Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 9: Learning Decision Trees and DNFs
Feb. 18, 2007
Lecturer: Ryan O’'Donnell Scribe: Suresh Purin

1 Two Important Learning Algorithms

We recall the following definition and two important leargialgorithms discussed in previous
lecture.

Definition 1.1 Given a collectior$ of subsets di:], we sayf : {—1,1}" — R hase-concentration

ons, if

> f(8) <e

S¢S
Theorem 1.2 LetC be a class oh-bit functions, such thatf € C, f is e-concentrated o5 =
{S C [n]| |S| < d}, then the function class is learnable under the uniform distribution to an
accuracy of0(¢), with a probability of at least — §, in timepoly(|S|, 1/¢)poly(n) log (1/9) using
random examples only.

This algorithm is called Low Degree algorithm and was pregldsy Linial, Mansour and Nisan
in [3]. Refer theorem 5.4 in lecture notes 8.

Theorem 1.3 LetC be a class of:-bit functions, such thatf € C, f is e-concentrated on some
collectionS. Then the function class is learnable using membership queries (Goldreich-Levin
Algorithm) inpoly(|S|, 1/€)poly(n) log (1/§) time.

This algorithm is called Kushilevitz-Mansour algorithnj.[Refer corollary 5.5 in lecture notes
8.

2 Learning Decision Trees

A decision tree is a binary tree in which the internal nodedabeled with variables and the leafs
are labeled with either1 or +1. And the left and right edges corresponding to any interonden
is labeled—1 and+1 respectively. We can think of the decision tree as definingadan function
in the natural obvious way. For example, the decision trelearfigure 1 defines a boolean function
whose DNF formula is xox3 + 212214 + T122.

Note that, given any boolean function we can come up with eesponding decision tree.

Let P be a path in the decision tree. An example of a path in the figuseP = (z; =
—1,1’2 = —|—1,{E4 = —1)



Figure 1:

Letlp: {—1,1}" — {0, 1} be an indicator function for patR. For example,

1p — 1 |f 1’1:—1,1’2:+1,$4:—1
P~ 0 else

Observation 2.1 A boolean functiory can be expressed in terms of path functians, corre-
sponding to various paths in the decision tree of the funcfias follows

fl)= > 1p(x)f(P)

Paths P

wheref(P) is the label on the leaf when the functigriakes the pat® in its decision tree.

Observation 2.2 Let V' be the set of variables occurring in a path functibmpandd be the cardi-
nality of the set/. Then the Fourier expansion of looks like

S +27X.
SCV

It is easy to see the proof of the above observation by notiagithe Fourier expansion for the

path functionlp, whenP = (x; = —1,29 = +1,24 = —1),iS1p = 210024 = (% — %xl)(% +
%1’2)(% — %JZ‘4)

Proposition 2.3 If f: {—1,1}" — {—1, 1} is computable by a deptthdecision tree then
1. Fourier expansion of has degree at mosti.e.,>" ., f(S)2 = 0.
2. All Fourier coefficients are integer multiples f<.

3. The number of nonzero Fourier coefficients is at mést



Proof:(1) follows from observation 2.1. We can observe that allRbarier coefficients look like
k2~% for somed’ < d, which can be written a2+ 29, This proves (2). A depth-decision tree
has at mosg? leaves and hence we have at mast 2¢ = 49 Fourier coefficients, which proves
(3). O

Corollary 2.4 Depth-d decision trees are exactly learnable with randoangxes in time
poly (4%)poly(n) log (1/9).

Proof:Use Kushilevitz-Mansour algorithm, with= % and round each Fourier coefficient esti-
mate to the nearest multiple <. O

Remark 2.5 log (n)-depth decision trees are exactly learnable in polynonimaét This algorithm
can be derandomized.

Observation 2.6 Sizes decision trees are-close to a depthog (s/¢) decision trees.

Proof:Let T" be decision tree of sizecorresponding to boolean functighn Consider the decision
1" obtained fromT" by chopping all paths whose depth is greater thgn(?) to log (). The
decision tred/” gives an incorrect value fof(.X') only whenX takes a path of length greater than
log (%) in T. When we pickX at random, this happens with probability s (2) = <. Therefore
by union bound, we get th@r,c;_ 1y~ [T'(x) # T'(x)] < e.

O

Corollary 2.7 Sizes decision trees aré)(¢)-concentrated on a collection of size si#e (5/¢) =

(s/€)*.

Definition 2.8 Given a functionf : {—1,1}" — R, the spectral norm of.,-Fourier norm off is

111 = E}|f(5)\

SCln

Observation 2.9 If a function f is an AND of literals, then| f||; = 1. Refer observation 2.2 for
the proof idea.

The following observation follows from the fact, b € R, |a +b| < |a| + |b| and|ab| = |a||b|.
Observation 2.10
L A1f + gl < 1Al + 1191k

2. |leflle = lelll 1l



Proposition 2.11 If f has a decision tree of size||f||; < s.

Proof:

—

1flh < X 1pf(P)
Paths P
> 1p

Paths P
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»

Proposition 2.12 Given any functiory with ||f||,> < 1 ande > 0, S = {S C [n]||f(S)] >

A 2
||]§|| }, thenf is e-concentrated ob. Note thatS| < <w> :
1

Proof:

S A8 < mazseslf(S)] [z |f<s>|]

$s 5¢S
< mawses f(S)| [z S+ T \f<s>|]
S¢S =
€ A
< - .
< il
< €

Corollary 2.13 Any class of function€ = {f| ||f|].> < 1 and||f]|; < s} is learnable with
random examples in timeoly (s, %).

