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Abstract. In this paper we present semidefinite programming (SDP)
gap instances for the following variants of the Label-Cover problem,
closely related to the Unique Games Conjecture: (i) 2-to-1 Label-Cover;
(ii) 2-to-2 Label-Cover; (iii) α-constraint Label-Cover. All of our gap
instances have perfect SDP solutions. For alphabet size K, the inte-
gral optimal solutions have value: (i) O(1/

√
logK); (ii) O(1/ logK);

(iii) O(1/
√

logK).
Prior to this work, there were no known SDP gap instances for any of
these problems with perfect SDP value and integral optimum tending
to 0.

1 Introduction

1.1 The Unique Games Conjecture and its variants

Since its introduction in 2002, the Unique Games Conjecture (UGC) of Khot [8]
has proved highly influential and powerful in the study of probabilistically check-
able proofs (PCPs) and approximation algorithms. Assuming the UGC yields
many strong — and often, optimal — hardness of approximation results that
we have been unable to obtain assuming only P 6= NP. Perhaps the acme of this
line of research so far is the work of Raghavendra [12], who showed the following
result:

Theorem 1. ([12], informally.) Let C be any bounded-arity constraint satisfac-
tion problem (CSP). Assume the Unique Games Conjecture. Then for a certain
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semidefinite programming (SDP) relaxation of C, the SDP gap for C is the same
as the optimal polynomial-time approximability gap for C, up to an additive con-
stant ε > 0 which can be arbitrarily small.

Unfortunately, because of the additive ε term, Raghavendra’s work is not
applicable (even granting the UGC or any related conjecture) for the important
case of completely satisfiable CSPs; equivalently, PCPs with perfect complete-
ness. A good example of this comes from coloring problems; e.g., the very well
known problem of coloring 3-colorable graphs. The UGC does not help in de-
ducing any hardness result for such problems. Indeed the first strong hardness
result for it, due to Dinur, Mossel, and Regev [3], used instead certain vari-
ants of UGC which have perfect completeness, namely, the “2-to-1 Conjecture”,
the “2-to-2 Conjecture”, and the “α-Constraint Conjecture”. (These conjectures
will be described formally in Section 3.) An instance of Label-Cover with α-
constraints was also implicit in the result of Dinur and Safra [4] on the hardness
of approximating minimum vertex cover.

Recently, several more works have needed to use these alternate conjectures
with perfect completeness: e.g., O’Donnell and Wu [11] and Tang [16] on Max-
3CSP, Guruswami and Sinop [6] on Max-k-Colorable-Subgraph.

1.2 Statements of the conjectures

Let us briefly give some definitions so that we may state some of the aforemen-
tioned conjectures more precisely.

Definition 1. A Label-Cover instance L is defined by a tuple ((V,E), R, Ψ).
Here (V,E) is a graph, R is a positive integer and Ψ is a set of constraints
(relations), one for each edge: Ψ = {ψe ⊆ {1, . . . , R}2 | e ∈ E}. A labeling A
is a mapping A : V → [R]. We say that an edge e = (u, v) is satisfied by A if
(A(u), A(v)) ∈ ψe. We define:

OPT(L) = max
A:V→[R]

Pr
e=(u,v)∈E

[(A(u), A(v)) ∈ ψe]

Here the probability is over the uniform distribution of edges, i.e. each edge
is equally likely to be picked.

Definition 2. A constraint ψ ⊆ {1, . . . , R}2 is said to be a d-to-1 projection
if there is a map π : [R] → [R] such that for each element j ∈ [R] we have
|π−1(j)| ≤ d, and (i, j) ∈ ψ if and only if j = π(i). A Label-Cover instance is
said to be d-to-1 if all its constraints are d-to-1 projections.

We now state some conjectures on the inapproximability of Unique and 2-to-
1 Label-Cover. In Section 3.1 we will also discuss the two other variants of the
Label-Cover problem, based on 2-to-2 and “α” constraints, and the associated
2-to-2 and α-Constraint Conjectures on their inapproximability.

Conjecture 1. [7] (Unique Games Conjecture) For any ε, δ > 0, it is NP-hard
to decide whether a 1-to-1 bipartite Label-Cover instance L has OPT(L) ≥ 1− ε
or has OPT(L) ≤ δ.



Notice that the above problem is in P when ε = 0.

Conjecture 2. [7] (2-to-1 Conjecture) For any δ > 0, it is NP-hard to decide
whether a 2-to-1 bipartite Label-Cover instance L has OPT(L) = 1 or has
OPT(L) ≤ δ.

