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Abstract

Say that f : {0, 1}n → {0, 1} ε-approximates g : {0, 1}n → {0, 1} if the functions disagree on
at most an ε fraction of points. This paper contains two results about approximation by DNF
and other small-depth circuits:

(1) For every constant 0 < ε < 1/2 there is a DNF of size 2O(
√

n) that ε-approximates the
Majority function on n bits, and this is optimal up to the constant in the exponent.

(2) There is a monotone function F : {0, 1}n → {0, 1} with total influence (AKA average
sensitivity) I(F) ≤ O(log n) such that any DNF or CNF that .01-approximates F requires size
2Ω(n/ log n) and such that any unbounded fan-in AND-OR-NOT circuit that .01-approximates
F requires size Ω(n/ log n). This disproves a conjecture of Benjamini, Kalai, and Schramm
(appearing in [BKS99, Kal00, KS05]).



1 Introduction

1.1 Definitions

This paper is concerned with approximating boolean functions f : {0, 1}n → {0, 1} by DNF formulas
of small size. Let us first give the requisite definitions.

Circuits: We will consider single-output circuits composed of unbounded fan-in AND and OR
gates over the input literals (inputs and negated inputs). The size of a circuit is the number of
AND and OR gates it contains, and the depth of the circuit is the number of AND and OR gates
on the longest path from an input bit to the output gate. We will also make the not completely
standard definition that the width of a circuit is the maximum, over all AND and OR gates, of
the number of literals feeding into the gate.

We will only be concerned with constant-depth circuits in this paper, and we will be particularly
interested in depth 2. We assume circuits of depth 2 are always given by an OR of ANDs of literals,
in which case they are DNFs, or by an AND of ORs of literals, in which case they are CNFs. The
ORs in a DNF are called its terms and the ANDs in a CNF are called its clauses.

Finally, we will often identify a circuit over n input bits with the boolean function {0, 1}n →
{0, 1} that it computes.

Approximation: Given two functions f, g : {0, 1}n → {0, 1}, we will say that f ε-approximates
g, or f is an ε-approximator for g, if the fraction of inputs in {0, 1}n on which they disagree is
at most ε. We will also write this as

Pr
x

[f(x) 6= g(x)] ≤ ε,

with the convention that boldface letters are random variables, and that they are drawn from the
uniform distribution on {0, 1}n unless otherwise specified.

We will later need the following well known observation, showing that small-size circuits are
well approximated by small-width circuits:

Observation 1.1 If C is a circuit of size s, then for every ε > 0 there is a “simplification” C ′ of
C that ε-approximates C and has width at most log(s/ε).1 By “simplification” we mean that C ′ is
obtained from C by replacing some of its gates with constants, so that C ′ has size and depth no
more than C, and C ′ is a DNF (respectively, CNF) if C is.

Proof: Consider any gate in C that is connected to at least log(s/ε) input literals. If such a gate
is an AND gate, replace it with a 0; and if it is an OR gate, replace it with a 1. This gives us C ′,
which clearly has width at most log(s/ε). Now on a uniformly random input, the probability that
a particular replacement affects C’s computation is at most 2− log(s/ε) = ε/s. Since C has at most
s gates, the probability that any replacement affects its computation is at most ε, by the union
bound. Thus C ′ is an ε-approximator for C. 2

1In this paper log denotes log2.
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1.2 Approximation by DNF

DNF formulas are one of the simplest and most natural representation classes for boolean functions.
Although every function can be computed by a DNF, some functions on n bits may require DNFs
of size Ω(2n). The natural question we pursue in this paper is whether this size can be significantly
reduced for a given function if we are only required to ε-approximate it, for some small constant
ε. Positive results along these lines would have interesting applications in several research areas,
including computational learning theory and the the study of threshold phenomena in random
graphs; these topics will be discussed in Sections 1.3 and 1.4, respectively. However there do
not seem to be many results on either upper or lower bounds for approximation by DNF in the
literature.

A notable conjecture in this area was made 8 years ago by Benjamini, Kalai, and Schramm [BKS99]
(published again in [Kal00, KS05]). To describe this conjecture, which we call the BKS Conjecture,
we need to recall the notion of total influence [KKL88, LMN93]:

Definition 1.2 Given a function f : {0, 1}n → {0, 1}, the influence of the ith coordinate on f is

Infi(f) = Pr
x

[f(x) 6= f(σix)],

where σix denotes x with its ith bit flipped. The total influence (or average sensitivity) of f is

I(f) =
n∑

i=1

Infi(f) = E
x

[#{y ∼ x : f(y) 6= f(x)}] ,

where the notation y ∼ x means that the Hamming distance between y and x is 1.

The total influence is an important measure of the complexity of a function, used frequently in
learning theory, threshold phenomena, and complexity theory. One important result to note is that
constant-depth circuits of small size have small total influence:

Theorem 1.3 Let f : {0, 1}n → {0, 1} be computed by a circuit of depth d and size s. Then I(f) ≤
O(logd−1 s).

This was first proved by Boppana [Bop97], tightening an argument made by Linial, Mansour, and
Nisan [LMN93] based on H̊astad’s Switching Lemma [H̊as86]. Note that the d = 2 case of this
theorem is quite easy, building on the simple result that I(f) ≤ 2w for any f computable by a DNF
of width w.

We can now state Benjamini, Kalai, and Schramm’s conjecture, which essentially asserts a
converse to Theorem 1.3 for monotone functions:

BKS Conjecture: For every ε > 0 there is a constant K = K(ε) < ∞ such that the following
holds: Every monotone f : {0, 1}n → {0, 1} can be ε-approximated by a depth-d circuit of size at
most

exp
(
(K · I(f))1/(d−1)

)
,

for some d ≥ 2.

(Recall that f is monotone if x ≤ y ⇒ f(x) ≤ f(y).) Observation 1.1 implies that the BKS Con-
jecture could also add the condition that width is at most (K ·I(f))1/(d−1) without loss of generality.

If this conjecture were true it would be an important characterization of monotone functions
with small total influence; if it were further true with d fixed to 2 it would yield very interesting
positive results for approximation by DNF (or CNF).
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1.3 Approximating Majority by DNF

Suppose the BKS Conjecture were true even with d fixed to 2. This would imply that for every
constant ε > 0, every monotone function f could be ε-approximated by a DNF or CNF of size
exp(O(I(f))). Using Observation 1.1, we could further make the width of the approximator O(I(f)).
One reason to hope that this is true is that it is true, even for non-monotone functions, if one allows
a more powerful class of depth-2 circuits:

Definition 1.4 A TOP (“threshold of parities” [Jac95]) is a depth-2 circuit with Parity gates at
the lower level and a Majority gate on top.

