. This is done
by analyzing Haar random unitary gates over 𝑚 − 1 randomly chosen qubits from an 𝑚-qubit system;
this enables them to establish a recurrence relation which lets them bound the spectral gap of 𝑘-qudit
Haar random unitary gates in terms of the spectral gap of (𝑘+ 1)-qudit Haar random unitary gates. Our
Lemma 3.2 below is a generalization and rephrasing of their recurrence relation for the special5 unitary
and special orthogonal groups; it essentially says that if truly randomizing (a randomly chosen) 𝑚−1 out
of 𝑚 qubits is “not too much worse” than truly randomizing all 𝑚 qubits, then truly randomizing only
a constant number of (randomly chosen) qubits out of 𝑚 qubits is also not too much worse than truly
randomizing all 𝑚 qubits. Given this, the remaining tasks are (1) to show that indeed truly randomizing
(a randomly chosen) 𝑚−1 out of 𝑚 qubits is “not too much worse” than truly randomizing all 𝑚 qubits;
and (2) to show that at the bottom level of the argument, it suffices to pseudorandomize a constant
number of (randomly chosen) qubits out of 𝑚 qubits.

Task (1) requires a significant amount of technical work and is the subject of Section 4 and Section 5.
We follow the high-level approach of [HHJ21] by breaking the analysis into two sub-cases (Theorem 3.3
and Theorem 3.4) depending on the relative sizes of 𝑘 and 𝑚. In each of these sub-cases we adapt and
generalize the analysis of [HHJ21] (we note that the “small-𝑚” case of [HHJ21], for the unitary group,
was based in turn on [BHH16]) in a way which permits a unified treatment of both the special orthogonal
group and the special unitary group.

Task (2) is necessary because our ultimate goal statement, Theorem 3.1, requires the randomly chosen
non-local gates to be drawn from a finite ensemble of gates rather than being Haar random (“truly
random”) gates over 𝑛0 qubits. For this step (made formal in Lemma 3.6), following [BHH16] we use a
deep result of Bourgain and Gamburd (subsequently generalized by Benoiste and de Saxcé [BdS16]) to
pass from the Haar distribution over G(𝑛0) to a uniform distribution over an explicit finite ensemble of 𝑛0-
qubit gates; see Section 3.4. The [BdS16] results require that the Lie groups in question be compact and
simple; this requirement is why we need to work with the special versions of the unitary and orthogonal
groups (indeed, in the special orthogonal case we need to further pass to the projective special orthogonal
group; see the proof of Corollary 3.10).

3.2 Proof of Theorem 3.1

In order to establish the lower bound of Inequality (24) we will need to chain together some statements
that go in the opposite direction from Inequality (14) and Inequality (15). We do this via the following
lemma, which we prove in Section 3.3.

Lemma 3.2. Fix a positive integer constant 𝑛0 ≥ 4. Suppose that for 𝑛0 < 𝑚 ≤ 𝑛 we have

∀𝑘 ∈ N+, 𝐿
G(𝑚−1)×( [𝑚]

𝑚−1)
(𝜌𝑘,𝑘2𝑚 ) ≥ 𝜏𝑘,𝑚 · 𝐿G(𝑚)(𝜌

𝑘,𝑘
2𝑚 ). (25)

Then

∀𝑘 ∈ N+, 𝐿
G(𝑛0)×([𝑛]

𝑛0
)(𝜌𝑘,𝑘2𝑛 ) ≥

⎛⎝ ∏︁
𝑛0<𝑚≤𝑛

𝜏𝑘,𝑚

⎞⎠ · 𝐿G(𝑛)(𝜌
𝑘,𝑘
2𝑛 ). (26)

We remark that Lemma 3.2 only deals with “truly” (Haar) random gates; later we will move from
𝑛0-arity “truly random” gates to “pseudorandom” gates, which are drawn uniformly at random from

5At the end of this subsection we explain why, even though our ultimate goal is to obtain results for the orthogonal and
unitary groups, we need to work with the special versions of these groups at this point in the argument.
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a finite multiset. It may be helpful to think of the lemma’s conclusion (Inequality (26)) as intuitively
saying that truly randomizing only constantly many (randomly chosen) qubits is “not too much worse”
than truly randomizing all 𝑛 qubits, vis-a-vis the 𝑘-wise tensor product representation.

With the above lemma in hand, proving Theorem 3.1 breaks down naturally into two steps.

First step: Passing from truly random 𝑚-qubit gates to truly random (𝑚 − 1)-qubit gates.
In other words, lower-bounding 𝜏𝑘,𝑚 for 𝑚 = 𝑛0 + 1, . . . , 𝑛. This is the main technical task where the
bulk of our work is required. The analysis is done separately for “large 𝑚” and “small 𝑚” cases, similar
to Lemmas 6 and 7 of [HHJ21], respectively.

Section 4 lower bounds 𝜏𝑘,𝑚 for “large 𝑚”:

Theorem 3.3. For all 𝑘 ≤ 1√
10𝑚2

2𝑚/2 we have that Inequality (25) holds with 𝜏𝑘,𝑚 ≥ 1 − 1
𝑚 −

√
10𝑘𝑚
2𝑚/2 .

Section 5 gives a lower bound on 𝜏𝑘,𝑚 which will be useful for “small 𝑚”:

Theorem 3.4. For all 𝑚 ≥ 4 and all 𝑘 ∈ N+, we have that Inequality (25) holds with 𝜏𝑘,𝑚 ≥ .04.

(We note that Theorem 3.4’s requirement that 𝑚 ≥ 4 is why we take 𝑛0 = 4 in Theorem 3.1.)
Given Theorem 3.3 and Theorem 3.4, we get the desired lower bound on 𝜏𝑘,𝑛0+1 · · · 𝜏𝑘,𝑛 from a routine

computation:

Lemma 3.5. For any constant 𝑛0 ≥ 4, for all 𝑛 and all 𝑘 ∈ N+ we have 𝜏𝑘,𝑛0+1 · · · 𝜏𝑘,𝑛 ≥ 1
𝑛·poly(𝑘) .

Proof. Fix 𝑛0 ≥ 4 and take any 𝑛, 𝑘 ≥ 1. Defining ℓ = ⌊4 log2(60𝑘)⌋ ≥ 20, by Theorem 3.4 we have

𝜏𝑘,𝑛0+1 · · · 𝜏𝑘,ℓ ≥ (.04)ℓ = (.04)𝑂(log 𝑘) ≥ 1

poly(𝑘)
. (27)

This proves the result if 𝑛 ≤ ℓ. Otherwise, it remains to show that

𝜏𝑘,ℓ+1 · · · 𝜏𝑘,𝑛 ≥ 1/𝑛. (28)

For 𝑚 ≥ ℓ+ 1 we have 𝑘 ≤ 1
602𝑚/4 ≤ 1√

10𝑚2
2𝑚/2, so we are eligible to use the bound from Theorem 3.3.

Then using

√
10𝑘𝑚

2𝑚/2
≤

√
10𝑚

60 · 2𝑚/4
≤ 2−𝑚/5, 1 − 1

𝑚
− 2−𝑚/5 ≥

(︂
1 − 1

𝑚

)︂
exp(−21−𝑚/5) (29)

(the last inequality using 𝑚 ≥ ℓ ≥ 20), we conclude

𝜏𝑘,ℓ+1 · · · 𝜏𝑘,𝑛 ≥
𝑛∏︁

𝑚=ℓ+1

(︂
1 − 1

𝑚

)︂
exp(−21−𝑚/5) =

ℓ

𝑛
exp

(︃
−

𝑛∑︁
𝑚=ℓ+1

21−𝑚/5

)︃
≥ 1

𝑛
(30)

(using ℓ ≥ 20), confirming Inequality (28).

Second step: From “truly random” non-local 𝑛0-qubit gates to “pseudorandom” non-local
𝑛0-qubit gates. The next lemma, proved in Section 3.4, may be viewed as saying that (suitably) pseudo-
randomizing constantly many randomly chosen qubits is “not much worse” than truly randomizing those
qubits.

Lemma 3.6. There is an absolute constant 𝑛0 = 4 such that for 𝑛 ≥ 𝑛0 + 1, we have

∀𝑘 ∈ N+, 𝐿 ̃︀𝑃𝑛0
×([𝑛]

𝑛0
)(𝜌𝑘,𝑘2𝑛 ) ≥ 𝜅𝑛0 · 𝐿G(𝑛0)×([𝑛]

𝑛0
)(𝜌𝑘,𝑘2𝑛 ),

where 𝜅𝑛0
is an absolute constant (depending only on 𝑛0).

Theorem 3.1 follows from Lemma 3.2, Lemma 3.5 and Lemma 3.6.
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3.3 Proof of Lemma 3.2

Lemma 3.7 (Restatement of Lemma 3.2). Fix a positive integer 𝑛0 ≥ 4. Suppose that for 𝑛0 < 𝑚 ≤ 𝑛
we have

∀𝑘 ∈ N+, 𝐿
G(𝑚−1)×( [𝑚]

𝑚−1)
(𝜌𝑘,𝑘2𝑚 ) ≥ 𝜏𝑘,𝑚 · 𝐿G(𝑚)(𝜌

𝑘,𝑘
2𝑚 ). (31)

Then

∀𝑘 ∈ N+, 𝐿
G(𝑛0)×([𝑛]

𝑛0
)(𝜌𝑘,𝑘2𝑛 ) ≥

⎛⎝ ∏︁
𝑛0<𝑚≤𝑛

𝜏𝑘,𝑚

⎞⎠ · 𝐿G(𝑛)(𝜌
𝑘,𝑘
2𝑛 ). (32)

Proof. For readability we simply write 𝜏𝑖 in this proof to stand for 𝜏𝑘,𝑖. Also for readability we express
the lemma as

(randomizing 𝑚− 1 out of 𝑚 qubits) ≥ 𝜏𝑚 · (randomizing all 𝑚 qubits) ∀ 𝑛0 < 𝑚 ≤ 𝑛 (33)

=⇒ (randomizing 𝑛0 out of 𝑛 qubits) ≥ 𝜏𝑛0+1 · · · 𝜏𝑛 · (randomizing all 𝑛 qubits),

with the modifier “vis-as-vis all 𝜌𝑘,𝑘2𝑚 ” being implied. The 𝑚 = 𝑛0 + 1 case of Inequality (33) is

(randomizing 𝑛0 out of 𝑛0 + 1 qubits) ≥ 𝜏𝑛0+1 · (randomizing all 𝑛0 + 1 qubits). (34)

From this, by adding an ignored (𝑛0 + 2)th qubit, we are able to conclude

(randomizing 𝑛0 out of the first 𝑛0 + 1 of 𝑛0 + 2 qubits)

≥ 𝜏𝑛0+1 · (randomizing the first 𝑛0 + 1 of 𝑛0 + 2 qubits). (35)

To derive this implication more formally, start with Inequality (34), which says that for all 𝑘 ∈ N+,

E
𝑔∼G(𝑛0)

𝑒∼([𝑛0+1]
𝑛0

)

[1− 𝑔⊗𝑘,𝑘
𝑒 ] ≥ 𝜏𝑛0+1 · E

ℎ∼G(𝑛0+1)
[1− ℎ⊗𝑘,𝑘]. (36)

We now consider tacking on a (𝑛0 + 2)th tensor factor that is ignored by both 𝑔𝑒 and by ℎ. Since
𝐴 ≥ 𝐵 =⇒ 𝐴 ⊗ 1 ≥ 𝐵 ⊗ 1, we can tensor-product both sides of Inequality (36) by 1⊗𝑘,𝑘 (where 1
denotes the 2 × 2 identity matrix) to conclude

E
𝑔∼G(𝑛0)

𝑒∼([𝑛0+1]
𝑛0

)∈[𝑛0+2]𝑛0

[1− 𝑔⊗𝑘,𝑘
𝑒 ] ≥ 𝜏𝑛0+1 · E

ℎ∼G(𝑛0+1)
𝑓 :=[𝑛0+1]∈[𝑛0+2]𝑛0+1

[1− ℎ⊗𝑘,𝑘
𝑓 ], (37)

and this is the meaning of Inequality (35). Indeed, we can insert the ignored (𝑛0 + 2)th qubit at any
position, not just the last one; i.e., for any 𝑗 ∈ [𝑛0 + 2],

E
𝑔∼G(𝑛0)

𝑒∼([𝑛0+2]∖𝑗
𝑛0

)

[1− 𝑔⊗𝑘,𝑘
𝑒 ] ≥ 𝜏𝑛0+1 · E

ℎ∼G(𝑛0+1)
𝑓 :=[𝑛0+2]∖𝑗

[1− ℎ⊗𝑘,𝑘
𝑓 .] (38)

If we now average the above (PSD-order) inequality over 𝑗 ∼ [𝑛0 + 2] we get

E
𝑔∼G(𝑛0)

𝑒∼([𝑛0+2]
𝑛0

)

[1− 𝑔⊗𝑘,𝑘
𝑒 ] ≥ 𝜏𝑛0+1 · E

ℎ∼G(𝑛0+1)

𝑓∼([𝑛0+2]
𝑛0+1 )

[1− ℎ⊗𝑘,𝑘
𝑓 ], (39)

which we would express as

(randomizing 𝑛0 out of 𝑛0 + 2 qubits) ≥ 𝜏𝑛0+1 · (randomizing 𝑛0 + 1 out of 𝑛0 + 2 qubits). (40)

But the 𝑚 = 𝑛0 + 2 case of our hypothesis Inequality (33) is

(randomizing 𝑛0 + 1 out of 𝑛0 + 2 qubits) ≥ 𝜏𝑛0+2 · (randomizing all 𝑛0 + 2 qubits), (41)

so chaining this together with Inequality (40) (using the PSD-ordering fact 𝐴 ≥ 𝐵, 𝐵 ≥ 𝐶 =⇒ 𝐴 ≥ 𝐶)
gives

(randomizing 𝑛0 out of 𝑛0 + 2 qubits) ≥ 𝜏𝑛0+1 · 𝜏𝑛0+2 · (randomizing all 𝑛0 + 2 qubits). (42)

Iterating this argument completes the proof of the lemma.
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3.4 Proof of Lemma 3.6

An ingredient we need for Lemma 3.6 is the existence of a suitable finite “gate set” with useful properties.
This is provided by the following lemma, which follows from known universality results in quantum
computing (see Section 3.4.1):

Lemma 3.8. There is an absolute constant 𝑛0 = 4 for which there is a finite multiset 𝑃𝑛0
⊂ SO(2𝑛0),

closed under negations and inverses, with two properties:

(A) (There is a basis in which) every matrix in 𝑃𝑛0
has algebraic entries.

