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Abstract

For quantum state tomography on rank-𝑟 dimension-𝑑 states, we show that ̃︀𝑂(𝑟.5𝑑1.5/𝜖) ≤ ̃︀𝑂(𝑑2/𝜖)

copies suffice for accuracy 𝜖 with respect to (Bures) 𝜒2-divergence, and ̃︀𝑂(𝑟𝑑/𝜖) copies suffice for accu-

racy 𝜖 with respect to quantum relative entropy. The best previous bound was ̃︀𝑂(𝑟𝑑/𝜖) ≤ ̃︀𝑂(𝑑2/𝜖) with
respect to infidelity; our results are an improvement since infidelity is bounded above by both the rela-
tive entropy and the 𝜒2-divergence. For algorithms that are required to use single-copy measurements,
we show that ̃︀𝑂(𝑟1.5𝑑1.5/𝜖) ≤ ̃︀𝑂(𝑑3/𝜖) copies suffice for 𝜒2-divergence, and ̃︀𝑂(𝑟2𝑑/𝜖) suffice for relative
entropy.1

Using this tomography algorithm, we show that ̃︀𝑂(𝑑2.5/𝜖) copies of a 𝑑×𝑑-dimensional bipartite state
suffice to test if it has quantum mutual information 0 or at least 𝜖. As a corollary, we also improve the
best known sample complexity for the classical version of mutual information testing to ̃︀𝑂(𝑑/𝜖).

∗AWS Center for Quantum Computing, and IQIM, California Institute of Technology. sflammi@amazon.com
†Computer Science Department, Carnegie Mellon University. odonnell@cs.cmu.edu
1Independent and contemporaneous work [14] achieved the bound ̃︀𝑂(𝑟2𝑑/𝜖) for infidelity. Indeed, the authors of that work

were the first to show that ̃︀𝑂(𝑑3/𝜖) is possible for infidelity with single-copy measurements.



Quantum state tomography[’s] perfection is of
great importance to quantum computation and
quantum information.

— Nielsen and Chuang [29, p.47]

1 Introduction

Quantum state tomography — learning a 𝑑-dimensional quantum state from 𝑛 copies — is a ubiquitous task
in quantum information science. It is the quantum analogue of the classical task of learning a 𝑑-outcome
probability distribution from 𝑛 samples.

In more detail, the goal is to design an algorithm that, given 𝜌⊗𝑛 for some (generally mixed) quantum
state 𝜌 ∈ C𝑑×𝑑, outputs (the classical description of) an estimate2 ̂︀𝜌 that is “𝜖-close” to 𝜌 with high
probability. The main challenge is to minimize the sample (copy) complexity 𝑛 as a function of 𝑑 and 𝜖
(and sometimes other parameters, such as 𝑟 = rank 𝜌). We will also be concerned with the practical issue of
designing algorithms that make only single-copy (as opposed to collective) measurements.

An important aspect in specifying the quantum tomography task is the meaning of “𝜖-close”; i.e., what
the loss function is for judging the algorithm’s estimate. There are many natural ways for measuring the
divergence of two quantum states — even more than for two classical probability distributions — and the
precise measure chosen can make a great deal of difference both to the necessary sample complexity, as well
as to the utility of the final estimate for future applications.

The main goal of this paper is to show a new tomography algorithm that achieves the most stringent
notion of accuracy, (Bures) 𝜒2-divergence, while having essentially the same sample complexity as previously
known algorithms using infidelity as a loss function. We then given an application, to the quantum mutual
information testing problem, which crucially relies on our ability to achieve efficient state tomography with
respect to 𝜒2-divergence.

1.1 Different quantum divergences, and prior work

Let us start by recalling five important notions of “distance” between two classical probability distributions
𝑝, 𝑞 on [𝑑] = {1, 2, . . . , 𝑑} (see Section 2 for more details):

(ℓ22-distance) ≲ (total variation distance)
2 ≲ Hellinger-squared (H2) ≲ KL divergence ≲ 𝜒2-divergence.

(1)
(Here the “≲” ignores small constant factors.) The first of these, ℓ22-distance, does not have an operational in-
terpretation, but it is by far the easiest to calculate and reason about. The remainder are the “big four” [50,
p.26]: total variation (TV) distance controls the advantage in distinguishing 𝑝 from 𝑞 with 1 sample;
Hellinger-squared controls the number of samples needed to distinguish 𝑝 from 𝑞 with high probability;
KL divergence has several information-theoretic interpretations; and, 𝜒2-divergence plays a central role
in goodness of fit (whether an unknown 𝑝 is close to a known 𝑞). We remark that the first three quantities
are bounded in [0, 1], but KL divergence and 𝜒2-divergence may be unbounded.

It is extremely easy to show (see Proposition 2.14) that, given 𝑛 samples from 𝑝, the empirical estimate ̂︀𝑝
has expected ℓ22-distance at most 1/𝑛 from 𝑝; hence 𝑛 = 𝑂(1/𝜖) samples suffices for high-probability estima-
tion with this loss function. Moreover, Cauchy–Schwarz immediately bounds TV2 by 𝑑 times ℓ22, and hence
𝑂(𝑑/𝜖) samples suffice when 𝜖 denotes TV2 (and Ω(𝑑/𝜖) can be proven necessary). But in fact, 𝑛 = 𝑂(𝑑/𝜖)
samples suffice even when 𝜖 denotes the most stringent distance, 𝜒2-divergence. This also follows from a
short calculation of the expected 𝜒2-divergence of ̂︀𝑝 from 𝑝 when ̂︀𝑝 is the add-one empirical estimator (see
Proposition 2.16).

2Throughout this paper we use boldface to denote random variables.
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The preceding five distances have natural generalizations for quantum states 𝜌, 𝜎 ∈ C𝑑×𝑑. The analogous
chain of inequalities to eq. (1) is not quite true, but we have instead

(Frobenius distance)
2 ≲ (trace distance)

2 ≲ infidelity ≲ quantum relative entropy, Bures 𝜒2-divergence.
(2)

While both quantum relative entropy and Bures 𝜒2-divergence are bounded from below by the infidelity,
neither bounds the other by a constant [45]. We remark that using the “measured relative entropy” rather
than the “standard” (Umegaki) quantum relative entropy does make the full analogous chain of inequalities
hold, turning the comma above into a ≲; however, the measured relative entropy is rarely used in practice.

In the quantum case, there is a very simple empirical estimation algorithm that achieves Frobenius-
squared distance 𝜖 with 𝑛 = 𝑂(𝑑2/𝜖) samples (see Section 3.6); this algorithm has the additional practical
merit that copies of 𝜌 are measured individually and nonadaptively, meaning it uses 𝑛 POVMs of dimension 𝑑
that are fixed in advance. Kueng, Rauhut, and Terstiege [27] gave another natural algorithm of this form
with a refined rank-based bound:

Theorem 1.1. ([27, Thm. 2].) There is a state tomography algorithm using nonadaptive single-copy mea-
surements achieving expected Frobenius-squared error 𝑂(𝑟𝑑/𝑛) on 𝑑-dimensional states of rank at most 𝑟.
Hence 𝑛 = 𝑂(𝑟𝑑/𝜖) samples suffice to get3 Frobenius-squared accuracy 𝜖.

Again, Cauchy–Schwarz implies that trace distance-squared is bounded by 𝑟 times Frobenius-squared,
so one immediately concludes that 𝑛 = 𝑂(𝑟2𝑑/𝜖) copies suffice for a nonadaptive single-copy measurement
algorithm achieving trace distance-squared 𝜖.

Allowing for adaptive single-copy measurement algorithms (in which the POVM used on the 𝑡th copy of 𝜌
may be chosen based on the outcomes of the first 𝑡− 1 measurements), it is known that for 𝑑 = 2 (a single
qubit), 𝑛 = 𝑂(1/𝜖) measurements with one “round” of adaptivity suffice for estimation with infidelity 𝜖. The
idea for this dates back to at least [38], with a proof appearing in, e.g., [8, Eq. 4.17]. The case of higher 𝑑 is
discussed in [33], but no complete mathematical analysis seems to appear in the literature.

Remark 1.2. However, prior to completing our work, we were informed by the authors of [13] that they could

achieve infidelity 𝜖 with ̃︀𝑂(𝑑3/𝜖) single-copy measurements and logarithmically many rounds of adaptivity.

Moving to quantum tomography algorithms that allow for a general collective measurement on all 𝑛
copies, it would seem that some amount of representation theory is needed to get optimal results (intuitively,
because 𝜌⊗𝑛 lies in the symmetric subspace). The following two results were shown independently and
contemporaneously:

Theorem 1.3. ([31, Cor. 1.4].) There is state tomography algorithm using collective measurements achiev-
ing expected Frobenius-squared error 𝑂(𝑑/𝑛) on 𝑑-dimensional states. Hence 𝑛 = 𝑂(𝑑/𝜖) samples suffice to
get Frobenius-squared accuracy 𝜖. As a corollary of Cauchy–Schwarz, 𝑛 = 𝑂(𝑟𝑑/𝜖) samples suffice to get
trace distance-squared accuracy 𝜖.

Theorem 1.4. ([21, (14)].) There is a state tomography algorithm using collective measurements on 𝑛 =
𝑂(𝑟𝑑/𝜖) · log(𝑑/𝜖) copies that achieves infidelity 𝜖.

Remark 1.5. Except for the log(𝑑/𝜖) factor, Theorem 1.4 is stronger than the corollary in Theorem 1.3,

since (trace distance)
2 ≲ infidelity. If one wishes to have optimal 𝑂(1/𝜖) dependence on 𝜖 (no log factor),

the best known result is 𝑛 = 𝑂(𝑟2𝑑/𝜖) using very sophisticated representation theory [32]. On the other
hand, if one wishes to have optimal 𝑂(𝑟𝑑) dependence (no log factor), prior to the present work the best

result was 𝑂(𝑟𝑑/𝜖2), following from Theorem 1.3 and infidelity ≲ (trace distance)
2
.

Turning to lower bounds, Haah–Harrow–Ji–Wu–Yu [21] showed that for collective measurements, Ω(𝑑2/𝜖)
samples are necessary for trace distance-squared tomography in the full-rank case, and Ω( 𝑟𝑑

𝜖 log(𝑑/𝑟𝜖) ) are

necessary in the general rank-𝑟 case; Yuen [51] recently removed the log factor in case 𝜖 stands for infidelity.
As for single-copy measurement algorithms, [21] showed (improving on [17]) that for nonadaptive algorithms,

Ω( 𝑟2𝑑
𝜖2 log(1/𝜖) ) copies are needed for infidelity-tomography, and Ω(𝑑3/𝜖) copies are needed for trace distance-

squared tomography in the full-rank case. This latter bound was also very recently established [13] even in
the adaptive single-copy case.

3With probability at least .99, say, by Markov’s inequality.
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1.2 Our results

A major question left open by the preceding results is whether quantum state tomography with ̃︀𝑂(1/𝜖)
dependence is possible for a notion of accuracy more stringent than that of infidelity, such as quantum
relative entropy or 𝜒2-divergence. Although efficient learning with respect to these more stringent measures
is known to be possible in the classical case, we are not aware of any previous provable results along these
lines in the quantum case. Indeed, these divergences seem fundamentally more difficult to handle, not being
bounded in [0, 1], and prior works seemed to suggest that negative results might hold for them.

Prior authors have considered tomography with respect to these stronger error notions. For example,
Ferrie and Blume-Kohout [17] investigated qubit tomography with respect to quantum relative entropy, and
Ref. [34] uses 𝜒2 hypothesis testing to study tomography of (Choi states of) quantum channels. A further
motivation comes from the work of Blume-Kohout and Hayden [11], who showed that the quantum relative
entropy is singled out as the unique loss function for quantum tomography once certain plausible and general
desiderata of an estimator are specified.

Our main motivation, which we return to in Section 4, is a property test for zero quantum mutual
information. For this application, our argument requires us to do quantum state tomography with respect
to Bures 𝜒2-divergence, as only then can we use the quantum “𝜒2-vs.-H2 identity tester” from Ref. [7].

For these two stronger error notions, we essentially show that the strongest upper bounds that one could
possibly hope for indeed hold. Our main theorem is the following:

Theorem 1.6. Suppose there exists a tomography algorithm 𝒜 that obtains expected Frobenius-squared error
at most 𝑓(𝑑, 𝑟)/𝑛 when given 𝑛 copies of a quantum state 𝜌 ∈ C𝑑×𝑑 of rank at most 𝑟. Then it may be
transformed into a tomography algorithm 𝒜′ that, given 𝜖, 𝑟, and

𝑛 = ̃︀𝑂(︀√𝑟𝑑 · 𝑓(𝑑, 𝑟)/𝜖
)︀
copies (respectively, 𝑛 = ̃︀𝑂(𝑟 · 𝑓(𝑑, 𝑟)/𝜖) copies), (3)

of 𝜌, outputs (with probability at least .99) the classical description of a state ̂︀𝜌 having

D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝜖 Bures 𝜒2-divergence accuracy (respectively, S(𝜌 ‖ ̂︀𝜌) ≤ 𝜖 relative entropy accuracy). (4)

Moreover, if 𝒜 uses single-copy measurements, then 𝒜′ does as well, with 𝑂(log 1/𝜖) rounds of adaptivity.

By plugging in Theorems 1.1 and 1.3, one immediately concludes:

Corollary 1.7. There is a state tomography algorithm using collective measurements on 𝑛 = ̃︀𝑂(𝑟.5𝑑1.5/𝜖) ≤̃︀𝑂(𝑑2/𝜖) copies that achieves 𝜒2-divergence accuracy 𝜖.

Corollary 1.8. There is a state tomography algorithm using collective measurements on 𝑛 = ̃︀𝑂(𝑟𝑑/𝜖) copies
that achieves relative entropy accuracy 𝜖.

Corollary 1.9. There is a state tomography algorithm using single-copy measurements and 𝑂(log 1/𝜖) rounds

of adaptivity on 𝑛 = ̃︀𝑂(𝑟1.5𝑑1.5/𝜖) ≤ ̃︀𝑂(𝑑3/𝜖) copies that achieves 𝜒2-divergence accuracy 𝜖.

Corollary 1.10. There is a state tomography algorithm using single-copy measurements and 𝑂(log 1/𝜖)

rounds of adaptivity on 𝑛 = ̃︀𝑂(𝑟2𝑑/𝜖) ≤ ̃︀𝑂(𝑑3/𝜖) copies that achieves relative entropy accuracy 𝜖.

Note that in the collective-measurement case, Corollary 1.8 matches (up to a logarithmic factor) thẽ︀𝑂(𝑟𝑑/𝜖) bound known previously only for infidelity-tomography, and Corollary 1.7 also matches it in the
high-rank 𝑟 = Θ(𝑑) case. As for Corollaries 1.9 and 1.10, independent and contemporaneous work [14]
showed a weaker version of Corollary 1.10 with infidelity accuracy in place of relative entropy.

Remark 1.11. Although one would wish to achieve ̃︀𝑂(𝑟𝑑/𝜖) scaling for 𝜒2-tomography, we later discuss in

Remark 3.17 why it seems hard to achieve dependence better than ̃︀𝑂(𝑑1.5/𝜖) even in the pure 𝑟 = 1 case.

Remark 1.12. In the case of 𝑑 = 2 (a qubit), we remove all log factors and show that 𝑛 = 𝑂(1/𝜖) single-
copy measurements with one round of adaptivity suffice for tomography with respect to 𝜒2-divergence. This
simple algorithm, which illustrates the very basic idea of our Theorem 1.6, is given in Section 3.1.
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Remark 1.13. Although we have suppressed polylog factors (at most quadratic) with our ̃︀𝑂(·) notation,
for the case of tomography with respect to infidelity our polylog factors are actually better than previously
known in some regimes. As an example, for collective measurements we have an infidelity algorithm with
complexity 𝑛 = ̃︀𝑂( 𝑟𝑑𝜖 log2(1/𝜖) log log(1/𝜖)), which improves on the ̃︀𝑂( 𝑟𝑑𝜖 log(𝑑/𝜖)) bound from [21] (and

the ̃︀𝑂( 𝑟𝑑𝜖2 ) bound following from [31]) whenever 𝜖 is “large”; specifically, for 𝜖 ≥ exp
(︀
−Ω(

√
𝑞/ log 𝑞)

)︀
in the

𝑞-qubit (𝑑 = 2𝑞) case. See Corollary 3.21 for details.

Finally, in Section 4 we apply our 𝜒2-divergence tomography algorithm to the task of testing for zero
quantum mutual information. In this problem, the tester gets access to 𝑛 copies of a bipartite quantum
state 𝜌 on C𝐴⊗C𝐵 where |𝐴| = |𝐵| = 𝑑. The task is to accept (with probability at least 2/3) if the mutual
information 𝐼(𝐴 : 𝐵)𝜌 is zero (meaning 𝜌 = 𝜌𝐴 ⊗ 𝜌𝐵 is a product state), and to reject (with probability at
least 2/3) if 𝐼(𝐴 : 𝐵)𝜌 ≥ 𝜖. We show:

Theorem 1.14. Testing for zero quantum mutual information can be done with 𝑛 = ̃︀𝑂(1/𝜖) · (𝑑2 + 𝑟𝑑1.5 +
𝑟.5𝑑1.75) samples when 𝜌𝐴, 𝜌𝐵 have rank at most 𝑟 ≤ 𝑑.

Remark 1.15. The above bound is no worse than ̃︀𝑂(𝑑2.5/𝜖), and is ̃︀𝑂(𝑑2/𝜖) whenever 𝑟 ≤
√
𝑑. One should

also recall the total dimension of 𝜌 is 𝑑2.

Remark 1.16. Harrow and Montanaro [23] have considered a related “product tester” problem in the
special case where the input is a pure state |𝜓⟩. Whenever the maximum overlap ⟨𝜓|𝜌|𝜓⟩ with any product
state 𝜌 is 1− 𝜖, the test passes with probability 1−Θ(𝜖) using only two copies of |𝜓⟩. By itself however, this
bound does not test quantum mutual information in the above sense, even for the rank-1 case.

Remark 1.17. An important feature of our result is its (near-)linear scaling in 1/𝜖. This is despite the fact
that estimating mutual information to ±𝜖 accuracy requires Ω(1/𝜖2) samples, even for 𝑑 = 2 and even for
the classical case.

