
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 9: Learning Decision Trees and DNFs
Feb. 18, 2007

Lecturer: Ryan O’Donnell Scribe: Suresh Purini

1 Two Important Learning Algorithms

We recall the following definition and two important learning algorithms discussed in previous
lecture.

Definition 1.1 Given a collectionS of subsets of[n], we sayf : {−1, 1}n → R hasǫ-concentration
onS, if ∑

S /∈S

f̂(S)2 ≤ ǫ.

Theorem 1.2 Let C be a class ofn-bit functions, such that∀f ∈ C, f is ǫ-concentrated onS =
{S ⊆ [n]| |S| ≤ d}, then the function classC is learnable under the uniform distribution to an
accuracy ofO(ǫ), with a probability of at least1−δ, in timepoly(|S|, 1/ǫ)poly(n) log (1/δ) using
random examples only.

This algorithm is called Low Degree algorithm and was proposed by Linial, Mansour and Nisan
in [3]. Refer theorem 5.4 in lecture notes 8.

Theorem 1.3 Let C be a class ofn-bit functions, such that∀f ∈ C, f is ǫ-concentrated on some
collectionS. Then the function classC is learnable using membership queries (Goldreich-Levin
Algorithm) inpoly(|S|, 1/ǫ)poly(n) log (1/δ) time.

This algorithm is called Kushilevitz-Mansour algorithm [2]. Refer corollary 5.5 in lecture notes
8.

2 Learning Decision Trees

A decision tree is a binary tree in which the internal nodes are labeled with variables and the leafs
are labeled with either−1 or +1. And the left and right edges corresponding to any internal node
is labeled−1 and+1 respectively. We can think of the decision tree as defining a boolean function
in the natural obvious way. For example, the decision tree inthe figure 1 defines a boolean function
whose DNF formula isx1x2x3 + x1x̄2x4 + x̄1x2.

Note that, given any boolean function we can come up with a corresponding decision tree.
Let P be a path in the decision tree. An example of a path in the figure1 is P = (x1 =

−1, x2 = +1, x4 = −1).

1

Figure 1:

Let 1P : {−1, 1}n → {0, 1} be an indicator function for pathP . For example,

1P =

{
1 if x1 = −1, x2 = +1, x4 = −1
0 else

Observation 2.1 A boolean functionf can be expressed in terms of path functions1P ’s, corre-
sponding to various paths in the decision tree of the function f as follows

f(x) =
∑

Paths P

1P (x)f(P)

wheref(P) is the label on the leaf when the functionf takes the pathP in its decision tree.

Observation 2.2 LetV be the set of variables occurring in a path function1P andd be the cardi-
nality of the setV . Then the Fourier expansion of1P looks like

∑
S⊆V

±2−dXS.

It is easy to see the proof of the above observation by noting that the Fourier expansion for the
path function1P , whenP = (x1 = −1, x2 = +1, x4 = −1), is 1P = x1x̄2x4 = (1

2
− 1

2
x1)(

1
2

+
1
2
x2)(

1
2
− 1

2
x4).

Proposition 2.3 If f : {−1, 1}n → {−1, 1} is computable by a depth-d decision tree then

1. Fourier expansion off has degree at mostd i.e.,
∑

|S|>d f̂(S)2 = 0.

2. All Fourier coefficients are integer multiples of2−d.

3. The number of nonzero Fourier coefficients is at most4d.

2

Proof:(1) follows from observation 2.1. We can observe that all theFourier coefficients look like
k2−d′ for somed′ ≤ d, which can be written ask2d+d′2−d. This proves (2). A depth-d decision tree
has at most2d leaves and hence we have at most2d · 2d = 4d Fourier coefficients, which proves
(3). 2

Corollary 2.4 Depth-d decision trees are exactly learnable with random examples in time
poly(4d)poly(n) log (1/δ).

Proof:Use Kushilevitz-Mansour algorithm, withǫ = 2−d

4
and round each Fourier coefficient esti-

mate to the nearest multiple of2−d. 2

Remark 2.5 log (n)-depth decision trees are exactly learnable in polynomial time. This algorithm
can be derandomized.

Observation 2.6 Size-s decision trees areǫ-close to a depthlog (s/ǫ) decision trees.