1.3 Evidence for and against

Despite significant work, the status of the Unique Games Conjecture — as well
as the 2-to-1, 2-to-2, and α-Constraint Conjectures — is unresolved. Towards
disproving the conjectures, the best algorithms known are due to Charikar,
Makarychev, and Makarychev [2]. Using somewhat strong SDP relaxations, those
authors gave polynomial-time SDP-rounding algorithms which achieve:

– Value K−ε/(2−ε) (roughly) for Unique Label-Cover instances with SDP value
1− ε over alphabets of size K.

– Value K−3+2
√

2−ε for 2-to-1 Label-Cover instances with SDP value 1−Θ(ε)
over alphabets of size K.

The best evidence in favor of the Unique Games Conjecture is probably the
existence of strong SDP gaps. The first such gap was given by Khot and Vish-
noi [10]: they constructed a family of Unique Label-Cover instances over alphabet
size K with SDP value 1− ε and integral optimal value K−Θ(ε). In addition to
roughly matching the CMM algorithm, the Khot–Vishnoi gaps have the nice
property that they even hold with triangle inequality constraints added into the
SDP. Even stronger SDP gaps for UGC were obtained recently by Raghavendra
and Steurer [13].

Standing in stark contrast to this is the situation for the 2-to-1 Conjecture
and related variants with perfect completeness. Prior to this work, there were
no known SDP gap families for these problems with SDP value 1 and integral
optimal value tending to 0 with the alphabet size. Indeed, there was hardly any
evidence for these conjectures, beyond the fact that Charikar, Makarychev, and
Makarychev failed to disprove them.

1.4 SDP gaps as a reduction tool

In addition to being the only real evidence towards the validity of the UGC, SDP
gaps for Unique Games have served another important role: they are the starting
points for strong SDP gaps for other important optimization problems. A notable
example of this comes in the work of Khot and Vishnoi [10] who used the UG gap
instance to construct a super-constant integrality gap for the Sparsest Cut-SDP
with triangle inequalities, thereby refuting the Goemans-Linial conjecture that
the gap was bounded by O(1). They also used this approach to show that the
integrality gap of the Max-Cut SDP remains 0.878 when triangle inequalities
are added. Indeed the approach via Unique Games remains the only known way
to get such strong gaps for Max Cut. Recently, even stronger gaps for Max-Cut



were shown using this framework in [9, 13]. Another example of a basic problem
for which a SDP gap construction is only known via the reduction from Unique
Games is Maximum Acyclic Subgraph [5].

In view of these results, it is fair to say that SDP gaps for Unique Games
are significant unconditionally, regardless of the truth of the UGC. Given the
importance of 2-to-1 and related conjectures in reductions to satisfiable CSPs
and other problems like coloring where perfect completeness is crucial, SDP
gaps for 2-to-1 Label-Cover and variants are worthy of study even beyond the
motivation of garnering evidence towards the associated conjectures on their
inapproximability.

2 Our results

Label-Cover admits a natural semidefinite programming relaxation (see Fig-
ure 1). In this paper, we show the following results on the limitations of the
basic semidefinite programming relaxation for Label-Cover instances with 2-to-
1, 2-to-2, and α constraints:

– There is an instance of 2-to-2 Label-Cover with alphabet sizeK and optimum
value O(1/ logK) on which the SDP has value 1.

– There are instances of 2-to-1 and α-constraint Label-Cover with alphabet
size K and optimum value O(1/

√
logK) on which the SDP has value 1.

In both cases the instances have size 2Ω(K).
We note that if we only require the SDP value to be 1−ε instead of 1, then in-

tegrality gaps for all these problems easily follow from gaps from Unique Games,
constructed by Khot and Vishnoi [10] (by duplicating labels appropriately to
modify the constraints). However, the motivation behind these conjectures is
applications where it is important that the completeness is 1. Another difference
between the 2-to-1 Label-Cover and the Unique Label-Cover is the fact that
for 2-to-1 instances, it is consistent with known algorithmic results of [2] that
OPT be as low as K−c for some c > 0 independent of ε, when the SDP value is
1− ε. It is an interesting question if OPT can indeed be this low even when the
SDP value is 1. Our constructions do not address this question, as we only show
OPT = O(1/

√
logK).

We also point out that our integrality gaps are for special cases of the Label-
Cover problem where the constraints can be expressed as difference equations
over F2-vector spaces. For example, for 2-to-2 Label-Cover, each constraint φe
is of the form x − y ∈ {α, α + γ} where α, γ ∈ Fk2 are constants. For such con-
straints, the probable of deciding whether an instance is completely satisfiable
(OPT = 1) or not (OPT < 1) is in fact in P. To see this, one can treat the coor-
dinates (x1, . . . , xk) and (y1, . . . , yk) as separate boolean variables and introduce
an auxiliary boolean variable ze for each constraint. We can then rewrite the
constraint as a conjunction of linear equations over F2:

k∧
i=1

(xi − yi − ze · γi = αi) .