Our proof of Theorem 1.14 has two steps. First, we learn an estimate ̂︀𝜌𝐴⊗ ̂︀𝜌𝐵 of the marginals 𝜌𝐴⊗ 𝜌𝐵
that has small 𝜒2-divergence. Then second we use the “𝜒2-vs.-infidelity” state certification algorithm from [7]
to test whether the unknown state 𝜌 is close to the “known” state ̂︀𝜌𝐴 ⊗ ̂︀𝜌𝐵 . The second step requires us to
relate infidelity to relative entropy (and hence mutual information); but more crucial is that in the first step,
we must be able to do state tomography with Bures 𝜒2-divergence as the loss measure. Thus we have an
example where 𝜒2-tomography is not just done for its own sake, but is necessary for a subsequent application.

Incidentally, we also show that the same two-step process works well for the problem of testing zero
classical mutual information given samples from a probability distribution 𝑝 on [𝑑] × [𝑑]:

Theorem 1.18. Testing for zero classical mutual information can be done with 𝑛 = 𝑂((𝑑/𝜖) · log(𝑑/𝜖))
samples.

This actually improves on the best known previous algorithm, due to Bhattacharyya–Gayen–Price–
Vinodchandran [10], by a factor of 𝑑 log 𝑑.

2 Basic results on distances and divergences

Notation 2.1. If 𝜌 ∈ C𝑑×𝑑 is a matrix and 𝑆 ⊆ [𝑑], we will write 𝜌[𝑆] ∈ C𝑆×𝑆 for the submatrix formed by
the rows and columns from 𝑆. If 𝑆 = [𝑠] = {1, 2, . . . , 𝑠}, we will write simply 𝜌[𝑠]. We use similar notation
when 𝑝 ∈ R𝑑 is a vector.

Remark 2.2. As we frequently deal with ℓ22 error or Frobenius-squared error in this work, we often use the
“triangle inequality” (𝑎− 𝑐)2 ≤ 2(𝑎− 𝑏)2 + 2(𝑏− 𝑐)2 without additional comment.

2.1 Classical distances and divergences

Throughout this section, let 𝑝 = (𝑝1, . . . , 𝑝𝑑) and 𝑞 = (𝑞1, . . . , 𝑞𝑑) denote probability distributions on [𝑑]. We
also use the conventions 0/0 = 0, 𝑥/0 = ∞ for 𝑥 > 0, and trust the reader to interpret other such expressions
appropriately (using continuity).

We now recall some distances between probability distributions.
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Definition 2.3. For 𝑓 : (0,∞) → R strictly convex at 1 with 𝑓(1) = 0, the associated 𝑓 -divergence is

d𝑓 (𝑝 ‖ 𝑞) = E
𝑗∼𝑞

[𝑓(𝑝𝑗/𝑞𝑗)]. (5)

Remark 2.4. All 𝑓 -divergences satisfy the data processing inequality; see e.g. [50, Thm. 4.2].

Definition 2.5. For 𝛼 ∈ [0,∞], the associated Rényi divergence is defined by

dRén
𝛼 (𝑝 ‖ 𝑞) =

1

𝛼− 1
ln

𝑑∑︁
𝑖=1

𝑝𝛼𝑖 𝑞
1−𝛼
𝑖 . (6)

We will use a few particular cases:

Definition 2.6. The total variation distance, a metric, is the 𝑓 -divergence with 𝑓(𝑥) = 1
2 |𝑥− 1|:

dTV(𝑝, 𝑞) = 1
2

𝑑∑︁
𝑖=1

|𝑝𝑖 − 𝑞𝑖|. (7)

Definition 2.7. The Hellinger distance dH(𝑝, 𝑞), a metric, is the square-root of the 𝑓 -divergence with
𝑓(𝑥) = (

√
𝑥− 1)2:

d2
H(𝑝, 𝑞) =

𝑑∑︁
𝑖=1

(
√
𝑝𝑖 −

√
𝑞𝑖)

2. (8)

It is also essentially a Rényi divergence. More precisely, the Bhattacharyya coefficient between 𝑝 and 𝑞 is

BC(𝑝, 𝑞) =

𝑑∑︁
𝑖=1

√
𝑝𝑖
√
𝑞𝑖 = exp

(︁
− 1

2 · dRén
1/2 (𝑝 ‖ 𝑞)

)︁
, (9)

and we have d2
H(𝑝, 𝑞) = 2(1 − BC(𝑝, 𝑞)). (Note the useful tensorization identity, BC(𝑝1 ⊗ 𝑝2, 𝑞1 ⊗ 𝑞2) =

BC(𝑝1, 𝑞1) · BC(𝑝2, 𝑞2).)

Definition 2.8. The KL divergence (or relative entropy) is both an 𝑓 -divergence (with 𝑓(𝑥) = 𝑥 ln𝑥 or
𝑓(𝑥) = 𝑥 ln𝑥− (𝑥− 1)) and a Rényi divergence (with 𝛼 = 1):

dKL(𝑝 ‖ 𝑞) =

𝑑∑︁
𝑖=1

𝑝𝑖 ln(𝑝𝑖/𝑞𝑖). (10)

Also, if 𝑝 is a “bipartite” probability distribution on finite outcome set 𝐴 × 𝐵, and 𝑝𝐴, 𝑝𝐵 denote its
marginals, we may define the mutual information

𝐼(𝐴 : 𝐵)𝑝 = dKL(𝑝 ‖ 𝑝𝐴 × 𝑝𝐵). (11)

Definition 2.9. The 𝜒2-divergence is the 𝑓 -divergence with 𝑓(𝑥) = (𝑥− 1)2:

d𝜒2(𝑝 ‖ 𝑞) =

𝑑∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖)
2

𝑞𝑖
=

(︃
𝑑∑︁
𝑖=1

𝑝2𝑖
𝑞𝑖

)︃
− 1. (12)

We will sometimes use the first formula even when 𝑝 and/or 𝑞 do not sum to 1.

Definition 2.10. The max-relative entropy (or worst-case regret) is defined to be

dRén
∞ (𝑝 ‖ 𝑞) = max

𝑖∈[𝑑]
𝑝𝑖 ̸=0

{ln(𝑝𝑖/𝑞𝑖)}. (13)

The following chain of inequalities is well known (see, e.g., [20]):
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Proposition 2.11. 1
2d2

H(𝑝, 𝑞) ≤ dTV(𝑝, 𝑞) ≤ dH(𝑝, 𝑞) ≤
√︀

dKL(𝑝 ‖ 𝑞) ≤
√︁

d𝜒2(𝑝 ‖ 𝑞).

Some of the inequalities in the above can be slightly sharpened; e.g., one also has dTV(𝑝, 𝑞) ≤
√︁

1
2dKL(𝑝 ‖ 𝑞),

usually called Pinsker’s inequality. Perhaps less well known is the following “reverse” form of Pinsker’s in-
equality:

dKL(𝑝 ‖ 𝑞) ≤ 𝑂
(︀
dRén
∞ (𝑝 ‖ 𝑞)

)︀
· dTV(𝑝, 𝑞). (14)

Moreover, it is possible to strengthen the above by putting Hellinger-squared in place of total variation
distance. These facts were proven in [39]; for the convenience of the reader, we provide a streamlined proof
of the following:

Proposition 2.12. For 𝑝, 𝑞 probability distributions on [𝑑] we have

dKL(𝑝 ‖ 𝑞) ≤ (2 + dRén
∞ (𝑝 ‖ 𝑞)) · d2

H(𝑝, 𝑞). (15)

Proof. Let us write 𝑟𝑖 = 𝑝𝑖/𝑞𝑖. Defining

𝑓(𝑟) = 𝑟 ln 𝑟 − (𝑟 − 1), 𝑔(𝑟) = (
√
𝑟 − 1)2, (16)

the elementary Lemma 2.13 proven below shows that

∀𝑟 ≥ 0, 𝑓(𝑟) ≤ ℎ(𝑟)𝑔(𝑟), where ℎ(𝑟) = 2 + max{ln 𝑟, 0}. (17)

It follows that

dKL(𝑝 ‖ 𝑞) = E
𝑖∼𝑞

[𝑓(𝑟𝑖)] ≤ E
𝑖∼𝑞

[ℎ(𝑟𝑖)𝑔(𝑟𝑖)] ≤ max
𝑖∈[𝑑]

{ℎ(𝑟𝑖)} · E
𝑖∼𝑞

[𝑔(𝑟𝑖)] = (2 + dRén
∞ (𝑝 ‖ 𝑞)) · d2

H(𝑝, 𝑞). (18)

Lemma 2.13. Inequality (17) holds.

Proof. Consider 𝑎(𝑟) := ℎ(𝑟)𝑔(𝑟) − 𝑓(𝑟). This function is continuous and piecewise differentiable on 𝑟 ≥ 0
with an exceptional point at 𝑟 = 1. We will first show that 𝑎(𝑟) is nonnegative and increasing on 𝑟 ≥ 1.
Clearly 𝑎(1) = 0, so we only need to show that 𝑎′(𝑟) ≥ 0. For 𝑟 ≥ 1, by the integral definition of the
logarithm and the Cauchy–Schwarz inequality we have

ln 𝑟 =

∫︁ 𝑟

1

𝑥−1d𝑥 ≤
(︂∫︁ 𝑟

1

d𝑥

)︂1/2(︂∫︁ 𝑟

1

𝑥−2d𝑥

)︂1/2

=
√
𝑟 − 1√

𝑟
. (19)

Calculating the derivative of 𝑎(𝑟) and using the above inequality for the logarithm, we have that

𝑎′(𝑟) = 3 − 4√
𝑟

+
1

𝑟
− ln 𝑟√

𝑟
≥ 3 − 4√

𝑟
+

1

𝑟
−

√
𝑟 − 1√

𝑟√
𝑟

=
2 (

√
𝑟 − 1)

2

𝑟
≥ 0. (20)

For the case 0 ≤ 𝑟 ≤ 1, we change variables to 𝑠 = 1/𝑟 and define 𝑏(𝑠) := ℎ(1/𝑠)𝑔(1/𝑠)−𝑓(1/𝑠) for 𝑠 ≥ 1.
We have 𝑏(1) = 0, and using again the logarithm inequality we find

𝑏′(𝑠) =
2
√
𝑠− ln 𝑠− 2

𝑠2
≥

√
𝑠+ 1√

𝑠
− 2

𝑠2
=

(
√
𝑠− 1)

2

𝑠5/2
≥ 0. (21)

We remark that Inequality (17) can be strengthened to ℎ(𝑟) = 2 + ln
(︀
(2 + 𝑟)/3

)︀
, but as this does not

change the scaling of any of our results, we will not use this stronger inequality or present our (annoyingly
complicated) proof.

Finally, we mention the ℓ22-distance between probability distributions, ‖𝑝−𝑞‖22 =
∑︀
𝑖(𝑝𝑖−𝑞𝑖)2. Though it

does not have an operational meaning, the simplicity of computing it makes it a useful tool when analyzing
other distances. For example, the 𝜒2-divergence is a kind of “weighted” version of ℓ22-distance, in which the
error term (𝑝𝑖 − 𝑞𝑖)

2 is weighted by 1/𝑞𝑖. We record here basic facts about estimation with respect to these
distance measures.
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Proposition 2.14. Let 𝑝 be a distribution on [𝑑], and suppose 𝑞 is the empirical estimator formed from 𝑚
samples. Then for any 𝑆 ⊆ [𝑑] we have

E
[︀
‖𝑝[𝑆] − 𝑞[𝑆]‖22

]︀
≤ ‖𝑝[𝑆]‖1/𝑚. (22)

In particular, E
[︀
‖𝑝− 𝑞‖22

]︀
≤ 1/𝑚.

Proof. Note that 𝑞𝑖 is distributed as Binomial(𝑚, 𝑝𝑖)/𝑚, hence E[(𝑝𝑖 − 𝑞𝑖)
2] = Var[𝑞𝑖] = 𝑝𝑖(1 − 𝑝𝑖)/𝑚 ≤

𝑝𝑖/𝑚. Summing over 𝑖 ∈ 𝑆 completes the proof.

We will also need the following variant with high-probability guarantees:

Proposition 2.15. In the setting of Proposition 2.14, we have the following guarantees, where we introduce
the notation 𝑚𝛿 = 𝑚/(𝑐 ln(1/𝛿)) for 𝑐 some large universal constant:

(a) ‖𝑝− 𝑞‖22 ≤ 1/𝑚𝛿 except with probability at most 𝛿;

(b) if ‖𝑝[𝑆]‖1 ≥ 1/𝑚𝛿 then ‖𝑞[𝑆]‖1 is within a 1.01-factor of ‖𝑝[𝑆]‖1 except with probability at most 𝛿;

(c) if ‖𝑝[𝑆]‖1 ≤ 1/𝑚𝛿 then ‖𝑞[𝑆]‖1 ≤ 1.01/𝑚𝛿 except with probability at most 𝛿.

Proof. Items (b) and (c) follow from standard Chernoff bounds. As for Item (a), it follows from the known
high-probability bound for empirically learning a distribution with respect to ℓ22-error; see, e.g., [35]. We
remark that it is important to use this latter result, as opposed to the generic “median-of-𝑂(log(1/𝛿))-
estimates” method; if we used the latter, it would be unclear how to simultaneously achieve Items (b)
and (c)

Proposition 2.16. Fix a subset 𝑆 ⊆ [𝑑] of cardinality 𝑠. Given 𝑚 samples from an unknown distribution 𝑝
on [𝑑], let 𝑞 be the estimator formed by using the add-one estimator on elements from 𝑆, and the empirical
estimator on the remaining elements. (Note that 𝑞 is itself a probability distribution.) Then

E[d𝜒2(𝑝[𝑆] ‖ 𝑞[𝑆])] ≤ 𝑠

𝑚+ 𝑠
+

(︂
(𝑠− 1)2

(𝑚+ 1)(𝑚+ 𝑠)
− 1

𝑚+ 𝑠

)︂
‖𝑝[𝑆]‖1 ≤ 𝑠/𝑚+ (𝑠/𝑚)2 ≤ 2𝑠/𝑚, (23)

the last inequality assuming 𝑚 ≥ 𝑠. In case 𝑆 = [𝑑], the sharpest upper bound above equals 𝑑−1
𝑚+1 ≤ 𝑑/𝑚.

Moreover, still assuming 𝑚 ≥ 𝑠 and using the notation 𝑚𝛿 from Proposition 2.15, if 𝑝𝑖 ≥ 1/𝑚𝛿/𝑠 for all
𝑖 ∈ 𝑆, then except with probability at most 𝛿 we have that 𝑞𝑖 is within a 4-factor of 𝑝𝑖 simultaneously for all
𝑖 ∈ 𝑆.

Proof. For 𝑖 ∈ 𝑆 we have that 𝑞𝑖 is distributed as 𝐵+1
𝑚+𝑠 , where 𝐵 ∼ Binomial(𝑚, 𝑝𝑖). It is elementary to

show that the resulting contribution to d𝜒2(𝑝[𝑆] ‖ 𝑞[𝑆]), namely (𝑝𝑖−𝑞𝑖)
2

𝑞𝑖
, has expectation equal to

1

𝑚+ 𝑠
+

(︂
(𝑠− 1)2

(𝑚+ 1)(𝑚+ 𝑠)
− 1

𝑚+ 𝑠
− 𝑚+ 𝑠

𝑚+ 1
(1 − 𝑝𝑖)

𝑚+1

)︂
𝑝𝑖. (24)

Dropping the term above involving (1 − 𝑝𝑖)
𝑚+1, and then summing over 𝑖 ∈ 𝑆, yields Inequality (23).

As for the “moreover” statement, a Chernoff bound tells us that 𝐵 is within a 2-factor of 𝑚𝑝𝑖 except
with probability at most 𝛿/𝑠, using 𝑚𝑝𝑖 ≥ 𝑐 log(𝑠/𝛿). When this occurs, 𝑞𝑖 is at least 𝑝𝑖/4 (using 𝑚 ≥ 𝑠)
and at most 2𝑚𝑝𝑖+1

𝑚 ≤ 3𝑝𝑖 (using 𝑐 ≥ 1), so the proof is complete by a union bound over 𝑖 ∈ 𝑆.

2.2 Quantum distances and divergences

The analogous theory of distances and divergences between quantum states is quite rich [44, 26], as there
are multiple quantum generalizations of both 𝑓 -divergences and Rényi divergences. To distinguish between
the quantum and classical cases, we use an upper-case 𝐷 for quantum divergences and a lower-case 𝑑 for
classical divergences.

Throughout this section, let 𝜌, 𝜎 ∈ C𝑑×𝑑 be (mixed) quantum states.
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Definition 2.17. Given an 𝑓 -divergence d𝑓 (· ‖ ·), the associated measured (aka minimal) quantum 𝑓 -
divergence [26] is

D𝑓 (𝜌 ‖ 𝜎) = sup
POVMs (𝐸𝑖)𝑚𝑖=1

{d𝑓 (𝑞𝜌 ‖ 𝑞𝜎)}, where 𝑞𝜏 = (tr(𝜏𝐸1), . . . , tr(𝜏𝐸𝑚)). (25)

Remark 2.18. All measured 𝑓 -divergences satisfy the (quantum) data processing inequality. This fact
follows from the definition and a reduction to the classical case.

Definition 2.19. For 𝛼 ∈ [0,∞], the associated conventional quantum Rényi divergence [36] is defined by

DRén
𝛼 (𝜌 ‖ 𝜎) =

1

𝛼− 1
ln tr

(︀
𝜌𝛼𝜎1−𝛼)︀. (26)

Let us also describe a further relationship between classical and quantum Rényi entropies. To do so let
us introduce the following notation:

Definition 2.20. Given the spectral decompositions

𝜌 =

𝑑∑︁
𝑖=1

𝑝𝑖 |𝜙𝑖⟩⟨𝜙𝑖| , 𝜎 =

𝑑∑︁
𝑖=1

𝑞𝑖 |𝜓𝑖⟩⟨𝜓𝑖| , (27)

we define two probability distributions 𝑃 𝜌𝜎, 𝑄𝜌𝜎 on [𝑑] × [𝑑], as follows:

𝑃 𝜌𝜎𝑖𝑗 = |⟨𝜙𝑖|𝜓𝑗⟩|2𝑝𝑖, 𝑄𝜌𝜎𝑖𝑗 = |⟨𝜙𝑖|𝜓𝑗⟩|2𝑞𝑗 . (28)

We now give a simple calculation that allows us to compute a quantum Rényi divergence from an as-
sociated classical probability distribution. This calculation has appeared in the literature as early as [30,
Thm. 2.2]; see [6, Prop. 1] for an explicit statement. For convenience, we repeat the calculation here.