(B) Finite products of elements of 𝑃𝑛0
are dense in SO(2𝑛0).

The same statement is true for SU(2𝑛0) (also with 𝑛0 = 4).

Lemma 3.8 allows us to use a deep result of Benoist and de Saxcé [BdS16], which extended earlier
work of Bourgain–Gamburd [BG12] (for the case of the special unitary group) to a broader range of
groups. The main result of [BdS16] is as follows:

Theorem 3.9. ([BdS16, Consequence of Theorem 1.2].) For 𝑛 ≥ 1 let G(𝑛) ⊆ SU(2𝑛) be a connected
compact simple Lie group. Fix a positive integer 𝑛0 and suppose that 𝑃𝑛0 ⊂ G(𝑛0) satisfies properties
(A) and (B) of Lemma 3.8. Then there exists a constant 𝜅 > 0 such that⃦⃦⃦⃦

⃦ E
𝑔∼̃︂𝑃𝑛0

[reg(𝑔)] − E
𝑔∼G(𝑛0)

[reg(𝑔)]

⃦⃦⃦⃦
⃦
op

≤ 1 − 𝜅, (43)

where reg denotes the regular representation of G(𝑛0). Equivalently, 𝐿̃︂𝑃𝑛0
(reg) ≥ 𝜅 · 𝐿G(𝑛0)(reg), or

(̃︂𝑃𝑛0 -pseudorandomizing in 2𝑛0 dimensions) ≥ 𝜅 · (randomizing 2𝑛0 dimensions) [vis-a-vis reg]. (44)

We remark that (as noted by [BHH16]) a weaker form of Equation (43), with the 𝑘-wise tensor product
representation in place of the regular representation and 𝜅 depending on 𝑘, has been known at least since
[AK63]; however, the stronger quantitative bound of Equation (43) is essential for our purposes.

Theorem 3.9 yields the following useful corollary:

Corollary 3.10. For 𝑛0 = 4, G(𝑛0) = SO(2𝑛0), and 𝑃𝑛0
⊂ G(𝑛0) satisfying properties (A) and (B) of

Lemma 3.8, there is a constant 𝜅 > 0 such that for all 𝑘 ∈ N+ we have 𝐿̃︂𝑃𝑛0
(𝜌𝑘,𝑘2𝑛0 ) ≥ 𝜅 · 𝐿G(𝑛0)(𝜌

𝑘,𝑘
2𝑛0 ).

That is, vis-a-vis any 𝜌𝑘,𝑘2𝑛0 , we have

(̃︂𝑃𝑛0
-pseudorandomizing 𝑛0 qubits) ≥ 𝜅 · (G(𝑛0)-randomizing 𝑛0 qubits). (45)

The same is true for 𝑛0 = 4, G(𝑛0) = SU(2𝑛0).

Proof. We first note that since all irreducible representations appear in the regular representation6, the
conclusion of Theorem 3.9 also holds for any 𝜌𝑘,𝑘

2ℓ
representation. Since the special unitary group is

connected, compact, and simple7, this immediately gives Corollary 3.10 in the case G(𝑛0) = SU(2𝑛0).
For the special orthogonal case, while G(𝑛0) = SO(2𝑛0) is not simple, the projective special orthogonal

group PSO(2𝑛0) = SO(2𝑛0)/{±1} is a connected compact simple Lie group. Writing 𝑃 ′
𝑛0

to denote the
multiset of elements of PSO(2𝑛0) corresponding to 𝑃𝑛0

, Theorem 3.9 gives us that⃦⃦⃦⃦
⃦ E
𝑔∼̃︂𝑃 ′

𝑛0

[𝜌𝑘,𝑘2𝑛0 (𝑔)] − E
𝑔∼PSO(2𝑛0 )

[𝜌𝑘,𝑘2𝑛0 (𝑔)]

⃦⃦⃦⃦
⃦
op

≤ 1 − 𝜅. (46)

6For a concrete proof in the case of G(ℓ) = SO(2ℓ), see e.g. [KM15, Lem. 6.1].
7Recall that the Lie algebra of the special unitary group is simple, and that Benoiste and de Saxcé remark, following

their Theorem 1.2 in [BdS16], that “For us, a compact simple Lie group will be a compact real Lie group whose Lie algebra
is simple.”
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Now recalling that 𝜌𝑘,𝑘2𝑛0 (𝑔) = 𝑔⊗𝑘⊗𝑔⊗𝑘, since 𝑃𝑛0
is closed under negation there is no need to distinguish

between PSO(2𝑛0) and SO(2𝑛0) in either of the expectations appearing in Equation (46), i.e. we have

E
𝑔∼̃︂𝑃 ′

𝑛0

[𝜌𝑘,𝑘2𝑛0 (𝑔)] = E
𝑔∼̃︂𝑃𝑛0

[𝜌𝑘,𝑘2𝑛0 (𝑔)], E
𝑔∼PSO(2𝑛0 )

[𝜌𝑘,𝑘2𝑛0 (𝑔)] = E
𝑔∼SO(2𝑛0 )

[𝜌𝑘,𝑘2𝑛0 (𝑔)], (47)

which gives Corollary 3.10 for the case G(𝑛0) = SO(2𝑛0).

With Corollary 3.10 in hand, now we are ready to prove Lemma 3.6:

Proof of Lemma 3.6. By Corollary 3.10, we have 𝐿̃︂𝑃𝑛0
(𝜌𝑘,𝑘2𝑛0 ) ≥ 𝜅𝑛0

· 𝐿G(𝑛0)(𝜌
𝑘,𝑘
2𝑛0 ), i.e.

1− E
ℎ∼̃︂𝑃𝑛0

[𝜌(ℎ)] ≥ 𝜅𝑛0

(︂
1− E

𝑔∼G(𝑛0)
[𝜌(𝑔)]

)︂
. (48)

We consider tacking on 𝑛 − 𝑛0 tensor factors that are ignored by both 𝑔 and by ℎ. Since 𝐴 ≥ 𝐵 =⇒
𝐴⊗ 1 ≥ 𝐵 ⊗ 1, we can tensor-product both sides of Equation (48) by the identity to conclude

1− E
ℎ∼̃︂𝑃𝑛0

[𝜌(ℎ[𝑛0])] ≥ 𝜅𝑛0

(︂
1− E

𝑔∼G(𝑛0)
[𝜌(𝑔[𝑛0])]

)︂
. (49)

We can insert the ignored 𝑛 − 𝑛0 qubits at any positions, not just the last one; averaging the resulting
inequalities, we get

1(︀
𝑛

𝑛−𝑛0

)︀ ∑︁
1≤𝑖1<···<𝑖𝑛0

≤𝑛

(︃
1− E

ℎ∼̃︂𝑃𝑛0

[𝜌(ℎ(𝑖1,...,𝑖𝑛0 )
)]

)︃
≥ 𝜅𝑛0

· 1(︀
𝑛

𝑛−𝑛0

)︀ ∑︁
1≤𝑖1<···<𝑖𝑛0

≤𝑛

(︂
1− E

𝑔∼G(𝑛0)
[𝜌(𝑔(𝑖1,...,𝑖𝑛0

))]

)︂
,

(50)

which is what Lemma 3.6 asserts.

3.4.1 Proof of Lemma 3.8

We first consider SO(24); so we must show that there is a finite multiset 𝑃4 ⊂ SO(24), closed under
inverses, that satisfies conditions (A) and (B) of Lemma 3.8.

Define the 1- and 2-qubit gates

Q :=

[︂
3/5 −4/5
4/5 3/5

]︂
and CNOT :=

[︂
1 0
0 0

]︂
⊗
[︂
1 0
0 1

]︂
+

[︂
0 0
0 1

]︂
⊗
[︂
0 1
1 0

]︂
, (51)

and let 𝑃4 be the following finite subset8 of SO(24):

𝑃4 := the closure of {Q(𝑗) : 𝑗 ∈ [4]} ∪ {CNOT(𝑖,𝑗) : 𝑖, 𝑗 ∈ [4], 𝑖 ̸= 𝑗} under inverses and negations. (52)

Clearly 𝑃4 satisfies (A), and (B) follows from the following result from [Shi02, Thm. 3.1]:

Fact 3.11. The 1- and 2-qubit gates

Q :=

[︂
3/5 −4/5
4/5 3/5

]︂
and CNOT :=

[︂
1 0
0 0

]︂
⊗
[︂
1 0
0 1

]︂
+

[︂
0 0
0 1

]︂
⊗
[︂
0 1
1 0

]︂
(53)

are together universal for quantum computing with real amplitudes. More precisely, recalling Equa-
tion (52), we have that finite products of elements of 𝑃4 are dense in SO(24).

8Recall that CNOT ̸∈ SO(22), but CNOT⊗ 14×4 ∈ SO(16).
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Next we turn to SU(24). Define the 1-qubit Hadamard gate (denoted H), phase gate (denoted S), and
“𝜋/8 gate” (denoted T) respectively as

H :=
1√
2

[︂
1 1
1 −1

]︂
, S :=

1√
2

[︂
1 1
1 −1

]︂
, and T :=

[︂
1 0
0 𝑒𝑖𝜋/4

]︂
, (54)

and recall the definition of CNOT from Equation (51). Now let 𝑃 ′
4 be the closure of {H(𝑗) : 𝑗 ∈ [4]}∪{S(𝑗) :

𝑗 ∈ [4]} ∪ {T(𝑗) : 𝑗 ∈ [4]} ∪ {CNOT(𝑖,𝑗) : 𝑖, 𝑗 ∈ [4], 𝑖 ̸= 𝑗} under inverses and negations. It is clear that
𝑃 ′
4 is a finite set of elements of U(24), closed under inverses, satisfying (A). The fact that 𝑃 ′

4 satisfies
(B) follows from the well-known fact (see e.g. [NC10, Sec. 4.5.3]) that H, S, T and CNOT together
are universal for quantum computing. Finally, we obtain the desired set of elements 𝑃4 ⊂ SU(24) by
multiplying elements of 𝑃 ′

4 by suitable complex values of unit norm to have determinant one.

4 Lower bounding 𝜏𝑚 for large 𝑚

In this section we prove Theorem 3.3, restated below, using simplifications of techniques introduced
in [HHJ21]:

Theorem 4.1 (Restatement of Theorem 3.3). Let the sequence of groups (G(𝑛))𝑛≥1 be either (SO(2𝑛))𝑛≥1

or (SU(2𝑛))𝑛≥1. Define the following operators on (C2𝑘)⊗𝑚:

Π(𝑚) = E
𝑔∼G(𝑚)

[𝜌𝑘,𝑘2𝑚 (𝑔)], Π[𝑚]∖𝑖 ⊗ 1𝑖 = (12𝑘×2𝑘 on the 𝑖th tensor factor, Π(𝑚−1) on the remainder).

(55)
Then for all 𝑘 ≤ 1√

10𝑚2
2𝑚/2 we have⃦⃦⃦⃦

𝑚
avg
𝑖=1

{Π[𝑚]∖𝑖 ⊗ 1𝑖} − Π(𝑚)

⃦⃦⃦⃦
op

≤ 1

𝑚
+

√
10𝑘𝑚

2𝑚/2
; (56)

equivalently, in the notation of Theorem 3.3, 𝜏𝑚 ≥ 1 − ( 1
𝑚 +

√
10𝑘𝑚
2𝑚/2 ).

We observe:

Fact 4.2. Im Π(𝑚) is a subspace of Im(Π[𝑚]∖𝑖 ⊗ 1𝑖) for all 𝑖.

4.1 Identifying the projectors

To prove Theorem 4.1, we will need to have a description of the projection operator Π(𝑚); luckily, this is
provided by known representation theory. To state the results we need some notation.

Notation 4.3. If 𝑋 ∈ C𝑟×𝑟 is a matrix, we write vec(𝑋) ∈ C𝑟 ⊗C𝑟 for its vectorization; here vec is the
linear map that takes |𝑖⟩⟨𝑗| to |𝑖𝑗⟩.

Fact 4.4. For matrices 𝑅0, 𝑅1, 𝑆 ∈ C𝑟×𝑟 it holds that (𝑅0 ⊗𝑅1)vec(𝑆) = vec(𝑅0𝑆𝑅
⊤
1 ).

Notation 4.5. Having fixed some 𝐷 = 2𝑚 ∈ N+, we write

|Φ⟩ = 𝐷−1/2
𝐷∑︁

𝑎=1

|𝑎⟩ ⊗ |𝑎⟩ = 𝐷−1/2vec(1𝐷×𝐷) (57)

for the maximally entangled state on C𝐷 ⊗C𝐷.