Let us now consider functions which are computable by decigiees where nodes branch on
arbitrary parities of variables. Figure 2 contains an eXampa function computable by decision
tree on the parity of the various subsets of variables. Agrodikample is parity function which is
computable by a depthparity decision tree.

Proposition 2.14 If a functionf : {—1,1}" — {—1, 1} is expressible as a sizedecision tree on
parities, then|| f||; < s.



Figure 2:

Proof:Let 1, be an{0, 1}-indicator function for a pati® in the decision tree. Let the path =
(Xg, =b1,---, Xg, = by), .., we getthe path by taking the edges labeléd - - - ,b, € {—1,1}
starting from the root node. We have

1 1 1 1
1p = (5 + §b1X51) e (5 + §bdXSd)
It can be seen thatl ||, = 1. Sincef(z) = 3 ppn. p 1p(2) f(P), we have]| f||; < s. 0

Definition 2.15 An AND of parities is called a coset.

Remark 2.16 If a functionf : {—1,1}" — {—1, 1} is expressible a§_;_, + 1p,, whereP;’s are
cosets then| f||; < s.

Remark 2.17 Proposition 2.14 implies that we can learn all parity fumets in poly(%) time.

Observe that we cannot see this result straightforward ftben usual decision trees on parity

functions.

Theorem 2.18[1] If a function f : {—1,1}" — {—1,1} with || /||, < s, then

220<s4)

f: Z :l:]“Pi

1=1

whereP;’s are cosets.

3 Learning DNFs

Proposition 3.1 If f has a sizes DNF formula, it ise-close to a widtheg(2) DNF.
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Proof:Let the functionf : {—1,1}" — {—1, 1} has a sizex DNF. Drop all the terms whose width
is larger tharlog(2) from the DNF of f and let the new DNF represents the functifin If we
look at a particular term in the DNF gf whose width is greater thdng (%), then the probability
that a randomly chosen € {—1,1} sets it to—1(or 1 if we look atf as boolean function from
{0,1}"to {0, 1}) is at mos~1°&(2) = <. Since there are at masterms in the DNF, we have that

Pry [f(x) # f'(x)] < e by union bound. O

Proposition 3.2 If a functionf : {—1,1}" — {—1, 1} has a widthw DNF, thenl(f) < 2w.

Proof:Left as an exercise. O

Corollary 3.3 If afunctionf : {—1,1}" — {—1, 1} has a widthw DNF, thenf is e-concentrated
onas = {S| |S] < 22}. Thus the functiorf can be learnable im©t).

In the rest of the class, we shall prove the following theoreaking use of Hastad’s switching
lemma.

Theorem 3.4 DNF’s of widthw are e-concentrated on degree up @(wlog(?)).

Remark 3.5 Observe that we are replacing tlée‘actorwithlog(é)-factor on the maximum degree
of the Fourier coefficients.

Definition 3.6 A random restriction with-probability p on [n] is a random pairI, X) wherel is
a random subset gf:] chosen by including each coordinate with probabifitindependently and
X is a random string fron{—1, 1}/1,

Given a functionf : {—1,1}" — {—1,1}, we shall writefx_; : {—1,1}/! — R for a restric-
tion of f. If the functionf is computable by a widthy DNF, then after a random restriction with
«-probability p = 51—, with very high probability,fx ; : {—1, 1} — R has aO(1)-depth deci-
sion tree. The reason for this is intuitively that in eachmef the DNF,% variables survive the
random restriction on an average. Thus resulting in a a aohdepth decision tree. This intuition

is formalized in the following lemma due to Hastad.

Theorem 3.7 (Hastad’s Switching Lemma) Lét: {—1,1}" — {—1, 1} be a widthw computable
DNF. When we apply a random restriction on the functfowith x-probability p, then

Pr [DT-deptifx 1) > d < (5u)’

Theorem 3.8 Let f be computable by a widtla-DNF. Thenvd > 5,
> fw)? <2

|U|>20dw



Proof:Let (I, X) be a random restriction with = IL We know from Hastad’s switching lemma

Ow*

fx_i has a depth greater thahwith a probability less thar—¢. Hence the following sum is
nonzero (and less than 1) with a probability less thah

Z fX—J(S)Q

SCI,|S|>d
Therefore, we have

277 > g fx_i(9)?
- (X.1) Szg:[ fX—>I( )
|S|>d

= ];3 E Z fX—J(S)Z
Xe{-1,1}1 | sc1
| |S|>d

= E| Y E [Fsca(X)]| (Recall Fsc(x) = fu(S))
glg;dXe{—l,l}‘ |

= E| X 3 Fsar(T)?

SCI TCI
| [S[>d

= E| X X f(SuT)
L T i |
| [S[>d

= L/O’Br(UnT>d

SupposeU| > 20dw, then|U N I| is binomially distributed with mead0dwp = 2d. Using
Chernoff bound, we get th&tr; [[U N 1| > d] < 1, whend > 5. Therefore we have the

Y fUyPrunI>d < 27
U
A 1
Y fuys < 2
U 2
|U|>20dw

> fU)? < o2t
U

|U|>20dw

Remark 3.9 By puttingdw = w log (%), we get the theorem 3.4

Further ReferencesYishay Mansour’s survey paper[4] also contains some of deas in this
lecture notes.
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