Proposition 2.21. DRén
𝛼 (𝜌 ‖ 𝜎) = dRén

𝛼 (𝑃 𝜌𝜎 ‖ 𝑄𝜌𝜎).

Proof. One calculates:

DRén
𝛼 (𝜌 ‖ 𝜎) =

1

𝛼− 1
ln tr

⎛⎝⎛⎝ 𝑑∑︁
𝑖=1

𝑝𝛼𝑖 |𝜙𝑖⟩⟨𝜙𝑖|

⎞⎠⎛⎝ 𝑑∑︁
𝑗=1

𝑞1−𝛼𝑗 |𝜓𝑗⟩⟨𝜓𝑗 |

⎞⎠⎞⎠
=

1

𝛼− 1
ln

⎛⎝ 𝑑∑︁
𝑖,𝑗=1

𝑝𝛼|⟨𝜙𝑖|𝜓𝑗⟩|2𝑞1−𝛼
⎞⎠ =

1

𝛼− 1
ln

𝑑∑︁
𝑖,𝑗=1

(𝑃 𝜌𝜎𝑖𝑗 )𝛼(𝑄𝜌𝜎𝑖𝑗 )1−𝛼 = dRén
𝛼 (𝑃 𝜌𝜎 ‖ 𝑄𝜌𝜎).

We now define some particular quantum distances/divergences:

Definition 2.22. The trace distance, a metric, is the measured 𝑓 -divergence associated to total variation
distance [25]:

Dtr(𝜌, 𝜎) = 1
2‖𝜌− 𝜎‖1. (29)

Definition 2.23. The Bures distance DB(𝜌, 𝜎), a metric, is the square-root of the measured 𝑓 -divergence
associated to Hellinger-squared [19]. It has the formula

D2
B(𝜌, 𝜎) = 2(1 − F(𝜌, 𝜎)), (30)

where F(𝜌, 𝜎) = ‖√𝜌
√
𝜎‖1 is the fidelity between 𝜌 and 𝜎 (in the “square root” convention). The infidelity

between 𝜌 and 𝜎 is simply 1 − F(𝜌, 𝜎) = 1
2D2

B(𝜌, 𝜎).

There is a close analogy between the quantum fidelity and the classical Bhattacharrya coefficient, and
indeed the analogue of Equation (9) holds if one uses the “sandwiched Rényi entropy” [28, 48]. Using instead
the conventional Rényi entropy yields a slightly different notion:
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Definition 2.24. The quantum Hellinger affinity is defined by

A(𝜌, 𝜎) = tr
(︀√
𝜌
√
𝜎
)︀

= exp
(︁
− 1

2 · DRén
1/2 (𝜌 ‖ 𝜎)

)︁
, (31)

and the quantum Hellinger distance DH(𝜌, 𝜎), a metric, is defined by

D2
H(𝜌, 𝜎) = 2(1 − A(𝜌, 𝜎)) = tr

(︀
(
√
𝜌−

√
𝜎)2
)︀

= ‖√𝜌−
√
𝜎‖2F = D2

H(𝜌, 𝜎) = d2
H(𝑃 𝜌𝜎, 𝑄𝜌𝜎), (32)

the last equality using Proposition 2.21. (Note also the useful tensorization identity, A(𝜌1 ⊗ 𝜌2, 𝜎1 ⊗ 𝜎2) =
A(𝜌1, 𝜎1) · A(𝜌2, 𝜎2).)

Fortunately, the preceding two distances differ by only a small constant factor:

Fact 2.25. D2
B(𝜌, 𝜎) ≤ D2

H(𝜌, 𝜎) ≤ 2D2
B(𝜌, 𝜎).

The left inequality in Fact 2.25 is from A(𝜌, 𝜎) ≤ F(𝜌, 𝜎); the right inequality follows from [6, Eq. (32)].

Definition 2.26. The Bures 𝜒2-divergence of 𝜌 from 𝜎 is the measured 𝑓 -divergence associated to classical
𝜒2-divergence [12, 43]. It can also be given the following formula when 𝜎 = diag(𝑞1, . . . , 𝑞𝑑) is diagonal of
full rank (and this suffices to define it for general full-rank 𝜎, since it is unitarily invariant):

D𝜒2(𝜌 ‖ 𝜎) =

𝑑∑︁
𝑖,𝑗=1

2

𝑞𝑖 + 𝑞𝑗
|𝜏𝑖𝑗 |2, where 𝜏 = 𝜌− 𝜎. (33)

We will use this formula even when 𝑞1, . . . , 𝑞𝑑 ≥ 0 do not sum to 1.

Similar to the connection between ℓ22-distance and 𝜒2-divergence in the classical case, the Bures 𝜒2-
divergence can be seen as a kind of “weighted” version of the Frobenius-squared distance, in which the error
term |𝜏𝑖𝑗 |2 is weighted by 2

𝑞𝑖+𝑞𝑗
= Θ( 1

max{𝑞𝑖,𝑞𝑗} ).

Indeed, we will frequently consider applying Equation (33) when the 𝑞𝑖’s form (or approximately form)
a nondecreasing sequence, meaning that (we expect) 𝑞𝑖 ≤ 𝑞𝑗 . In this case it is reasonable to use 𝑞𝑖 + 𝑞𝑗 ≥ 𝑞𝑗 ,
which motivates the following simple bound:

Definition 2.27. In the notation from Definition 2.26, we define

̂︀D𝜒2(𝜌 ‖ 𝜎) =

𝑑∑︁
𝑖,𝑗=1

2

𝑞max(𝑖,𝑗)
|𝜏𝑖𝑗 |2 ≥ D𝜒2(𝜌 ‖ 𝜎); (34)

and, for 𝐿 = [𝑑′] (for 𝑑′ ≤ 𝑑) we define

̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌) =

∑︁
𝑖,𝑗:

max(𝑖,𝑗)̸∈𝐿

2

𝑞max(𝑖,𝑗)
|𝜏𝑖𝑗 |2 =

∑︁
𝑘 ̸∈𝐿

2

𝑞𝑘

∑︁
𝑖,𝑗:

max(𝑖,𝑗)=𝑘

|𝜏𝑖𝑗 |2. (35)

Note that
D𝜒2(𝜌 ‖ 𝜎) ≤ D𝜒2(𝜌[𝐿] ‖ 𝜎[𝐿]) + ̂︀D−𝐿

𝜒2 (𝜌 ‖ 𝜎). (36)

Definition 2.28. The quantum relative entropy [46] is defined by

S(𝜌 ‖ 𝜎) = tr(𝜌(ln 𝜌− ln𝜎)) = DRén
1 (𝜌 ‖ 𝜎) = dKL(𝑃 𝜌𝜎 ‖ 𝑄𝜌𝜎), (37)

the last equality using Proposition 2.21. Also, if 𝜌 is a “bipartite” quantum state on 𝐴⊗𝐵, where 𝐴 ∼= 𝐵 ∼=
C𝑑, and if 𝜌𝐴, 𝜌𝐵 denote its marginals (obtained by tracing out the 𝐵, 𝐴 components, respectively), the
quantum mutual information of 𝜌 is defined to be

𝐼(𝐴 : 𝐵)𝜌 = S(𝜌 ‖ 𝜌𝐴 ⊗ 𝜌𝐵). (38)
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Fact 2.29. The conventional quantum ∞-Rényi divergence (discussed in, e.g., [3]) is, by Proposition 2.21,

DRén
∞ (𝜌 ‖ 𝜎) = max

𝑖,𝑗∈[𝑑]
⟨𝜙𝑖|𝜓𝑗⟩̸=0

{ln(𝑝𝑖/𝑞𝑗)} ≤ ln
(︀
‖𝜌‖‖𝜎−1‖

)︀
≤ ln ‖𝜎−1‖. (39)

Remark 2.30. This quantity is not the same as the “quantum max-relative entropy” defined in [16]; it
would be if one replaced the conventional Rényi entropy with its sandwiched form.

Relating some of these divergences is the following chain of inequalities:

Proposition 2.31. 1
2D2

H(𝜌, 𝜎) ≤ Dtr(𝜌, 𝜎) ≤ DB(𝜌, 𝜎) ≤
√︀

S(𝜌 ‖ 𝜎),
√︁

D𝜒2(𝜌 ‖ 𝜎).

The first inequality above is from from [6, Thm. 2]. The second follows from the classical case [19]. The
third also follows from the classical case and the observation that the “measured” quantum relative entropy
is at most S(𝜌 ‖ 𝜎) (see, e.g. [9, App. A]). The fourth also follows from the classical case, using that Bures 𝜒2

is the measured form of classical 𝜒2 [12, 43]. As with Proposition 2.11, some of these inequalities can be

sharpened slightly; for example we have the quantum Pinsker inequality Dtr(𝜌, 𝜎) ≤
√︁

1
2S(𝜌 ‖ 𝜎).

2.3 Quantum Tomography with Quantum Relative Entropy Loss

One of our main results follows easily from the above discussion of divergences. The idea is to improve on
certain “reverse quantum Pinsker” results which have been studied previously; see, e.g., [5] for a quantum
generalization of the reverse-Pinsker Inequality (14). We will use the following strengthened version with
quantum Hellinger-squared in place of trace distance:

Theorem 2.32. For 𝜌, 𝜎 ∈ C𝑑×𝑑, we have S(𝜌 ‖ 𝜎) ≤ (2 + DRén
∞ (𝜌 ‖ 𝜎)) · D2

H(𝜌, 𝜎).

Proof. This is immediate from S(𝜌 ‖ 𝜎) = dKL(𝑃 𝜌𝜎 ‖ 𝑄𝜌𝜎), Proposition 2.12, and Fact 2.29.

Despite following directly from known results (up to constant factors), the above theorem does not seem
to have appeared previously in the literature. Our next result shows that this can be used to automatically
upgrade any quantum tomography algorithm with an infidelity guarantee to one with a relative entropy
guarantee, at the expense of only a log factor (cf. our main Theorem 1.6 upgrading Frobenius-squared-
tomography to 𝜒2-tomography).

Notation 2.33. We write ∆𝜖 for the completely depolarizing channel, which for 0 ≤ 𝜖 ≤ 1 acts on 𝜌 ∈ C𝑑×𝑑
as ∆𝜖(𝜌) = (1 − 𝜖)𝜌+ 𝜖(1/𝑑) (with 1 denoting the identity matrix).

Theorem 2.34. Let 𝒜 be a state tomography algorithm that, given 𝑛 copies of 𝜌 ∈ C𝑑×𝑑 and parame-
ter 𝜖, outputs an estimate ̂︀𝜌 achieving infidelity 1

2D2
B(𝜌, ̂︀𝜌) ≤ 𝜖 ≤ 1/2. Then letting 𝜌′ = ∆2𝜖(̂︀𝜌), we have

S(𝜌 ‖ 𝜌′) ≤ 16𝜖 · (2 + ln(𝑑/2𝜖)).

Applying this theorem with the previously known result of Haah–Harrow–Ji–Wu–Yu, Theorem 1.4, we
immediately conclude Corollary 1.8, that there is a state tomography algorithm with respect to quantum
relative entropy that has copy complexity 𝑛 = 𝑂(𝑟𝑑/𝜖) · log2(𝑑/𝜖) (using collective measurements).

Theorem 2.34 is immediate from the following (together with the fact that Hellinger-squared is upper
bounded by 4 times infidelity (Fact 2.25)):

Proposition 2.35. Suppose 𝜌, 𝜎 ∈ C𝑑×𝑑 are quantum states with D2
H(𝜌, 𝜎) ≤ 𝜖. Then for 𝜎′ = ∆𝜖/2(𝜎) we

have S(𝜌 ‖ 𝜎′) ≤ 4𝜖 · (2 + ln(2𝑑/𝜖)).

Proof. Since ∆𝜖/2(𝜎) has smallest eigenvalue at least 𝜖/2𝑑, we have DRén
∞ (𝜌 ‖ 𝜎′) ≤ ln(2𝑑/𝜖) and hence from

Theorem 2.32 it suffices to show D2
H(𝜌, 𝜎′) ≤ 4𝜖. In turn, since DH(·, ·) is a metric, by Remark 2.2 it suffices

to prove D2
H(𝜎, 𝜎′) ≤ 𝜖. But using Proposition 2.31, we indeed have

D2
H(𝜎, 𝜎′) ≤ ‖𝜎 − 𝜎′‖1 = (𝜖/2)‖𝜎 − 1/𝑑‖1 ≤ (𝜖/2)(‖𝜎‖1 + ‖1/𝑑‖1) = 𝜖. (40)
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3 Quantum state tomography

We give a guide to this section:

• Section 3.1 gives a simple 𝜒2-tomography algorithm for qubits; it achieves copy complexity 𝑛 = 𝑂(1/𝜖)
(no logs) using single-copy measurements with one round of adaptivity. It serves as a small warmup
for our main algorithm.

• Section 3.2 begins the main exposition of our reduction from Frobenius-squared-tomography to 𝜒2-
tomography. This section shows how to give several useful black-box “upgrades” to any Frobenius-
squared estimator.

• In Section 3.3 we give a high-level sketch of the central estimation routine for our main theorem, which
takes Frobenius-squared-tomography and turns it into a 𝜒2-tomography algorithm “except for very
small eigenvalues”.

• The most involved Section 3.4 follows; it fills in all the technical details for the preceding sketch.

• Section 3.5 shows how to take the newly-established central estimation routine and massage its output
to achieve either good 𝜒2-accuracy (with one set of parameters) or good relative entropy accuracy
(with another set of parameters). It is in this section that we establish all the theorems and corollaries
from Section 1.2.

• Finally, for the convenience of the reader, Section 3.6 gives a simple Frobenius-squared-tomography
algorithm using single-copy measurements with complexity 𝑛 = 𝑂(𝑑2/𝜖).

3.1 Qubit tomography with single-copy measurements

As mentioned in Section 1.1, it has long been known that one can learn a single qubit state 𝜌 to infidelity 𝜖
using single-copy measurements on 𝑂(1/𝜖) copies of 𝜌, combined with one “round” of adaptivity. In this
section we give a short proof of the same result but with a stronger conclusion: 𝜖 accuracy with respect to
Bures 𝜒2-divergence.

We first repeat Proposition 2.16 in the simpler context of 𝑑 = 2, and at the same time achieving a
concentration bound:

Lemma 3.1. There is a simple classical estimation algorithm that, given 𝑛 = 𝑂(log(1/𝛿)/𝜖) samples from
an unknown probability distribution 𝑝 = (𝑝0, 𝑝1) on {0, 1}, outputs an estimate ̂︀𝑝 satisfying d𝜒2(𝑝 ‖ ̂︀𝑝) ≤ 𝜖
except with probability at most 𝛿.

Proof. As shown in Proposition 2.16, if ̂︀𝑞 is the “add-one estimator” formed from 𝑚 ≥ 4/𝜖 samples, then
E[d𝜒2(𝑝 ‖ ̂︀𝑞)] ≤ 1

𝑚+1 ≤ 𝜖/4. By Markov’s inequality, the estimator is “good”, meaning d𝜒2(𝑝 ‖ ̂︀𝑞) ≤ 𝜖, except
with probability at most 1/4. If we now use 𝑛 = 𝑂(log(1/𝛿)/𝜖) samples to produce 𝑂(1/𝛿) independent such
estimators, a Chernoff bound tells us that, except with probability at most 𝛿, at least a 2/3 fraction of them
are “good”. If we now associate each of our estimates ̂︀𝑞 = (̂︀𝑞0, ̂︀𝑞1) with the point ̂︀𝑞1 in the interval [0, 1],
we see that all of the “good” points appear consecutively. (That is, “reading left-to-right”, the ̂︀𝑞1 values
consist of some “bad” points, followed by some “good” points, followed by some “bad” points.) The reason
for this is that d𝜒2(𝑝 ‖ ̂︀𝑞) is a monotonic function of |𝑝1 − ̂︀𝑞1|. Thus if the algorithm now selects the median̂︀𝑞1 point (and its associated estimate ̂︀𝑞 = (̂︀𝑞0, ̂︀𝑞1)), this will be among the 2/3-fraction “good” points except
with probability at most 𝛿.

Theorem 3.2. There is an efficient quantum state tomography algorithm that uses 𝑛 = 𝑂(log(1/𝛿)/𝜖)
copies of an unknown qubit state 𝜌 ∈ C2×2 and outputs an estimate ̂︀𝜌 satisfying D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝜖 except with
probability at most 𝛿. Moreover, the algorithm is simple to implement in the following sense: The first 𝑛/4
copies of 𝜌 are separately measured in the Pauli 𝑋 basis, the next 𝑛/4 in the Pauli 𝑌 basis, the next 𝑛/4 in
the Pauli 𝑍 basis, and the final 𝑛/4 in a fixed basis determined by the first 3𝑛/4 measurement outcomes.
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Proof. The first phase of the algorithm (using 3𝑛/4 copies) can employ any standard single-copy quantum
state tomography routine; the specific one we describe in Section 3.6 has the stated Pauli format, and (using
Proposition 2.15) will return a PSD matrix 𝜌′ (not necessarily a state) satisfying

‖𝜌− 𝜌′‖2F ≤ 𝜖/4 (41)

except with probability at most 𝛿/2. Next, the algorithm employs a change of basis so as to make 𝜌′ diagonal.
It suffices to estimate 𝜌 in this new basis. Since Frobenius-distance is unitarily invariant, in the new basis
Inequality (41) implies

|𝜌01|2 = |𝜌10|2 ≤ 𝜖/8. (42)

As for the diagonal entries 𝑝 = (𝜌00, 𝜌11) of 𝜌, the algorithm measures its remaining 𝑛/4 copies of 𝜌 in
the diagonal basis and employs Lemma 3.1. For 𝑛 = 𝑂(log(1/𝛿)/𝜖), this produces an estimate ̂︀𝑝 satisfying
d𝜒2(𝑝 ‖ ̂︀𝑝) ≤ 𝜖/2 except with probability at most 𝛿/2. The final estimate of 𝜌 (in the new basis) will
be ̂︀𝜌 = diag(̂︀𝑝).