Proposition 1.5 For all ε > 0, every boolean function f is ε-approximated by a TOP of width
O(I(f)/ε).

This proposition was shown in [KKL88, LMN93] by relating the total influence of a function to its
Fourier spectrum.

TOP circuits arise frequently as the hypothesis class in many uniform-distribution learning
algorithms. Examples include Linial, Mansour, and Nisan’s algorithm for learning depth-d size-s
circuits [LMN93], Jackson’s Harmonic Sieve algorithm for learning polynomial-size DNFs [Jac95],
Bshouty and Tamon’s algorithm for learning monotone functions [BT96], and O’Donnell and Serve-
dio’s algorithm for learning monotone polynomial-size decision trees [OS06]. (Incidentally, except
for Jackson’s algorithm, all of these proceed by proving upper bounds on total influence.) An open
question in learning theory is whether these algorithms (especially Jackson’s DNF algorithm) can
be made to use the simpler class of DNFs as their hypothesis class.

This suggests the idea of trying to approximate TOPs by DNFs. By Proposition 1.5, approxi-
mating TOPs by DNFs could also be considered a way of attacking the BKS Conjecture. Now the
Parities in a TOP could be converted to DNFs or CNFs of no greater width. But how to approx-
imate the Majority by a small DNF or CNF is an interesting question. We solve the problem of
ε-approximating Majority by DNFs in Sections 2 and 3. Unfortunately, the size necessary is too
large to give good approximations of TOPs.

The question of computing Majority by small circuits has a long and interesting history. Signif-
icant work has gone into computing Majority with small circuits of various sorts [PPZ92, AKS83,
HMP06, Bop86, Val84]. Some of this work involves the subproblem of constructing small cir-
cuits for “approximate-Majority” — i.e., circuits that correctly compute Majority whenever the
number of 1’s in the input is at least a 2/3 fraction or at most a 1/3 fraction. Note that this
notion of approximation is not at all the same as our notion. Constructions of constant-depth
circuits for this “approximate-Majority” have had important consequences for complexity the-
ory [Ajt83, Ajt93, Vio05]. It seems, however, that no paper has previously investigated the existence
of small constant-depth circuits for Majority that are ε-approximators in our sense.

Our result on this topic is the following, following from the main results proved in Sections 2
and 3:

Theorem 1.6 For every constant 0 < ε < 1/2, the Majority function on n bits can be ε-approximated
by a DNF of size exp(O(

√
n)), and this is best possible up to the constant in the exponent.

Note that the following fact is well known:

Proposition 1.7 Every monotone function f : {0, 1}n → {0, 1} satisfies I(f) ≤ I(Majn) = (
√

2/π+
o(1))

√
n.
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Thus Theorem 1.6 shows that the BKS Conjecture with d fixed to 2 is true for the Majority function.

Our proof of the upper bound in Theorem 1.6 is by the probabilistic method; we essentially use
the random DNF construction of Talagrand [Tal96]. Our proof of the lower bound in Theorem 1.6
uses the Kruskal-Katona Theorem to show that even ε-approximators for Majority must have total
influence Ω(

√
n); the lower bound then follows from Theorem 1.3:

Theorem 1.8 Suppose f : {0, 1}n → {0, 1} is a (1/2 − δ)-approximator for Majn, for constant
δ > 0. Then any depth-d circuit computing f requires size exp(Ω(n1/(2d−2))).

For a discussion of why switching lemmas do not seem to provide any help in proving lower bounds
on ε-approximating DNFs, please see Appendix B.

1.4 Threshold phenomena and the BKS Conjecture

One of the main motivations behind the BKS Conjecture is to provide general conditions under
which a monotone function has large total influence. Benjamini, Kalai, and Schramm made their
conjecture in the context of problems about threshold phenomena and noise sensitivity in random
graphs. There, proving lower bounds on total influence is important, as the total influence re-
lates to certain “critical exponents” in percolation problems, and it also captures the sharpness of
“thresholds” for graph properties.

To understand the connection to threshold phenomena, consider the Erdős-Rényi random graph
model on v vertices, and write n =

(
v
2

)
. Now a boolean string in {0, 1}n can be identified with

a graph, and a boolean function f : {0, 1}n → {0, 1} can be identified with a collection of graphs.
We say that f is a graph property if it closed under permutations of the v vertices. Suppose
f is a nontrivial monotone graph property (i.e., f is a monotone function that is not constantly
0 or 1). Then as we increase the edge probability p from 0 to 1, the probability that a random
graph from the p-biased distribution on {0, 1}n satisfies f increases continuously from 0 to 1. Hence
there will be a critical exponent p∗ where the probability of a random graph satisfying f is 1/2.
It is of great interest to understand how rapidly the probability of satisfying p jumps from near
0 to near 1 in the interval around p∗. The Russo-Margulis Lemma [Mar74, Rus78] shows that
∂
∂pE[f ] = 4p(1− p)I(p)(f), for an appropriate p-biased definition of total influence. It follows that
graph properties having “sharp” thresholds corresponds to them having large total influence.

A celebrated theorem of Friedgut [Fri99] provides a version of the depth-2 BKS Conjecture in
the context of graph properties with p∗ = o(1):

Friedgut’s Theorem There is a function K = K(C, ε) < ∞ such that the following holds: If f
is a monotone graph property with critical probability p∗ = o(1) and I(p∗)(f) ≤ C, then f can be
ε-approximated (with respect to the p∗-biased distribution on {0, 1}n) by a DNF of width K(C, ε).
In particular, one can take K(C, ε) = O(C/ε).

This result has been used with great success to show that various natural graph properties
— and also random k-SAT problems — have sharp thresholds (see, e.g., [Fri05]); one proves this
essentially by showing that the property cannot be well approximated by a small-width DNF.

The relationship between sharp thresholds and large total influence continues to hold in the
context of general monotone boolean functions (i.e., not necessarily graph properties). Indeed, there
has been significant interest in trying to extend Friedgut’s Theorem to the general, no-symmetry
case. The BKS Conjecture is one proposal for such an extension (in the case of p∗ = 1/2). It is
weaker than the Friedgut Theorem in that it allows for approximating circuits of depth greater than
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2. However the BKS Conjecture’s size/width bound for d = 2 is very strong, essentially matching
Friedgut’s Theorem — it states that in the d = 2 case, K may be taken to have a linear dependence
on I(f).