Notation 4.6. For 𝑘 ∈ N+, let ℳ2𝑘 denote the set of all perfect matchings on [2𝑘], and let ℳbip
2𝑘 denote

the subset of all “bipartite” perfect matchings, meaning that each pair in the matching can be written
as {𝑖, 𝑗} with 𝑖 ≤ 𝑘 and 𝑗 > 𝑘.
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Notation 4.7. For 𝑀 ∈ ℳ2𝑘, we introduce the unit vector

|Φ𝑀 ⟩ =
⨂︁

{𝑖,𝑗}∈𝑀

|Φ⟩𝑖𝑗 ∈ (C𝐷)⊗2𝑘, (58)

where we abuse notation slightly by writing |Φ⟩𝑖𝑗 for the maximally entangled state on the 𝑖th and 𝑗th
tensor components.

Let us give two examples. First, with 𝑘 = 3:

𝑀 = {{1, 2}, {3, 6}, {4, 5}} =⇒ |Φ𝑀 ⟩ = 𝐷−𝑘/2
𝐷∑︁

𝑎,𝑏,𝑐=1

|𝑎𝑎𝑏𝑐𝑐𝑏⟩ = 𝐷−𝑘/2 ·
∑︁

𝜒:[2𝑘]→[𝐷]
all edges of 𝑀 monochromatic

for vertex-coloring 𝜒

|𝜒⟩ .

(59)
As a second example, with general 𝑘:

𝑀0 = {{1, 𝑘 + 1}, {2, 𝑘 + 2}, . . . , {𝑘, 2𝑘}} =⇒ |Φ𝑀0
⟩ = 𝐷−𝑘/2vec(1𝐷𝑘×𝐷𝑘). (60)

It is not hard to show that every |Φ𝑀 ⟩ with 𝑀 ∈ ℳ2𝑘 (respectively, 𝑀 ∈ ℳbip
2𝑘 ) is fixed by every

𝜌𝑘,𝑘𝐷 (𝑔) for 𝑔 ∈ SO(𝐷) (respectively, 𝑔 ∈ SU(𝐷)). To illustrate this for the particular 𝑀0 ∈ ℳbip
2𝑘 ⊆ ℳ2𝑘

from Equation (60), we have that for 𝑔 ∈ SO(𝐷) ≤ SU(𝐷),

𝑔⊗𝑘 ⊗ 𝑔⊗𝑘 |Φ𝑀0
⟩ =

𝑔⊗𝑘 ⊗ 𝑔⊗𝑘vec(1𝐷𝑘×𝐷𝑘)

𝐷𝑘/2
=

vec(𝑔⊗𝑘vec(1𝐷𝑘×𝐷𝑘)(𝑔⊗𝑘)⊤)

𝐷𝑘/2
=

vec(1𝐷𝑘×𝐷𝑘)

𝐷𝑘/2
= |Φ𝑀0

⟩ ,
(61)

where we used Fact 4.4 and 𝑔⊤ = 𝑔† = 𝑔−1. Given this fact, each |Φ𝑀 ⟩ must be fixed by the average
representation Π(𝑚), and thus be in Im Π(𝑚). On the other hand, it is elementary to show (e.g., [BC20,

Prop. 1]) that Im Π(𝑚) is precisely the set of vectors fixed by every operator in {𝜌𝑘,𝑘𝐷 (𝑔) : 𝑔 ∈ G(𝑚)}
(recall that 𝐷 = 2𝑚). In turn, these are precisely the vectorizations of all matrices in the commutant
(centralizer) of 𝒜 = {𝑔⊗𝑘 : 𝑔 ∈ G(𝑚)}. Finally, the commutants of tensor product representations of our
groups have been identified under the umbrella of Schur–Weyl duality.

Theorem 4.8. By Schur–Weyl duality for U(𝐷) [Sch01, Wey39, Yua12], 𝐷 = 2𝑚, when G(𝑚) = U(2𝑚)

the projector Π(𝑚) has image equal to the span of |Φ𝑀 ⟩ for 𝑀 ∈ ℳbip
2𝑘 . The same is true when G(𝑚) =

SU(2𝑚), since Π(𝑚) is unchanged in this case.9

By Schur–Weyl duality for SO(𝐷) [Bra37, Gro99], 𝐷 = 2𝑚, when G(𝑚) = SO(2𝑚) and 𝑘 < 2𝑚−1

the projector Π(𝑚) has image equal to the span of |Φ𝑀 ⟩ for 𝑀 ∈ ℳ2𝑘.

Remark 4.9. The condition 𝑘 < 2𝑚−1 in the previous theorem cannot be dropped. For example,

E
𝑔∼O(2)

[𝜌1,12 (𝑔)] = projection onto 1√
2
(|00⟩ + |11⟩), (62)

but
E

𝑔∼SO(2)
[𝜌1,12 (𝑔)] = projection onto span{ 1√

2
(|00⟩ + |11⟩), 1√

2
(|01⟩ − |10⟩)}. (63)

We have now identified a spanning set for Im Π(𝑚), but working with it is complicated by the fact that
it is not an orthonormal basis. It is, however, relatively “close” to being so, as we now show (following
and simplifying some arguments from [BHH16, Lem. 17] and [HHJ21, Lem. 9]). First, an elementary
lemma in linear algebra:

9Observe that because of the conjugation in the definition of 𝜌𝑘,𝑘2𝑛 , the expectation Π(𝑚) is the same whether the
expectation is taken over 𝑔 ∼ G(𝑛) = SU(2𝑛) or 𝑔 ∼ G(𝑛) = U(2𝑛).
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Lemma 4.10. Let 𝑊 ∈ C𝑑×𝑡 have unit vector columns |𝑤1⟩ , . . . , |𝑤𝑡⟩, and suppose their Gram ma-
trix 𝑊 †𝑊 ∈ C𝑡×𝑡 is close to the identity, in the sense that 𝐸 = 𝑊 †𝑊 − 1 has ‖𝐸‖op ≤ 𝜅 < 1. (For
example, this would hold if

‖𝐸‖1 ↦→1 = max
𝑗∈[𝑡]

∑︁
𝑖 ̸=𝑗

|⟨𝑤𝑖|𝑤𝑗⟩| ≤ 𝜅, (64)

since generally ‖𝐸‖1 ↦→1 ≥ 𝜌(𝐸) = ‖𝐸‖op, as 𝐸 is Hermitian.) Then 𝑊𝑊 † =
∑︀

𝑖 |𝑤𝑖⟩⟨𝑤𝑖| satisfies

𝑊𝑊 † 𝜅
≈Π𝑇 , (65)

where Π𝑇 is the projector onto 𝑇 = span{|𝑤1⟩ , . . . , |𝑤𝑡⟩}, and 𝑋 ≈𝜅 𝑌 denotes ‖𝑋 − 𝑌 ‖op ≤ 𝜅.

Proof. By hypothesis, all eigenvalues 𝜆 of 𝑊 †𝑊 satisfy |𝜆 − 1| ≤ 𝜅 < 1. Hence 𝑊𝑊 † also has these 𝑡
(nonzero) 𝜆’s within 𝜅 of 1 as eigenvalues (associated to eigenvectors in 𝑇 ), plus possibly additional
eigenvalues of 0 (outside 𝑇 ). This confirms Inequality (65).

Theorem 4.11. In the setting of G(𝑚) = SO(𝐷), 𝐷 = 2𝑚 and provided 𝑘2 ≤ 1
9𝐷, we have∑︁

𝑀∈ℳ2𝑘

|Φ𝑀 ⟩⟨Φ𝑀 |
𝜅𝑚≈ Π(𝑚), (66)

where 𝜅𝑚 := 10
9

𝑘2

𝐷 . In the setting of G(𝑚) = SU(2𝑚), the same is true with ℳ2𝑘 replaced by ℳbip
2𝑘 (and

one could replace 𝜅𝑚 by 5
9
𝑘2

𝐷 , but we won’t).

Proof. The result for U(2𝑚) (hence SU(2𝑚)) appears in [BHH16], and for O(2𝑚) in [HHJ21], but we
present here a representation theory-free proof, focusing on the SO(2𝑚) case.

We will employ Lemma 4.10, with the |𝑤𝑖⟩’s being the |Φ𝑀 ⟩’s, 𝑀 ∈ ℳ2𝑘. In particular, we will
establish the premise in Inequality (64) with 𝜅 = 𝜅𝑚. By symmetry of all matchings in ℳ, the quantity
inside the maximum is the same for every “|𝑤𝑗⟩”; thus, we need only bound it for one particular choice,
say the 𝑀0 from Equation (60). Thus we need to establish∑︁

𝑀∈ℳ2𝑘

|⟨Φ𝑀 |Φ𝑀0
⟩| = 1 +

∑︁
𝑀 ̸=𝑀0

|⟨Φ𝑀 |Φ𝑀0
⟩| ≤ 1 + 𝜅𝑚. (67)

In computing ⟨Φ𝑀 |Φ𝑀0
⟩, it is easy to see (e.g., from Equation (59)) we get a contribution of 𝐷−𝑘 from

every vertex-coloring 𝜒 : [2𝑘] → [𝐷] that makes all edges of 𝑀 and 𝑀0 monochromatic. Since 𝑀 ∪𝑀0

is a union of cycles, this is equivalent to a contribution of 𝐷cc(𝑀∪𝑀0), where cc(·) denotes the number of
connected components. Thus (cf. [HHJ21, (B10)])

𝐷𝑘 ·
∑︁

matchings 𝑀

|⟨Φ𝑀 |Φ𝑀0⟩| = 𝐷𝑘 ·
∑︁

matchings 𝑀

⟨Φ𝑀 |Φ𝑀0⟩ =
∑︁
𝑀

𝐷cc(𝑀∪𝑀0). (68)

The summation on the right is just the generating function (with “indeterminate” 𝐷) for the number of
connected components obtained when placing a matching (initially: 𝑀) onto the endpoints of 𝑘 labeled
paths (initially: 𝑀0). But this is a very simple exercise. Take the first labeled path, with endpoints 𝑥, 𝑦,
and consider the vertex 𝑧 to which 𝑥 is matched. There are 2𝑘 − 1 possibilities for 𝑧, with one of them
(𝑧 = 𝑦) increasing the component count by 1, and the other 2𝑘 − 2 increasing the count by 0. Thus the
generating function picks up a factor of (𝐷1 + (2𝑘− 2) ·𝐷0), and we reduce 𝑘 to 𝑘− 2. We conclude that
(cf. [HHJ21, (B12)]) ∑︁

𝑀

𝐷cc(𝑀∪𝑀0) = (𝐷 + (2𝑘 − 2))(𝐷 + (2𝑘 − 4)) · · · (𝐷 + 2)𝐷 (69)

and hence∑︁
𝑀

|⟨Φ𝑀 |Φ𝑀0
⟩| = (1)

(︀
1 + 2

𝐷

)︀(︀
1 + 4

𝐷

)︀
· · ·
(︀
1 + 2𝑘−2

𝐷

)︀
≤ exp(𝑘(𝑘−1)

𝐷 ) ≤ 1 + 10
9

𝑘2

𝐷 = 1 + 𝜅𝑚, (70)
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the last inequality holding because we have assumed 𝑘2 ≤ 1
9𝐷. Thus we have indeed verified Inequal-

ity (67).
The case of G(𝑚) = U(2𝑚) is similar; we just need to compute the generating function for bipartite

matchings, meaning ℳbip
2𝑘 replaces ℳ. The bound for 𝜅𝑚 becomes (1)(1 + 1

𝐷 )(1 + 2
𝐷 ) · · · (1 + 𝑘−1

𝐷 ) − 1,
which is only smaller (by a factor of about 1

2 ).

4.2 Proof of Theorem 4.1

In this section we establish Theorem 4.1. We begin by proving some general facts about projectors that
are nearly orthogonal to each other.

Lemma 4.12. Let 𝑃1, . . . , 𝑃𝑚 be orthogonal projections, and write 𝐴 = avg𝑚𝑖=1{𝑃𝑖}. Then

‖𝑃𝑖𝑃𝑗‖op ≤ 𝜖 ∀ 𝑖 ̸= 𝑗 =⇒ ‖𝐴‖op ≤ 1
𝑚 + min{

√
𝜖,𝑚𝜖}. (71)

Proof. We have

𝐴2 =
1

𝑚
𝐴+

1

𝑚2

∑︁
�̸�=𝑗

𝑃𝑖𝑃𝑗 ; =⇒ ‖𝐴‖2op ≤ 1

𝑚
‖𝐴‖op +

𝑚(𝑚− 1)

𝑚2
𝜖 ≤ 1

𝑚
‖𝐴‖op + 𝜖. (72)

Solving the quadratic inequality yields ‖𝐴‖op ≤ 1
2𝑚 +

√︁
1

4𝑚2 + 𝜖, from which the result follows.

Corollary 4.13. In the setting of Lemma 4.12, let 𝑃 be an orthogonal projection with Im𝑃 ≤ Im𝑃𝑖 for
all 𝑖. Then Inequality (71) holds with each instance of 𝑃𝑖 replaced by ̃︀𝑃𝑖 = 𝑃𝑖 − 𝑃 .

Proof. It suffices to note that ̃︀𝑃 2
𝑖 = ̃︀𝑃𝑖, since 𝑃𝑖 · 𝑃 = 𝑃 · 𝑃𝑖 = 𝑃 .

Remark 4.14. The identity used in the proof easily extends to ̃︀𝑃𝑖1
̃︀𝑃𝑖2 · · · ̃︀𝑃𝑖𝑘 = 𝑃𝑖1𝑃𝑖2 · · ·𝑃𝑖𝑘 −𝑃 . Also,

this identity remains true if any set of tildes is removed from the LHS (except for the set of all 𝑘).