Here xi, yi, αi, γi denote the ith coordinates of the corresponding vectors. Decid-
ing whether a system of linear equations is completely satisfiable is of course in
P. Alternatively, one can note that constraints x − y ∈ {α, α + γ} mod Fk2 are
Mal’tsev constraints, and hence deciding satisfiability of CSPs based on them is
in P by the work of Bulatov and Dalmau [1].

Despite this tractability, the SDPs fail badly to decide satisfiability. This
situation is similar to the very strong SDP gaps known for problems such as
3-XOR (see [14], [17]) for which deciding complete satisfiability is easy.

3 Preliminaries and Notation

3.1 Label-Cover Problems

In Figure 1, we write down a natural SDP relaxation for the Label-Cover prob-
lem. The relaxation is over the vector variables z(v,i) for every vertex v ∈ V and
label i ∈ [R].

maximize E
e=(u,v)∈E

[ ∑
i,j∈ψe

〈
z(u,i), z(v,j)

〉]
subject to

∑
i∈[R]

∥∥z(v,i)

∥∥2
= 1 ∀ v ∈ V

〈
z(v,i), z(v,j)

〉
= 0 ∀ i 6= j ∈ [R], v ∈ V

Fig. 1. SDP for Label-Cover

Our goal in this work is to study integrality gaps for the above SDP for var-
ious special cases of the Label-Cover problem. We already discussed the Unique
Games and 2-to-1 conjectures on the hardness of certain very special cases of
Label-Cover. We now discuss two other variants of Label-Cover and their con-
jectured inapproximability.

Definition 3. A constraint ψ ⊆ {1, . . . , 2R}2 is said to be a 2-to-2 constraint
if there are two permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that
(i, j) ∈ ψ if and only if (σ1(i), σ2(j)) ∈ T where

T := {(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1), (2l, 2l)}Rl=1.

A Label-Cover instance is said to be 2-to-2 if all its constraints are 2-to-2 con-
straints.

A constraint ψ ⊆ {1, . . . , 2R}2 is said to be an α-constraint if there are two
permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that (i, j) ∈ ψ if and only
if (σ1(i), σ2(i)) ∈ T ′ where

T ′ := {(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1)}Rl=1.

A Label-Cover instance is said to be α if all its constraints are α constraints.



Conjecture 3. [3] (2-to-2 Conjecture) For any δ > 0, it is NP-hard to decide
whether a 2-to-2 Label-Cover instance L has OPT(L) = 1 or has OPT(L) ≤ δ.

It was shown in [3] that the 2-to-2 Conjecture is no stronger than the 2-to-1
Conjecture.

Conjecture 4. [3] (α Conjecture) For any δ > 0, it is NP-hard to decide whether
a α Label-Cover instance L has OPT(L) = 1 or has OPT(L) ≤ δ.

3.2 Fourier Analysis

Let V := {f : Fk2 → R} denote the vector space of all real functions on Fk2 ,
where addition is defined as point-wise addition. We always think of Fk2 as a
probability space under the uniform distribution, and therefore use notation
such as ‖f‖p := Ex∈Fk2 [|f(x)|p]. For f , g ∈ F , we also define the inner product
〈f, g〉 := E[f(x)g(x)].

For any α ∈ Fk2 the Fourier character χα ∈ F is defined by χα(x) := (−1)α·x.
The Fourier characters form an orthonormal basis for V with respect to the
above inner product, hence every function f ∈ V has a unique representation as
f =

∑
α∈Fk2

f̂(α)χα, where the Fourier coefficient f̂(α) := 〈f, χα〉.
We also sometimes identify each α with the set Sα = {i | αi = 1} and denote

the Fourier coefficients as f̂(S). We use the notation |α| for |Sα|, the number of
coordinates where α is 1.

The following well-known fact states that the norm of a function on Fk2 is
unchanged when expressing it in the basis of the characters.

Proposition 1. (Parseval’s identity) For any f : Fk2 → R,
∑
α∈Fk2

f̂(α)2 =
‖f‖22 = E[f(x)2].

We shall also need the following result due to Talagrand (“Proposition 2.3”
in [15]), proven using hypercontractivity methods:

Theorem 2. Suppose F : Fk2 → R has E[F ] = 0. Then∑
α∈Fk2\{0}

F̂ (α)2/|α| = O

(
‖F‖22

ln(‖F‖2/(e‖F‖1))

)
.