Some partial progress has been made towards proving Friedgut’s Theorem in the case of gen-
eral monotone boolean functions. In an appendix to Friedgut’s paper, Bourgain [Bou99] showed
that every boolean function with I(f) ≤ C has a Fourier coefficient f̂(S) with |S| ≤ O(C) and
|f̂(S)| ≥ exp(−O(C2)); he used this to show that when f is monotone and p∗ = o(1), there is a
term of width O(C) that has exp(−O(C2))-correlation with f . Friedgut himself later showed [Fri98]
that his theorem can be extended to general functions, even non-monotone ones (assuming p∗ is
bounded away from 0 and 1), at the expense of taking K(C, ε) = exp(O(C/ε)).

However it turns out that these generalizations cannot be taken too far — our main result in
Section 4 is that the BKS Conjecture is false. Specifically, we show:

Theorem 1.9 There is a monotone function F : {0, 1}n → {0, 1} with total influence I(F) ≤
O(log n) satisfying the following: Any DNF or CNF that .01-approximates F requires width Ω(n/ log n)
and hence size 2Ω(n/ log n); and, any circuit that .01-approximates F requires size Ω(n/ log n).

This rules out the BKS Conjecture. In particular, it shows that Friedgut’s Theorem cannot
be proved for general monotone functions (in the p∗ = 1/2 case) unless one takes K(C, .01) ≥
exp(Ω(C)). We remark that the function F used in the theorem is is computed by a polynomial-
size, depth-3 circuit.

2 Approximating Majority

In this section we give a construction of a DNF of size 2O(
√

n/ε) that ε-approximates Majority on n
bits. In the next section we will show this result is optimal up to the constant in the exponent.

Our construction is by the probabilistic method, inspired by the random DNF construction of
Talagrand [Tal96]:

Theorem 2.1 For all ε ≥ 1/
√

n, there is a DNF of width w = 1
ε

√
n and size (ln 2)2w which is an

O(ε)-approximator for Majn.

Proof: Let D be a randomly chosen DNF with (ln 2)2w terms, where each term is chosen by
picking w variables independently with replacement. It suffices to show that

E
D

[Pr
x

[D(x) 6= Maj(x)]] ≤ O(ε), (1)

because then a particular D must exist which has Pr[D(x) 6= Maj(x)] ≤ O(ε). Showing (1) is
equivalent to showing

E
x
[Pr

D
[D(x) 6= Maj(x)]] ≤ O(ε). (2)

Given a string x ∈ {0, 1}n, let us write the fraction of 1’s in the string as 1
2 + 1

2(t/
√

n). Note that
the distribution on t ∈ [−√n,

√
n] is close to being normal, by the Central Limit Theorem.

We have that Maj(x) = 1 iff t > 0, and furthermore, by construction, PrD[D(x) = 1] only
depends on t. Indeed,

Pr[D(x) = 1] = 1−
(
1− (1

2 + 1
2(t/

√
n))w

)(ln 2)2w

= 1−
(
1− 2−w(1 + t/

√
n)w

)(ln 2)2w

.
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(We chose the size to be (ln 2)2w so that this quantity would go to 1/2 as t goes to 0.) So to
show (2), it suffices to show that

E
x

[(
1− 2−w(1 + t/

√
n)w

)(ln 2)2w
∣∣∣∣ t > 0

]
≤ O(ε), (3)

and E
x

[
1−

(
1− 2−w(1 + t/

√
n)w

)(ln 2)2w
∣∣∣∣ t < 0

]
≤ O(ε). (4)

For (3) we use (1− y)r ≤ exp(−yr) (for 0 ≤ y ≤ 1, r > 0) to get

(
1− 2−w(1 + t/

√
n)w

)(ln 2)2w

≤ (1/2)(1+t/
√

n)w ≤ (1/2)1+t/ε,

where we also are using w = 1
ε

√
n and the assumption t > 0. For (4) we use (1− y)r ≥ 1 − yr to

get

1−
(
1− 2−w(1 + t/

√
n)w

)(ln 2)2w

≤ (ln 2)(1 + t/
√

n)w ≤ (ln 2) exp(wt/
√

n) = (ln 2) exp(t/ε),

where we used the assumption t < 0, and (1− y)r ≤ exp(−yr) again. Hence to prove (3) and (4),
it remains to show

E
x
[exp(−|t|/ε)] ≤ O(ε). (5)

It is relatively easy to check that this holds when t is truly normally distributed. With its actual
binomial distribution, we use the following fact: for each i = 0, 1, 2, . . . ,

Pr
[
|t| ∈ [2iε, 2i+1ε]

]
= Pr

[
|N(0, 1)| ∈ [2iε, 2i+1ε]

]
±O(1/

√
n),

which follows from the Berry-Esseen Central Limit Theorem. We have Pr[|N(0, 1)| ∈ [2iε, 2i+1ε]] ≤
O(2iε), and so the additive O(1/

√
n) is negligible since ε ≥ 1/

√
n. Using also Pr[|t| ∈ [0, ε]] ≤ O(ε)

(again by Berry-Esseen and ε ≥ 1/
√

n), we get:

E
x
[exp(−|t|/ε)] ≤ O(ε) +

∞∑

i=1

exp(−2i) ·O(2iε) ≤ O(ε),

since
∑∞

i=0 exp(−2i)2i ≤ O(1), and this proves (5). 2

3 A Lower Bound for Majority, via Total Influence

The main result in this section shows that corrupting the Majority function, Majn, on even a large
fraction of strings cannot decrease its total influence very much:

Theorem 3.1 Let f : {0, 1}n → {0, 1} be an ε-approximator for Majn. Then

I(f) ≥
{

(1−O(ε)) · I(Majn) if ω( 1√
n
) ≤ ε ≤ 1/4,

Ω(ε) · I(Majn) if 1/4 ≤ ε ≤ 1/2− ω( 1√
n
).

As mentioned in Proposition 1.7, the total influence of Majn is Θ(
√

n). Thus Boppana’s relation,
Theorem 1.3, implies the following:
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Corollary 3.2 For any constant ε < 1/2, every ε-approximator for Majn with depth d requires size
at least

exp
(
Ω(n1/(2d−2))

)
.

In particular, any ε-approximating DNF for Majority requires size at least exp(Ω(
√

n)).

This matches the upper bound we proved in Theorem 2.1, up to the constant in the exponent.

The remainder of this section is devoted to proving Theorem 3.1. In Appendix A we include
an alternate proof of the following much weaker statement: If ε > 0 is sufficiently small then
I(f) ≥ Ω(

√
n) for all f that ε-approximate Majority.

The first basic fact we will need is that we can assume without loss of generality that the
approximators f are monotone.

Proposition 3.3 Let f : {0, 1}n → {0, 1} be an ε-approximator for some monotone function g :
{0, 1}n → {0, 1} (e.g., Majn). Then there is monotone f ′ : {0, 1}n → {0, 1} that ε-approximates g
and has I(f ′) ≤ I(f).