Proof:Let T be decision tree of sizes corresponding to boolean functionf . Consider the decision
T ′ obtained fromT by chopping all paths whose depth is greater thanlog (s

ǫ
) to log (s

ǫ
). The

decision treeT ′ gives an incorrect value forf(X) only whenX takes a path of length greater than
log (s

ǫ
) in T . When we pickX at random, this happens with probability2− log (s

ǫ
) = ǫ

s
. Therefore

by union bound, we get thatPrx∈{−1,1}n [T (x) 6= T ′(x)] ≤ ǫ.
2

Corollary 2.7 Size-s decision trees areO(ǫ)-concentrated on a collection of size size4log (s/ǫ) =
(s/ǫ)2.

Definition 2.8 Given a functionf : {−1, 1}n → R, the spectral norm orL1-Fourier norm off is

||f̂ ||1 =
∑

S⊆[n]

|f̂(S)|

Observation 2.9 If a functionf is an AND of literals, then||f̂ ||1 = 1. Refer observation 2.2 for
the proof idea.

The following observation follows from the fact∀a, b ∈ R, |a+ b| ≤ |a|+ |b| and|ab| = |a||b|.

Observation 2.10

1. ||f̂ + g||1 ≤ ||f̂ ||1 + ||ĝ||1

2. ||ĉf ||1 = |c|||f̂ ||1

3

Proposition 2.11 If f has a decision tree of sizes, ||f̂ ||1 ≤ s.

Proof:

||f̂ ||1 ≤
∑

Paths P

1̂Pf(P)

≤
∑

Paths P

1̂P

≤ s

2

Proposition 2.12 Given any functionf with ||f ||2
2 ≤ 1 and ǫ > 0, S = {S ⊆ [n]||f̂(S)| ≥

ǫ

||f̂ ||1
}, thenf is ǫ-concentrated onS. Note that|S| ≤

(
||f̂ ||1

ǫ

)2

.

Proof:

∑
S /∈S

f̂(S)2 ≤ maxS /∈S |f̂(S)|

[∑
S /∈S

|f̂(S)|

]

≤ maxS /∈S |f̂(S)|

[∑
S /∈S

|f̂(S)| +
∑
S∈S

|f̂(S)|

]

≤
ǫ

||f̂ ||1
· ||f̂ ||1

≤ ǫ

2

Corollary 2.13 Any class of functionsC = {f | ||f ||2
2 ≤ 1 and||f̂ ||1 ≤ s} is learnable with

random examples in timepoly(s, 1
ǫ
).

Let us now consider functions which are computable by decision trees where nodes branch on
arbitrary parities of variables. Figure 2 contains an example of a function computable by decision
tree on the parity of the various subsets of variables. Another example is parity function which is
computable by a depth-1 parity decision tree.

Proposition 2.14 If a functionf : {−1, 1}n → {−1, 1} is expressible as a size-s decision tree on
parities, then||f̂ ||1 ≤ s.

4

Figure 2:

Proof:Let 1P be an{0, 1}-indicator function for a pathP in the decision tree. Let the pathP =
(XS1 = b1, · · · , XSd

= bd), i.e., we get the pathP by taking the edges labeledb1, · · · , bd ∈ {−1, 1}
starting from the root node. We have

1P = (
1

2
+

1

2
b1XS1) · · · (

1

2
+

1

2
bdXSd

)

It can be seen that||1̂P ||1 = 1. Sincef(x) =
∑

Paths P 1P (x)f(P), we have||f̂ ||1 ≤ s. 2

Definition 2.15 An AND of parities is called a coset.

Remark 2.16 If a functionf : {−1, 1}n → {−1, 1} is expressible as
∑s

i=1 ± 1Pi
, wherePi’s are

cosets then||f̂ ||1 ≤ s.

Remark 2.17 Proposition 2.14 implies that we can learn all parity functions inpoly(1
ǫ
) time.

Observe that we cannot see this result straightforward fromthe usual decision trees on parity
functions.

Theorem 2.18 [1] If a function f : {−1, 1}n → {−1, 1} with ||f̂ ||1 ≤ s, then

f =
22O(s4)∑

i=1

±1Pi

wherePi’s are cosets.

3 Learning DNFs

Proposition 3.1 If f has a size-s DNF formula, it isǫ-close to a width-log(s
ǫ
) DNF.

5

Proof:Let the functionf : {−1, 1}n → {−1, 1} has a size-s DNF. Drop all the terms whose width
is larger thanlog(s

ǫ
) from the DNF off and let the new DNF represents the functionf ′. If we

look at a particular term in the DNF off whose width is greater thanlog(s
ǫ
), then the probability

that a randomly chosenx ∈ {−1, 1} sets it to−1(or 1 if we look atf as boolean function from
{0, 1}n to {0, 1}) is at most2− log(s

ǫ
) = ǫ

s
. Since there are at mosts terms in the DNF, we have that

Prx [f(x) 6= f ′(x)] ≤ ǫ by union bound. 2

Proposition 3.2 If a functionf : {−1, 1}n → {−1, 1} has a widthw DNF, thenI(f) ≤ 2w.