More precisely, we will need the following easy corollary:

Corollary 1. If F : Fk2 → {0, 1} has mean 1/K, then

F̂ (0)2 +
∑

α∈Fk2\{0}

F̂ (α)2/|α| = O (1/(K logK))

Proof. We have F̂ (0)2 = E[F ]2 = 1/K2 ≤ O(1/(K logK)), so we can disregard
this term. As for the sum, we apply Theorem 2 to the function F ′ = F − 1/K,
which has mean 0 as required for the theorem. It is easy to calculate that ‖F ′‖2 =
Θ(1/

√
K) and ‖F ′‖1 = Θ(1/K), and so the result follows.



4 Integrality Gap for 2-to-2 Games

We first give an integrality gap for label cover with 2-to-2 constraints. The
instance for 2-to-1 label cover will be an extension of the one below. In fact,
our analysis of OPT in the 2-to-1 case will follow simply by reducing it to the
analysis of OPT for the 2-to-2 instance below.

The vertex set V in our instance is same as the vertex set of the Unique
Games integrality gap instance constructed in [10]. Let F := {f : Fk2 7→ {−1, 1}}
denote the family of all boolean functions on Fk2 . For f , g ∈ F , define the product
fg as (fg)(x) := f(x)g(x). Consider the equivalence relation ∼ on F defined as
f ∼ g ⇔ ∃α ∈ Fk2 s.t. f ≡ gχα. This relation partitions F into equivalence classes
P1, . . . ,Pn, with n := 2K/K. The vertex set V consists of the equivalence classes
{Pi}i∈[n]. We denote by [Pi] the lexicographically smallest function in the class
Pi and by Pf , the class containing f .

We take the label set to be of size K and identify [K] with Fk2 in the obvious
way. For each tuple of the form (γ, f, g) where γ ∈ Fk2 \{0} and f, g ∈ F are such
that (1 + χγ)f ≡ (1 + χγ)g, we add a constraint ψ(γ,f,g) between the vertices
Pf and Pg. Note that the condition on f and g is equivalent to saying that
χγ(x) = 1 =⇒ f(x) = g(x). If f = [Pf ]χα and g = [Pg]χβ and if A : [n]→ Fk2
denotes the labeling, the relation ψ(γ,f,g) is defined as

(A(Pf ), A(Pg)) ∈ ψ(γ,f,g) ⇔ (A(Pf ) + α)− (A(Pg) + β) ∈ {0, γ}.

Note that for any ω ∈ Fk2 , the constraint maps the labels {ω, ω + γ} for Pf to
the labels {ω+α−β, ω+α−β+γ} for Pg in a 2-to-2 fashion. We denote the set
of all constraints by Ψ . We remark that, as in [10], our integrality gap instances
contain multiple constraints on each pair of vertices.

4.1 SDP Solution

We give below a set of feasible vectors z(Pi,α) ∈ RK for every equivalence class
Pi and every label α, achieving SDP value 1. Identifying each coordinate with
an x ∈ Fk2 , we define the vectors as

z(Pi,α)(x) :=
1
K

([Pi]χα)(x).

It is easy to check that
∥∥z(Pi,α)

∥∥2 = 1/K for each of the vectors, which satisfies
the first constraint. Also, z(Pi,α) and z(Pi,β) are orthogonal for α 6= β since〈

z(Pi,α), z(Pi,β)

〉
=

1
K2
〈[Pi]χα, [Pi]χβ〉 =

1
K2
〈χα, χβ〉 = 0

using the fact that [Pi]2 = 1. The following claim proves that the solution
achieves SDP value 1.

Claim. For any edge e indexed by a tuple (γ, f, g) with f(1 + χγ) ≡ g(1 + χγ),
we have ∑

ω1,ω2∈ψ(γ,f,g)

〈
z(Pf ,ω1), z(Pg,ω2)

〉
= 1



Proof. Let f ≡ [Pf ]χα and g ≡ [Pg]χβ . Then, (ω1, ω2) ∈ ψe iff (ω1 + α)− (ω2 +
β) ∈ {0, γ}. Therefore, the above quantity equals (divided by 2 to account for
double counting of ω)

1
2
·
∑
ω

(〈
z(Pf ,ω+α), z(Pg,ω+β)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg,ω+β)

〉
+
〈
z(Pf ,ω+α), z(Pg,ω+β+γ)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg,ω+β+γ)

〉)
=

1
2

∑
ω

〈
z(Pf ,ω+α) + z(Pf ,ω+α+γ), z(Pf ,ω+β) + z(Pf ,ω+β+γ)

〉
(1)

However, for each ω, we have z(Pf ,ω+α)+z(Pf ,ω+α+γ) = z(Pf ,ω+β)+z(Pf ,ω+β+γ),
since for all coordinates x,

z(Pf ,ω+α)(x) + z(Pf ,ω+α+γ)(x) =
1
K

([Pf ]χω+α(x) + [Pf ]χω+α+γ(x))

=
1
K

(f(x) + fχγ)χω(x) =
1
K

(g(x) + gχγ)χω(x)

=
1
K

([Pg]χω+β(x) + [Pg]χω+β+γ(x)) = z(Pf ,ω+β)(x) + z(Pf ,ω+β+γ)(x).