Proof: Recall the combinatorial shifting operators κ1, . . . , κn introduced by Kleitman [Kle66]; the
operator κi applied to f yields the function given by

(κif)(x) =

{
f(x) if f(x) = f(σix),
xi if f(x) 6= f(σix),

where σix denotes the string x with the ith coordinate flipped. Let f ′ = κ1κ2 · · ·κnf ; it is well
known that this makes f ′ a monotone function. The fact that I(f ′) ≤ I(f) follows because the κi

operators never increase total influence [BOL90]. Finally, it is easy to see that the κi operators
can only improve approximation with respect to a monotone function g; this shows that f ′ is an
ε-approximation for g. 2

The second basic fact we’ll need involves the following definition:

Definition 3.4 Given f : {0, 1}n → {0, 1}, we define C(f) to be the expected number of “correct”
bits in a random string x; i.e.,

C(f) = E
x
[#{i : xi = f(x)}]

Lemma 3.5 Let f : {0, 1}n → {0, 1} be a monotone function. Then C(f) = n/2 + I(f)/2.

Proof: Clearly C(f) =
∑n

i=1 Prx[xi = f(x)]. Thus it suffices to show that Prx[xi = f(x)] =
1/2+Infi(f)/2 for each i. When x is chosen randomly, there is an Infi(f) chance that xi is influential
for f . In this case, the expected number of correct bits xi is 1; this is because f is monotone so f(x)
agrees with f(xi). With probability 1− Infi(f) the bit xi is not influential for f ; in this case the
expected number of correct bits xi is 1/2, since on of the two possibilities will agree with f ’s constant
value. Thus the overall probability of a correct xi is Infi(f) · 1+ (1− Infi(f)) · 1

2 = 1/2+ Infi(f)/2,
as claimed. 2

We will now prove Theorem 3.1 under an assumption, namely, that f only disagrees with Maj
on the strings where Maj is 0. (Recall that we are assuming f is monotone.) We will show later
that we can get rid of this assumption.
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Theorem 3.6 Theorem 3.1 holds if f ≥ Maj.

We will define some functions. Define M0 := Maj. For an integer 0 ≤ t ≤ 2n−1, Mt will
agree with Mt−1 on all strings except one. That string is the “largest” string in M−1

t−1(0), where
“largest” is respect to the ordering when strings are interpreted as binary integers. We will view
these functions as a process, where strings are being added to M−1

t (1) as t increases. We will refer
to the unique string x such that Mt(x) = 1 and Mt−1(x) = 0 as the string added at time t. For
example, if n = 5, the first few strings added are 11000, 10100, 10010, 10001, 10000, 01100, etc.
We also define wj,t as the “largest” string x with |x| = j such that Mt(x) = 0. The string wj,t is
the next string of Hamming weight j whose value becomes 1 as t increases.

We will show that if f is a monotone function such that f disagrees with Maj on exactly
t ≤ ε(2n) strings, then I(f) ≥ I(Mt). Fix t, and let M := Mt.

For any function g: {0, 1}n → {0, 1}, let Xj(g) be the set of strings such that |x| = j, g(x) = 1
and Maj(x) = 0. Define X(g) as the vector (|X0(g)|, |X1(g)|, . . . , |X(n−1)/2(g)|). Note that since
we are assuming that f differs from Maj on t strings of Hamming weight at most (n − 1)/2, the
sum of the entries of X(M) equals the sum of the entries of X(f), or equivalently, the sum of the
entries of X(M)−X(f) is 0.

Claim 3.7 The vector X(M)−X(f) has all its nonnegative entries preceding all its negative entries.

Proposition 3.8 Claim 3.7 implies Theorem 3.6

Proof: Suppose that the claim is true. Assuming f ≥ Maj, we have C(M)−C(f) =
(n−1)/2∑

i=0

(Xi(M)−

Xi(f))(−n+2i). The sum of the entries of X(M)−X(f) is 0, as M disagrees with Maj on t strings
and f disagrees with Maj on at most t strings. In the weighted sum given, the weight on entry i
increases with i, so if all the nonnegative entries of X(M)−X(f) come first (getting lower weights),
and the sum of the entries of X(M)−X(f) is 0, then C(M)− C(f) ≤ 0. Thus C(M) ≤ C(f), and
by Lemma 3.5, I(M) ≤ I(f). 2

Proposition 3.9 Claim 3.7 is true if f ≥ Maj.

Proof: Our proof will use the Kruskal-Katona theorem; in order to do this, we require some
definitions. For a set A of strings of Hamming weight j, we define the upper shadow of A as
∂uA = {y : |y| = j+1, and ∃x ∈ A such that x < y}. We define the lexicographic order on sets of size
j in the following way: Let S(x) for any string x be the length-j vector of indices i such that xi = 1
in increasing order. So S(1101000) = (1, 2, 4). Then x < y if S(x)1 < S(y)1, or S(x)1 = S(y)1 and
S(x)2 < S(y)2, or S(x)1 = S(y)1,S(x)2 = S(y)2,and S(x)3 < S(y)3,. . ., or S(x)1 = S(y)1,S(x)2 =
S(y)2,. . . ,S(x)j−1 = S(y)j−1, and S(x)j < S(y)j . The 10 strings of length 5 and Hamming weight
2 in this ordering are 11000, 10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011.

We can now state the Kruskal-Katona theorem.

Theorem 3.10 Suppose A is a set of strings of Hamming weight j, and B is the set of the first
|A| strings of Hamming weight j in lexicographic order. Then |∂uA| ≥ |∂uB|.

We will require a few claims.

Claim 3.11 For any t and j, Xj(Mt) is a set of least strings in lexicographic order.
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This claim follows from the fact that lexicographic order is a suborder of the order we get when
we order all binary strings by comparing them as numbers in decreasing order.

Claim 3.12 Let u be the string that is added at time t+1, and suppose |u| = j +1. Then u ≥ wj,t.

Proof: Suppose not. Compare u and wj,t as binary numbers. If u is less than wj,t, then Mt and
Mt+1 would not disagree on u, since as a number, u would not be the largest string such that
Mt = 0. So u must be greater than wj,t.

Now suppose the claim is false. Then there is a bit k such that uk = 0 and (wj,t)k = 1. If we
change the least significant 0 bit of wj,t from 0 to 1, the resulting string has Hamming weight j + 1
and is still as a number less than u. But Mt is a monotone function, so Mt is 1 on this string. But in
our process, we derive {Mt} by always flipping the output of the ”largest” string, a contradiction.
2

Define Wj(M) = Xj(M) ∪ {wj,t}.

Claim 3.13 For any j, ∂u(Wj(M)) ⊇ Xj+1(Mt), with equality only if the string to be added at
time t + 1 is wj,t.