Let us now study the particular orthogonal projectors involved in Theorem 4.1. We wish to employ
Corollary 4.13 with

𝑃𝑖 := Π[𝑚]∖𝑖 ⊗ 1𝑖, 𝑖 = 1 . . .𝑚, 𝑃 := Π(𝑚). (73)

Fact 4.2 tells us Corollary 4.13’s hypothesis is satisfied. We thus obtain⃦⃦⃦⃦
𝑚

avg
𝑖=1

{𝑃𝑖} − Π(𝑚)

⃦⃦⃦⃦
op

≤ 1

𝑚
+ min{

√
𝜖,𝑚𝜖}, for 𝜖 = max

𝑖 ̸=𝑗

{︂⃦⃦⃦ ̃︀𝑃𝑖
̃︀𝑃𝑗

⃦⃦⃦
op

}︂
. (74)

By symmetry of the 𝑚 tensor factors, we have 𝜖 =
⃦⃦⃦ ̃︀𝑃1

̃︀𝑃𝑚

⃦⃦⃦
op

, and hence

𝜖2 =
⃦⃦⃦

( ̃︀𝑃1
̃︀𝑃𝑚)†( ̃︀𝑃1

̃︀𝑃𝑚)
⃦⃦⃦
op

=
⃦⃦⃦
𝑃𝑚

̃︀𝑃1𝑃𝑚

⃦⃦⃦
op
, (75)

where we used Remark 4.14 to get ̃︀𝑃𝑚
̃︀𝑃1
̃︀𝑃1
̃︀𝑃𝑚 = 𝑃𝑚

̃︀𝑃1𝑃𝑚.
Our goal will be to use Theorem 4.11 (recall its 𝜅𝑚 notation) to establish the following:

Claim: 𝜖2 =
⃦⃦⃦
𝑃𝑚

̃︀𝑃1𝑃𝑚

⃦⃦⃦
op

≤ 𝜅𝑚−2 + 2𝜅𝑚−1 + 𝜅𝑚 (76)

= 10
9 𝑘

2(22−𝑚 + 2 · 21−𝑚 · 2−𝑚) = 10𝑘22−𝑚 =: 𝛿. (77)

We will apply Theorem 4.11 for 𝑚 − 2,𝑚 − 1,𝑚; its hypothesis will be satisfied even for 𝑚 − 2, since
we have 𝑘2 ≤ 1

92𝑚−2 by virtue of the assumption 𝑘2 ≤ 1
10𝑚4 2𝑚 in the theorem we’re proving. Moreover,

this assumption implies that 𝛿1/4 ≤ 1/𝑚, meaning that Inequality (74) gives us the bound⃦⃦⃦⃦
𝑚

avg
𝑖=1

{𝑃𝑖} − Π(𝑚)

⃦⃦⃦⃦
op

≤ 1

𝑚
+ min{𝛿1/4,𝑚𝛿1/2} =

1

𝑚
+𝑚𝛿1/2 =

1

𝑚
+

√
10𝑘𝑚

2𝑚/2
, (78)
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verifying Inequality (56) and completing the proof of Theorem 4.1. Thus it remains to establish Inequal-
ity (76).

To establish the claim, let us write ℳ for either ℳ2𝑘 or ℳbip
2𝑘 (depending on G(𝑚)); and, for 𝑀 ∈ ℳ

let us write

𝐽𝑀 = |𝜑𝑀 ⟩⟨𝜑𝑀 | , where |𝜑𝑀 ⟩ is the 𝐷 = 2 case of |Φ𝑀 ⟩ from Notations 4.5 and 4.7. (79)

Then (up to tensor factoring reordering) we Have 𝐽⊗𝑚
𝑀 = |Φ𝑀 ⟩, and hence Theorem 4.11 tells us∑︁

𝑀∈ℳ
𝐽⊗𝑚
𝑀

𝜅𝑚≈ Π(𝑚). (80)

We will also use this to derive∑︁
𝑀∈ℳ

𝐽
⊗(𝑚−1)
𝑀

𝜅𝑚−1≈ Π(𝑚−1) =⇒
∑︁

𝑀∈ℳ
11 ⊗ 𝐽

⊗(𝑚−1)
𝑀

𝜅𝑚−1≈ 𝑃1, (81)

where the implication is by tensoring with 11 (which doesn’t change operator norm differences). Using
Inequality (80) again, and the triangle inequality, we reach

̃︀𝑃1 = 𝑃1 − 𝑃
𝜅𝑚−1+𝜅𝑚≈

∑︁
𝑀∈ℳ

11 ⊗ 𝐽
⊗(𝑚−1)
𝑀 −

∑︁
𝑀∈ℳ

𝐽⊗𝑚
𝑀 =

∑︁
𝑀∈ℳ

𝐽𝑀 ⊗ 𝐽
⊗(𝑚−1)
𝑀 , (82)

where 𝐽𝑀 := 1− 𝐽𝑀 . Since ‖𝑃𝑚‖op ≤ 1, we can further conclude

𝑃𝑚
̃︀𝑃1𝑃𝑚

𝜅𝑚−1+𝜅𝑚≈ 𝑃𝑚

(︃ ∑︁
𝑀∈ℳ

𝐽𝑀 ⊗ 𝐽
⊗(𝑚−1)
𝑀

)︃
𝑃𝑚 (83)

= (Π(𝑚−1) ⊗ 1𝑚)

(︃ ∑︁
𝑀∈ℳ

𝐽𝑀 ⊗ 𝐽
⊗(𝑚−2)
𝑀 ⊗ 𝐽𝑀

)︃
(Π(𝑚−1) ⊗ 1𝑚) (84)

=
∑︁

𝑀∈ℳ

(︁
Π(𝑚−1)(𝐽𝑀 ⊗ 𝐽

⊗(𝑚−2)
𝑀 )Π(𝑚−1)

)︁
⊗ 𝐽𝑀 . (85)

Writing

𝑍𝑀 := Π(𝑚−1)(𝐽𝑀 ⊗ 𝐽
⊗(𝑚−2)
𝑀 )Π(𝑚−1), (86)

we can put Inequality (85) into Equation (75) to obtain

𝜖2 ≤ 𝜅𝑚−1 + 𝜅𝑚 +

⃦⃦⃦⃦
⃦ ∑︁
𝑀∈ℳ

𝑍𝑀 ⊗ 𝐽𝑀

⃦⃦⃦⃦
⃦
op

. (87)

Now 𝑍𝑀 is PSD, being a conjugation (by Π(𝑚−1)) of a PSD matrix: the tensor product of projections
𝐽𝑀 and 𝐽𝑀 . Since 0 ≤ 𝐽𝑀 ≤ 1, we therefore conclude 0 ≤ 𝑍𝑀 ⊗ 𝐽𝑀 ≤ 𝑍𝑀 ⊗ 1𝑚. Summing this over
𝑀 yields

0 ≤
∑︁

𝑀∈ℳ
𝑍𝑀 ⊗ 𝐽𝑀 ≤

∑︁
𝑀∈ℳ

𝑍𝑀 ⊗ 1𝑚 =

(︃ ∑︁
𝑀∈ℳ

𝑍𝑀

)︃
⊗ 1𝑚, (88)

and hence (from Inequality (87))

𝜖2 ≤ 𝜅𝑚−1 + 𝜅𝑚 +

⃦⃦⃦⃦
⃦ ∑︁
𝑀∈ℳ

𝑍𝑀

⃦⃦⃦⃦
⃦
op

= 𝜅𝑚−1 + 𝜅𝑚 +

⃦⃦⃦⃦
⃦Π(𝑚−1)

(︃ ∑︁
𝑀∈ℳ

𝐽𝑀 ⊗ 𝐽
⊗(𝑚−2)
𝑀

)︃
Π(𝑚−1)

⃦⃦⃦⃦
⃦
op

. (89)
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We have effectively now reduced from 𝑚 tensor components to 𝑚 − 1. Indeed, suppose we had defined

the “𝑚−1” analogues of 𝑃1, 𝑃2, . . . and 𝑃 , calling them 𝑃
(𝑚−1)
1 , 𝑃

(𝑚−1)
2 , . . . and 𝑃 (𝑚−1) = Π(𝑚−1). Then

Inequality (82) would tell us

̃︀𝑃 (𝑚−1)
1 = 𝑃

(𝑚−1)
1 − 𝑃 (𝑚−1)

𝜅𝑚−2+𝜅𝑚−1≈
∑︁

𝑀∈ℳ
𝐽𝑀 ⊗ 𝐽

⊗(𝑚−2)
𝑀 , (90)

and putting this into Inequality (89) (using
⃦⃦
𝑃 (𝑚−1)

⃦⃦
op

≤ 1) yields

𝜖2 ≤ 𝜅𝑚−2 + 2𝜅𝑚−1 + 𝜅𝑚 +
⃦⃦⃦
𝑃 (𝑚−1) ̃︀𝑃 (𝑚−1)

1 𝑃 (𝑚−1)
⃦⃦⃦
op
. (91)

But 𝑃 (𝑚−1) ̃︀𝑃 (𝑚−1)
1 𝑃 (𝑚−1) is in fact 0! (In the notation of Corollary 4.13 this would be “𝑃 · ̃︀𝑃1 ·𝑃 = 0”.)

Thus we have established the claim, Inequality (76).

5 Lower bounding 𝜏𝑚 for small 𝑚

In this section we prove Theorem 3.4, restated below:

Theorem 5.1 (Restatement of Theorem 3.4). Let the sequence of groups (G(𝑛))𝑛≥1 be either (SO(2𝑛))𝑛≥1

or (SU(2𝑛))𝑛≥1. For any 𝑚 ≥ 4 we have that

∀𝑘 ∈ N+,

⃦⃦⃦⃦
⃦ E
𝑔∼G(𝑚−1)×( [𝑚]

𝑚−1)
[𝜌𝑘,𝑘2𝑚 (𝑔)] − E

𝑔∼G(𝑚)
[𝜌𝑘,𝑘2𝑚 (𝑔)]

⃦⃦⃦⃦
⃦
op

≤
(︁

1 − (1 − 1
𝑚 ) 1−22−𝑚

4−23−𝑚

)︁1/4
≤ .96;

(92)
equivalently, in the notation of Theorem 3.4, 𝜏𝑚 ≥ .04.

5.1 Metrics

As discussed in Section 3, for G(𝑚) = SO(2𝑚) or G(𝑚) = SU(2𝑚) we have that G(𝑚) ⊆ U(2𝑚) is a
compact connected Lie group with associated Lie algebra g𝑚, where

for G(𝑚) = SO(2𝑚), g𝑚 = {𝐻 ∈ R2𝑚×2𝑚 : 𝐻 skew-symmetric}, (93)

for G(𝑚) = SU(2𝑚), g𝑚 = {𝐻 ∈ C2𝑚×2𝑚 : 𝐻 skew-Hermitian, tr𝐻 = 0}. (94)

As per [Tao14, Prop. 2.11.1], G(𝑚) can be given the structure of a Riemannian manifold with a
bi-invariant metric. Moreover, G(𝑚) is totally geodesic within U(2𝑚), hence the exponential map exp :
g𝑚 → G(𝑚) is surjective and Riemannian distance 𝑑Rie within G(𝑚) coincides with Riemannian distance
within U(2𝑚). This distance can be computed straightforwardly (see, e.g., [Mec19, within Lem. 1.3]), as
follows:

� The Riemannian distance is bi-invariant, so 𝑑Rie(𝑋,𝑌 ) = 𝑑Rie(1, 𝑍) for 𝑍 = 𝑌 𝑋−1.

� Given 𝑍 ∈ G(𝑚), we can choose a unique 𝐻 ∈ g𝑚 with exp(𝐻) = 𝑍 such that the eigenvalues of
𝐻 are of the form i𝜃𝑗 for 𝜃𝑗 ∈ (−𝜋, 𝜋]. We write 𝐻 = log𝑍 for this choice of 𝐻.

� Then 𝑑Rie(1, 𝑍) = ‖𝐻‖Fro = (
∑︀

𝑗 𝜃
2
𝑗 )1/2.

In other words,
𝑑Rie(𝑋,𝑌 ) = ‖ log(𝑌 𝑋−1)‖Fro. (95)

For the sake of computation it will be convenient to work not just with the Riemannian distance 𝑑Rie

on G(𝑚), but also the (very similar) Frobenius distance 𝑑Fro, where 𝑑Fro(𝑋,𝑌 ) denotes ‖𝑋 − 𝑌 ‖Fro. In
the above setup, now using bi-invariance of 𝑑Fro, we evidently have

𝑑Fro(𝑋,𝑌 ) = ‖1− 𝑍‖Fro =
(︁∑︀

𝑗 |1 − exp(i𝜃𝑗)|2
)︁1/2

=
(︁∑︀

𝑗(2 sin(𝜃𝑗/2))2
)︁1/2

. (96)
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For some constant 𝑐 < .4 ≤ 1 we have the following numerical inequality (for |𝜃| ≤ 𝜋):

(2 sin(𝜃/2))2 ≤ 𝜃2 ≤ (2 sin(𝜃/2))2 + 𝑐(2 sin(𝜃/2))4. (97)

Using just 𝑐 ≤ 1, we may conclude10

𝑑Fro(𝑋,𝑌 )2 ≤ 𝑑Rie(𝑋,𝑌 )2 ≤ 𝑑Fro(𝑋,𝑌 )2 + 𝑑Fro(𝑋,𝑌 )4. (98)

Finally, we will also use the operator-norm distance, 𝑑op(𝑋,𝑌 ) = ‖𝑋 − 𝑌 ‖op, which satisfies 𝑑op(𝑋,𝑌 ) ≤
𝑑Fro(𝑋,𝑌 ).