This completes the proof as the value of (1) then becomes

1
2

∑
ω

∥∥z(Pf ,ω+α) + z(Pf ,ω+α+γ)

∥∥2 =
1
2

∑
ω

(∥∥z(Pf ,ω+α)

∥∥2 +
∥∥z(Pf ,ω+α+γ)

∥∥2
)

= 1.

4.2 Soundness

We now prove that any labeling of the instance described above, satisfies at
most O(1/ logK) fraction of the constraints. Let A : V → Fk2 be a labeling of
the vertices. We extend it to a labeling of all the functions in F by defining
A([Pi]χα) := A(Pi) + α.

For each α ∈ Fk2 , define Aα : F → {0, 1} to be the indicator that A’s value is
α. By definition, the fraction of constraints satisfied by the labeling A is

val(A) = E
(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g) +Aα+γ(g))


= E

(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g) +Aα(gχγ))


= 2 · E

(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g)

 (2)

where the last equality used the fact that for every tuple (γ, f, g) ∈ Ψ , we also
have (γ, f, gχγ) ∈ Ψ .



Note that the extended labeling A : F → Fk2 takes on each value in Fk2 an
equal number of times. Hence

E
f

[Aα(f)] = Pr
f

[A(f) = α] = 1/K for each α ∈ Fk2 . (3)

For our preliminary analysis, we will use only this fact to show that for any
α ∈ Fk2 it holds that

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ O(1/(K logK)). (4)

It will then follow that the soundness (2) is at most O(1/ logK). Although this
tends to 0, it does so only at a rate proportional to the logarithm of the alphabet
size, which is K = 2k.

Beginning with the left-hand side of (4), let’s write F = Aα for simplicity.
We think of the functions f and g being chosen as follows. We first choose a
function h : γ⊥ → {−1, 1}. Note that γ⊥ ⊆ Fk2 is the set of inputs where χγ = 1
and hence f = g, and we let f(x) = g(x) = h(x) for x ∈ γ⊥. The values of f and
g on the remaining inputs are chosen independently at random. Then

E
(γ,f,g)∈Ψ

[F (f)F (g)] = E
γ

E
h:γ⊥→{−1,1}

[
E
f,g|h

[F (f)F (g)]
]

= E
γ

E
h:γ⊥→{−1,1}

[
E
f |h

[F (f)] E
g|h

[F (g)]
]
. (5)

Let us write PγF (h) for Ef |h F (f), which is also equal to Eg|h F (g). We now use
the Fourier expansion of F . Note that the domain here is {−1, 1}K instead of Fk2 .
To avoid confusion with characters and Fourier coefficients for functions on Fk2 ,
we will index the Fourier coefficients below by sets S ⊆ Fk2 . Given an f ∈ V , we’ll
write fS for

∏
x∈S f(x) (which is a Fourier character for the domain {−1, 1}K).

Now for fixed γ and h,

PγF (h) = E
f |h

[F (f)] = E
f |h

∑
S⊆Fk2

F̂ (S)fS

 =
∑
S⊆Fk2

F̂ (S) · E
f |h

[fS ].

The quantity Ef |h[fS ] is equal to hS if S ⊆ γ⊥ as is 0 otherwise. Thus, using
the Parseval identity, we deduce that (5) equals

E
γ

E
h:γ⊥→{−1,1}

[
(PγF (h))2

]
= E

γ

 ∑
S⊆γ⊥

(
F̂ (S)

)2

 =
∑
S⊆Fk2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)

)2

.

Recalling that γ ∈ Fk2 \ {0} is chosen uniformly, we have that∑
S⊆Fk2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)

)2

=
∑
S⊆Fk2

2− dim(S) ·
(
F̂ (S)

)2

,



where we are writing dim(S) = dim(span S) for shortness (and defining dim(∅) =
0). For |S| ≥ 1 we have dim(S) ≥ log2 |S| and hence 2− dim(S) ≥ 1/|S|. Thus∑

S⊆Fk2

2− dim(S) · F̂ (S)2 ≤ F̂ (∅)2 +
∑

∅6=S⊆Fk2

F̂ (S)2/|S|.

Corollary 1 shows that this is at most O(1/(K logK)). This completes the proof:

val(A) = 2·
∑
α∈Fk2

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ 2·
∑
α∈Fk2

2− dim(S)Âα(S)2 = O(1/ logK).