Proof: Take any x in Xj+1(Mt). There exists t′ ≤ t such that x was added at time t′. By
Claim 3.12, x ≥ wj,t′ . If wj,t = wj,t′ , then x is in the upper shadow of wj,t, and we are done.
Otherwise, it must be the case that wj,t′ is in Xj(Mt), and thus x is in the upper shadow of
Xj(Mt). So it follows that x is in the upper shadow of Wj(M). Equality occurs only if all the
strings y such that y ≥ wj,t are already added, and thus the string added at time t + 1 will be wj,t.
2

Given these claims, we can now finish the proof of Theorem 3.6. The theorem is obvious when
M = f , so we assume M 6= f . Suppose that the theorem is false. As the sum of the entries of
X(M) − X(f) is 0, then there exists some 0 ≤ j < j′ ≤ (n − 1)/2 such that |Xj(f)| > |Xj(M)|,
|Xj′(f)| < |Xj′(M)|, and |Xi(f)| = |Xi(M)| for j < i < j′. It is possible that j = j′ − 1 and no
such i exists.

As f is monotone, Xj+1(f) ⊇ ∂u(Xj(f)), and so

|Xj+1(f)| ≥ |∂u(Xj(f))| (6)

By the Kruskal-Katona theorem, |∂u(Xj(f))| is at least as large as the upper shadow of the first
|Xj(f)| strings in lexicographic order. Consider Xj(M). By Claim 3.11, the set of strings Xj(M)
is precisely the first |Xj(M)| strings in lexicographic order. So if |Xj(f)| > |Xj(M)|, it must be
true that the size of the upper shadow of the first |Xj(f)| strings in lexicographic order is at least
as large as the upper shadow of the first |Xj(M)| + 1 strings in lexicographic order. But the first
|Xj(M)|+ 1 strings in lexicographic order is precisely Wj(M) by definition, so

|Xj+1(f)| ≥ |∂u(Wj(M))| (7)

By Claim 3.13, ∂u(Wj(M)) contains Xj+1(M), and thus |∂u(Wj(M))| ≥ |Xj+1(M)|. Along with
(7), we have that

|Xj+1(f)| ≥ |Xj+1(M)|. (8)
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We have assumed that |Xj+1(f)| ≤ |Xj+1(M)|, so if |Xj+1(f)| < |Xj+1(M)|, we have our
contradiction and we are done. We must now handle the case that

|Xj+1(f)| = |Xj+1(M)|. (9)

Putting (7) and (9) together yields

|Xj+1(M)| ≥ |∂u(Wj(M))|. (10)

By Claim 3.13, Xj+1(M) ⊆ ∂u(Wj(M)). Adding this to (10) yields

Xj+1(M) = ∂u(Wj(M)). (11)

By analyzing the order in which strings are added, for all j < k ≤ (n − 3)/2, Xk+1(M) =
∂u(Xk(M)).

Now since |Xj(f)| > |Xj(M)| and the entries of X(M)−X(f) sum to 0, there exists some j′ > j
such that |Xj′(f)| = |Xj′(M)| and |Xj′+1(f)| < |Xj′+1(M)|. We get

|Xj′+1(f)| ≥ |∂uXj′(f)| ≥ |∂uXj′(M)| = |Xj′+1(M)|, (12)

where the first inequality follows from monotonicity, and the middle inequality follows from the
Kruskal-Katona theorem. This yields our desired contradiction. 2

We now analyze the functions Mt. We will select a few of the Mt to ease our calculations. As t
increases, eventually we add a string consisting of a block of 1’s followed by a block of 0’s. At this
point, we get Mt = Maj ∨ (

∧k
i=1 xi) for some k. Define t0 such that Mt0 = Maj ∨ x1. All strings

with x1 = 1 are 1, so the ”largest” 0 strings in Mt where t > t0 have x2 1. At some time t1, we will
add the string that is all 0’s except for a 1 in the kth bit. Then Mtk = Maj ∨ (

∨k
i=1 xi). Also note

that M2n−1 is the constant function 1. Also note that since the string added at time t had Maj = 0
before time t, the expected number of correct bits goes down. So for all t > 0, C(Mt) ≤ C(Mt−1

and by Lemma 3.5, I(Mt) ≤ I(Mt−1).
Define gk := Maj∨x1x2 . . . xk and hk := Maj∨x1∨x2∨. . .∨xk. We will first find the probability

that each of these functions differ from Maj, then compute their average sensitivities. We will do
this assuming k = o(log n).

The following claim will be useful in the analysis the functions gk and hk.

Claim 3.14 For k = o(log n), 2−n
(

n
(n+1)/2

)
= 2−n

(
n

(n−1)/2

) ∼ 2−n−k
(

n−k
n
2
±O(k)

) ∼ 1√
2πn

.

Proof: This follows from the Central Limit Theorem. 2

We will start by showing how well gk and hk approximates Maj. First note that gk ≥ Maj,
so Prx[gk(x) 6= Maj(x)] = Prx[gk(x) = 1 ∧ Maj(x) = 0] = Prx[Maj(x) = 0|gk(x) = 1](2−k).
Suppose x1x2 . . .xk is 1. Then x1 = x2 = . . . = xk = 1, so Maj(x) is 0 only if at most (n− 1)/2 of
the remaining n− k bits are 0. However, if k = o(log n), the probability that this happens is close
to 1/2 [Karl: I guess this doesn’t follow from our claim]. So gk is a Θ(2−k−1)-approximator for Maj. *

For hk, Again note that hk ≥ Maj. Thus, Prx[hk(x) 6= Maj(x)] = Prx[hk(x) = 1 ∧Maj(x) =
0] = Prx[Maj(x) = 0]−Prx[Maj(x) = 0∧ hk(x) = 0] = (1/2−Prx[Maj(x) = 0|hk(x) = 0])(2−k).
Suppose x1 = x2 = . . . = xk = 0. The probability that Maj(x) is 0 is the probability that at most
(n − k − 1)/2 of the remaining n − k bits are 0. But since k = o(log n), the probability that his
happens is close to 1/2 [Karl: Or this either]. So hk is a (1/2−Θ(2−k−1))-approximator for Maj. *
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We now analyze the total influence of gk and hk. For any function g, let s(g, x) = |{y ∼ x :
g(x) 6= g(y)}|. In the case of Maj, we have that

I(Maj) = E
x
[s(Maj, x)] = (

n + 1
2

)Pr
x

[|x| = (n± 1)/2]

By definition, I(gk) = Ex[s(gk,x)]. We will assume s(gk, x) is nonzero only for strings x where
x1x2 . . . xk is 0, so we get I(gk) ≥ (1 − 2−k)Ex[s(gk, x)|x1x2 . . .xk =0]. The assignment to
x1, x2, . . . ,xk satisfying that the AND of them is 0 that minimizes the expectation is the one
that minimizes the probability of the string being sensitive, which is the assignment where all the
bits are 0. Thus,

I(gk) ≥ (1− 2−k)E
x
[s(gk, x)|x1 = x2 = . . . = xk = 0]

= (1− 2−k)(
n + 1

2
)Pr

x
[x has exactly (n± 1)/2 + k 1′s in indices greater than k]

= (1− 2−k)(
n + 1

2
)2−(n−k)(

(
n− k

(n + 1)/2 + k

)
+

(
n− k

(n− 1)/2 + k

)
)

∼ (1− 2−k)(
n + 1

2
)2−n(

(
n

(n + 1)/2

)
+

(
n

(n− 1)/2

)
) [using Claim 3.14]

= (1− 2−k)(
n + 1

2
)Pr

x
[|x| = (n± 1)/2]

= (1− 2−k)I(Maj).