Except with probability at most 𝛿/2+𝛿/2 = 𝛿, both components of the preceding algorithm produce good
estimates. Then using Equation (33) we may decompose D𝜒2(𝜌 ‖ ̂︀𝜌) into the on-diagonal contribution, which
is d𝜒2(𝑝 ‖ ̂︀𝑝) ≤ 𝜖/2, and the off-diagonal contribution, which is 2|𝜌01|2 + 2|𝜌10|2 ≤ 𝜖/2 (by Inequality (42).
This completes the proof.

3.2 Upgrading Frobenius-squared tomography algorithms

Definition 3.3. A function 𝑓 mapping quantum states to numbers at least 1 will be called a rate function.

Definition 3.4. We say a quantum state estimation algorithm 𝒜 has Frobenius-squared rate 𝑓 if the following
holds: Whenever 𝒜 is given 𝑚 ∈ N+ as well as 𝜌⊗𝑚 for some quantum state 𝜌 ∈ C𝑑×𝑑, it outputs a matrix̂︀𝜌 ∈ C𝑑×𝑑 (not necessarily a state) satisfying E[‖𝜌− ̂︀𝜌‖2F] ≤ 𝑓(𝜌)/𝑚.

Theorems 1.1 and 1.3 may be restated as follows:

Theorem 3.5. There is an estimation algorithm with Frobenius-squared rate 𝑂(𝑑) on 𝑑-dimensional states.

Theorem 3.6. There is an estimation algorithm using single-copy measurements with Frobenius-squared
rate 𝑂(𝑟𝑑) on 𝑑-dimensional states of rank at most 𝑟.

Finally, Proposition 3.25 gives a simple single-copy measurement algorithm that has Frobenius-squared
rate 𝑂(𝑑2) (matching matching Theorem 3.6 in the high-rank case).

We will now successively describe several black-box “upgrades” one may make to a Frobenius-squared
estimation algorithm. All of these will have the feature that they preserve the single-copy measurement
property. Our ultimate goal will be to upgrade to closeness guarantees with respect to much stronger
distance measures, with minimal loss in rate. To illustrate the idea, we start with a very simple upgrade
(that most natural algorithms are unlikely to need):

Proposition 3.7. A Frobenius-squared estimation algorithm may be transformed to one that always outputs
Hermitian estimates, with no loss in rate.

Proof. Given algorithm 𝒜, let 𝒜′ be the algorithm that on input 𝜌 runs 𝒜, producing ̂︀𝜌, and then outputŝ︀𝜌𝐻 := (̂︀𝜌 + ̂︀𝜌†)/2, so that ̂︀𝜌𝐴 := (̂︀𝜌 − ̂︀𝜌†)/2 and ̂︀𝜌 = ̂︀𝜌𝐻 + ̂︀𝜌𝐴. The Hermitian matrices are a real vector
space, so by picking a (Hilbert–Schmidt) orthogonal basis (for example, the generalized Pauli matrices), is
it easy to verify that for Hermitian 𝜌, we always have ‖̂︀𝜌 − 𝜌‖2F = ‖̂︀𝜌𝐻 − 𝜌‖2F + ‖̂︀𝜌𝐴‖2F ≥ ‖̂︀𝜌𝐻 − 𝜌‖2F. The
claim then follows by taking expectations.

The next upgrade is not a change in algorithm, but rather in terminology.

Definition 3.8. Say that an estimation algorithm with Frobenius-squared rate 𝑓 returns diagonal estimates
if, when run on 𝜌 ∈ C𝑑×𝑑, it returns a unitary 𝑈 and a (real) diagonal matrix ̂︀𝜌 = diag(𝑞) with 𝑞1 ≤ 𝑞2 ≤
· · · ≤ 𝑞𝑑 such that E[‖𝑈𝜌𝑈 † − ̂︀𝜌‖2F] ≤ 𝑓(𝜌).
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Given such an algorithm, we can get an Frobenius-squared estimator with rate 𝑓 for 𝜌 just by returning
𝑈 †̂︀𝜌𝑈 . But we will prefer the interpretation that the algorithm is allowed to “revise” 𝜌 to state 𝑈𝜌𝑈 † (with
𝑈 of its choosing), and then try to estimate this new state.

Proposition 3.9. A Frobenius-squared estimation algorithm may be transformed to one that returns diagonal
estimates, with no loss in rate.

Proof. First we transform the algorithm to output Hermitian estimates, using Proposition 3.7. Then, given
output ̂︀𝜌, the algorithm simply chooses a unitary 𝑈 such that ̂︀𝜌 = 𝑈 diag(𝑞)𝑈 † with 𝑞1 ≤ · · · ≤ 𝑞𝑑, and
returns the unitary 𝑈 along with diagonal estimate diag(𝑞). The proof is complete because Frobenius-squared
distance is unitarily invariant.

Proposition 3.10. With only constant-factor rate loss, a Frobenius-squared estimation algorithm may be
transformed to one that outputs diagonal estimates ̂︀𝜌 = diag(𝑞) that are genuine quantum states, meaning
that 𝑞 is a probability vector.

Proof. First we apply Proposition 3.9, obtaining algorithm 𝒜′ with diagonal estimates and rate 𝑓 . Now our
transformed algorithm, when given 𝑚 copies of 𝜌, will start by running 𝒜′ on the first 𝑚/2 copies (we may
assume 𝑚 is even), yielding a diagonal estimate 𝜌′ (and, to be formal, a unitary 𝑈 which should be used to
conjugate the remaining copies of 𝜌). Say that ‖𝜌′ − 𝜌‖2F = 𝜂, and recall that E[𝜂] ≤ 2𝑓(𝜌)/𝑚. The next
step of the algorithm is to use single-copy standard basis measurements with the remaining 𝑚/2 copies of 𝜌
to make a new estimate 𝑞 of the diagonal of 𝜌. Applying Proposition 2.14, the empirical estimator 𝑞 is a
genuine probability distribution, and the algorithm will finally output ̂︀𝜌 = diag(𝑞). (Actually, since 𝑞 might
not have nondecreasing entries, we should finally “revise” by a permutation matrix.) The Frobenius-squared
error of ̂︀𝜌 is its off-diagonal Frobenius-squared error plus its diagonal Frobenius-squared error; the former is
at most 𝜂 and the latter is, in expectation, at most 2/𝑚 by Proposition 2.14. Since E[𝜂] ≤ 2𝑓(𝜌)/𝑚, the
total expected Frobenius-squared error is at most 2𝑓(𝜌)/𝑚+ 2/𝑚 = 𝑂(𝑓(𝜌))/𝑚, as needed.

We will also need a high-probability version of the preceding result, with some extra properties. The
reader should recall the 𝑚𝛿 notation from Proposition 2.15.

Proposition 3.11. The algorithm from Proposition 3.10 may be modified so that, given 0 < 𝛿 < 1/2, its
output satisfies each of the following statements except with probability at most 𝛿 (for any fixed 𝑖 ∈ [𝑑]):

• ‖𝜌− ̂︀𝜌‖2F ≤ 𝑓/𝑚𝛿;

• if 𝜌𝑖𝑖 ≥ 1/𝑚𝛿 then ̂︀𝜌𝑖𝑖 is within a 1.01-factor of 𝜌𝑖𝑖;

• if 𝜌𝑖𝑖 ≤ 1/𝑚𝛿 then ̂︀𝜌𝑖𝑖 ≤ 1.01/𝑚𝛿.

Proof. The first statement may be obtained in a black-box way using the “median trick”, which upgrades
estimation-in-expectation to estimation-with-confidence-(1−𝛿) at the expense of only an 𝑂(log(1/𝛿)) sample
complexity factor. This trick may be applied whenever the loss measure is a metric (as Frobenius distance
is); see, e.g., [22, Prop. 2.4] for details. It is sufficient to prove this statement with the 𝑂(·), because we may
then remove it by raising 𝑐 in the 𝑚𝛿 notation. (Similarly, we may tolerate achieving 2𝛿 failure probabilities,
rather than 𝛿.)

To get the other two conclusions, we need to re-estimate the diagonal of 𝜌, just as we did in Proposi-
tion 3.10. For this we use Proposition 2.15. As in Proposition 3.10, this re-estimation contributes some new
on-diagonal Frobenius-squared distance, but only at most 1/𝑚𝛿 ≤ 𝑓/𝑚𝛿; thus the proposition’s first state-
ment remains okay. The remaining statements follow from Proposition 2.15 by taking its “𝑆” to be {𝑖}.

Now we come to a most important reduction: being able to estimate subnormalized states. Let us define
terms, and make the simplifying assumption that rate functions for proper states only depend on dimension
and rank, and that they are nondecreasing functions of these parameters. We also assume for simplicity
that our subnormalized states arise just from submatrices, but they could just as well arise from any given
projector Π.
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Definition 3.12. We say a subnormalized state estimation algorithm 𝒜 has Frobenius-squared rate 𝑓(𝑑, 𝑟, 𝜏)
if the following holds: Whenever 𝒜 is given a subset 𝑆 ⊆ [𝑑], as well as 𝜌⊗𝑚 for some quantum state 𝜌 ∈ C𝑑×𝑑
of rank at most 𝑟, it outputs an estimate ̂︀𝜌[𝑆] ∈ C𝑆×𝑆 such that E[‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F] ≤ 𝑓(𝑑, 𝑟, 𝜏)/𝑚, where 𝜏
denotes tr 𝜌[𝑆].

Remark 3.13. In the above definition, we may also include the condition of “returning diagonal estimates”
as in Definition 3.8, with the returned unitary 𝑈 being in C𝑆×𝑆 . Moreover, for linguistic simplicity we will
henceforth assume that “diagonal estimates” are also required to have nonnegative (diagonal) entries.

Remark 3.14. Our subnormalized state estimation algorithms will actually achieve improved rate 𝑓(𝑑′, 𝑟′, 𝜏),
where 𝑑′ = |𝑆| ≤ 𝑑 and 𝑟′ = rank 𝜌[𝑆] ≤ 𝑟, but we will not try to squeeze anything out of this, for simplicity.

Proposition 3.15. A state estimation algorithm 𝒜 with Frobenius-squared rate 𝑓(𝑑, 𝑟) may be transformed
to a subnormalized state estimation algorithm 𝒜′, returning diagonal estimates, and having Frobenius-squared
rate 𝑓(𝑑, 𝑟, 𝜏) = 𝑂(𝜏 · 𝑓(𝑑, 𝑟)).

Proof. We first apply Proposition 3.10 so that 𝒜 may be assumed to output diagonal, genuine quantum
states. This only changes bounds by constant factors on 𝑚, to which the statement of this proposition is
anyway insensitive.

Given 𝑆 ⊆ [𝑑] and 𝜌⊗𝑚, let us write 𝜏 = tr 𝜌[𝑆] and also introduce the quantum state 𝜌|𝑆 = 𝜌[𝑆]/𝜏
(when 𝜏 > 0). The first step of the new algorithm 𝒜′ is to measure each copy of 𝜌 using the two-outcome
PVM (1𝑆 ,1[𝑑]∖𝑆). It retains all copies that have outcome 𝑆 and discards the rest. In this way, 𝒜′ obtains

(𝜌|𝑆)⊗𝑚′
, where 𝑚′ ∼ Binomial(𝑚, 𝜏). If 𝑚′ = 0 then the algorithm will return the 0 matrix. Otherwise, if

𝑚′ ̸= 0 the algorithm applies 𝒜 to 𝜌|𝑆 and obtains an estimate ̂︀𝜌|𝑆 with expected Frobenius-squared error at
most 𝑓(𝑑′, 𝑟′)/𝑚′ ≤ 𝑓(𝑑, 𝑟)/𝑚′, where 𝑑′ = |𝑆|, 𝑟′ = rank 𝜌[𝑆]. The final estimate that 𝒜′ produces for 𝜌[𝑆]
will be ̂︀𝜌[𝑆] := (𝑚′/𝑚)̂︀𝜌|𝑆 ; indeed, we can use this expression even in the 𝑚′ = 0 case. We now have

E
[︀
‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F

]︀
= E

[︀
‖𝜏𝜌|𝑆 − (𝑚′/𝑚)̂︀𝜌|𝑆‖2F

]︀
= 𝜏2 E

[︀
‖𝜌|𝑆 − (𝑚′/(𝜏𝑚))̂︀𝜌|𝑆‖2F

]︀
. (43)

We write
𝜌|𝑆 − (𝑚′/(𝜏𝑚))̂︀𝜌|𝑆 = Δ + 𝑅, Δ := 𝜌|𝑆 − ̂︀𝜌|𝑆 , 𝑅 := (1 −𝑚′/(𝜏𝑚))̂︀𝜌|𝑆 , (44)

and use
E
[︀
‖Δ + 𝑅‖2F

]︀
≤ 2E

[︀
‖Δ‖2F

]︀
+ 2E

[︀
‖𝑅‖2F

]︀
. (45)

By assumption on 𝒜, for 𝑚′ > 0 we have

E
[︀
‖Δ‖2F | 𝑚′ = 𝑚′]︀ ≤ 𝑓(𝑑, 𝑟)/𝑚′ ≤ 2𝑓(𝑑, 𝑟)/(𝑚′ + 1), (46)

and this is also true even for 𝑚′ = 0 (recall we always assume 𝑓 ≥ 1). Using the elementary fact

E
[︀

1
Bin(𝑚,𝜏)+1

]︀
= 1−(1−𝜏)𝑚+1

𝜏(𝑚+1) ≤ 1/(𝜏𝑚), we conclude

E
[︀
‖Δ‖2F

]︀
≤ 2𝑓(𝑑′, 𝑟′)/(𝜏𝑚). (47)

As for E
[︀
‖𝑅‖2F

]︀
, let us first observe that conditioned on any 𝑚′ = 𝑚 (including 𝑚 = 0), we have ‖̂︀𝜌|𝑆‖F ≤ 1

with certainty, simply because 𝒜 always outputs a genuine quantum state. Thus

E
[︀
‖𝑅‖2F

]︀
≤ E

[︀
(1 −𝑚′/(𝜏𝑚))2

]︀
= (1 − 𝜏)/(𝜏𝑚) ≤ 1/(𝜏𝑚). (48)

Combining all of the above (and using 𝑓 ≥ 1 again), we conclude E
[︀
‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F

]︀
≤ 𝜏2 ·𝑂(𝑓(𝑑, 𝑟)/(𝜏𝑚)),

as needed.

Finally, we use Proposition 3.11 to obtain some high-probability guarantees:

Proposition 3.16. A state estimation algorithm having Frobenius-squared rate 𝑓(𝑑, 𝑟) may be transformed
(preserving the single-copy measurement property) into a subnormalized state estimation algorithm returning
diagonal estimates with the following properties:

Given parameters 𝑟, 𝛿, and 𝑆 ⊆ [𝑑], as well as 𝜌⊗𝑚 for some quantum state 𝜌 ∈ C𝑑×𝑑 of rank at most 𝑟,
the algorithm outputs a number ̂︀𝜏 and a (diagonal) estimate ̂︀𝜌[𝑆] ∈ C𝑆×𝑆 such that, writing 𝜏 = tr 𝜌[𝑆] and
recalling the notation 𝑚𝛿 = 𝑚/(𝑐 ln(1/𝛿)) (where 𝑐 ≥ 1 is some universal constant), we have the following:
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(i) if 𝜏 ≤ 1/𝑚𝛿 then ̂︀𝜏 ≤ 1.1/𝑚𝛿 except with probability at most 𝛿;

(ii) if ̂︀𝜏 ≤ 1.1/𝑚𝛿, then ‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F ≤ 𝑂(𝜏 · 𝑓(𝑑, 𝑟)/𝑚) except with probability at most .0001;

and if 𝜏 ≥ 1/𝑚𝛿 then the following hold:

(iii) the quantities 𝜏 , ̂︀𝜏 , and tr ̂︀𝜌[𝑆] are all within a 1.1-factor, except with probability at most 𝛿;

(iv) ‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F ≤ 𝜏 · 𝑓(𝑑, 𝑟)/𝑚𝛿, except with probability at most 𝛿;

(v) simultaneously for all 𝑖 ∈ 𝑆 with 𝜌𝑖𝑖 ≥ 𝜃 := max{𝜏/(100𝑟), 1/𝑚𝛿/𝑑}, we have that ̂︀𝜌𝑖𝑖 is within a
1.1-factor of 𝜌𝑖𝑖, except with probability at most 𝛿.

(vi) simultaneously for all 𝑖 ∈ 𝑆 with 𝜌𝑖𝑖 ≤ 𝜃, we have that ̂︀𝜌𝑖𝑖 ≤ 1.1𝜃, except with probability at most 𝛿.

Proof. Since the definition of 𝑚𝛿 anyway contains an unspecified constant 𝑐, it is sufficient to prove the
proposition with constant losses on various bounds (and then raise 𝑐’s value to compensate). In particular,
for notational simplicity we assume that we get 2𝑚 rather than 𝑚 copies of 𝜌.

The algorithm begins by using the first 𝑚 copies of 𝜌 to obtain (𝜌|𝑆)⊗𝑚′
as in Proposition 3.15; this

is done just to get 𝑚′. The algorithm’s output ̂︀𝜏 is 𝑚′/𝑚, and the proposition’s conclusion Item (i)
follows straightforwardly from Chernoff bounds (assuming 𝑐 is sufficiently large). Similarly, the 𝜏 -vs.-̂︀𝜏
part of Item (iii) follows from a Chernoff bound, and we will actually ensure 1.01-factor closeness for later
convenience.

If ̂︀𝜏 ≤ 1.1/𝑚𝛿, then the algorithm runs Proposition 3.15 on the second 𝑚 copies of 𝜌, outputting the
result. The conclusion in Item (ii) then holds except with probability at most .0001, by applying Markov’s
inequality to Proposition 3.15’s guarantee.

We now describe how the remainder of the algorithm proceeds, when ̂︀𝜏 ≥ 1.1/𝑚𝛿. Note that since it
only remains to prove Items (iii) to (vi), we may as well assume 𝜏 ≥ 1/𝑚𝛿. The algorithm proceeds similarly
to Proposition 3.15, using the second 𝑚 copies of 𝜌 to get (𝜌|𝑆)⊗𝑚′

for a new value of 𝑚′. Since we are now
assuming 𝜏 ≥ 1/𝑚𝛿, a Chernoff bound implies that except with probability at most 𝛿 we’ll have⃒⃒⃒⃒

𝑚′

𝑚
− 𝜏

⃒⃒⃒⃒
≤ .01

√︀
𝜏/𝑚𝛿 ≤ .01𝜏 =⇒ 𝑚′

𝑚
is within a 1.02-factor of 𝜏 (49)

(as always, assuming 𝑐 is large enough). The algorithm now applies Proposition 3.11 in place of Proposi-
tion 3.15, getting an estimate ̂︀𝜌|𝑆 of 𝜌|𝑆 that satisfies the conclusions of Proposition 3.11. Finally, as before,
the algorithm produces ̂︀𝜌[𝑆] := (𝑚′/𝑚)̂︀𝜌|𝑆 as its final estimate. Let us now verify Items (iii) to (vi).