We now move on to considering (Borel) probability measures on metric spaces (always assumed to be
complete and separable). First we recall some basic definitions:

Definition 5.2. A pair of jointly distributed random variables (𝑋,𝑌 ) is a coupling of probability
distributions 𝜈1, 𝜈2 if 𝑋 (respectively, 𝑌 ) has marginal distribution 𝜈1 (respectively, 𝜈2).

Definition 5.3. On the metric space (𝑀,𝑑), the 𝐿𝑝-Wasserstein distance between two measures 𝜈1
and 𝜈2 is

𝑊𝑑,𝑝(𝜈1, 𝜈2) = inf
{︁
E[𝑑(𝑋,𝑌 )𝑝]1/𝑝 : (𝑋,𝑌 ) is a coupling of (𝜈1, 𝜈2)

}︁
. (99)

Notation 5.4. If 𝜈 is a probability measure on metric space 𝑀 and 𝐾 is a Markov transition kernel
on 𝑀 , we write 𝐾ℓ𝜈 for the probability measure on 𝑀 resulting from starting with probability measure 𝜈
and taking ℓ ∈ N steps according to 𝐾.

5.2 Oliveira’s theorem and its consequences

We now state a key result of Oliveira [Oli09] that says that on any length space (see e.g. [BH99]), 𝐿2-
Wasserstein local contraction implies global contraction. As we only need the result in the particular case
of compact, connected Lie groups (which are finite-diameter complete Riemannian manifolds), we state
it only in this simpler context:

Theorem 5.5. (Implied by [Oli09, Thm. 3].) Let (𝑀,𝑑) be a finite-diameter complete Riemannian
manifold, and let 𝐾 be a Markov transition kernel on 𝑀 satisfying the following:

𝑊𝑑,2(𝐾𝛿𝑋 ,𝐾𝛿𝑌 ) ≤ (𝜂 + 𝑜(1))𝑑(𝑋,𝑌 ), with respect to 𝑑(𝑋,𝑌 ) → 0. (100)

(Here 𝛿𝑍 denotes the measure that puts all of its probability mass on 𝑍 ∈ 𝑀 .) Then for all probability
measures 𝜈1, 𝜈2 on 𝑀 it holds that

𝑊𝑑,2(𝐾𝜈1,𝐾𝜈2) ≤ 𝜂 ·𝑊𝑑,2(𝜈1, 𝜈2). (101)

Iterating this yields the following:

Corollary 5.6. In the setting of Theorem 5.5, for any ℓ ∈ N+ we have

𝑊𝑑,2(𝐾ℓ𝜈1,𝐾
ℓ𝜈2) ≤ 𝜂ℓ ·𝑊𝑑,2(𝜈1, 𝜈2) ≤ 𝐷𝜂ℓ, (102)

where 𝐷 is an upper bound on the diameter of 𝑀 .

We now specialize this corollary to the case where (𝑀,𝑑) is (G(𝑚), 𝑑Rie); combining it with Defini-
tion 5.3 and using also 𝑊𝑑op,1 ≤𝑊𝑑Fro,1 ≤𝑊𝑑Fro,2 ≤𝑊𝑑Rie,2, we may conclude:

Corollary 5.7. Let G(𝑚) be a compact connected Lie group, and let 𝐾 be a Markov transition kernel
on G(𝑚) such that Inequality (100) holds for 𝑑Rie with constant 𝜂. Then for any probability measures
𝜈1, 𝜈2 on G(𝑚), and any ℓ ∈ N+, there is a coupling (𝑋,𝑌 ) of the measures 𝐾ℓ𝜈1,𝐾

ℓ𝜈2 under which

E[‖𝑋 − 𝑌 ‖op] ≤ 2𝐷𝜂ℓ (103)

(where 𝐷 is a bound on the 𝑑Rie-diameter of G(𝑚), and the factor 2 accounts for the inf).

10Here we are clarifying slightly the deduction of [BHH16, eq. (112a)].
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Our next step is to get rid of the coupling in Corollary 5.7. To do this, we first observe that the repre-
sentation 𝜌𝑘,𝑘2𝑚 is uniformly continuous on G(𝑚) with respect to the operator-norm distance. Concretely,
from the identity

𝑔1 ⊗ · · · ⊗ 𝑔𝐾 − ℎ1 ⊗ · · · ⊗ ℎ𝐾 =

𝐾∑︁
𝑖=1

𝑔1 ⊗ · · · ⊗ 𝑔𝑖−1 ⊗ (𝑔𝑖 − ℎ𝑖) ⊗ ℎ𝑖+1 ⊗ · · · ⊗ ℎ𝐾 (104)

and ‖𝑋‖op,
⃦⃦
𝑋
⃦⃦
op

= 1 for 𝑋 ∈ G(𝑚), as well as multiplicativity of 𝑑op with respect to tensor products,

we may conclude that ⃦⃦⃦
𝜌𝑘,𝑘2𝑚 (𝑋) − 𝜌𝑘,𝑘2𝑚 (𝑌 )

⃦⃦⃦
op

≤ 2𝑘‖𝑋 − 𝑌 ‖op (105)

for any 𝑋,𝑌 ∈ G(𝑚). Using this, as well as the triangle inequality for 𝑑op, in Corollary 5.7 yields:

Corollary 5.8. In the setting of Corollary 5.7,⃦⃦⃦⃦
E

𝑋∼𝐾ℓ𝜈1

[𝜌𝑘,𝑘2𝑚 (𝑋)] − E
𝑌 ∼𝐾ℓ𝜈2

[𝜌𝑘,𝑘2𝑚 (𝑌 )]

⃦⃦⃦⃦
op

≤ 4𝑘𝐷𝜂ℓ. (106)

(Note that in contrast with Corollary 5.7, here Corollary 5.8 does not feature any coupling between 𝐾ℓ𝜈1
and 𝐾ℓ𝜈2.)

Now we further specialize by taking 𝜈1 = 𝛿1 (the measure with all probability on the identity element
1 ∈ G(𝑚)), taking 𝜈2 to be Haar measure, and specifying that

𝐾 arises from left-multiplying by a random 𝑔 ∼ 𝒫, (107)

where 𝒫 is some symmetric probability distribution on G(𝑚) as in Definition 2.3. Note that, whatever 𝒫
is, we have 𝐾ℓ𝜈2 = 𝜈2 (Haar measure), and

E
𝑋∼𝐾ℓ𝜈1

[𝜌𝑘,𝑘2𝑚 (𝑋)] = E
𝑔1,...,𝑔ℓ∼𝒫
independent

[𝜌𝑘,𝑘2𝑚 (𝑔ℓ · · · 𝑔1)] = E[𝜌𝑘,𝑘2𝑚 (𝑔ℓ) · · · 𝜌
𝑘,𝑘
2𝑚 (𝑔1)] = E

𝑔∼𝒫
[𝜌𝑘,𝑘2𝑚 (𝑔)]ℓ. (108)

From this and Corollary 5.8 we conclude the following:

Corollary 5.9. Let 𝒫 be a symmetric probability distribution on G(𝑚). Given 𝑋,𝑌 ∈ G(𝑚), write 𝒫(𝑋)

(respectively, 𝒫(𝑌 )) for the distribution of 𝑔𝑋 (respectively, 𝑔𝑌 ) when 𝑔 ∼ 𝒫. Then supposing

𝑊𝑑Rie,2(𝒫(𝑋),𝒫(𝑌 )) ≤ (𝜂 + 𝑜(1))𝑑Rie(𝑋,𝑌 ) with respect to 𝑑Rie(𝑋,𝑌 ) → 0, (109)

it follows that for any ℓ, 𝑘 ∈ N+ we have⃦⃦⃦⃦
E

𝑔∼𝒫
[𝜌𝑘,𝑘2𝑚 (𝑔)]ℓ − E

𝑔∼G(𝑚)
[𝜌𝑘,𝑘2𝑚 (𝑔)]

⃦⃦⃦⃦
op

≤ 4𝑘𝐷 · 𝜂ℓ. (110)

Our goal for the next section will be to establish the following:

Theorem 5.10. Let 𝜈𝑚 denote the distribution G(𝑚 − 1) ×
(︀

[𝑚]
𝑚−1

)︀
on G(𝑚), thought of as inducing a

Markov chain on G(𝑚) via left-multiplication. Fix any 𝑋,𝑌 ∈ G(𝑚) with 𝑑Rie(𝑋,𝑌 ) = 𝜖 ≤ 1, and let 𝑋 ′′

(respectively, 𝑌 ′′) denote the result of taking two independent steps from 𝑋 (respectively, 𝑌 ) according
to 𝜈𝑚. Then there is a coupling of 𝑋 ′′,𝑌 ′′ under which

E[𝑑Rie(𝑋
′′,𝑌 ′′)2] ≤ (1 − 𝛾𝑚)𝜖2 +𝑂𝑚(𝜖3), (111)

where 𝛾𝑚 = (1 − 1
𝑚 )𝛾′𝑚 with 𝛾′𝑚 = 1−22−𝑚

4−23−𝑚 , and the 𝑂𝑚(·) hides a constant depending only on 𝑚.

This theorem establishes the hypothesis of Corollary 5.9 with 𝒫 = 𝜈𝑚 *𝜈𝑚 and 𝜂 =
√

1 − 𝛾𝑚. We can
therefore easily derive the following (where the equality uses the fact that E𝑔∼G(𝑚)[𝜌

𝑘,𝑘
2𝑚 (𝑔)] is a projection

operator):⃦⃦⃦⃦
E

𝑔∼𝜈𝑚

[𝜌𝑘,𝑘2𝑚 (𝑔)]2ℓ − E
𝑔∼G(𝑚)

[𝜌𝑘,𝑘2𝑚 (𝑔)]

⃦⃦⃦⃦
op

=

⃦⃦⃦⃦
E

𝑔∼𝜈𝑚

[𝜌𝑘,𝑘2𝑚 (𝑔)] − E
𝑔∼G(𝑚)

[𝜌𝑘,𝑘2𝑚 (𝑔)]

⃦⃦⃦⃦2ℓ
op

≤ 4𝑘𝐷 · (1−𝛾𝑚)ℓ/2. (112)

Taking (2ℓ)th roots and then ℓ→ ∞ thus yields Theorem 5.1.
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5.3 Proof of Theorem 5.10

We begin by describing the needed coupling. First, we use the same randomness to take one step from
each of 𝑋,𝑌 ; that is, we define

𝑋 ′ = 𝑔[𝑚]∖𝑖 ·𝑋, 𝑌 ′ = 𝑔[𝑚]∖𝑖 · 𝑌, (113)

where 𝑖 ∼ [𝑚], 𝑔 ∼ G(𝑚− 1) are uniformly random and independent. To take the second steps, we first
draw 𝑗 ∼ [𝑚]. Then, based on the outcomes 𝑖, 𝑗, 𝑔, we will deterministically define some

ℎ = ℎ(𝑖, 𝑗, 𝑔) ∈ G(𝑚− 1) (114)

and then take
𝑋 ′′ = (̃︀𝑔ℎ)[𝑚]∖𝑗 ·𝑋 ′, 𝑌 ′′ = ̃︀𝑔[𝑚]∖𝑗 · 𝑌

′, (115)

where ̃︀𝑔 ∼ G(𝑚− 1) is drawn uniformly and independently of all other random variables. This is a valid
coupling, since for every outcome of 𝑖, 𝑗, 𝑔 the distributions of ̃︀𝑔ℎ and ̃︀𝑔 are identical. Then

𝑑Rie(𝑋
′′,𝑌 ′′) = 𝑑Rie(ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′), (116)

since 𝑑Rie(·, ·) is unitarily invariant. In case 𝑖 = 𝑗, we will “give up” and simply define ℎ = 1, in which
case we get 𝑑Rie(𝑋

′′,𝑌 ′′) = 𝑑Rie(𝑋
′,𝑌 ′) = 𝑑Rie(𝑋,𝑌 ) = 𝜖. Thus we have

E[𝑑Rie(𝑋
′′,𝑌 ′′)2] =

1

𝑚
𝜖2 +

(︂
1 − 1

𝑚

)︂
avg
𝑖 ̸=𝑗

{︂
E

𝑔∼G(𝑚−1)

[︁
𝑑Rie

(︀
ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′)︀2]︁}︂. (117)

To complete the definition of ℎ, we specify the function ℎ:

for 𝑖 ̸= 𝑗, we define ℎ = ℎ(𝑖, 𝑗, 𝑔) to minimize 𝑑Fro
(︀
ℎ[𝑚]∖𝑗 · 𝑔[𝑚]∖𝑖 ·𝑋, 𝑔[𝑚]∖𝑖 · 𝑌

)︀2
; (118)

in other words, ℎ = ℎ(𝑖, 𝑗, 𝑔) minimizes 𝑑Fro
(︀
ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′)︀. With this choice of ℎ, note that we

have 𝑑Fro
(︀
ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′)︀ ≤ 𝜖 ≤ 1 for every outcome of 𝑖, 𝑗, 𝑔, since ℎ = 1 is always an option (and

𝑑Fro(𝑋 ′,𝑌 ′) = 𝑑Fro(𝑋,𝑌 ) ≤ 𝑑Rie(𝑋,𝑌 ) = 𝜖). Thus employing Inequality (98) we may conclude

E[𝑑Rie(𝑋
′′,𝑌 ′′)2] ≤ 1

𝑚
𝜖2 +

(︂
1 − 1

𝑚

)︂
avg
�̸�=𝑗

{︂
E

𝑔∼G(𝑚−1)

[︁
𝑑Fro

(︀
ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′)︀2]︁}︂+ 𝜖4. (119)

Thus to complete the proof of Theorem 5.10, it suffices to establish the following:

∀𝑖 ̸= 𝑗, E
𝑔∼G(𝑚−1)

[︂
min

ℎ∈G(𝑚−1)

{︁
𝑑Fro

(︀
ℎ[𝑚]∖𝑗 ,𝑌

′ · (𝑋 ′)−1
)︀2}︁]︂ ≤ (1 − 𝛾′𝑚)𝜖2 +𝑂𝑚(𝜖3). (120)

(Here we used 𝑑Fro
(︀
ℎ[𝑚]∖𝑗 ·𝑋 ′,𝑌 ′)︀ = 𝑑Fro

(︀
ℎ[𝑚]∖𝑗 ,𝑌

′ · (𝑋 ′)−1
)︀
.) Our proof of this will not have any

particular dependence on 𝑖, 𝑗, so without loss of generality let us fix 𝑖 = 1 and 𝑗 = 𝑚. We establish
Inequality (120) via the below two lemmas. (Here and subsequently the notation “tr𝑖𝑋” below denotes
the partial trace corresponding to tracing out the 𝑖th qubit of 𝑋.)