5 Integrality gap for 2-to-1 label cover

The instances for 2-to-1 label cover are bipartite. We denote such instances as
(U, V,E,R1, R2, Π) where R2 = 2R1 denote the alphabet sizes on the two sides.
For a bipartite instance, the label cover SDP can be written in the following
form involving vectors y(u,i) for each u ∈ U, i ∈ [R1] and vectors z(v,j) for each
v ∈ v, j ∈ [R2].

maximize E
e=(u,v)∈E

[ ∑
i∈[R2]

〈
y(u,πe(i)), z(v,j)

〉]
subject to

∑
i∈[R1]

∥∥y(u,i)

∥∥2
= 1 ∀ u ∈ U

∑
i∈[R2]

∥∥z(v,i)

∥∥2
= 1 ∀ v ∈ V

〈
y(u,i),y(u,j)

〉
= 0 ∀ i 6= j ∈ [R1], u ∈ U〈

z(v,i), z(v,j)

〉
= 0 ∀ i 6= j ∈ [R2], v ∈ V

Fig. 2. SDP for 2-to-1 games

5.1 Gap Instance

As in the case of 2-to-2 games, the set V consists of equivalence classes P1, . . . ,Pn,
which partition the set of functions F = {f : Fk2 → {−1, 1}}, according to the
equivalence relation ∼ defined as f ∼ g ⇔ ∃α ∈ Fk2 s.t.f ≡ gχα. The label set
[R2] is again identified with Fk2 and is of size K = 2k.

To describe the set U , we further partition the vertices in V according to
other equivalence relations. For each γ ∈ Fk2 , γ 6= 0, we define an equivalence
relation ∼=γ on the set P1, . . . ,Pn as

Pi ∼=γ Pj ⇔ ∃f ∈ Pi, g ∈ Pj s.t. f(1 + χγ) ≡ g(1 + χγ)



This is equivalent to saying:

Pi ∼=γ Pj ⇔ ∃f ∈ Pi, g ∈ Pj s.t. fg(x) = −1⇒ χγ(x) = −1 ∀x ∈ Fk2 .

This partitions P1, . . . ,Pn (and hence also the set F) into equivalence classes
Qγ1 , . . . ,Qγm. Here m = 2K/2+1/K (this is immediate from the second definition
and the fact that n = 2K/K) and the partition is different for each γ. The set
U has one vertex for each class of the form Qγi for all i ∈ [m] and γ ∈ Fk2 \ {0}.
As before, we denote by [Qγi ] the lexicographically smallest function in the class
Qγi , and by Qγf the class under ∼=γ containing f . Note that if f ∈ Qγi , then there
exists a β ∈ Fk2 such that f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ).

The label set R1 has size K/2. For each vertex Qγi ∈ U , we think of the labels
as pairs of the form {α, α+γ} for α ∈ Fk2 . More formally, we identify it with the
space Fk2/〈γ〉. We impose one constraint for every pair of the form (γ, f) between
the vertices Pf and Qγf . If f ≡ [Pf ]χα and f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ), then
the corresponding relation ψ(γ,f) is defined by requiring that for any labelings
A : V → [R2] and B : U → [R1],

(B(Qγf ), A(Pf )) ∈ ψ(γ,f) ⇔ A(Pf ) + α ∈ B(Qγf ) + β.

Here, if B(Qγf ) is a pair of the form {ω, ω+γ}, then B(Qγf ) +β denotes the pair
{ω + β, ω + γ + β}.

5.2 SDP Value

As before, we give a set of vectors y(Qγi ,{α,α+γ}) and z(Pi,α) in RK , identifying
each coordinate with an x ∈ Fk2 . We define the vectors as

y(Qγi ,{α,α+γ})(x) :=
1
K

([Qγi ]χα(1 + χγ)) (x),

z(Pi,α)(x) :=
1
K

([Pf ]χα) (x).

We have already shown that
〈
z(Pi,α), z(Pi,β)

〉
= 0 for α 6= β and

∥∥z(Pi,α)

∥∥2 =
1/K. It again follows by the orthogonality of characters that for disjoint pairs
{α, α+γ} and {β, β+γ}, the vectors y(Qγi ,{α,α+γ}) and y(Qγi ,{β,β+γ}) are orthog-

onal. It is also easy to verify that
∥∥∥y(Qγi ,{α,α+γ})

∥∥∥2

= 2/K. Hence, the vectors
form a feasible solution.