Proof:Left as an exercise. 2

Corollary 3.3 If a functionf : {−1, 1}n → {−1, 1} has a widthw DNF, thenf is ǫ-concentrated
on aS = {S| |S| ≤ 2w

ǫ
}. Thus the functionf can be learnable innO(w

ǫ
).

In the rest of the class, we shall prove the following theoremmaking use of Hastad’s switching
lemma.

Theorem 3.4 DNF’s of widthw are ǫ-concentrated on degree up toO(w log(1
ǫ
)).

Remark 3.5 Observe that we are replacing the1
ǫ
-factor withlog(1

ǫ
)-factor on the maximum degree

of the Fourier coefficients.

Definition 3.6 A random restriction with∗-probabilityρ on [n] is a random pair(I,X) whereI is
a random subset of[n] chosen by including each coordinate with probabilityρ independently and
X is a random string from{−1, 1}|Ī|.

Given a functionf : {−1, 1}n → {−1, 1}, we shall writefX→Ī : {−1, 1}|I| → R for a restric-
tion of f . If the functionf is computable by a widthw DNF, then after a random restriction with
∗-probabilityρ = 1

10w
, with very high probability,fX→Ī : {−1, 1}|I| → R has aO(1)-depth deci-

sion tree. The reason for this is intuitively that in each term of the DNF, 1
10

variables survive the
random restriction on an average. Thus resulting in a a constant depth decision tree. This intuition
is formalized in the following lemma due to Hastad.

Theorem 3.7 (Hastad’s Switching Lemma) Letf : {−1, 1}n → {−1, 1} be a widthw computable
DNF. When we apply a random restriction on the functionf with ∗-probabilityρ, then

Pr
(I,X)

[DT-depth(fX→Ī) > d] ≤ (5ρw)d

Theorem 3.8 Letf be computable by a width-w DNF. Then∀d ≥ 5,

∑
|U |≥20dw

f̂(u)2 ≤ 2−d+1.

6

Proof:Let (I,X) be a random restriction withρ = 1
10w

. We know from Hastad’s switching lemma
fX→Ī has a depth greater thand with a probability less than2−d. Hence the following sum is
nonzero (and less than 1) with a probability less than2−d.

∑
S⊆I,|S|>d

f̂X→Ī(S)2

Therefore, we have

2−d ≥ E
(X,I)




∑
S⊆I
|S|>d

f̂X→Ī(S)2




= E
I


 E

X∈{−1,1}|̄I|




∑
S⊆I

|S|>d

f̂X→Ī(S)2







= E
I




∑
S⊆I

|S|>d

E

X∈{−1,1}|̄I|

[
FS⊆I(X)2

]

 (RecallFS⊆I(x) = f̂x(S))

= E
I




∑
S⊆I

|S|>d

∑
T⊆Ī

F̂S⊆I(T)2




= E
I




∑
S⊆I

|S|>d

∑
T⊆Ī

f̂(S ∪ T)2




=
∑
U

f̂(U)2
Pr
I

[|U ∩ I| > d]

Suppose|U | ≥ 20dw, then|U ∩ I| is binomially distributed with mean20dwρ = 2d. Using
Chernoff bound, we get thatPrI [|U ∩ I| > d] ≤ 1

2
, whend ≥ 5. Therefore we have the

∑
U

f̂(U)2
Pr
I

[|U ∩ I| > d] ≤ 2−d

∑
U

|U |≥20dw

f̂(U)2 1

2
≤ 2−d

∑
U

|U |≥20dw

f̂(U)2 ≤ 2−d+1

2

Remark 3.9 By puttingdw = w log (1
ǫ
), we get the theorem 3.4

Further ReferencesYishay Mansour’s survey paper[4] also contains some of the ideas in this
lecture notes.

7

References

[1] B. Green and T. Sanders. A quantitative version of the idempotent theorem in harmonic anal-
ysis. ArXiv Mathematics e-prints, Nov. 2006.

[2] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. InSTOC
’91: Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages
455–464, New York, NY, USA, 1991. ACM Press.

[3] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnabil-
ity. J. ACM, 40(3):607–620, 1993.

[4] Y. Mansour. Learning boolean functions via the fourier transform. In V. Roychowdhury, K.-
Y. Siu, and A. Orlitsky, editors,Theoretical Advances in Neural Computation and Learning.
Kluwer, 1994.

8