So we can take I(gk) ≥ (1 − 2−k)(1 − o(1))I(Maj). A similar calculation shows that I(hk) =
Ex[s(hk, x)] ≥ 2−k Ex[s(hk, x)|x1 = x2 = . . . = xk = 0], by only considering strings where
x1 = x2 = . . . = xk = 0. Then we get

I(hk) ≥ 2−k(
n + 1

2
)Pr

x
[x has exactly (n± 1)/2 + k 1′s in indices greater than k]

∼ 2−k(
n + 1

2
)Pr

x
[|x| = (n± 1)/2] [using Claim 3.14]

= 2−kI(Maj).

So we can take I(hk) ≥ (2−k)(1 − o(1))I(Maj). It follows now from the above and 3.7 that if
f ≥ Maj and f is ε-close to Maj, then (1) if ε < 1/4, then I(f) ≥ (1 − Ω(ε))I(Maj), and (2) if
1/4 ≥ ε < 1/2, then I(f) ≥ Ω(1/2− ε)I(Maj).

In Proposition 3.9 as well as most of this section, we have assumed that if f ≥ Maj. Here we
remove this assumption. First note that by symmetry of 1 and 0 (and the Kruskal-Katona theorem
on an appropriate order), we could have proved everything in this section in a very similar way
assuming that if Maj is 0 then f is 0.

Theorem 3.15 Proposition 3.9 implies Theorem 3.1.

Proof: Suppose that f is ε-close to Maj. Set ε = ε0 + ε1, where ε0 is the fraction of strings where
f is 1 and Maj is 0, and ε1 is the fraction of strings where f is 0 and Maj is 1. We could think of
building f as a process, starting with Maj, and flipping the output of one string at a time. First

11



we flip the ε0 fraction of strings where Maj is 0, then the ε1 fraction of strings where Maj is 1.
To minimize total influence, we will add examples as in the process Mt, but on each side. We will
assume that we can do this; if we couldn’t, it would only help us.

Note that each string that disagrees with Maj contributes a negative amount in total influence,
and the contribution gets more negative as the Hamming weight gets further from n/2. Suppose
instead that we had a function g such that there is an ε fraction of strings where g is 1 and Maj
is 0, so g ≥ Maj. Then from our theorem, g = Mε2n . Consider the set of strings such that
g = 1, f = 0, and Maj = 0. There are ε12n such strings. Note that these strings are a set of
consecutive strings in the order comparing strings as binary numbers, where the Hamming weight
is at most (n− 1)/2. But it is true that the expected number of 1’s in a set of consecutive strings
in this order is maximized when the first strings are taken, causing the least possible decrease in
total influence. This is the decrease we will get if we choose to make f and Maj disagree on ε12n

strings where Maj = 1, so we can do no worse by having f disagree with Maj only when Maj = 0.
2

4 Falsifying the BKS Conjecture

In this section our goal is to falsify the BKS Conjecture. In particular, we will have to prove a
lower bound for ε-approximating a monotone function by DNF and CNF. Note that the technique
we used in Section 3 — lower-bounding the total influence of an approximator and then using
Theorem 1.3 — is useless here. This is because the BKS Conjecture was made as a converse to
Theorem 1.3!

Since we have difficulty enough showing size lower bounds for ε-approximating DNF, we should
hope that our lower bounds for higher depths follow for an easy reason. This suggests looking for a
counterexample among monotone functions with total influence ¿ log2 n, since for such functions
we will only have to prove sublinear size lower bounds for ε-approximating circuits of depth d ≥ 3.

The function we will use to falsify the BKS Conjecture will be based on the Tribes functions.
These were originally introduced by Ben-Or and Linial [BOL90]; we will use slightly different
parameters than they did, to simplify notation.

Given b ∈ N, write I = {1, 2, . . . , 2b}, J = {1, 2, . . . , b}, and n = b2b. We define the Tribes
function Tribesn : {0, 1}n → {0, 1} as follows. Given an input x ∈ {0, 1}n, we index its bits as xi,j ,
for i ∈ I and j ∈ J . We also write yi =

∧
j∈J xi,j . Tribesn(x) is then defined to be

∨
i∈I yi.

In other words, Tribesn is given by the monotone read-once DNF of width b and size 2b+1. We
have

Pr
x

[Tribesn(x) = 1] = 1− (1− 2−b)2
b ≈ 1− 1/e,

so Prx[Tribesn(x) = 1] is uniformly bounded away from 0 and 1.
We also define the monotone complement of Tribesn:

Tribes†n(x) = Tribesn(x1,1, x1,2, . . . , x2b,b).

The function Tribes†n(x) is given by the monotone read-once CNF of width b and size 2b +1. It has
Pr[Tribes†n(x) = 1] ≈ 1/e. Ben-Or and Linial showed that I(Tribesn) = Θ(log n), and the same
holds for Tribes†n by boolean duality.
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Suppose we attempt to approximate Tribesn with some CNF C. We view C as being an AND
of ORs, where each OR’s wires may pass through a NOT gate before being wired to an input gate
xi,j .

Now further suppose we introduce additional “input gates” yi, where each yi is always equal to∧
j∈J xi,j , and we allow the circuit C to access the yi gates if it wants. Our main lemma uses the

fact that Tribesn depends only on the yi’s to show that C can be taken to only depend on the yi’s
as well:

Lemma 4.1 Suppose Tribesn is ε-approximated by a CNF C of size s and width w over the vari-
ables (xi,j)i∈I,j∈J . Then there is another CNF C ′ of size at most s and width at most w only over
the variables (yi)i∈I that also ε-approximates Tribesn.