First, tr ̂︀𝜌[𝑆] = 𝑚′/𝑚, which by Equation (49) is within a 1.02-factor of 𝜏 , thereby completing the proof
of Item (iii) (recall that 𝜏 and ̂︀𝜏 are within a 1.01-factor).

Next, we verify Item (iv) up to a constant factor (as is sufficient). Following Equations (43) to (45) (but
without expectations), we have

‖𝜌[𝑆] − ̂︀𝜌[𝑆]‖2F ≤ 𝜏2(2‖𝜌|𝑆 − ̂︀𝜌|𝑆‖2F + 2‖𝑅‖2F) ≤ 2𝜏2 · 𝑓(𝑑, 𝑟)/𝑚′
𝛿 + 2(𝜏 −𝑚′/𝑚)2. (50)

But Equation (49) (and using 𝑓 ≥ 1) we can bound the above by 2.03𝜏 · 𝑓(𝑑, 𝑟)/𝑚𝛿, establishing Item (iv).
To show Item (v), let 𝐵 denote the set of all 𝑖 ∈ 𝑆 with 𝜌𝑖𝑖 ≥ 𝜃. Since 𝜃 ≥ 𝜏/(100𝑟) = (tr 𝜌[𝑆])/(100𝑟),

we know that |𝐵| ≤ 100𝑟. Moreover, for any 𝑖 ∈ 𝐵 we may use

(𝜌|𝑆)𝑖𝑖 ≥ 𝜃/𝜏 ≥ 1/(𝜏𝑚𝛿/𝑑) ≥ 1/(𝜏𝑚𝛿/𝑟) ≥ 1/(1.02𝑚′
𝛿/𝑟), (51)

(employing Equation (49)). (We weakened 𝛿/𝑑 to 𝛿/𝑟 just to illustrate this is all we need for Item (v).) So
by using the second bullet point of Proposition 3.11 in a union bound over the at most 𝑂(𝑟) indices in 𝐵, we
conclude that (except with probability at most 𝑂(𝛿)) for all 𝑖 ∈ 𝐵 it holds that (̂︀𝜌|𝑆)𝑖𝑖 is within a 1.01-factor
of (𝜌|𝑆)𝑖𝑖, and hence (by Equation (49)) ̂︀𝜌𝑖𝑖 is within a 1.1-factor of 𝜌𝑖𝑖. This completes the verification of
Item (v).

Finally, verifying Item (vi) is similar; for simplicity, we just union-bound over all 𝑖 ∈ 𝑆 ⊆ [𝑑], using the
fact that 𝜃 ≥ 1/𝑚𝛿/𝑑.

16



3.3 The plan for learning in 𝜒2: refining diagonal estimates on submatrices

Suppose we have come up with a diagonal estimate 𝜎1 of 𝜌 ∈ C𝑑×𝑑 having some Frobenius-squared distance
𝜂1 = ‖𝜌 − 𝜎1‖2F. (Here we will have “revised” some original 𝜌 by the unitary that makes 𝜎1 diagonal; this
revision will be taken into account in all future uses of 𝜌.) Suppose we now choose some 𝑑2 ≤ 𝑑1 := 𝑑, define
𝜌2 to be the top-left 𝑑2 × 𝑑2 submatrix of 𝜌, and apply Proposition 3.16 to it. The idea is that we hope to
improve the top-left part of our estimate 𝜎1.

Recall that Proposition 3.16 affords us a diagonal estimate 𝜎2 ∈ C𝑑2×𝑑2 ; let us understand a little more
carefully what this means. The algorithm will give us a unitary 𝑈2 ∈ C𝑑2×𝑑2 such that ‖𝑈2𝜌2𝑈

†
2 −𝜎2‖2F = 𝜂2

for some small value 𝜂2. The idea now is to “revise” both 𝜌1 := 𝜌 and 𝜎1 by the unitary 𝑈2⊕1, where here 1
has dimension 𝑑1− 𝑑2. By design, the revised version of 𝜌2 will have Frobenius-squared distance 𝜂2 from 𝜎2.
Moreover, after revision, the fact that ‖𝜌1 − 𝜎1‖2F = 𝜂1 is unchanged (since Frobenius distance is unitarily
invariant). On the other hand, although 𝜎1 was previously diagonal, it no longer will be after revision. But
it’s easy to see that it will remain diagonal except on its top-left 𝑑2 × 𝑑2 block, which we are intending to
replace by 𝜎2 anyway. In particular, the off-diagonal 𝑑2 × (𝑑1 − 𝑑2) and (𝑑1 − 𝑑2) × 𝑑2 blocks of 𝜎1 remain
zero.

Let us summarize. We will first obtain a diagonal estimate 𝜎1 of 𝜌1 with some error 𝜂1. Then after
choosing some 𝑑2 ∈ [𝑑1], we will obtain a further diagonal estimate 𝜎2 of the top-left 𝑑2× 𝑑2 block of 𝜌, with
some error 𝜂2. We might then take as final estimate ̂︀𝜌 the diagonal matrix formed by replacing the top-left
𝑑2 × 𝑑2 block of 𝜎1 by 𝜎2.

Naturally, this plan can be iterated (meaning we can try to improve the estimate’s top-left 𝑑3 × 𝑑3 block
for some 𝑑3 ∈ [𝑑2]) but let us pause here to discuss error. If we’re interested in the Frobenius-squared error
of our current estimate ̂︀𝜌, we can’t say more than that it is bounded by 𝜂1 + 𝜂2. Here we’re decomposing
the error into the contribution from the top-left 𝑑2 × 𝑑2 block (which is 𝜂2) plus the contribution from
the remaining ⌟⌟⌟-shaped region (consisting of the bottom-right (𝑑1 − 𝑑2) × (𝑑1 − 𝑑2) block plus the two off-
diagonal blocks). We will just bound this second error contribution by the whole Frobenius-squared distance
of 𝜎1 from 𝜌1, which is 𝜂1.

It would seem that this scheme of refining our estimate for the top-left block hasn’t helped, since it took
us from Frobenius-squared error 𝜂1 to Frobenius-squared error (at most) 𝜂1 + 𝜂2. But the idea is that our
new estimate ̂︀𝜌 may have improved Bures 𝜒2-divergence. Recall the formula for 𝜒2-divergence, Equation (33)
(which we will apply even though ̂︀𝜌 might not precisely be a state, meaning of trace 1). Recall also that our
diagonal estimates 𝜎1 = diag(𝑞(1)) and 𝜎2 = diag(𝑞(2)) are chosen to have nondecreasing entries along the

diagonal. (We moreover expect that ̂︀𝜌 will also have nondecreasing entries, meaning 𝑞
(2)
𝑑2

≤ 𝑞
(1)
𝑑2+1, but we

won’t rely on this.) Now we can use the bound

D𝜒2(𝜌 ‖ ̂︀𝜌) ≤
𝑑∑︁

𝑖,𝑗=1

2

𝑞max(𝑖,𝑗)
|𝜌𝑖𝑗 − ̂︀𝜌𝑖𝑗 |2 ≤ 2

𝑞
(2)
1

𝑑2∑︁
𝑖,𝑗=1

|𝜌𝑖𝑗 − ̂︀𝜌𝑖𝑗 |2 +
2

𝑞
(1)
𝑑2+1

∑︁
𝑖,𝑗:

max(𝑖,𝑗)>𝑑2

|𝜌𝑖𝑗 − ̂︀𝜌𝑖𝑗 |2
≤ 2

𝑞
(2)
1

𝜂2 +
2

𝑞
(1)
𝑑2+1

𝜂1. (52)

The idea here is that if, perhaps

𝑞
(2)
1 ≈ · · · 𝑞(2)𝑑2 ≈ (tr𝜎2)/𝑟; and 𝑞

(1)
𝑑2+1 ≈ · · · ≈ 𝑞

(1)
𝑑 ≈ (tr𝜎1)/𝑟, (53)

then hopefully from Proposition 3.15 with 𝑚 copies we will have 𝜂1 ≈ 𝑂(𝜏1 · 𝑓(𝑑, 𝑟))/𝑚 and 𝜂2 ≈ 𝑂(𝜏2 ·
𝑓(𝑑, 𝑟))/𝑚, where 𝜏𝑖 = tr 𝜌𝑖 ≈ tr𝜎𝑖. Then the total 𝜒2-error would be approximately

2𝑟

𝜏2
·𝑂(𝜏2 · 𝑓(𝑑, 𝑟))/𝑚+

2𝑟

𝜏1
·𝑂(𝜏1 · 𝑓(𝑑, 𝑟))/𝑚 = 𝑂(𝑟 · 𝑓(𝑑, 𝑟))/𝑚. (54)

This would mean we have converted Frobenius-squared rate 𝑂(𝑓(𝑑, 𝑟)) to 𝜒2-divergence rate 𝑂(𝑟 · 𝑓(𝑑, 𝑟)).
Now Equation (53) might seem a little optimistic, but our idea will be that no matter what 𝜌’s eigenvalues
are, we can break them up into logarithmically many groups where they only differ by a constant factor, and
thereby achieve the desired 𝜒2-divergence rate of 𝑂(𝑟 · 𝑓(𝑑, 𝑟)) up to logarithmic losses. Unfortunately, we
will have to deal separately with any extremely small eigenvalues of 𝜌, which causes some additional losses.
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Remark 3.17. Ideally this plan suggests we might be able to achieve sample complexity 𝑛 = ̃︀𝑂(𝑟𝑑/𝜖) for
tomography with respect to Bures 𝜒2-divergence (for collective measurements). But the “small eigenvalue”
issue causes problems for this. Without explicitly claiming a lower bound, let us sketch why it seems difficult
to significantly beat the 𝑛 = ̃︀𝑂(𝑟.5𝑑1.5/𝜖) complexity from Corollary 1.7, even in the case 𝑟 = 1.

So suppose 𝜌 = |𝑣⟩⟨𝑣| for an unknown unit vector |𝑣⟩ ∈ C𝑑. The best known tomography algorithm for a
pure state is extremely natural and simple [24]; it outputs a pure state |𝑢⟩⟨𝑢| and achieves |⟨𝑢|𝑣⟩| ≥ 1 − 𝜂,
i.e. infidelity 𝜂, with high probability using 𝑛 = 𝑂(𝑑/𝜂) copies. Moreover, 𝑛 = Ω(𝑑/𝜂) is a known lower
bound [21]. However, with certainty we will have |⟨𝑢|𝑣⟩| ≠ 1 and hence D𝜒2(𝜌 ‖ |𝑢⟩⟨𝑢|) = ∞. To achieve
D𝜒2(𝜌 ‖ ̂︀𝜌) <∞ we will have to output a full-rank hypothesis ̂︀𝜌, and to achieve D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝑂(𝜖) it’s hard
to imagine what to try besides something like ̂︀𝜌 = ∆𝜖(|𝑢⟩⟨𝑢|). But with this choice it’s not hard to compute
that D𝜒2(𝜌 ‖ ̂︀𝜌) ≥ (𝑑/𝜖) · Ω(𝜂2), seemingly forcing us to choose 𝜂 = Θ(𝜖/

√
𝑑) and thereby use 𝑛 = Ω(𝑑1.5/𝜖)

copies.

3.4 The central estimation algorithm

Theorem 3.18. A state estimation algorithm 𝒜 having Frobenius-squared rate 𝑓 = 𝑓(𝑑, 𝑟) satisfying4

𝑓 ≫ log 𝑑 may be transformed (preserving the single-copy measurement property) into a state estimation
algorithm 𝒜′ returning diagonal estimates with the following properties:

Given 𝑟 and 𝑚 ≥ 𝑟, the algorithm sets the following parameters:

𝛿 =
.0001

log2(𝑚/𝑟𝑓)
, 𝜖 = 𝐶𝑟𝑓/𝑚𝛿, ℓmax = ⌈log2(1/𝜖)⌉, 𝜖 = 𝜖ℓmax 𝑀 = 2𝑚ℓmax.

(Here 𝐶 is a large universal constant, and it is assumed that 𝜖 is at most some small universal constant.)
Then, given 𝜌⊗𝑀 , where 𝜌 ∈ C𝑑×𝑑 is a quantum state of rank at most 𝑟, the algorithm 𝒜′ outputs (with

probability at least .99) a partition [𝑑] = 𝐿 ⊔ 𝑅 (with 𝐿 = [𝑑′] for some 𝑑′ ≤ 𝑑), together with a quantum
state ̃︀𝜌 = diag(𝑞) ∈ C𝑑×𝑑 satisfying:

(a) |𝑅| ≤ 𝑂(𝑟ℓmax);

(b) 𝜏 , 𝜖′ ≤ 𝑂(𝜖), where 𝜏 := tr 𝜌[𝐿] and 𝜖′ := tr ̃︀𝜌[𝐿];

(c) ‖𝜌[𝐿] − ̃︀𝜌[𝐿]‖2F ≤ 𝑂( 𝜖2

𝑟 ln(1/𝛿) ) ≤ 𝑂(𝜖2/𝑟);

(d) ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌) ≤ 𝑂(𝜖).

Proof. Fix a Frobenius-squared estimation algorithm 𝒜 with rate 𝑓 = 𝑓(𝑑, 𝑟), and assume we have passed
it through Proposition 3.16 so that we may use it to make diagonal estimates of subnormalized states.

The algorithm 𝒜′ will run in some ℓ stages, where we guarantee ℓ ≤ ℓmax. Each stage will consume 𝑚
copies of 𝜌. After the ℓth stage, there will be some final processing that uses the remaining 𝑀/2 (at least)
copies of 𝜌.

As the algorithm progresses, it will define a sequence of numbers 𝑑 = 𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑ℓ, with the
value 𝑑𝑡+1 being selected at the end of the 𝑡th stage. We introduce the notation 𝑅𝑡 = {𝑑𝑡+1 + 1, . . . ,𝑑𝑡};
each of these sets will have cardinality at most 𝑟.

At the beginning of the 𝑡th stage, 𝒜′ will run the algorithm from Proposition 3.16 on 𝜌[𝑑𝑡], with confidence
parameter 𝛿, resulting in some ̂︀𝜏 𝑡 and a diagonal estimate that we will call 𝜎𝑡. We will use the fact that 𝛿
always satisfies all of the following (provided 𝐶 is large enough and using 𝑓 ≥ log 𝑑):

1/𝑚𝛿 ≤ 𝜖, 1/𝑚𝛿/𝑑 ≪ 𝜖/𝑟, 𝛿 ≤ .0001/ℓmax. (55)

By losing probability at most 5𝛿 in each stage, we may assume that except with probability at most .0006,
all of the desired outcomes from Proposition 3.16 do occur over the course of the algorithm.

If ̂︀𝜏 𝑡 ≤ 1.1𝜖 or 𝑡 > 𝑑, then this is declared the final stage; i.e., the algorithm will define ℓ = 𝑡 and move
to its “final processing”. Otherwise, in a non-final stage we have ̂︀𝜏 > 1.1𝜖 ≥ 1.1/𝑚𝛿 (using Inequality (55)),
so by Item (i) of Proposition 3.16 we may assume that tr 𝜌[𝑑𝑡] > 1/𝑚𝛿, and hence (using Item (iii)),

for 𝑡 < ℓ, tr𝜎𝑡[𝑆] is within a 1.1-factor of 𝜏𝑡 := tr 𝜌[𝑑𝑡]; moreover, 𝜏𝑡 ≥ 𝜖. (56)

4This mild assumption is made to keep parameter-setting simpler.
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Next, using Item (v) of Proposition 3.16 and 1/𝑚𝛿/𝑑 ≪ 𝜖/𝑟 ≤ 𝜏𝑡/𝑟 (which implies that the Proposition’s
“𝜃” is 𝜏/(100𝑟)), we get that

for 𝑡 < ℓ, for all 𝑖 ≤ 𝑑𝑡 with 𝜌𝑖𝑖 ≥ 𝜏𝑡/(100𝑟), (𝜎𝑡)𝑖𝑖 is within a 1.1-factor of 𝜌𝑖𝑖. (57)

Moreover, from Item (vi) we get

for 𝑡 < ℓ, for all 𝑖 ≤ 𝑑𝑡 with 𝜌𝑖𝑖 ≤ 𝜏𝑡/(100𝑟), (𝜎𝑡)𝑖𝑖 ≤ 1.1𝜏𝑡/(100𝑟). (58)

Finally, we record the main conclusions Items (ii) and (iv) of Proposition 3.16, taking care to distinguish the
final stage:

for 𝑡 < ℓ, ‖𝜌[𝑑𝑡] − 𝜎𝑡‖2F ≤ 𝜏𝑡𝑓/𝑚𝛿; and for 𝑡 = ℓ, ‖𝜌[𝑑𝑡] − 𝜎𝑡‖2F ≤ 𝑂(𝜏ℓ𝑓/𝑚). (59)

Now we explain how algorithm 𝒜′ defines 𝑑𝑡+1 at the end of non-final stage 𝑡, where recall non-finality
implies from Inequality (56)

𝜏𝑡 ≥ 𝜖 = 𝐶𝑟𝑓/𝑚𝛿. (60)

Considering the first bound in Inequality (59), note that rank 𝜌[𝑑𝑡] ≤ 𝑟, so we have that the diagonal
matrix 𝜎𝑡 has Frobenius-squared distance at most 𝜏𝑡𝑓/𝑚𝛿 from a matrix of rank at most 𝑟. But the rank-
at-most-𝑟 matrix that is Frobenius-squared-closest to 𝜎𝑡 is simply 𝜎′

𝑡, the matrix formed by zeroing out all
but the 𝑟 largest entries of 𝜎𝑡. Recalling that 𝜎′

𝑡 has nondecreasing diagonal entries, this means 𝜎′
𝑡 is formed

by zeroing out all diagonal entries of index at most 𝑑′
𝑡+1 := max{𝑑𝑡 − 𝑟, 0}. Thus we have