Lemma 5.11. Fix any 𝑍 ∈ G(𝑚) with 𝑑Rie(1, 𝑍) = 𝜖. Then

min
ℎ∈G(𝑚−1)

{︁
𝑑Fro(ℎ⊗ 1, 𝑍)

2
}︁
≤ (1 − 1

2‖tr𝑚𝐵‖2Fro)𝜖2 +𝑂𝑚(𝜖3), (121)

where 𝐵 = 1
𝜖 log𝑍 ∈ g𝑚 satisfies ‖𝐵‖Fro = 1.

Lemma 5.12. For 𝑚 ≥ 2 and any 𝐴 ∈ g𝑚, writing 𝛿 = 22−𝑚, we have

E
𝑔∼G(𝑚−1)

[‖tr𝑚((1⊗ 𝑔[𝑚]∖1)𝐴(1⊗ 𝑔†
[𝑚]∖1))‖2Fro] ≥ 1 − 𝛿

2 − 𝛿
‖𝐴‖2Fro. (122)
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To see how the above two lemmas imply Inequality (120) (in the case 𝑖 = 1, 𝑗 = 𝑚), we first apply
Lemma 5.11 with 𝑍 being the outcome of 𝑌 ′ · (𝑋 ′)−1. Writing 𝐵 = 1

𝜖 log(𝑌 ′(𝑋 ′)−1) (recall that from
Equation (113) this is a random matrix depending on 𝑔), Lemma 5.11 tells us that

E
𝑔∼G(𝑚−1)

[︂
min

ℎ∈G(𝑚−1)

{︁
𝑑Fro

(︀
ℎ[𝑚]∖𝑗 ⊗ 1𝑗 ,𝑌 ′ · (𝑋 ′)−1

)︀2}︁]︂ ≤ (1 − 1
2 E[‖ tr𝑚 𝐵‖2Fro])𝜖2 +𝑂𝑚(𝜖3). (123)

But, for 𝑔 ∼ G(𝑚− 1), we have

𝐵 = 1
𝜖 log

(︁
(1⊗ 𝑔[𝑚]∖1)𝑌 𝑋−1(1⊗ 𝑔†

[𝑚]∖1)
)︁

= (1⊗ 𝑔[𝑚]∖1)
(︀
1
𝜖 log(𝑌 𝑋−1)

)︀
(1⊗ 𝑔†

[𝑚]∖1). (124)

The result now follows by applying Lemma 5.12 with 𝐴 = 1
𝜖 log(𝑌 𝑋−1), which has ‖𝐴‖Fro = 1 since

𝑑Rie(𝑋,𝑌 ) = 𝜖.

5.3.1 Proof of Lemma 5.11

To prove Lemma 5.11, it suffices to show that the particular choice

ℎ := exp(− 1
2𝜖 tr𝑚𝐵) (125)

satisfies Inequality (121). We observe that since G(𝑚) is either SO(2𝑚) or SU(2𝑚), recalling Equa-
tions (93) and (94) we have that tr𝑚𝐵 ∈ g𝑚−1 since 𝐵 ∈ g𝑚 (note that tr𝐵 = 0 implies tr(tr𝑚𝐵) = 0),
and hence indeed ℎ ∈ G(𝑚− 1) as required. Now we must bound

𝑑Fro(ℎ⊗ 1, 𝑍)
2

= ⟨ℎ⊗1−𝑍, ℎ⊗1−𝑍⟩ = 2 tr1− ⟨ℎ⊗1, 𝑍⟩ − ⟨𝑍, ℎ⊗1⟩ = 2 tr1− 2ℜ⟨ℎ⊗1, 𝑍⟩. (126)

Recalling 𝑍 = exp(𝜖𝐵) where ‖𝐵‖Fro = 1, we abuse notation slightly by writing

𝑍 = 1 + 𝜖𝐵 + 𝜖2𝐵2/2 +𝑂𝑚(𝜖3), (127)

where “𝑂𝑚(𝜖3)” stands for some matrix 𝐸 satisfying ‖𝐸‖Fro ≤ 𝐶𝜖3, with 𝐶 a constant depending only
on 𝑚 that may change from line to line.

We may similarly expand ℎ ⊗ 1 = exp(− 1
2𝜖 tr𝑚𝐵) ⊗ 1, and upon substituting into Equation (126)

and simplifying, we obtain

(126) = ℜ tr(𝑇 − 2𝐵)𝜖+ ℜ tr
(︀
𝑇𝐵 − 1

4𝑇
2 −𝐵2

)︀
𝜖2 +𝑂𝑚(𝜖3), 𝑇 := (tr𝑚𝐵) ⊗ 1. (128)

Now 𝐵, 𝑇 are both in the Lie algebra for G(𝑚); i.e., they are skew-symmetric in the case G(𝑚) = SO(2𝑚),
and traceless skew-Hermitian in the case G(𝑚) = SU(2𝑚). Thus both have purely imaginary trace,
meaning ℜ tr(𝑇 − 2𝐵) = 0. Moreover, 𝐵 skew-Hermitian implies tr𝐵2 = tr𝐵(−𝐵†) = −⟨𝐵,𝐵⟩ =
−‖𝐵‖2Fro = −1, and similarly tr𝑇 2 = −‖𝑇‖2Fro = −2‖tr𝑚𝐵‖2Fro. Finally,

tr(𝑇𝐵) = −⟨𝑇,𝐵⟩ = −⟨(tr𝑚𝐵) ⊗ 1, 𝐵⟩ = −⟨tr𝑚𝐵, tr𝑚𝐵⟩ = −‖tr𝑚𝐵‖2Fro. (129)

Putting these deductions into Equation (128) yields

(126) = (1 − 1
2‖tr𝑚𝐵‖2Fro)𝜖2 +𝑂𝑚(𝜖3), (130)

completing the proof of Lemma 5.11.

5.3.2 Proof of Lemma 5.12

Given 𝑚 qubits, we’ll write 𝐿 = {1, . . . ,𝑚 − 1} for the system defined by the first 𝑚 − 1 of them, and
(slightly abusing notation) write 𝑚 for the system defined by the 𝑚th one. We will also write 𝐿′ and 𝑚′

for duplicate copies of these systems, and given a subset 𝑆 ⊆ [𝑚], we write SWAP𝑆,𝑆′ to denote the
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operator that swaps the qubits in 𝑆 with the corresponding subset of qubits 1′, . . . ,𝑚′. Now for any
(𝑚− 1)-qubit operator 𝐶 we have

‖𝐶‖2Fro = tr(𝐶†𝐶) = tr((𝐶†
𝐿 ⊗ 𝐶𝐿′) · SWAP𝐿,𝐿′). (131)

In turn, if 𝐶 = tr𝑚𝐵 for some operator 𝐵 on 𝑚 qubits, we conclude

‖tr𝑚𝐵‖2Fro = tr(tr𝑚,𝑚′(𝐵† ⊗𝐵) · SWAP𝐿,𝐿′) = tr((𝐵† ⊗𝐵) · (SWAP𝐿,𝐿′ ⊗ 1𝑚,𝑚′)). (132)

Next, if 𝐵 = 𝐻𝐴𝐻† for unitary 𝐻, we may use the cyclic property of trace to conclude

‖tr𝑚𝐵‖2Fro = tr((𝐴†⊗𝐴) ·𝑊 ) = ⟨𝐴⊗𝐴†,𝑊 ⟩, 𝑊 := (𝐻 ⊗𝐻)(SWAP𝐿,𝐿′ ⊗1𝑚,𝑚′)(𝐻†⊗𝐻†). (133)

(The above formula, specialized to 𝑚 = 3, essentially appears as [BHH16, Eqn. (103)].) Finally, suppose
𝐻 = 1 ⊗ 𝑔 for some (𝑚 − 1)-qubit unitary 𝑔. For notational clarity we break up the system 𝐿 into
subsystems “1” and 𝐾 = {2, . . . ,𝑚− 1}, writing 𝐻 = 11 ⊗ 𝑔𝐾,𝑚 and

𝐻 ⊗𝐻 = 11,1′ ⊗ (𝑔𝐾,𝑚 ⊗ 𝑔𝐾′,𝑚′). (134)

Putting this into the definition of 𝑊 , we see that the two qubits labeled 1 and 1′ are simply swapped
by 𝑊 , and we have

𝑊 = SWAP1,1′ ·̂︁𝑊, ̂︁𝑊 := (𝑔𝐾,𝑚 ⊗ 𝑔𝐾′,𝑚′)𝑆(𝑔†𝐾,𝑚 ⊗ 𝑔†𝐾′,𝑚′), 𝑆 := (SWAP𝐾,𝐾′ ⊗ 1𝑚,𝑚′). (135)

Recalling Fact 4.4, we see that
vec(̂︁𝑊 ) = 𝜌2,22𝑚−1(𝑔) · vec(𝑆). (136)

In other words, ̂︁𝑊 is the action of 𝑔 on 𝑆 under representation 𝜌2,22𝑚−1 , when we suitably use the “matri-
cized” interpretation of this representation. Finally, we are interested in the case that 𝑔 ∼ G(𝑚 − 1) is
chosen “uniformly” (Haar measure on G(𝑚− 1)); then we conclude from the above equations that

E
𝑔∼G(𝑚−1)

[‖tr𝑚((1⊗𝑔)𝐴(1⊗𝑔†))‖2Fro] = ⟨𝐴⊗𝐴†,SWAP1,1′ ·𝑆0⟩, vec(𝑆0) := E
𝑔∼G(𝑚−1)

[𝜌2,22𝑚−1(𝑔)]·vec(𝑆).

(137)
We now compute 𝑆0 (we note that a similar calculation for G(𝑚 − 1) = U(2𝑚−1) is given in [HHJ21,
Eqn. (61)]):

Proposition 5.13. Let 𝐷 = 2𝑚−1, and define the following operators acting across systems 𝐾 ∪ {𝑚},
𝐾 ′ ∪ {𝑚′}:

𝑄2 = 𝐷 · |Φ⟩⟨Φ| , 𝑄3 = 1, 𝑄4 = SWAP (138)

(where |Φ⟩ = 𝐷−1/2
∑︀

𝑎∈{0,1}𝑚−1 |𝑎⟩ ⊗ |𝑎⟩ is the maximally entangled state). Then

G(𝑚− 1) = SO(𝐷) =⇒ 𝑆0 = 𝑐2 ·𝑄2 + 𝑐3 ·𝑄3 + 𝑐4 ·𝑄4, (139)

G(𝑚− 1) = SU(𝐷) =⇒ 𝑆0 = 𝑐′3 ·𝑄3 + 𝑐′4 ·𝑄4, (140)

where the non-negative constants 𝑐2, 𝑐3, 𝑐4, 𝑐
′
3, 𝑐

′
4 are given by

𝑐2 =
𝐷/2 − 1

(𝐷 − 1)(𝐷 + 2)
, 𝑐3 =

3𝐷/2 + 1

(𝐷 − 1)(𝐷 + 2)
, 𝑐4 =

(𝐷/2 − 1)(𝐷 + 3)

(𝐷 − 1)(𝐷 + 2)
, (141)

𝑐′3 =
3𝐷/2

(𝐷 − 1)(𝐷 + 1)
, 𝑐′4 =

𝐷2/2 − 2

(𝐷 − 1)(𝐷 + 1)
≥ 𝑐4. (142)

Proof. We recall from Theorem 4.8 that11

E
𝑔∼G(𝑚−1)

[𝜌2,22𝑚−1(𝑔)] = projection onto the span of {|𝜙𝑀 ⟩ : 𝑀 ∈ ℳ}, (143)

11Note that here we are using 𝑚 ≥ 4.
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where we use the following notation:

𝑀12 = {{1, 2}, {3, 4}}, 𝑀13 = {{1, 3}, {2, 4}}, 𝑀14 = {{1, 4}, {2, 3}}; (144)

|𝜙𝑀12
⟩ = vec(𝑄2) =

∑︁
𝑥,𝑦∈{0,1}𝑚−1

|𝑥, 𝑥, 𝑦, 𝑦⟩ , (145)

|𝜙𝑀13
⟩ = vec(𝑄3) =

∑︁
𝑥,𝑦

|𝑥, 𝑦, 𝑥, 𝑦⟩ , |𝜙𝑀14
⟩ = vec(𝑄4) =

∑︁
𝑥,𝑦

|𝑥, 𝑦, 𝑦, 𝑥⟩ ; (146)

G(𝑚− 1) = SO(2𝑚−1) =⇒ ℳ = {𝑀12,𝑀13,𝑀14}, G(𝑚− 1) = SU(2𝑚−1) =⇒ ℳ = {𝑀13,𝑀14}.
(147)