Proof: Given C over the input gates xi,j , imagine that every wire going to an input gate xi,j is
instead rewired to access xi,j ∨ yi. Call the resulting circuit C1. We claim that C1 and C compute
the same function of x. The reason is that on any input x where yi = 0, the rewiring to xi,j ∨ yi

has no effect; and, on any input x where yi = 1, the rewiring to xi,j ∨ yi converts xi,j to 1, but that
still has no effect since yi = 1 ⇒ xi,j = 1. Since C was an ε-approximator for Tribesn, we have

Pr
x

[C1(x,y) 6= Tribesn(x)] ≤ ε.

Now picking x uniformly at random induces the 2−b-biased product distribution on y ∈ {0, 1}I .
We can get the same distribution on (x, y) by picking y first and then picking x conditioned on
y. I.e., for each i ∈ I: if yi = 1 then all xi,j ’s are chosen to be 1; if yi = 0 then the substring
xi ∈ {0, 1}J is chosen uniformly from {0, 1}J \ {(1, 1, . . . , 1)}.

In view of this, and using the fact that Tribesn depends only on y, we have

E
y

[
Pr

x | y

[
C1(x,y) 6= Tribesn(y)

]]
≤ ε.

We next introduce new input gates (zi,j)i∈I,j∈J that take on random values, completely indepen-
dent of the xi,j ’s and the yi’s. Each substring (zi,j)j∈J will be uniform on {0, 1}J \ {(1, 1, . . . , 1)};
i.e., it will have the same distribution as (xi)j∈J | yi = 0. Now let the circuit C2 be the same as
C1 except with all accesses to the xi,j ’s replaced by accesses to the corresponding zi,j ’s.

We claim that for every string y ∈ {0, 1}I , the distributions C1(x|y, y) and C2(z, y) are identical.
The reason is that for each i ∈ I such that yi = 1, the (xi,j)j∈J and (zi,j)j∈J values are irrelevant,
since C1 only accesses xi,j by accessing xi,j ∨ yi and the same is true of C2 and zi,j . On the other
hand, for each i ∈ I such that yi = 0, the (xi,j)j∈J and (zi,j)j∈J values are identically distributed.

In light of this, we conclude

E
y

[
Pr
z

[
C2(z, y) 6= Tribesn(y)

]]
≤ ε,

which can be switched to

E
z

[
Pr
y

[
C2(z, y) 6= Tribesn(y)

]]
≤ ε.

Since z and y are independent, we can conclude there must be a particular setting z∗ such that

Pr
y

[
C2(z∗,y) 6= Tribesn(y)

]
≤ ε.

We may now take C ′ to be the circuit only over the y gates gotten by fixing the input z∗ for C2.
It is easy to check that C ′ has width at most w and size at most s. 2
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We can now use Lemma 4.1 to show that Tribesn has no good CNF approximator of width
much smaller than n/ log n:

Theorem 4.2 Any CNF that .2-approximates Tribesn must have width at least (1/3)2b = Ω(n/ log n).

Proof: Let C be a CNF of width w that .2-approximates Tribesn over the variables (xi,j)i∈I,j∈J .
Using Lemma 4.1, convert it to a CNF C ′ over the variables (yi)i∈I that .2-approximates Tribesn.
We may assume that no term in C ′ includes both yi and yi for some i. We now consider two cases.

Case 1: Every term in C ′ includes at least one negated yi. In this case, C ′ is 1 whenever
y = (0, 0, . . . , 0). But Tribesn is 0 when y = (0, 0, . . . , 0). Since this occurs with probability
(1− 2−b)2

b ≥ 1/4 > .2, we have a contradiction.
Case 2: C ′ has at least one term in which all yi’s are unnegated. Suppose this term has width

w. Since yi is true only with probability 2−b, this term is true with probability at most w2−b, by
the union bound. And whenever this term is false, C ′ is false. Hence Pr[C ′ = 0] ≥ 1 − w2−b.
Since Pr[Tribesn = 0] ≤ 1/e and C ′ is a .2-approximator for Tribesn, we must have 1 − w2−b ≤
1/e + .2 ⇒ w2−b ≥ 1/3, completing the proof. 2

By symmetry of 0 and 1, we infer:

Corollary 4.3 Any DNF that .2-approximates Tribes†n must have width at least Ω(n/ log n).

As an aside, we can now show that the idea of approximating TOPs by DNFs discussed in Sec-
tion 1.3 cannot work. Since Tribes†n is computable by a polynomial-size CNF, Jackson’s Harmonic
Sieve learning algorithm [Jac95] can produce a polynomial-size O(log n)-width TOP ε-approximator
for it, for any constant ε > 0. But one can never convert this to even a .2-approximating DNF of
size smaller than 2Ω(n/ log n), by Corollary 4.3 combined with Observation 1.1.

We now define the function that contradicts the BKS Conjecture:

Definition 4.4 Let n be of the form b2b+1. We define Fn : {0, 1}n → {0, 1} to be the OR of
Tribesn/2 and Tribes†n/2, on disjoint sets of bits.

Proposition 4.5 Fn is a monotone function computable by a depth-3 read-once formula, and
I(F) = O(log n).

The fact that I(Fn) = O(log n) holds because I(Fn) ≤ I(Tribesn/2) + I(Tribes†n/2) = O(log n) +
O(log n).

Theorem 4.6 Any depth-2 circuit that .04-approximates Fn must have size at least 2Ω(n/ log n).

Proof: Suppose D is a DNF of size s that .04-approximates Fn. By Observation 1.1, we can
replace it with a DNF D′ of width at most log(100s) which .04 + 1/100 = .05-approximates Fn.

Consider choosing x ∈ {0, 1}n/2 uniformly at random from the set of strings that make Tribesn/2

false, and also choosing y ∈ {0, 1}n/2 independently and uniformly at random. Since at least 1/4
of all strings make Tribesn/2 false (close to 1/e, in fact), this distribution is uniform on some subset
of {0, 1}n of fractional size at least 1/4. Since D′ errs in computing Fn on at most a .05 fraction of
strings, we conclude that

Pr[D′(x, y) 6= Fn(x, y)] ≤ 4 · .05 = .2.

14



Note that Fn(x, y) is always just Tribes†n/2(y). We conclude that there must be a particular setting

of bits x∗ ∈ {0, 1}n/2 such that

Pr[D′(x∗,y) 6= Tribes†n/2(y)] ≤ .2.