To show that the SDP value is equal to 1, we consider an arbitrary constraint
indexed by the pair (γ, f). Let f ≡ [Pf ]χα and f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ).
Then for any ω ∈ Fk2 , this constraint maps the label ω + α for Pf to the pair
{ω+β, ω+γ+β} for Qγf . Hence, the value of the SDP solution on this constraint
is given by ∑

ω∈Fk2

〈
y(Qγi ,{ω+β,ω+β+γ}), z(Pi,α+ω)

〉



We will show that for every ω, y(Qγi ,{ω+β,ω+β+γ}) = z(Pi,α+ω) + z(Pi,α+ω+γ).
This will complete the proof as the above expression then becomes∑

ω∈Fk2

〈
z(Pi,α+ω) + z(Pi,α+ω+γ), z(Pi,α+ω)

〉
=

∑
ω∈Fk2

∥∥z(Pi,α+ω)

∥∥2 = 1.

To show the vector identity, we simply note that for each coordinate x, we have

y(Qγi ,{ω+β,ω+β+γ})(x) =
1
K

([Qγi ]χβ(1 + χγ)) (x)

=
1
K

(f(1 + χγ)) (x)

=
1
K

([Pf ]χα + [Pf ]χα+γ) (x)

= z(Pi,α+ω)(x) + z(Pi,α+ω+γ)(x).

5.3 Soundness

We now bound the fraction of constraints satisfied by any pair of labelings A :
V → [K] and B : U → [K/2]. Let 1{E} denote the indicator of the event E ,
and N(u) denote the neighborhood of a vertex u ∈ U . Then, the fraction of
constraints satisfied by any assignments A,B, can be bound by an application
of Cauchy-Schwarz as

val(A,B) = E
u∈U

E
v∈N(u)

[
1{πuv(A(v))=B(u)}

]
≤

(
E
u∈U

(
E

v∈N(u)

[
1{πuv(A(v))=B(u)}

])2
)1/2

=
(

E
u∈U

E
v1,v2∈N(u)

[
1{πuv1 (A(v1))=B(u)=πuv2 (A(v2))}

])1/2

≤
(

E
u∈U

E
v1,v2∈N(u)

[
1{πuv1 (A(v1))=πuv2 (A(v2))}

])1/2

Note that if πuv1 and πuv2 are 2-to-1 projections, then the inner quantity
in the last expression denotes the value of a 2-to-2 label cover instance, each of
whose constraints is defined by two 2-to-1 constraints in the original instance.
For the 2-to-1 instance described above, we will show that the inner quantity
in fact denotes the fraction of constraints satisfied by A for the 2-to-2 instance
described in Section 4. This will show that the fraction of constraints satisfied
by any assignment in the above 2-to-1 instance can be at most O(1/

√
logK).

To see this, note that a vertex u ∈ U and a vertex v1 ∈ V can be sampled
jointly by picking a pair (γ, f) and taking u = Qγf and v1 = Pf . Sampling v2 ∈
N(u) corresponds to choosing a class Pi such that for some β ∈ Fk2 [Pi]χβ(1 +
χγ) ≡ f(1 + χγ). Thus, v2 can be sampled by choosing a random g such that
f(1 + χγ) ≡ g(1 + χγ) and taking v2 = Pg.



Also, if f ≡ [Pf ]χα1 and g ≡ [Pg]χα2 , then the constraint πuv1(A(v1)) =
πuv2(A(v2)) simply requires that for some ω ∈ Fk2 , A(Pf ) + α1 and A(Pg) + α2

both lie in the set {ω, ω + γ} and hence

(A(Pf ) + α1)− (A(Pg) + α2) ∈ {0, γ}.

6 From 2-to-1 constraints to α-constraints

In this section we show that any integrality gap instance for 2-to-1 games, with
sufficiently many edges, can be converted to an integrality gap instance for games
with α-constraints. The SDP we consider for these games is identical to the ones
considered before, except for the objective function.

Theorem 3. Let L = (U, V,E,R, 2R,Ψ) be a bipartite instance of 2-to-1 label
cover problem with OPT(L) ≤ δ and SDP value 1. Also, let |E| ≥ 4(|U | +
|V |) log(R)/ε2. Then there exists another instance L′ = (U, V,E, 2R,Ψ ′) of Label
Cover with α-constraints having SDP value 1 and OPT(L′) ≤ δ + ε+ 1/R.