Let us further define

|𝜓10⟩ =
∑︁

𝑥∈{0,1}𝑚−1

|𝑥, 𝑥, 𝑥, 𝑥⟩ and |𝜓1𝑗⟩ = |𝜙𝑀1𝑗 ⟩ − |𝜓10⟩ , (148)

so that the |𝜓1𝑗⟩’s are pairwise orthogonal, with ⟨𝜓10|𝜓10⟩ = 𝐷 and ⟨𝜓1𝑗 |𝜓1𝑗⟩ = 𝐷(𝐷 − 1) for 𝑗 > 1.
Then, since from Equation (135) we have

vec(𝑆) =
∑︁

𝑥=(𝑥′,𝑎)∈{0,1}𝑚−2×{0,1}
𝑦=(𝑦′,𝑏)∈{0,1}𝑚−2×{0,1}

|(𝑥′, 𝑎), (𝑦′, 𝑏), (𝑦′, 𝑎), (𝑥′, 𝑏)⟩ , (149)

we can easily compute

⟨𝜓10| vec(𝑆) = 𝐷, ⟨𝜓12| vec(𝑆) = 0, ⟨𝜓13| vec(𝑆) = 𝐷, ⟨𝜓14| vec(𝑆) = 𝐷(𝐷/2 − 1). (150)

From this we conclude that the projection of vec(𝑆) onto the span of the four |𝜓1𝑗⟩’s (which is also the
span of |𝜓10⟩ and the three |𝜙𝑀1𝑗 ⟩’s) is

|𝜎⟩ := |𝜓10⟩ +
1

𝐷 − 1
|𝜓13⟩ +

𝐷/2 − 1

𝐷 − 1
|𝜓14⟩ . (151)

Now one may easily verify that the following vector |𝜏⟩ is orthogonal to each |𝜙𝑀1𝑗
⟩ = |𝜓10⟩ + |𝜓1𝑗⟩:

|𝜏⟩ = −(𝐷 − 1) |𝜓10⟩ + |𝜓12⟩ + |𝜓13⟩ + |𝜓14⟩ . (152)

Thus we can bring |𝜎⟩ into the span of the three |𝜙𝑀1𝑗 ⟩’s by adding a suitable multiple of |𝜏⟩ to zero out
the |𝜓10⟩ component as follows:

|𝜎⟩ + 𝑐 |𝜏⟩ = (1 − (𝐷 − 1)𝑐) |𝜓10⟩ + 𝑐 |𝜓12⟩ +

(︂
1

𝐷 − 1
+ 𝑐

)︂
|𝜓13⟩ +

(︂
𝐷/2 − 1

𝐷 − 1
+ 𝑐

)︂
|𝜓14⟩ (153)

=

(︂
𝐷/2 − 1

𝐷 − 1
− (𝐷 + 2)𝑐

)︂
|𝜓10⟩ + 𝑐 |𝜙𝑀12

⟩ +

(︂
1

𝐷 − 1
+ 𝑐

)︂
|𝜙𝑀13

⟩ +

(︂
𝐷/2 − 1

𝐷 − 1
+ 𝑐

)︂
|𝜙𝑀14

⟩ ,

(154)

and taking 𝑐 = 𝐷/2−1
(𝐷−1)(𝐷+2) we finally get that

the projection of vec(𝑆) onto the span of |𝜙𝑀12
⟩ , |𝜙𝑀13

⟩ , |𝜙𝑀14
⟩ is 𝑐2 |𝜙𝑀12

⟩ + 𝑐3 |𝜙𝑀13
⟩ + 𝑐4 |𝜙𝑀14

⟩ .
(155)

One can repeat the above using |𝜏 ′⟩ = −(𝐷 − 1) |𝜓10⟩ + |𝜓13⟩ + |𝜓14⟩ in place of |𝜏⟩ to similarly deduce

the projection of vec(𝑆) onto the span of |𝜙𝑀13
⟩ , |𝜙𝑀14

⟩ is 𝑐′3 |𝜙𝑀13
⟩ + 𝑐′4 |𝜙𝑀14

⟩ . (156)

The proof is complete.
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Now we compute:

⟨𝐴⊗𝐴†,SWAP1,1′ ·𝑄4⟩ = ⟨𝐴⊗𝐴†,SWAP[𝑚],[𝑚]′⟩ = ‖𝐴‖2Fro (157)

(similar to Equation (131)), and

⟨𝐴⊗𝐴†,SWAP1,1′ ·𝑄3⟩ = ⟨𝐴⊗𝐴†,SWAP1,1′ · 1[𝑚]∖1,[𝑚]′∖1′⟩ = ‖ tr[𝑚]∖1𝐴‖2Fro ≥ 0 (158)

(similar to Equation (132)). Finally, since (as can be easily verified)

SWAP1,1′ ·𝑄2 =
∑︁

𝑎,𝑏∈{0,1}
𝑥,𝑦∈{0,1}𝑚−1

|(𝑎, 𝑥), (𝑏, 𝑥)⟩⟨(𝑏, 𝑦), (𝑎, 𝑦)| , (159)

we may conclude that

⟨𝐴⊗𝐴†,SWAP1,1′ ·𝑄2⟩ =
∑︁

𝑎,𝑏,𝑥,𝑦

⟨(𝑏, 𝑦)|𝐴†|(𝑎, 𝑥)⟩ ⟨(𝑎, 𝑦)|𝐴|(𝑏, 𝑥)⟩ ≥ −‖𝐴‖2Fro (160)

by Cauchy–Schwarz. Putting these conclusions together with Equation (137) and Proposition 5.13, we
get that for both G(𝑚− 1) = SO(2𝑚−1) and G(𝑚− 1) = SU(2𝑚−1) it holds that

E
𝑔∼G(𝑚−1)

[‖tr𝑚((1⊗ 𝑔)𝐴(1⊗ 𝑔−1))‖2Fro] ≥ (𝑐4 − 𝑐2)‖𝐴‖2Fro =
𝐷/2 − 1

𝐷 − 1
‖𝐴‖2Fro =

1 − 22−𝑚

2 − 22−𝑚
‖𝐴‖2Fro, (161)

completing the proof of Lemma 5.12.

6 Pseudorandom products of operators

In this section we generalize the “derandomized squaring” technique of Rozenman and Vadhan [RV05] so
that it may be applied to random walks on groups, where the goal is to show rapid mixing of a particular
representation. We remark that the proofs are not really different from those in [RV05], and that a similar
generalization appeared recently in [JMRW22].

Notation 6.1. Throughout we will be considering noncommutative polynomials, with real coefficients,
over symbols 𝑢1, . . . , 𝑢𝑐, 𝑢

†
1, . . . , 𝑢

†
𝑐. (These symbols will eventually be substituted by square matrices.)

If 𝑝 is such a polynomial, its adjoint 𝑝† is formed in the natural way (i.e., (𝑢†𝑖 )
† = 𝑢𝑖 and (𝑢𝑖𝑢𝑗)

† = 𝑢†𝑗𝑢
†
𝑖 ,

etc.), and we call 𝑝 self-adjoint if 𝑝† = 𝑝.

Notation 6.2. We will also consider polynomial sequences 𝑆 = (𝑠1, . . . , 𝑠𝑚), where each 𝑠𝑖 is a polynomial
in the 𝑢𝑗 ’s. (Usually 𝑠𝑖 will in fact be a monomial.)

Notation 6.3. If 𝒰 = (𝑈1, . . . , 𝑈𝑐) is a sequence of matrices, we write 𝑆(𝒰) = (𝑠1(𝒰), . . . , 𝑠𝑚(𝒰)), where
𝑠𝑗(𝒰) is the matrix resulting from substituting 𝑢𝑖 = 𝑈𝑖 for each 𝑖 ∈ [𝑐].

Notation 6.4. Given a polynomial sequence 𝑆 we write avg(𝑆), or avg∘𝑆, for the polynomial 1
𝑚

∑︀𝑚
𝑗=1 𝑠𝑗 .

Definition 6.5. If 𝑝 is a polynomial over 𝑢1, . . . , 𝑢𝑐, we define

‖𝑝‖ = sup
𝑟
{‖𝑝(𝒰)‖op : 𝒰 = (𝑈1, . . . , 𝑈𝑐), 𝑈𝑗 ∈ C𝑟×𝑟, ‖𝑈𝑗‖op ≤ 1 ∀𝑗}, (162)

the largest operator norm that 𝑝 can achieve when 𝑢1, . . . , 𝑢𝑐 are substituted with square matrices of
bounded operator norm. More generally, if 𝑆 = (𝑠1, . . . , 𝑠𝑚) is a sequence of polynomials we write
‖𝑆‖ = max(‖𝑠1‖, . . . , ‖𝑠𝑚‖).
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Definition 6.6. A directed graph 𝐺 = (𝑉,𝐸) will consist of a finite sequence of vertices 𝑉 , and a finite
sequence of edges 𝐸 from 𝑉 ×𝑉 (so parallel edges and self-loops are allowed). Such a graph is undirected
if 𝐸 can be partitioned into pairs of the form {(𝑖, 𝑗), (𝑗, 𝑖)}. We say 𝐺 is 𝑑-out-regular if for each 𝑖 ∈ 𝑉
we have exactly 𝑑 elements of the form (𝑖, 𝑗) in 𝐸; one can analogously define in-regularity, and the
two concepts are the same for undirected graphs. Note that if 𝐺 is an undirected 𝑑-regular graph, then
|𝐸| = 𝑑|𝑉 | (contrary to usual convention, as 𝐸 is still composed of directed edges).

Definition 6.7. Given a graph 𝐺 = (𝑉,𝐸), where 𝑉 = (1, 2, . . . ,𝑚), and given a polynomial sequence
𝑆 = (𝑠1, . . . , 𝑠𝑚), we define 𝑞𝐺 ∘ 𝑆 to be the polynomial sequence12

(𝑠†𝑗𝑠𝑖)(𝑖,𝑗)∈𝐸 . (163)

Remark 6.8. If 𝐺 is undirected, the polynomial avg(𝑞𝐺 ∘ 𝑆) is self-adjoint.

Fact 6.9. We always have ‖𝑞𝐺 ∘ 𝑆‖ ≤ ‖𝑆‖2, and hence ‖𝑆‖ ≤ 1 =⇒ ‖𝑞𝐺 ∘ 𝑆‖ ≤ 1.

Definition 6.10. If 𝐺 = (𝑉,𝐸) is a 𝑑-out-regular directed graph with 𝑉 = (1, 2, . . . , 𝑐), then the
normalized adjacency matrix of 𝐺 is

𝐴𝐺 :=
1

𝑑

∑︁
(𝑖,𝑗)∈𝐸

|𝑗⟩⟨𝑖| = 𝑐 · avg(𝑞𝐺 ∘ 𝒰), where 𝒰 = (⟨1| , . . . , ⟨𝑐|). (164)

Fact 6.11. Let 𝐺 = (𝑉,𝐸) be an out-regular directed graph with 𝑉 = (1, 2, . . . ,𝑚) and let 𝒲 =
(𝑊1, . . .𝑊𝑚) be a sequence of matrices from C𝑟×𝑟′ .13 Then

avg(𝑞𝐺(𝒲)) =
1

𝑚
𝒲†(𝐴𝐺 ⊗ 1𝑟×𝑟)𝒲, (165)

where we identify 𝒲 with
∑︀𝑚

𝑗=1 |𝑗⟩⊗𝑊𝑗, the 𝑚𝑟× 𝑟′ matrix formed by stacking the 𝑊𝑗’s into a column.

(For 𝑟′ = 𝑟, this identity is essentially the formula 𝑤†𝐴𝑤 =
∑︀

𝑖𝑗 𝑤
†
𝑖𝐴𝑖𝑗𝑤𝑗, but with entries from the

ring C𝑟×𝑟.)

Notation 6.12. We let K𝑚 denote the complete (regular) undirected graph with self-loops on 𝑚 vertices,
which has 𝑉 = (1, 2, . . . ,𝑚) and 𝐸 = ((1, 1), (1, 2), . . . , (1,𝑚), (2, 1), . . . , (𝑚,𝑚)). We may write K in place
of K𝑚 if the context is clear.

Fact 6.13. If 𝑆 = (𝑠1, . . . , 𝑠𝑚) is a polynomial sequence,

avg(𝑞K𝑚
∘ 𝑆) = avg(𝑆)†avg(𝑆), (166)

the Hermitian-square of avg(𝑆). Hence if 𝒰 is a sequence of matrices, ‖avg(𝑞K ∘ 𝑆(𝒰))‖op = ‖avg(𝑆(𝒰))‖2op.

Definition 6.14. Recall that a regular undirected graph 𝐺 is said to be a (2-sided) 𝜇-expander if
‖𝐴𝐺 −𝐴K‖op ≤ 𝜇.

Fact 6.15. Since 𝐴K is the projection onto the 1-dimensional subspace spanned by
∑︀

𝑗 |𝑗⟩, and since 𝐴𝐺

also fixes this subspace, 𝐺 being a 𝜇-expander is equivalent to ‖𝐴𝐺 − (1 − 𝜇)𝐴K‖op ≤ 𝜇.