Hence we have a DNF D′′ = D′(x∗, ·) over {0, 1}n/2 of width at most log(100s) that .2-approximates
Tribes†n/2. By Corollary 4.3, we conclude that log(100s) ≥ Ω(n/ log n). Hence the original DNF D

has size at least 2Ω(n/ log n).
A very similar argument, restricting to the inputs to Fn where the Tribes†n/2 part is 0 and then

using Theorem 4.2 shows that any CNF that is a .04-approximator for Fn must have size at least
2Ω(n/ log n). This completes the proof. 2

Theorem 4.6 already implies that the BKS Conjecture cannot hold with d always equal to 2.
To completely falsify the conjecture, we need the following additional observations:

Proposition 4.7 Any function f : {0, 1}n → {0, 1} that .02-approximates Fn must depend on at
least Ω(n) input bits.

Proof: It is very well known (see [DF06] for a written proof) that there is an explicit ε > 0 (and
certainly ε = .1 is achievable) such that any function g : {0, 1}n → {0, 1} that ε-approximates
Tribesn/2 must depend on at least Ω(n) of its input bits. Now an argument very similar to the
one used in the proof of Theorem 4.6 shows that if f is a .02-approximator for Fn, then some
restriction of f must be a δ-approximator for Tribesn/2 with δ ≤ 4 · .02 < .1. Since this restriction
must depend on at least Ω(n/2) input bits, we conclude that f must also depend on at least this
many input bits. 2

Proposition 4.8 Any circuit that .01-approximates Fn must have size at least Ω(n/ log n).

Proof: Suppose the circuit C has size s and is a .01-approximator for Fn. By Observation 1.1,
there is another circuit C ′ of size at most s and width at most log(100s) that .01-approximates C;
this C ′ is thus a .01 + .01 = .02-approximator for Fn. But C ′ depends on at most size × width
= s log(100s) literals. Hence s log(100s) ≥ Ω(n) by Proposition 4.7 and so s ≥ Ω(n/ log n). 2

Finally, we’ve established:

Theorem 4.9 The BKS Conjecture is false.

Proof: We use the function Fn, which is monotone and has I(Fn) = O(log n). The BKS Conjecture
implies that there is some universal constant K = K(.01) < ∞ such that the following holds: There
is a circuit C that .01-approximates Fn and has depth d and size s, for some d and s satisfying

s ≤ exp
(
(K · I(Fn))1/(d−1)

)
= exp

(
O(log1/(d−1) n)

)
.

Now d can’t be 2, since this would imply s ≤ poly(n), and we know from Theorem 4.6 that there
is no circuit .01-approximating Fn of depth 2 and size 2o(n/ log n). But d ≥ 3 is also impossible,
since this would imply s ≤ exp(

√
log n), and we know from Proposition 4.8 that there is no circuit

.01-approximating Fn of size o(n/ log n). 2

15



References

[Ajt83] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48,

1983.

[Ajt93] M. Ajtai. Approximate counting with uniform constant-depth circuits. In Advances in
Computational Complexity Theory, pages 1–20. Amer. Math. Soc., Providence, RI, 1993.
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A A Weak Version of Theorem 3.1

Theorem A.1 If ε < 1
2π , then I(f) ≥ Ω(

√
n) for all f that ε-approximate Majn.

Proof: Suppose f is an ε-approximator for Majn. By Proposition 3.3, we may assume f is
monotone.

It is well known [KKL88] that if f is monotone then Infi(f) = 2f̂({i}). Here we are writing
ĝ(S) = Ex[g(x) · ∏i∈S(−1)xj ] for the S ⊆ [n] Fourier coefficient of g. Let α denote the vector
[f̂({1}), . . . , f̂({n})] ∈ Rn and β the vector [M̂ajn({1}), . . . , M̂ajn({n})]. We have β = (c, c, . . . , c),
where c = 1

2 Inf1(f) = 1/
√

2πn + o(1/
√

n) (see Proposition 1.7). Now

‖α− β‖2 =
n∑

i=1

(f̂({i})− M̂ajn({i}))2 ≤
∑

S⊆[n]

(f̂(S)− M̂ajn(S))2 = E
x
[(f(x)−Majn(x))2] ≤ ε,
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where the second-to-last equality is Parseval’s Theorem and the last equality uses the fact that f
is an ε-approximator for Majn. We would now like to lower-bound 〈α, β〉 subject to this constraint
‖β − α‖ ≤ √

ε, because

〈α, β〉 = c ·
n∑

i=1

αi = c · 1
2

n∑

i=1

Infi(f) = (c/2) · I(f).

Now if ‖β‖ ≤ √
ε then we can’t give any lower bound, since α could potentially be 0. This is

why we require the assumption ε < 1
2π < 1

2π + o(1) = ‖β‖. Assuming this, it’s clear that subject to
‖β − α‖ ≤ √

ε the minimum value of 〈α, β〉 occurs when α points in the direction of β, and equals
(1−√ε/‖β‖)β. In this case, 〈α, β〉 = ‖β‖2 −√ε‖β‖, and so we get

(c/2) · I(f) = 〈α, β〉 ≥ ‖β‖2 −√ε‖β‖ = c2n− c
√

εn

which implies
I(f) ≥ 2cn− 2

√
εn = I(Majn)− 2

√
εn.

Since ε < 1
2π and I(Majn) ≥ √

2πn, we conclude that I(f) ≥ Ω(
√

n), as claimed. From this we also
see that I(f) ≥ (1−O(

√
ε))I(Majn) for small ε. 2

B Why Switching Lemmas Don’t Seem to Help

It might seem that switching lemmas could give a size lower bound for DNFs that ε-approximate
Majority; certainly these tools have been extremely useful for proving size lower bounds on constant-
depth circuits that exactly compute Majority (see [FSS84, Ajt83, H̊as86], and [Yao83, Bop86] for the
monotone case). However even H̊astad’s Switching Lemma doesn’t seem to help. Briefly, suppose
one tries to argue against O(

√
n)-width DNF by using random restrictions with Θ(

√
n) many unset

variables. With high probability the imbalance of 0’s and 1’s in the restriction will be Ω(
√

n);
this will make the restricted Majority function essentially constant, because the imbalance in the
unset variables is extremely unlikely to exceed O(n1/4). Thus there is no contradiction when the
approximating DNF is devastated. One could also consider using the variation due to Beame [Bea93]
in which the random restrictions have an equal number of 0’s and 1’s. Then the restricted Majority
function remains a Majority, but the restrictions themselves, even when completed randomly, only
constitute a negligible fraction of the probability space on {0, 1}n. Perhaps the best one can do
is use the usual random restrictions to show that width Ω(

√
n) DNF are required to compute a

“1/2 + Ω(1/
√

n) approximate-Majority” — i.e., to compute Majority correctly on all strings that
have at least a 1/2+Ω(1/

√
n) fraction of 1’s or at most a 1/2−Ω(1/

√
n) fraction of 1’s (Viola [Vio05]

appears to have made this observation). However this only rules out one very particular way of
being an Ω(1)-approximator in our sense.
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