‖𝜌[𝑑𝑡] − 𝜎′
𝑡‖2F ≤ 4𝜏𝑡𝑓/𝑚𝛿 =⇒ ‖𝜌[𝑑′

𝑡+1]‖2F ≤ 4𝜏𝑡𝑓/𝑚𝛿 =⇒ (tr 𝜌[𝑑′
𝑡+1])2 ≤ 𝑟 · 4𝜏𝑡𝑓/𝑚𝛿, (61)

where the last deduction used rank 𝜌[𝑑′
𝑡+1] ≤ 𝑟. But assuming 𝐶 ≥ 64, Inequality (60) implies

𝑟 · 4𝜏𝑡𝑓/𝑚𝛿 = 𝜏𝑡 · (4𝑟𝑓/𝑚𝛿) ≤ 𝜏𝑡 · 1
16𝜏𝑡 = ( 1

4𝜏𝑡)
2, (62)

Thus from Inequality (61) we conclude

tr 𝜌[𝑑′
𝑡+1] ≤ 1

4𝜏𝑡 =⇒ tr 𝜌[𝑅′
𝑡] ≥ 3

4𝜏𝑡 for 𝑅′
𝑡 := {𝑑′

𝑡+1 + 1, . . . ,𝑑𝑡}. (63)

Let 𝑅′′
𝑡 = {𝑖 ∈ 𝑅′

𝑡 : 𝜌𝑖𝑖 > (1.1)4𝜏𝑡/(100𝑟) = .014641𝜏𝑡/𝑟}. Since
⃒⃒
𝑅′
𝑡

⃒⃒
≤ 𝑟, the sum of 𝜌𝑖𝑖 over all 𝑅′

𝑡 ∖𝑅
′′
𝑡 is

at most .014641𝜏𝑡 ≤ .02𝜏𝑡; hence∑︁
𝑖∈𝑅′′

𝑡+1

𝜌𝑖𝑖 ≥ .73𝜏𝑡, and each summand exceeds (1.1)4
𝜏𝑡

100𝑟
. (64)

Applying Inequalities (56) and (57), we conclude that∑︁
𝑖∈𝑅′′

𝑡

(𝜎𝑡)𝑖𝑖 ≥ .73
1.1𝜏𝑡 > .66𝜏𝑡, and each summand exceeds (1.1)3

𝜏𝑡
100𝑟

≥ (1.1)2
tr𝜎𝑡
100𝑟

. (65)

We now stipulate that algorithm 𝒜′ chooses 𝑑𝑡+1 ≥ 𝑑′
𝑡+1 to be minimal so that

(𝜎𝑡)𝑖𝑖 > (1.1)2
tr𝜎𝑡
100𝑟

for all 𝑖 ∈ 𝑅𝑡 = {𝑑𝑡+1 + 1, . . . ,𝑑𝑡}. (66)

(In other words, {𝑑𝑡+1 + 1, . . . ,𝑑𝑡} is the maximum-cardinality suffix of 𝑅′
𝑡 where the above holds.) Then∑︁

𝑖∈𝑅𝑡

(𝜎𝑡)𝑖𝑖 = tr𝜎𝑡[𝑅𝑡] > .66𝜏𝑡. (67)

Moreover, from Inequalities (56) and (58) we know that 𝜌𝑖𝑖 > 𝜏𝑡/(100𝑟) for all 𝑖 ∈ 𝑅𝑡; hence

(𝜎𝑡)𝑖𝑖 is within a 1.1-factor of 𝜌𝑖𝑖 for all 𝑖 ∈ 𝑅𝑡, (68)
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and therefore Inequality (67) implies tr 𝜌[𝑅𝑡] >
.66
1.1𝜏𝑡 ≥

1
2𝜏𝑡, whence

𝜏𝑡+1 = tr 𝜌[𝑑𝑡+1] = tr 𝜌[𝑑𝑡] − tr 𝜌[𝑅𝑡] ≤ 𝜏𝑡 − 1
2𝜏𝑡 <

1
2𝜏𝑡. (69)

This is the key deduction that lets us make progress, in particular confirming that ℓ ≤ ⌈log2(1/𝜖)⌉ (because
of Inequality (56)).

Now we discuss the “final processing”. The final partition output by 𝒜′ will be 𝐿 ⊔𝑅, where 𝐿 = [𝑑ℓ]
and 𝑅 = 𝑅1⊔ · · · ⊔𝑅ℓ−1; since |𝑅𝑡| ≤ 𝑟 for all 𝑡 we satisfy the theorem’s Item (a). We can verify the bound
on 𝜏 = tr 𝜌[𝑑ℓ] in Item (b) by recalling that when the final stage is reached we have ̂︀𝜏 ≤ 1.1𝜖, and hence
𝜏 ≤ (1.1)2𝜖 by Item (iii) of Proposition 3.16 (recall 𝜖 ≥ 1/𝑚𝛿). We can also partly verify the conclusion
Item (c) by observing that the off-diagonal Frobenius-squared of 𝜌[𝐿] is upper-bounded by ‖𝜌[𝐿] − 𝜎𝑑ℓ

‖2F,
and by Inequality (59) this is at most 𝑂(𝜏ℓ𝑓/𝑚) ≤ 𝑂(𝜖𝑓/𝑚) = 𝑂(𝜖2)/(𝑟 ln(1/𝛿)). Thus:

Item (c) holds provided ‖diag(𝜌)[𝐿] − ̃︀𝜌[𝐿]‖22 ≤ 𝑂(𝜖2)/(𝑟 ln(1/𝛿)). (70)

Aside from establishing the above, it remains to describe how algorithm 𝒜′ forms ̃︀𝜌 satisfying the theo-
rem’s conclusion Item (d). We first describe a candidate output we’ll call 𝜎′ that almost works: namely, 𝜎′

is formed by setting its diagonal elements from 𝑅𝑡 to be those from 𝜎𝑡, for 𝑡 < ℓ. (The remaining diagonal
entries may be set to 0.) The difficulty with this is that it’s not easy to control tr𝜎′, but let us ignore this
issue and calculate 𝜒2-divergence.5 Ignoring the fact that we are not working with normalized states, we
may bound

̂︀D−𝐿
𝜒2 (𝜌 ‖ 𝜎′) ≤

∑︁
𝑖,𝑗∈[𝑑]

𝑘:=max(𝑖,𝑗)∈𝑅

2

𝜎′
𝑘𝑘

⃒⃒
𝜌𝑖𝑗 − 𝜎′

𝑖𝑗

⃒⃒2 ≤
∑︁
𝑡<ℓ

2

min{𝜎′
ℎℎ : ℎ ∈ 𝑅𝑡}

· ‖𝜌[𝑑𝑡] − 𝜎𝑡‖2F. (71)

Each summand above can be upper-bounded using Inequalities (59) and (66), yielding

̂︀D−𝐿
𝜒2 (𝜌 ‖ 𝜎′) ≤

∑︁
𝑡<ℓ

2

1.1𝜏𝑡/(100𝑟)
· 𝜏𝑡𝑓/𝑚𝛿 ≤ 𝑂(ℓmax𝑟𝑓/𝑚𝛿) = 𝑂(𝜖ℓmax) = 𝑂(𝜖). (72)

We now work to control the trace of our estimate. Our strategy is to have 𝒜′ perform diagonal mea-
surements on the remaining 𝑀/2 copies of 𝜌 to classically relearn its diagonal via Proposition 2.16, with its
“𝑆” set to 𝑅. Calling the resulting probability distribution 𝑞, the algorithm will finally take ̃︀𝜌 = diag(𝑞).

First we complete the verification by Item (c) by establishing the condition in Inequality (70): since 𝑞[𝐿] is
formed by the empirical estimator, Markov’s inequality and Proposition 2.14 imply that except with probabil-
ity at most .0001 we have ‖diag(𝜌)[𝐿] − ̃︀𝜌[𝐿]‖22 ≤ 𝑂(tr 𝜌[𝐿])/(𝑀/2) ≤ 𝑂(𝜖/(𝑚ℓmax)) = 𝑂(𝜖2/(𝑟 ln(1/𝛿)𝑓ℓmax),
and we have a factor of 𝑓ℓmax to spare.

Next, using Markov again with Proposition 2.16 we get that except with probability at most .0001,

d𝜒2(diag(𝜌[𝑅]) ‖ 𝑞[𝑅]) ≤ 𝑂(|𝑅|/𝑀) ≤ 𝑂(𝑟/𝑚) ≪ 𝜖. (73)

Also, using 𝑓 ≥ log 𝑑 (and 𝐶 large enough), we indeed have 1/(𝑀/2)𝛿′ ≤ 𝜖/(100𝑟) for 𝛿′ = .0001/|𝑅| ≥
.0001/(𝑟ℓmax); since also 𝜌𝑖𝑖 ≥ 𝜖/(100𝑟) for all 𝑖 ∈ 𝑅 (recall Inequality (64)), we conclude

𝑞𝑖 is within a 4-factor of 𝜌𝑖𝑖 for all 𝑖 ∈ 𝑅, (74)

except with probability at most .0001. Finally, it is easy to see that in Proposition 2.16 we have E[‖𝑞[𝐿]‖1] ≤
tr 𝜌[𝐿] = 𝜏 ≤ 𝑂(𝜖), and hence Markov implies that except with probability at most .0001 we have 𝜖′ =
‖𝑞[𝐿]‖1 ≤ 𝑂(𝜖), completing the verification of Item (b).

Finally we finish the analysis of ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌). The contribution to this quantity from the diagonal entries is

precisely Inequality (73). On the other hand, since 𝜎′ and ̃︀𝜌 are both diagonal, the off-diagonal contribution

to ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌) can be bounded by a constant times Inequality (72), using the fact that the diagonal entries

(from 𝑅) of 𝜎′ and ̃︀𝜌 are all within a constant factor by virtue of Inequalities (68) and (74). This completes
the verification of Item (d).

5Strictly speaking, 𝜎′ need not have nondecreasing diagonal entries as promised, but we can finally “revise” by a permutation
matrix to fix this.
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We also show the following, to improve some log(1/𝜖) factors in the case that 𝜖 is extremely small and
𝑟 = Θ(𝑑). (The reader might like to think of the case when 𝑑 = 𝑂(1).)

Theorem 3.19. There is a variant version of 𝒜′ from Theorem 3.18 with the following alternative parameter
settings:

𝛿 =
.0001

𝑑+ 1
, ℓmax = 𝑑+ 1, 𝜖 =

𝑑 ln 𝑟

𝑟
𝜖. (75)

Proof. Besides verifying that Inequality (55) still holds with our changed 𝛿 and ℓmax, there is one alternative
idea to be explained. In the preceding proof, the driver of progress was Inequality (69) showing 𝜏𝑡+1 <

1
2𝜏𝑡;

this enabled us to take ℓmax logarithmic in 1/𝜖. In this variant, we will only use this inequality weakly, to
show that |𝑅𝑡| ≥ 1 so that 𝑑𝑡+1 < 𝑑𝑡 strictly; this is already enough to ensure that taking ℓmax = 𝑑 + 1 is
acceptable. On the other hand, if we only implement this change then 𝜖 would become unnecessarily large
(namely, 𝜖(𝑑+ 1)).

To get the improved value of 𝜖, we change how 𝒜′ chooses the 𝑑𝑡 values. Returning to Inequality (65),
in the 𝑡th stage there is a set 𝑅′′

𝑡 of at most 𝑟 indices 𝑖 on which each (𝜎𝑡)𝑖𝑖 exceeds 𝛽 := (1.1)2 · tr𝜎𝑡

100𝑟 , and
their sum 𝑠 exceeds .66𝜏𝑡 ≥ .6(tr𝜎𝑡). Then 𝒜′ chooses 𝑅𝑡 to consist of all indices 𝑖 ∈ 𝑅′

𝑡 with (𝜎𝑡)𝑖𝑖 ≥ 𝛽,
of which there are at most 𝑂(𝑟). Note that if we conversely had |𝑅𝑡| at least Ω(𝑟) for every 𝑡, then the
algorithm would halt in at most 𝑂(𝑑/𝑟) stages, allowing us to take 𝜖 = (𝑑/𝑟)𝜖 rather than 𝜖ℓmax (a significant
improvement when 𝑟 = Θ(𝑑)).

The idea is now for 𝒜′ to choose a slightly different 𝑅𝑡 in each round, of cardinality 𝑟𝑡 ≥ 1, so that
(𝜎𝑡)𝑖𝑖 ≥ Ω( tr𝜎𝑡

𝑟𝑡 ln 𝑟
). (Note that we need not be concerned with the sum of (𝜎𝑡)𝑖𝑖 on the new 𝑅𝑡, since we’re

now only using that |𝑅𝑡| ≥ 1 always.) If we can show this is possible, then we can use it as a replacement
for Inequality (66) when deriving Inequality (72); we’ll then get

̂︀D−𝐿
𝜒2 (𝜌 ‖ 𝜎′) ≤

∑︁
𝑡<ℓ

𝑂(𝑟𝑡 ln 𝑟)

𝜏𝑡
· 𝜏𝑡𝑓/𝑚𝛿 ≤ 𝑂(𝑑(ln 𝑟)𝑓/𝑚𝛿) = 𝑂(𝜖), (76)

as claimed.
But the proof that we can choose 𝑅𝑡 as described is elementary. Essentially, the algorithm has a nonin-

creasing sequence of (at most) 𝑟 numbers 𝑥1, . . . , 𝑥𝑟 (where 𝑥𝑖 = (𝜎𝑡)𝑑𝑡+1−𝑖,𝑑𝑡+1−𝑖) whose sum is (at least) 𝑠.
We need to show that for some 𝑟𝑡 it holds that 𝑥𝑟𝑡

≥ Ω( 𝑠
𝑟𝑡 ln 𝑟

). But if 𝑥𝑘 ≪ 𝑠
𝑘 ln 𝑟 for all 𝑘 ∈ [𝑟], then∑︀𝑟

𝑘=1 𝑥𝑘 ≪ 𝑠, a contradiction.

3.5 Conclusions from the central estimation algorithm

Corollary 3.20. After applying Theorem 3.18 and introducing the quantum state ̂︀𝜌 = ̃︀𝜌|𝑅 = 1
1−𝜖′

̃︀𝜌[𝑅]

(extended with 0’s so it is in C𝑑×𝑑), we have

D2
B(𝜌, ̂︀𝜌) ≤ 𝑂(𝜖). (77)

Proof. Let us write 𝜌|𝑅 = 1
1−𝜏 𝜌[𝑅] (which again we’ll extend to C𝑑×𝑑 when necessary). Let us first show

D𝜒2(𝜌|𝑅 ‖ ̃︀𝜌|𝑅) ≤ 𝑂(𝜖). (78)

Up to a slight “rescaling” by the factors 1− 𝜏 and 1− 𝜖′, this is nearly the same as the Item (d) conclusion,

̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌) ≤ 𝑂(𝜖). (79)

Item (b) tells us that 𝜏 , 𝜖′ ≤ 𝑂(𝜖) (which may be assumed at most, say, 1
2 ); from this, it is not hard to show

that the “rescaling” only makes a constant-factor difference to the off-diagonal 𝜒2-divergence contributions.
So to establish Inequality (78), it remains to analyze the effect of rescaling on the on-diagonal 𝜒2-divergence
contributions. Writing 𝜌𝑖𝑖 = (1+𝜁𝑖)𝑞𝑖 for some numbers 𝜁𝑖 > 0, the bound on just the diagonal contribution
in Inequality (79) is equivalent to ∑︁

𝑖∈𝑅

𝜁2
𝑖 𝑞𝑖 ≤ 𝑂(𝜖). (80)
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Then in the rescaling, when 𝜌𝑖𝑖 is replaced by 1
1−𝜏 𝜌𝑖𝑖 in 𝜌|𝑅 and 𝑞𝑖 is replaced by 1

1−𝜖′ 𝑞𝑖 in ̂︀𝜌, it is as

though 𝜁𝑖 is replaced by 1−𝜖′

1−𝜏 𝜁𝑖 = (1 ± 𝑂(𝜖̃))𝜁𝑖. Putting that into Inequality (80) shows that the rescaling

only changes the on-diagonal 𝜒2-divergence contribution by an additive 𝑂(𝜖)
∑︀
𝑖∈𝑅 𝑞𝑖 = 𝑂(𝜖), sufficient to

complete the proof of Inequality (78).
Having established Inequality (78) (and recalling ̂︀𝜌 = ̃︀𝜌|𝑅), Theorem 2.32 immediately implies

D2
B(𝜌|𝑅, ̂︀𝜌) ≤ 𝑂(𝜖). (81)

On the other hand, the Gentle Measurement Lemma [49]

tr 𝜌[𝑅] = F(𝜌, 𝜌|𝑅)2 = (1 − 1
2D2

B(𝜌, 𝜌|𝑅))2. (82)

From tr 𝜌[𝑅] = 1 − 𝜏 ≥ 1 − 𝑂(𝜖), the above directly yields D2
B(𝜌, 𝜌|𝑅) ≤ 𝑂(𝜖), and thus Inequality (77)

follows from Inequality (81) and DB(·, ·) being a metric.

Now by working out the parameters (using both Theorems 3.18 and 3.19), we get the below Frobenius-to-
infidelity transformation. The further transformation to relative entropy accuracy promised in Theorem 1.6
follows by applying Theorem 2.34.

Corollary 3.21. A state estimation algorithm with Frobenius-squared rate 𝑓 = 𝑓(𝑑, 𝑟) ≫ log 𝑑 may be
transformed (preserving the single-copy measurement property) into a state estimation algorithm with the
following property:

Given parameters 𝜖, 𝑟, and 𝑀 copies of a quantum state 𝜌 ∈ C𝑑×𝑑 of rank at most 𝑟, either

𝑀 = 𝑂

(︂
𝑟𝑓(𝑑, 𝑟)

𝜖
· log2(1/𝜖) log log(1/𝜖)

)︂
or alternatively, 𝑀 = 𝑂

(︂
1

𝜖
· 𝑑2𝑓(𝑑, 𝑟)(log 𝑑)(log 𝑟)

)︂
, (83)

suffices for the algorithm to output (with probability at least .99) the classical description of a quantum state ̂︀𝜌
with infidelity 1 − F(𝜌, ̂︀𝜌) = 1

2D2
B(𝜌, ̂︀𝜌) ≤ 𝜖.