Proof. The proof simply follows by adding R “fake” labels for each vertex u ∈ U ,
and then randomly augmenting the constraints to make them of the required
form. In particular, let the new labels we add for each u ∈ U be R + 1, . . . , 2R.
Let e = (u, v) be an edge. Since the constraints in Ψ are 2-to-1 type, there
exist permutations σ1,e : [R] → [R] and σ2,e : [2R] → [2R] such that after
permuting the labels on each side, the projection πe maps labels (2i − 1, 2i) to
i i.e. πe(σ−1

2,e(2i− 1)) = πe(σ−1
2,e(2i)) = σ−1

1,e(i).
To incorporate the new labels into the constraint, choose a random bijection

σ′1,e : {R+1, . . . , 2R} → [R]. We now construct a new permutation σ̃1,e : [2R]→
[2R] as σ̃1,e(i) = 2σ1,e(i)− 1 if i ≤ R and σ̃1,e(i) = 2σ′1,e(i) if i > R i.e. the new
labels are mapped to the even positions 2, 4, . . . , 2R while the others are mapped
to the odd positions.

The original 2-to-1 constraints are satisfied by a labeling A iff the pair
(σ̃1,e(A(u), σ2,e(A(v))) is of the form (2i − 1, 2i − 1) or (2i − 1, 2i) for some
i ≤ R. We augment the constraint by also allowing (σ̃1,e(A(u), σ2,e(A(v))) to be
(2i, 2i− 1) for some i. Note that if the constraint is satisfied in this way, then u
must get one of the new labels. Also, note that the augmentation is random as
we choose the map σ′1,e independently at random for each edge e.

Given a vector solution {y(u,i)}u∈U,i∈[R] and {z(v,j)}v∈V,j∈[2R] for Ψ , we leave
the vectors z(v,j) unchanged and for each u ∈ U , take z(u,i) = y(v,i) if i ≤ R and
0 otherwise. It is immediate that the solution is feasible. Also, the value of the
objective is the same as the value of the 2-to-1 SDP, as all the additional terms
in the objective involve some vector z(u,i) for some i > R and are hence 0. Thus,
the SDP value for the new instance is 1.

To bound the optimal value of any labeling A : U ∪ V → [2R], we split it as

E
e=(u,v)∈E

[
1{(A(u),A(v)) satisy e}

]
= E
e=(u,v)∈E

[
1{A(u)≤R} · 1{(A(u),A(v)) satisy e}

]
+ E
e=(u,v)∈E

[
1{A(u)>R} · 1{(A(u),A(v)) satisy e}

]



Note that the first term is simply the number of 2-to-1 constraints satisfied by
A and it at most δ by assumption.

Also, for any fixed labeling A, the probability over the choice of the random
maps {σ′1,e}e∈E , that (A(u), A(v)) satisfy e given that A(u) > R, is at most 1/R.
By a Chernoff bound, the fraction of edges (u, v) satisfied with A(u) > R is at
most 1/R+ε with probability exp(−ε2|E|/3) over the choice of the random maps.
By a union bound and the condition on ε, the second term is at most 1/R + ε
for all labelings A, with high probability over the choice of {σ′1,e}e∈E . Picking
an instance with appropriate choice of maps σ′1,e gives the required instance L′.

7 Discussion

The instances we construct have SDP value 1 only for the most basic semidefinite
programming relaxation. It would be desirable to get gaps for stronger SDPs,
beginning with the most modest extensions of this basic SDP. For example, in
the SDP for 2-to-1 Label Cover from Figure 2, we can add valid nonnegativity
constraints for the dot product between every pair of vectors in the set

{y(u,i) | u ∈ U, i ∈ [R1]}
⋃
{z(v,j) | v ∈ V, j ∈ [R2]} ,

since in the integral solution all these vectors are {0, 1}-valued. The vectors
we construct do not obey such a nonnegativity requirement. For the case of
Unique Games, Khot and Vishnoi [10] were able to ensure nonnegativity of all
dot products by simply taking tensor products of the vectors with themselves and
defining new vectors y′(u,i) = y⊗2

(u,i) = y(u,i) ⊗ y(u,i) and z′(v,j) = z⊗2
(v,j) = z(v,j) ⊗

z(v,j). Since 〈a⊗2,b⊗2〉 = 〈a,b〉2, the desired nonnegativity of dot products is
ensured.

We cannot apply this tensoring idea in our construction as it does not pre-
serve the SDP value at 1. For example, for 2-to-1 Label Cover, if we have
y(u,i) = z(v,j1) + z(v,j2) (so that these vectors contribute 1 to the objective
value to the SDP of Figure 2), then upon tensoring we no longer necessarily
have y⊗2

(u,i) = z⊗2
(v,j1)

+ z⊗2
(v,j2)

. Extending our gap instances to obey the nonnega-
tive dot product constraints is therefore a natural question that we leave open.
While this seems already quite challenging, one can of course be more ambitious
and ask for gap instances for stronger SDPs that correspond to certain number
of rounds of some hierarchy, such as the Sherali-Adams hierarchy together with
consistency of vector dot products with pairwise marginals. For Unique Games,
gap instances for several rounds of such a hierarchy were constructed in [13].
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