The following result is essentially the same as [RV05, Thm. 4.4]:

Proposition 6.16. Let 𝐺 be a 𝜇-expander on vertex set 𝑉 = (1, 2, . . . ,𝑚), let 𝑆 = (𝑠1, . . . , 𝑠𝑚) be a
polynomial sequence with ‖𝑆‖ ≤ 1, and let 𝒰 = (𝑈1, . . . , 𝑈𝑐) be a sequence of matrices in C𝑟×𝑟 with
‖𝑈𝑗‖op ≤ 1 for all 𝑗. Then

‖avg(𝑞𝐺 ∘ 𝑆(𝒰))‖op ≤ (1 − 𝜇)‖avg(𝑆(𝒰))‖2op + 𝜇. (167)

12One would have hoped for the more natural-looking ordering 𝑠†𝑖 𝑠𝑗 , but alas we are forced to follow standard conventions:

the length-2 path (𝑖, 𝑗) means “first 𝑖, then 𝑗”; but, with operators acting on the left, 𝑠†𝑖 𝑠𝑗 means “first do 𝑠𝑗 , then do 𝑠†𝑖”.
13We only really care about 𝑟′ = 𝑟, but we allow 𝑟′ ̸= 𝑟 for the sake of comparison with Equation (164), where 𝑟 = 1 and

𝑟′ = 𝑐.
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Proof. Write 𝒲 = 𝑆(𝒰) = (𝑊1, . . . ,𝑊𝑚), so ‖𝑊𝑗‖op ≤ 1 for all 𝑗. Using Fact 6.11 twice, we derive

‖avg(𝑞𝐺(𝒲)) − (1 − 𝜇)avg(𝑞K(𝒲))‖op =
1

𝑚

⃦⃦
𝒲†(∆ ⊗ 1𝑟×𝑟)𝒲

⃦⃦
op
, where ∆ = 𝐴𝐺− (1−𝜇)𝐴𝐾 . (168)

We have ‖∆‖op ≤ 𝜇 by Fact 6.15, and ‖𝒲‖op ≤
√︁∑︀

𝑗‖𝑊𝑗‖op ≤
√
𝑚. So by submultiplicativity of

operator norm, the right-hand side above is at most 𝜇, and the proof is complete from Fact 6.13 and the
triangle inequality.

Iterating this, and using Fact 6.9 to conclude that ‖𝑞𝐺𝑡
∘ · · · ∘ 𝑞𝐺1

∘𝑆‖ ≤ 1 whenever ‖𝑆‖ ≤ 1, yields:

Proposition 6.17. Let 𝑆 = (𝑠1, . . . , 𝑠𝑚) be a polynomial sequence with ‖𝑆‖ ≤ 1 and let 𝒰 = (𝑈1, . . . , 𝑈𝑐)
be a matrix sequence with ‖𝑈𝑗‖op ≤ 1 for all 𝑗. Moreover, let 𝐺1, 𝐺2, . . . , 𝐺𝑡 be a sequence of regular

graphs, where 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) is a 𝜇𝑖-expander with 𝑉𝑖+1 = 𝐸𝑖 (and 𝑉1 = (1, 2, . . . ,𝑚)). Then⃦⃦
avg(𝑞𝐺𝑡

∘ 𝑞𝐺𝑡−1
∘ · · · ∘ 𝑞𝐺1

∘ 𝑆(𝒰))
⃦⃦
op

≤ 𝑓𝜇𝑡
∘ 𝑓𝜇𝑡−1

∘ · · · ∘ 𝑓𝜇1
(‖avg(𝑆(𝒰))‖op), (169)

where 𝑓𝜇(𝜆) = (1 − 𝜇)𝜆2 + 𝜇. In particular, if 𝑚 = 𝑐, 𝑆 = (𝑢1, . . . , 𝑢𝑐), and we write 𝑄 = 𝑞𝐺𝑡
∘ · · · ∘ 𝑞𝐺1

and 𝐹(𝜇1,...,𝜇𝑡) = 𝑓𝜇𝑡
∘ · · · ∘ 𝑓𝜇1

, then

‖avg(𝑄 ∘ 𝒰)‖op ≤ 𝐹(𝜇1,...,𝜇𝑡)(‖avg(𝒰)‖op). (170)

The work [RV05] also contains calculations very similar to the following (wherein the special num-
ber .11 is chosen due to certain explicit expander constructions):

Proposition 6.18. For 0 < 𝛿, 𝜖 ≤ 1, we have 𝐹�⃗�(1 − 𝛿) ≤ 𝜖 for any sequence �⃗� that entrywise satisfies

(0, . . . , 0) ≤ �⃗� ≤ (�⃗�(1), �⃗�(2)), �⃗�(1) := (.11, . . . , .11⏟  ⏞  
ℓ1 times

), �⃗�(2) := 1
4 (2−2, 2−4, 2−8, . . . , 2−2ℓ2 ), (171)

where ℓ1 ≥ log2.8(1/𝛿) + 3 (note: 2.8 ≈ 1.74) and ℓ2 ≥ log2 log2(1/𝜖).

Proof. Since 𝑓𝜇(𝜆) is nondecreasing on [0, 1] for both 𝜇 and 𝜆, it suffices to analyze all upper bounds as
if they were equalities. It is easy to check that 𝑓.11(1 − 𝛿) ≤ 1 − 2.8𝛿 for all 0 ≤ 𝛿 ≤ .03, and hence

ℓ ≥ log2.8(1/𝛿) − 6 =⇒ 𝑓∘ℓ.11(1 − 𝛿) ≤ 1 − .03/1.75 ≤ .985. (172)

Also, 𝑓∘9.11(.985) ≤ 1/4, and hence 𝐹�⃗�(1)(1 − 𝛿) ≤ 1/4. The proof is now complete by observing that

𝐹�⃗�(2)(1/4) ≤ 1
22−2−ℓ2

.

Regarding explicit construction of expander graphs, taking 𝑝 = 29 and 509 in [Alo21, Thm. 1.2] and
adding a self-loop to every vertex yields:

Theorem 6.19. For (𝑑, 𝜇) = (32, .45) and also (𝑑, 𝜇) = (512, .11), there is a strongly explicit algorithm
for constructing 𝑛-vertex, 𝑑-regular, 𝜇-expander graphs (for all sufficiently large 𝑛).

By repeatedly squaring the 32-regular graphs above, one can also conclude the following (in which it
is possible that 𝑑 = 𝑑(𝑛) > 𝑛):

Corollary 6.20. For any easy-to-compute 𝑗 = 𝑗(𝑛) ∈ N, there is a strongly explicit (polylog(𝑛, 𝑑) time)
algorithm for constructing 𝑛-vertex, 𝑑-regular, 𝜇-expander graphs (for all sufficiently large 𝑛) where, for
𝑘 = 2𝑗, we have 𝑑 = 32𝑘 and 𝜇 = 𝜇(𝑛) = .45𝑘 ≤ 1

42−𝑘 = 1
4𝑑

−1/5 (the inequality holding provided 𝑗 ≥ 4).

Putting together Corollary 6.20, Proposition 6.18, and Proposition 6.17 yields the following:
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Theorem 6.21. There is a strongly explicit, space-minimal algorithm with the following behavior on
inputs 𝑐 and 0 < 𝛿, 𝜖 < 1 (where we assume 𝑐 = 2𝑖1 , 𝛿 = 16−𝑖2 , and 𝜖 = 2−2𝑖3 for some 𝑖1, 𝑖2, 𝑖3 ∈ N
sufficiently large). The algorithm outputs a sequence 𝑄 of 𝑁 = 𝑂(𝑐/(𝛿11.25𝜖10)) monomials over symbols

𝑢1, . . . , 𝑢𝑐 and 𝑢†1, . . . , 𝑢
†
𝑐, each of length 𝐿 = 8 log2(1/𝜖)/𝛿1.25, with the following property:

For any sequence 𝒰 = (𝑈1, . . . , 𝑈𝑐) of matrices in C𝑟×𝑟 satisfying ‖𝑈𝑖‖op ≤ 1 for all 𝑖 and ‖avg(𝒰)‖op ≤
1 − 𝛿, it holds that ‖avg(𝑄 ∘ 𝒰)‖op ≤ 𝜖.

Here “strongly explicit and space-minimal” means that, given a monomial index 𝑖 ∈ [𝑁 ] and a mono-
mial position index 𝑗 ∈ [𝐿], the algorithm runs in deterministic polylog(𝑐/𝛿𝜖) time and 𝑂(log(𝑐/𝛿𝜖)) space
and outputs the 𝑗th symbol of the 𝑖th monomial in 𝑄.

Proof. Given 𝑐, 𝛿, 𝜖, the desired 𝑄 is 𝑞𝐺𝑡
∘ · · · ∘ 𝑞𝐺1

∘ (𝑢1, . . . , 𝑢𝑐), where 𝐺1, . . . , 𝐺𝑡 is a sequence as in
Proposition 6.17, with:

� ℓ1 = log2.8(1/𝛿) + 3 = 5
4 log2(1/𝛿) + 3, ℓ2 = log2 log2(1/𝜖), and 𝑡 = ℓ1 + ℓ2;

� 𝐺1, . . . , 𝐺ℓ1 are 512-regular .11-expanders, with 𝐺𝑗 on 512𝑗−1𝑐 vertices, as in Theorem 6.19;

� 𝐺ℓ1+1, . . . , 𝐺ℓ1+ℓ2 are as in Corollary 6.20, with 𝐺ℓ1+𝑗 being a 32𝑘-regular, 1
42−𝑘-expander (for

𝑘 = 2min(𝑗,4)) on 32𝑘+32𝑁0 vertices (once 𝑗 ≥ 4), where 𝑁0 = 512ℓ1𝑐 is |𝐸(𝐺ℓ1)|.

The length of 𝑄 is

𝑁 = |𝐸(𝐺𝑡)| = 322
ℓ2+1+32𝑁0 = 2160 · 25·log2(1/𝜖)·2 · 29(log24/5

(1/𝛿)+3) = 2187 · 𝑐/𝛿11.25𝜖10, (173)

and each monomial in 𝑄 has length 2𝑡 = 8 log2(1/𝜖)/𝛿1.25. The desired bound ‖avg(𝑄(𝒰))‖op ≤ 𝜖 follows
from Propositions 6.17 and 6.18. Finally, the time and space bounds are easy to verify, as computation
of the 𝑗th symbol of the 𝑖th monomial of 𝑄 simply amounts to determining the 𝑖th edge of 𝐺𝑡, and then
following a path down a binary tree of height 𝑡, where at each node one has to compute the the 𝑎th edge
of a particular 𝐺𝑏.

Remark 6.22. As in [RV05, Thm. 5.8], if 𝛿 is not small but is rather already of the form 𝛿 = 1 − 𝜆 for
small 𝜆, one can retain only the last ℓ2−log2 log2(1/𝜆) or so expanders and obtain 𝐿 = 𝑂(log(1/𝜖)/ log(1/𝜆));
we omit details.

When using Theorem 6.21, we will often want to disregard a certain “trivial” subspace; we will then
employ the following simple observation:

Fact 6.23. In the setting of Theorem 6.21, say each 𝑈𝑗 may be written as 𝑈𝑗 = 𝑅𝑗 ⊕𝑈 ′
𝑗, where 𝑅𝑗 acts

on subspace 𝑇 and 𝑈 ′
𝑗 acts on its orthogonal complement 𝑇⊥ in C𝑟. Then avg(𝑄(𝒰)) = avg(𝑄(ℛ)) ⊕

avg(𝑄(𝒰 ′)), where ℛ = (𝑅1, . . . , 𝑅𝑐) and 𝒰 ′ = (𝑈 ′
1, . . . , 𝑈

′
𝑐).

For example, suppose 𝐺 = (𝑉,𝐸) is a 𝑑-regular undirected graph on 𝑉 = (1, 2, . . . , 𝑛) with normalized
adjacency matrix expressed as

𝐴𝐺 = avg(𝑃1, . . . , 𝑃𝑑), (174)

where 𝑃1, . . . , 𝑃𝑑 are 𝑛 × 𝑛 permutation matrices. Each 𝑃𝑖 and 𝑃 †
𝑖 has operator norm 1 and fixes the

one-dimensional space 𝑇 = span{|1⟩ + · · · + |𝑛⟩}. If we write 𝑃𝑖 = proj𝑇 ⊕ 𝑈 ′
𝑖 where 𝑈 ′

𝑖 is the action of
𝑃𝑖 on 𝑇⊥, then

𝐴𝐺 = proj𝑇 ⊕ avg(𝑈 ′
1, . . . , 𝑈

′
𝑑) (175)

and we are in a position to apply Fact 6.23 and Theorem 6.21 together. The result is a sequence 𝑄 of
“walks”, each of the form 𝑃 †

𝑖𝐿
𝑃𝑖𝐿−1

· · ·𝑃 †
𝑖2
𝑃𝑖1 . Applying one such walk to any starting vertex |𝑣⟩ leads to

a valid walk of length 𝐿 in 𝐺 (with the steps 𝑃 †
𝑖 being valid since 𝐺 is undirected). If we write ̃︀𝐺 for the

|𝑄|-regular undirected graph on 𝑉 wherein each 𝑣 ∈ 𝑉 has an edge to all its walk outcomes, the result is
that

𝐴 ̃︀𝐺 = avg(𝑄 ∘ (𝑃1, . . . , 𝑃𝑑)) = proj𝑇 ⊕ avg(𝑄(𝑈 ′
1, . . . , 𝑈

′
𝑑)). (176)
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Hence if 𝐺 is a (1−𝛿)-expander, we obtain that ̃︀𝐺 is an 𝜖-expander with |𝑄| = 𝑂(𝑑/(𝛿𝜖)𝑂(1)) and walks of
length 𝑂(log(1/𝜖)/𝛿𝑂(1)). As shown in [Rei08, RV05], given any simple, connected, 𝑛-vertex, undirected
graph, there is a very simple transformation preserving connectivity that produces a 4-regular undirected
graph (together with the associated 𝑃1, . . . , 𝑃4 as in Equation (174)) that has 𝛿 ≥ 1/ poly(𝑛); by taking
𝜖 = 1/ poly(𝑛), one can use these pseudorandom walks to establish Reingold’s Theorem SL = L [Rei08].
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