In particular, by Theorem 1.3

𝑀 = 𝑂

(︂
𝑟𝑑

𝜖
· log2(1/𝜖) log log(1/𝜖)

)︂
suffices using collective measurements (84)

(or for very small 𝑑, alternatively 𝑀 = 𝑂
(︀
1
𝜖 · 𝑑

3(log 𝑑)(log 𝑟)
)︀
suffices). And, by Theorem 1.1

𝑀 = 𝑂

(︂
𝑟2𝑑

𝜖
· log2(1/𝜖) log log(1/𝜖)

)︂
suffices using single-copy measurements (85)

(or for very small 𝑑, alternatively 𝑀 = 𝑂
(︀
1
𝜖 · 𝑟𝑑

3(log 𝑑)(log 𝑟)
)︀
).

It remains to obtain the Frobenius-to-𝜒2 transformation promised in Theorem 1.6. This is Corollary 3.24
below, which we achieve in two steps.

Corollary 3.22. After applying Theorem 3.18 and introducing the quantum state ̂︀𝜌 = 𝜂 · 1
𝐿1𝐿×𝐿 + (1− 𝜂)̃︀𝜌

(where we assume 𝜂 < 1/2, say) we have

Doff
𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝑂(𝜖 log(1/𝜖) + (𝑑/𝑟)(𝜖2/𝜂)) (86)

Don
𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝑂(𝜂 + 𝜖 log(1/𝜖) + (𝑑/𝑟)(𝜖2/𝜂)) (87)

=⇒ D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝑂(𝜂 + 𝜖 log(1/𝜖) + (𝑑/𝑟)(𝜖2/𝜂)), (88)

where we have split out the “off-diagonal” and “on-diagonal” contributions to D𝜒2(𝜌 ‖ ̂︀𝜌). (Also, the factors
of “𝑑” in the above three bounds may be replaced by |𝐿|, which is potentially much smaller.)

Remark 3.23. Given this corollary, it would be natural to fix

𝜂 =
√︀
𝑑/𝑟 · 𝜖 (89)
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so as to balance the 𝜂 term and the (𝑑/𝑟)(𝜖2/𝜂) term, making both contribute 𝑂(
√︀
𝑑/𝑟 · 𝜖). This swamps

the 𝜖 log(1/𝜖) term in Inequality (88) (up to a log factor). Thus with this choice of 𝜂 we get the bound

D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ ̃︀𝑂(
√︀
𝑑/𝑟 · 𝜖), and if we want this to equal some “𝜖final” then we need to choose

𝜖 = ̃︀Θ(
√︀
𝑟/𝑑 · 𝜖final), (90)

thereby making the final copy complexity ̃︀𝑂(𝑟𝑓/𝜖) = ̃︀𝑂(
√
𝑟𝑑 · 𝑓/𝜖final), as stated in Theorem 1.6. Note that

with these choices, the smallest eigenvalue of ̂︀𝜌 will be ̃︀Ω(𝜖final/𝑑), as expected.
The reason we do not simply directly fix 𝜂 =

√︀
𝑑/𝑟 · 𝜖 in the proof of Corollary 3.22 is that in our later

application to quantum zero mutual information testing (Section 4.3), it will be important to allow for a
tradeoff between the off-diagonal 𝜒2-error, the on-diagonal 𝜒2-error, and the minimum eigenvalue of ̂︀𝜌.

Proof of Corollary 3.22. Recall that in Theorem 3.18, we have

𝜖 = 𝜖 log(1/𝜖); (91)

we will use this shorthand throughout the present proof. We start by employing Inequality (36):

D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ D𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) + ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̂︀𝜌) = Doff

𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) + Don
𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) + ̂︀D−𝐿

𝜒2 (𝜌 ‖ ̂︀𝜌). (92)

To bound the off-diagonal contribution, we use: (i) each diagonal entry of ̂︀𝜌[𝐿] is at least 𝜂/𝐿; (ii) the
off-diagonal Frobenius-squared of 𝜌− ̂︀𝜌 is the same as that of 𝜌− ̃︀𝜌 (since ̂︀𝜌, ̃︀𝜌 are both diagonal), which is
bounded by 𝑂(𝜖2)/(𝑟 ln(1/𝛿)) from Item (c). Combining these facts yields

Doff
𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) ≤ 𝑂((|𝐿|/𝑟)(𝜖2/𝜂)). (93)

As for the on-diagonal contribution, writing 𝑝 for the diagonal entries of 𝜌[𝐿], and ̂︀𝑞 = (𝜂/𝐿)1𝐿 + (1 − 𝜂)𝑞
for those of ̂︀𝜌,

Don
𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) =

∑︁
𝑖∈𝐿

(𝑝𝑖 − ̂︀𝑞𝑖)2̂︀𝑞𝑖 ≤ 𝑂(1)
∑︁
𝑖∈𝐿

(𝑝𝑖 − 𝑞𝑖)
2̂︀𝑞𝑖 +𝑂(1)

∑︁
𝑖∈𝐿

(𝜂/𝐿)2̂︀𝑞𝑖 +𝑂(1)
∑︁
𝑖∈𝐿

𝑒𝑡𝑎2𝑞2
𝑖̂︀𝑞𝑖 . (94)

For the first two summands above we use ̂︀𝑞𝑖 ≥ 𝜂2/|𝐿| in the denominator; for the third, ̂︀𝑞𝑖 ≥ (1−𝜂)𝑞𝑖 ≥ 1
2𝑞𝑖.

Thus

Don
𝜒2(𝜌[𝐿] ‖ ̂︀𝜌[𝐿]) ≤ 𝑂(|𝐿|/𝜂)‖𝑝[𝐿] − 𝑞[𝐿]‖22 +𝑂(𝜂) +𝑂(𝜂2)

∑︁
𝑖∈𝐿

̂︀𝑞𝑖 ≤ 𝑂((|𝐿|/𝑟)(𝜂2/𝜂) + 𝜂), (95)

where we used ‖𝑝[𝐿] − 𝑞[𝐿]‖22 ≤ ‖𝜌[𝐿] − ̃︀𝜌[𝐿]‖2F and then Item (c) again.

In light of Inequalities (93) and (95), it suffices to show that ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̂︀𝜌) = ̂︀D−𝐿

𝜒2 (𝜌 ‖ (1 − 𝜂)̃︀𝜌) ≤
𝑂(𝜂+ 𝜖), with the off-diagonal contribution being just 𝑂(𝜖). This off-diagonal contribution differs from that

of ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌) by a factor of at most 1/(1 − 𝜂) = 𝑂(1), so we may indeed bound it by 𝑂(𝜖) from Item (d).

Finally, the on-diagonal contribution to ̂︀D−𝐿
𝜒2 (𝜌 ‖ ̂︀𝜌) is

∑︁
𝑖 ̸∈𝐿

(𝜌𝑖𝑖 − (1 − 𝜂)𝑞𝑖)
2

(1 − 𝜂)𝑞𝑖
≤ 𝑂(1)

∑︁
𝑖 ̸∈𝐿

(𝜌𝑖𝑖 − 𝑞𝑖)
2

𝑞𝑖
+𝑂(1)

∑︁
𝑖 ̸∈𝐿

𝜂2𝑞𝑖 ≤ 𝑂(̂︀D−𝐿
𝜒2 (𝜌 ‖ ̃︀𝜌)) +𝑂(𝜂2), (96)

and this is 𝑂(𝜂2 + 𝜖) ≤ 𝑂(𝜂 + 𝜖), as required.

Working out the parameters (just using Theorem 3.18), along the lines of Remark 3.23, we get:

Corollary 3.24. A state estimation algorithm with Frobenius-squared rate 𝑓 = 𝑓(𝑑, 𝑟) ≫ log 𝑑 may be
transformed (preserving the single-copy measurement property) into a state estimation algorithm with the
following property:

Given parameters 𝜖, 𝑟 (with 𝜖 ≤ 1/2), and 𝑀 copies of a quantum state 𝜌 ∈ C𝑑×𝑑 of rank at most 𝑟,

𝑀 = ̃︀𝑂(︃√
𝑟𝑑 · 𝑓(𝑑, 𝑟)

𝜖

)︃
(97)
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suffices6 for the algorithm to output (with probability at least .99) the classical description of a quantum
state ̂︀𝜌 with D𝜒2(𝜌 ‖ ̂︀𝜌) ≤ 𝜖.

In particular, by Theorem 1.3

𝑀 = ̃︀𝑂(︂𝑟.5𝑑1.5
𝜖

)︂
suffices using collective measurements. (98)

And, by Theorem 1.1

𝑀 = ̃︀𝑂(︂𝑟1.5𝑑1.5
𝜖

)︂
suffices using single-copy measurements. (99)

3.6 A simple Frobenius-squared estimator

Proposition 3.25. There is estimation algorithm for quantum states, making single-copy measurements,
achieving expected Frobenius-squared error 𝑂(𝑑2/𝑚).

Proof. It suffices to achieve Frobenius-squared error 𝑑/𝑚 using 𝑂(𝑑𝑚) copies. Assume for simplicity 𝑑 is
even. (We leave the odd 𝑑 case to the reader.) Then there is a simple way [47] to construct a partition 𝒫 of
the edges of the complete graph on 𝑑 vertices into 𝑑− 1 matchings. Fix a particular matching 𝑀 ∈ 𝒫, and
associate to it the POVM with elements

(𝑋±
𝑖𝑗 ){𝑖,𝑗}∈𝑀 , where 𝑋±

𝑖𝑗 =
1

2
(|𝑖⟩⟨𝑖| + |𝑗⟩⟨𝑗|) ± 1

2
(|𝑖⟩⟨𝑗| + |𝑗⟩⟨𝑖|). (100)

When we measure 𝜌 with this POVM, we obtain outcome ({𝑖, 𝑗},±) with probability

𝑝𝑖𝑗 ± 𝑟𝑖𝑗 , 𝑝𝑖𝑗 := avg{𝜌𝑖𝑖, 𝜌𝑗𝑗}, 𝑟𝑖𝑗 := Re 𝜌𝑖𝑗 . (101)

If we similarly define a POVM (𝑌 ±
𝑖𝑗 ) but with a factor of i =

√
−1 in the off-diagonal elements of Equa-

tion (100), we will similarly get outcomes with probabilities 𝑝𝑖𝑗 ± 𝑠𝑖𝑗 , where 𝑠𝑖𝑗 := Im 𝜌𝑖𝑗 . We focus on
analyzing Equation (101), as the imaginary-part analysis will be identical.

Suppose we now measure this POVM 𝑚 times and form the random variables ̂︀𝑟𝑖𝑗 (for {𝑖, 𝑗} ∈𝑀), where

̂︀𝑟𝑖𝑗 =
𝑓+
𝑖𝑗 − 𝑓−

𝑖𝑗

2
, with 𝑓±

𝑖𝑗 = fraction of outcomes that are ({𝑖, 𝑗},±). (102)

Then E[̂︀𝑟𝑖𝑗 ] = 𝑟𝑖𝑗 , and

E[(𝑟𝑖𝑗 − ̂︀𝑟𝑖𝑗)2] = Var[̂︀𝑟𝑖𝑗 ] ≤ 1

2
Var[𝑓+

𝑖𝑗 ] +
1

2
Var[𝑓−

𝑖𝑗 ] ≤
𝑝𝑖𝑗 + 𝑟𝑖𝑗

2𝑚
+
𝑝𝑖𝑗 − 𝑟𝑖𝑗

2𝑚
= 𝑝𝑖𝑗/𝑚. (103)

Repeating the analysis for the imaginary parts, we use 2𝑚 copies of 𝜌 to get estimates for all 𝜌𝑖𝑗 , {𝑖, 𝑗} ∈𝑀 ,
achieving total expected squared-error∑︁

{𝑖,𝑗}∈𝑀

2𝑝𝑖𝑗/𝑚 =
∑︁
𝑖∈[𝑑]

𝜌𝑖𝑖/𝑚 = 1/𝑚. (104)

Repeating this for all 𝑀 ∈ 𝒫 uses 𝑂(𝑑𝑚) copies of 𝜌 and gives estimates for all off-diagonal elements of 𝜌,
with total expected squared-error (𝑑− 1)/𝑚. Finally, we can use standard basis measurements to estimate
the diagonal elements of 𝜌, using Proposition 2.14: 𝑚 more copies of 𝜌 suffice to achieve total expected
squared-error 1/𝑚.

6The hidden polylog terms are at most log2(𝑑/𝜖) log log(𝑑/𝜖), but may be optimized further in special cases [41]. In case

𝑟 = 𝑑, one may take 𝑀 = 𝑂(
𝑑𝑓(𝑑)

𝜖
log2(1/𝜖) log log(1/𝜖)), so the polylog terms have no dependence on 𝑑. In case 𝑟 = 𝑂(1), if

𝜖 ≥ exp
(︁
−Ω(

√
𝑑)
)︁
, one may take 𝑀 = 𝑂(

√
𝑑𝑓(𝑑)
𝜖

log(𝑑/𝜖) log log(𝑑/𝜖)).

24



4 Testing zero mutual information

We now move on to showing the main application of our 𝜒2 tomography algorithm: testing zero quantum
mutual information. We will explain below in Section 4.3 how our 𝜒2 tomography algorithm is crucial to
achieving this result. But first, we introduce and analyze a variant of the quantum mutual information that
features in our analysis.

4.1 Mutual information versus its Hellinger variant

The goal of this subsection is to prove the below theorem, showing that the standard quantum mutual
information is not much larger than the “Hellinger mutual information”:

Theorem 4.1. Let 𝜌 = 𝜌𝐴𝐵 be a bipartite quantum state on 𝐴 ⊗ 𝐵, where 𝐴 ∼= 𝐵 ∼= C𝑑. Writing
D2

H(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) = 𝜂, it holds that 𝐼(𝐴 : 𝐵)𝜌 ≤ 𝜂 ·𝑂(log(𝑑/𝜂)).

We also observe that by restricting 𝜌𝐴𝐵 to be diagonal, we immediately obtain the analogous theorem
concerning classical mutual information. We remark that proving this classical version directly is no easier
than proving the quantum version.

Corollary 4.2. Let 𝑝 = 𝑝𝐴𝐵 be bipartite classical state on 𝐴 × 𝐵, where |𝐴| = |𝐵| = 𝑑. Writing
d2
H(𝑝, 𝑝𝐴 × 𝑝𝐵) = 𝜂, it holds that 𝐼(𝐴 : 𝐵)𝑝 ≤ 𝜂 ·𝑂(log(𝑑/𝜂)).

We first state a bound on the continuity of mutual information in terms of the trace distance and the
subsystem dimension. A bound of the following form can be proven a number of ways, for example by
appealing to the Petz–Fannes–Audenaert [4] and Alicki–Fannes [2] inequalities; see [18, Appendix F]. The
bound we use is an immediate corollary of [40, Prop. 1] which gives small explicit constants.

Lemma 4.3 (Continuity of quantum mutual information). For two density operator 𝜌, 𝜎 on 𝐴 ⊗ 𝐵 with
𝐴 ∼= 𝐵 ∼= C𝑑 and 1

2‖𝜌− 𝜎‖1 = 𝜖, we have

|𝐼(𝐴 : 𝐵)𝜌 − 𝐼(𝐴 : 𝐵)𝜎| ≤ 2𝜖 log
4𝑑

𝜖
. (105)

Proof. The bound from [40, Prop. 1] for the quantum conditional mutual information applies immediately
with a trivial conditioning system and with the bound 𝜖 ≤ 1 to get the constant 4.

We also must bound how much D2
H(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) changes relative to a depolarization of 𝜌.

Lemma 4.4. Given a density operator 𝜌 on 𝐴 ⊗ 𝐵 with 𝐴 ∼= 𝐵 ∼= C𝑑 and the depolarization 𝜎 = ∆𝜖(𝜎) =
(1 − 𝜖)𝜌+ 𝜖

𝑑21, the squared Hellinger distance obeys

D2
H(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) ≤ 𝐶

√
𝜖+ D2

H(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) , (106)

where the constant can be chosen as 𝐶 = 4 + 4
√

2.

Proof. Since DH(𝜌, 𝜎) is a metric, we have

DH(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) ≤ DH(𝜎, 𝜌) + DH(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) + DH(𝜌𝐴 ⊗ 𝜌𝐵 , 𝜎𝐴 ⊗ 𝜎𝐵) . (107)

By Proposition 2.31 we have DH(𝜌, 𝜎) ≤
√︀

2Dtr(𝜌, 𝜎) and we have Dtr(𝜌, 𝜎) ≤ 𝜖 by the triangle inequality.
By the triangle inequality and quantum data processing inequality (monotonicity of trace distance under
CPTP maps), we also have Dtr(𝜌𝐴⊗𝜌𝐵 , 𝜎𝐴⊗𝜎𝐵) ≤ Dtr(𝜌𝐴, 𝜎𝐴) + Dtr(𝜌𝐵 , 𝜎𝐵) ≤ 2𝜖. Plugging this in above
and rearranging, we have

DH(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) − DH(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) ≤ (2 +
√

2)
√
𝜖 . (108)

For any two states 𝜌, 𝜎, DH(𝜌, 𝜎) ≤
√

2, so we can multiply both sides by DH(𝜎, 𝜎𝐴⊗𝜎𝐵)+DH(𝜌, 𝜌𝐴⊗𝜌𝐵) ≤
2
√

2 and the bound follows.

Now we can prove Theorem 4.1.
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Proof of Theorem 4.1. We begin by smoothing the state 𝜌 with a depolarizing channel to obtain

𝜎 = (1 − 𝜖)𝜌+
𝜖

𝑑2
1 . (109)

By the triangle inequality, we have 1
2‖𝜌 − 𝜎‖1 = 𝜖

2‖𝜌 − 1/𝑑
2‖1 ≤ 𝜖. The change in the mutual information

by passing from 𝜌→ 𝜎 is bounded using Lemma 4.3,

𝐼(𝐴 : 𝐵)𝜌 ≤ 𝐼(𝐴 : 𝐵)𝜎 + 2𝜖 log
4𝑑

𝜖
. (110)

Note that 𝐼(𝐴 : 𝐵)𝜌 ≥ 𝐼(𝐴 : 𝐵)𝜎 by the quantum data processing inequality for relative entropy (mono-
tonicity of mutual information under local CPTP maps).

By Theorem 2.32, we have

𝐼(𝐴 : 𝐵)𝜎 ≤ (2 + DRén
∞ (𝜎 ‖ 𝜎𝐴 ⊗ 𝜎𝐵)) · D2

H(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) . (111)

Since 𝜎 − 𝜖
𝑑21 ≥ 0, the positivity of the partial trace map shows that the reduced states 𝜎𝐴 and 𝜎𝐵 satisfy

𝜎𝐴 ≥ 𝜖

𝑑
1 , and 𝜎𝐵 ≥ 𝜖

𝑑
1 . (112)

Therefore the Rényi entropy term is bounded using Fact 2.29 as

DRén
∞ (𝜎 ‖ 𝜎𝐴 ⊗ 𝜎𝐵)) ≤ log ‖𝜎−1

𝐴 ⊗ 𝜎−1
𝐵 ‖ ≤ log

𝑑2

𝜖2
. (113)

Using Lemma 4.4, the D2
H(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) term is bounded by

D2
H(𝜎, 𝜎𝐴 ⊗ 𝜎𝐵) ≤ 𝐶

√
𝜖+ D2

H(𝜌, 𝜌𝐴 ⊗ 𝜌𝐵) = 𝐶
√
𝜖+ 𝜂 . (114)

Putting this all together, we have that

𝐼(𝐴 : 𝐵)𝜌 ≤
(︁

2 + log
𝑑2

𝜖2

)︁
·
(︀
𝐶
√
𝜖+ 𝜂

)︀
+ 2𝜖 log

4𝑑

𝜖
≤ (𝜂 +

√
𝜖)𝑂

(︀
log(𝑑/𝜖)

)︀
. (115)

Choosing 𝜖 = 𝑂(𝜂2) completes the proof.

4.2 Testing zero classical mutual information

Before moving to the trickier quantum case, we warm up by showing an efficient tester for classical mutual
information, establishing Theorem 1.18. First we give a short proof of the following (which appears explicitly
as [1, Lem. 7]):

Lemma 4.5. Given 𝑛 = 𝑂(𝑑/𝜖) samples from two distributions 𝑞, 𝑞′ on [𝑑], one can output a hypothesiŝ︀𝑞 × ̂︀𝑞′ that (with probability at least .99) satisfies d𝜒2(𝑞 × 𝑞′ ‖ ̂︀𝑞 × ̂︀𝑞′) ≤ 𝜖.

Proof. It suffices to separately learn each of 𝑞, 𝑞′ to 𝜒2-accuracy 𝜖/3 and high confidence (which can be done
applying Proposition 2.16 and Markov’s inequality), and then apply the below Proposition 4.6.

Proposition 4.6. Let d𝜒2(𝑝 ‖ 𝑞) = 𝜖1, d𝜒2(𝑝′ ‖ 𝑞′) = 𝜖2. Then we have the near-additivity formula

d𝜒2(𝑝⊗ 𝑝′ ‖ 𝑞 ⊗ 𝑞′) = (1 + 𝜖1)(1 + 𝜖2) − 1 = 𝜖1 + 𝜖2 + 𝜖1𝜖2. (116)

Proof. This follows essentially immediate from the second formula in Definition 2.9.

Now to prove Theorem 1.18, suppose we are given access to a bipartite probability distribution 𝑝 = 𝑝𝐴𝐵
on [𝑑] × [𝑑] and we are promised that either 𝐼(𝐴 : 𝐵)𝑝 = 0 or 𝐼(𝐴 : 𝐵)𝑝 ≥ 𝜖. In the former case we have

𝐼(𝐴 : 𝐵)𝑝 = 0 =⇒ 𝑝 = 𝑝𝐴 × 𝑝𝐵 =⇒ d𝜒2(𝑝 ‖ ̂︀𝑝𝐴 × ̂︀𝑝𝐵) ≤ 𝑐𝜖/ log(𝑑/𝜖) (117)
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with high probability if we estimate the two marginals using 𝑂((𝑑/𝜖) · log(𝑑/𝜖)) samples as in Lemma 4.5.
(Here 𝑐 > 0 may be any small constant.) On the other hand, in case 𝐼(𝐴 : 𝐵)𝑝 ≥ 𝜖, we get d2

H(𝑝, 𝑝𝐴× 𝑝𝐵) ≥
Ω(𝜖/ log(𝑑/𝜖)) from Corollary 4.2; ensuring that the constant 𝑐 in Equation (117) is small enough, this implies

d2
H(𝑝, ̂︀𝑝𝐴 × ̂︀𝑝𝐵) ≥ Ω(𝜖/ log(𝑑/𝜖)) (118)

also. Now again ensuring 𝑐 is small enough, our classical mutual information tester Theorem 1.18 follows
by using the below “𝜒2-vs.-H2 identity tester” of Daskalakis–Kamath–Wright with the “known” distribution
being ̂︀𝑝𝐴 × ̂︀𝑝𝐵 . This distinguishes our two cases (with high probability) using 𝑂(

√
𝑑× 𝑑/𝜖′) samples,

𝜖′ = Θ(𝜖/ log(𝑑/𝜖)); in other words, with 𝑂((𝑑/𝜖) log(𝑑/𝜖)) samples.

Theorem 4.7. ([15, Thm. 1].) For any “known” distribution 𝑞 on [𝑑], there is a testing algorithm with the
following guarantee: Given 0 < 𝜖 ≤ 1/2, as well as 𝑛 = 𝑂(

√
𝑑/𝜖) samples from an unknown distribution

𝑝 on [𝑑], if d𝜒2(𝑝 ‖ 𝑞) ≤ 𝜖/2 then the test accepts with probability at least .99, and if d2
H(𝑝, 𝑞) ≥ 𝜖 then the

test rejects with probability at least .99.

4.3 Testing zero quantum mutual information

To prove Theorem 1.14, we now endeavor to repeat the result from the previous setting in the quantum
case. Naturally, it is crucially important that we are able to do quantum state tomography with respect to
Bures 𝜒2-divergence. This lets use the following quantum “𝜒2-vs.-H2 identity tester” from [7] in place of
Theorem 4.7.

Theorem 4.8. ([7, Thm. 1].) For any “known” quantum state 𝜎 ∈ C𝑑×𝑑, there is a testing algorithm with
the following guarantee: Given 0 < 𝜖 ≤ 1/2, as well as 𝑛 = 𝑂(𝑑/𝜖) copies of an unknown state 𝜌 ∈ C𝑑×𝑑, if
D𝜒2(𝜌 ‖ 𝜎) ≤ .49𝜖 then the test accepts with probability at least .99, and if D2

H(𝜌, 𝜎) ≥ 2𝜖 then the test rejects
with probability at least .99.

We can relate quantum mutual information and its Hellinger version using Theorem 4.1 in place of
Corollary 4.2. It would seem then that we could establish our quantum zero mutual information tester
Theorem 1.14 in exactly the same way we did its classical analogue, using ̃︀𝑂(𝑑2/𝜖) copies of a bipartite
𝑑× 𝑑-dimensional state 𝜌. Unfortunately, there is a missing piece: a quantum analogue of Lemma 4.5 with
𝑂(𝑑2/𝜖) copy complexity. We prove a slightly worse variant, which leads to our main testing Theorem 1.14:

Theorem 4.9. There is a tomography algorithm that, given parameter 0 < 𝜖 ≤ 1/2 and

𝑛 = max{ ̃︀𝑂(𝑟𝑑1.5/𝜖), ̃︀𝑂(𝑟.5𝑑1.75/𝜖)} (119)

copies of unknown 𝑑-dimensional quantum states 𝜉, 𝜌 of rank at most 𝑟, outputs diagonal states 𝜎, 𝜏 such
that (with probability at least .9),

D𝜒2(𝜉 ⊗ 𝜌 ‖ 𝜎′ ⊗ 𝜏 ′) ≤ 𝜖. (120)

Proof. The strategy is to apply our central estimation algorithm in the form of Corollary 3.22 to both 𝜉, 𝜌
(with the Frobenius-learner from Theorem 1.3 with 𝑓(𝑑, 𝑟) = 𝑂(𝑑)). We use the parameter choices

𝜂 = 𝜖, 𝜖 = 𝜖 · min{1/𝑑.5, 𝑟.5/𝑑.75}. (121)

This leads to the claimed copy complexity from Equation (119), and yields (with probability at least .9)
estimates 𝜎, 𝜏 satisfying

Doff
𝜒2(𝜉 ‖ 𝜎), Doff

𝜒2(𝜌 ‖ 𝜏 ) ≤ ̃︀𝑂(𝜖 · (1/𝑑.5 + min{1/𝑟, 𝑟.5/𝑑.75})) = ̃︀𝑂(𝜖/
√
𝑑), (122)

Don
𝜒2(𝜉 ‖ 𝜎), Doff

𝜒2(𝜌 ‖ 𝜏 ) ≤ ̃︀𝑂(𝜖), (123)

with 𝜎, 𝜏 having minimum eigenvalue at least 𝜖/𝑑. We claim that for any fixed outcomes 𝜎 = 𝜎′ and 𝜏 ′ = 𝜏 ′

satisfying the above, it holds that
D𝜒2(𝜉 ⊗ 𝜌 ‖ 𝜎′ ⊗ 𝜏 ′) ≤ ̃︀𝑂(𝜖). (124)
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This is sufficient to complete the proof.

To establish Inequality (124), let us write 𝜎′ = diag(𝑠′) and 𝜏 ′ = diag(𝑡′), with

𝑠′𝑎 ≥ 𝜖/𝑑, 𝑡′𝑗 ≥ 𝜖/𝑑 for all 𝑎, 𝑗 ∈ [𝑑]. (125)

We will break up D𝜒2(𝜉 ⊗ 𝜌 ‖ 𝜎′ ⊗ 𝜏 ′) into three parts: on-on-diagonal, on-off-diagonal, and off-off-diagonal:

𝑑∑︁
𝑎,𝑖=1

1
𝑠′𝑎𝑡

′
𝑖
(𝜉𝑎𝑎𝜌𝑖𝑖 − 𝑠′𝑎𝑡

′
𝑖)

2

⏟  ⏞  
(ON-ON)

+

⎛⎝ 𝑑∑︁
𝑎=1

∑︁
𝑖̸=𝑗

2
𝑠′𝑎𝑡

′
𝑖+𝑠

′
𝑎𝑡

′
𝑗
|𝜉𝑎𝑎𝜌𝑖𝑗 |2 +

∑︁
𝑎 ̸=𝑏

𝑑∑︁
𝑖=1

2
𝑠′𝑎𝑡

′
𝑖+𝑠

′
𝑏𝑡

′
𝑖
|𝜉𝑎𝑏𝜌𝑖𝑖|2

⎞⎠
⏟  ⏞  

(ON-OFF)

+
∑︁
𝑎 ̸=𝑏

∑︁
𝑖̸=𝑗

2
𝑠′𝑎𝑡

′
𝑖+𝑠

′
𝑏𝑡

′
𝑗
|𝜉𝑎𝑏𝜌𝑖𝑗 |2⏟  ⏞  

(OFF-OFF)

.

(126)
First, using Proposition 4.6,

(ON-ON) = d𝜒2(diag(𝜉) ⊗ diag(𝜌) ‖ 𝑠′ ⊗ 𝑡′) = (1 + d𝜒2(diag(𝜉) ‖ 𝑠′))(1 + d𝜒2(diag(𝜌) ‖ 𝑡′)) − 1. (127)

But d𝜒2(diag(𝜉) ‖ 𝑠′) ≤ Don
𝜒2(𝜉 ‖ 𝜎′) ≤ ̃︀𝑂(𝜖) by Inequality (122), and similarly for d𝜒2(diag(𝜌) ‖ 𝑡′),

so we conclude from Inequality (127) that (ON-ON) ≤ (1 + ̃︀𝑂(𝜖))(1 + ̃︀𝑂(𝜖)) − 1 = ̃︀𝑂(𝜖), as needed for
Inequality (124).

Moving to (ON-OFF), the first term in it factorizes to(︃
𝑑∑︁
𝑎=1

1
𝑠′𝑎
𝜉2𝑎𝑎

)︃⎛⎝∑︁
𝑖 ̸=𝑗

2
𝑡′𝑖+𝑡

′
𝑗
|𝜌𝑖𝑗 |2

⎞⎠ (128)

The first factor above is precisely

1 + d𝜒2(diag(𝜉) ‖ 𝑠′) ≤ 1 + Don
𝜒2(𝜉 ‖ 𝜎′) ≤ 1 + ̃︀𝑂(𝜖) ≤ 𝑂(1). (129)

The second factor in Equation (128) is∑︁
𝑖 ̸=𝑗

2
𝑡′𝑖+𝑡

′
𝑗
|𝜌𝑖𝑗 |2 = Doff

𝜒2(𝜌 ‖ 𝜏 ′) ≤ D𝜒2(𝜌 ‖ 𝜏)𝑡′ ≤ ̃︀𝑂(𝜖). (130)

Thus Equation (128), and indeed both terms in (ON-OFF), can be bounded by ̃︀𝑂(𝜖), as needed for Inequal-
ity (124).

It remains to bound (OFF-OFF) by ̃︀𝑂(𝜖). By the AM-GM inequality,

𝑠′𝑎𝑡
′
𝑖 + 𝑠′𝑏𝑡

′
𝑗

2
≥
√︁
𝑠′𝑎𝑡

′
𝑖𝑠

′
𝑏𝑡

′
𝑗 =

√︁
𝑠′𝑎𝑠

′
𝑏

√︁
𝑡′𝑖𝑡

′
𝑗 . (131)

Of course there is no reverse AM-GM inequality, but we at least have

√
𝑥𝑦 ≥ min(

√︀
𝑥/𝑦,

√︀
𝑦/𝑥) · 𝑥+ 𝑦

2
∀𝑥, 𝑦 > 0. (132)

When (𝑥, 𝑦) is (𝑠′𝑎, 𝑠
′
𝑏) or (𝑡′𝑖, 𝑡

′
𝑗), we have min(

√︀
𝑥/𝑦,

√︀
𝑦/𝑥) ≥

√︀
𝜖/𝑑 (from Inequality (125)), and hence

𝑠′𝑎𝑡
′
𝑖 + 𝑠′𝑏𝑡

′
𝑗

2
≥ (𝜖/𝑑) · 𝑠

′
𝑎 + 𝑠′𝑏

2
·
𝑡′𝑖 + 𝑡′𝑗

2
(133)

Putting this into the definition of (OFF-OFF) yields

(OFF-OFF) ≤ (𝑑/𝜖) ·
∑︁
𝑎̸=𝑏

∑︁
𝑖 ̸=𝑗

2
𝑠′𝑎+𝑠

′
𝑏
· 2
𝑡′𝑖+𝑡

′
𝑗
· |𝜉𝑎𝑏𝜌𝑖𝑗 |2 = (𝑑/𝜖)

⎛⎝∑︁
𝑎̸=𝑏

2
𝑠′𝑖+𝑠

′
𝑗
|𝜉𝑎𝑏|2

⎞⎠⎛⎝∑︁
𝑖̸=𝑗

2
𝑡′𝑖+𝑡

′
𝑗
|𝜌𝑖𝑗 |2

⎞⎠. (134)

The last factor here is bounded by Doff
𝜒2(𝜌 ‖ 𝜏 ′) in Equation (130), and the similar factor with 𝑠′ and 𝜉 is

similarly bounded. Hence using Inequality (122), we indeed get

(OFF-OFF) ≤ 𝑂(𝑑/𝜖) · ̃︀𝑂(𝜖/
√
𝑑) · ̃︀𝑂(𝜖/

√
𝑑) = ̃︀𝑂(𝜖), (135)

completing the proof.
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5 Open Problems

One obvious and by now longstanding open question related to our work is learning in infidelity to precision 𝜖
with 𝑂(𝑟𝑑/𝜖) samples, without any logarithms. This would settle the sample complexity of tomography with
infidelity loss up to constant factors. In light of our work, perhaps we could even ask for more: Given
our result that learning in quantum relative entropy is possible with ̃︀𝑂(𝑟𝑑/𝜖) samples, might a similar
no-logarithm bound hold here as well?

Our algorithm uses only single-copy measurements, but even these are challenging on present-day quan-
tum computers. A stronger assumption on measurements is to restrict to product measurements, meaning
that all POVM elements factorize into tensor products over subsystems. We believe this measurement
model will require strictly greater sample complexity for learning in 𝜒2-divergence and for quantum mutual
information testing than the single-copy case analyzed here.

Regarding quantum mutual information testing, note that in the classical case we could learn product
states to 𝜒2-divergence well enough that the entire testing complexity was dominated by the 𝜒2-vs.-Hellinger
identity tester. Unfortunately, in the quantum case we couldn’t quite match this. Might it be possible to
reduce the complexity of testing zero quantum mutual information down to to ̃︀𝑂(𝑑2/𝜖)?

For learning in 𝜒2-divergence, it would be interesting to show that ̃︀Ω(
√
𝑟𝑑1.5/𝜖) is the right lower bound;

currently, we have nothing better than the infidelity-tomography lower bound of ̃︀Ω(𝑟𝑑/𝜖). As explained
in Remark 3.17, though, it seems like reducing the upper bound could be difficult even for the case 𝑟 = 1.

Although the Bures 𝜒2-divergence is usually the largest of the “big four” quantities considered in this
paper, there are other quantum generalizations of 𝜒2-divergence in the literature that are larger still than
Bures 𝜒2-divergence (see, e.g., [37, 42]). An example is the so-called “standard” quantum 𝜒2-divergence,
in which the the arithmetic mean reciprocal-prefactor in Equation (33) is replaced by a geometric mean.
Similarly, there are also multiple generalizations of the quantum relative entropy besides the “Umegaki”
quantum relative entropy S(· ‖ ·) studied herein. As explained above, the main reason for us to consider
learning with respect to Bures 𝜒2-divergence (as opposed to other metrics) is that it seems necessary for
some applications; for example, our quantum mutual information testing problem. It is an interesting
open question to study state tomography with respect to other generalizations of relative entropy and 𝜒2-
divergence, and in particular to decide if this is possible while still having ̃︀𝑂(1/𝜖) scaling.

More generally, a very interesting direction is to investigate for which quantum learning and testing tasks
we can get away with ̃︀𝑂(1/𝜖) samples, and for which we require (say) ̃︀Ω(1/𝜖2) samples.
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[36] Dénes Petz. Quasi-entropies for finite quantum systems. Reports on Mathematical Physics, 23(1):57–65,
February 1986.
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