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1 Berry-Esseen Theorem

In this class we study a simplified version of the Berry-Essteorem, which quantifies how
“close” are the distributions of the two random variabl¥se,, - - - , «,,) andQ(gs, - - - , g»), Where
x,,- -+ ,x, are uniform random bits-1 andg;, - - - , g, are Gaussian random variables with mean
0 and variance 1, an@ is a multivariate polynomial of degree 1 or in other wordssiain affine
function. In the next class, we study a version of Berry-Eagbheorem wher€ is a multi-linear
polynomial. This theorem is used to prove that “Majority tal8est”. The following is the main
theorem of this class.

Theorem 1.1 LetQ(uq, - - ,u,) = Y au;, o € R, be alinear polynomial over formal variables
i=1

n
Ui, -+ ,u,. Alsoassumetha)_ o’ = 1anda? < 7,Vi € [n]. Letxy,--- ,z, be ii.d uniform

=1
random=1 bits. Let the random variablg be normally distributed with mean 0 and variance 1,
i.e.,g ~ N(0,1). Then the random variableg(x,, - - - , x,,) andg are “close” in distribution. In
particular

1. Vt, e R, |Pr[Q(zx1, - ,x,) < to] — Pr[g < to]| < O(7).
2. [E[Q(1, -+ z)|] - Elg[]] < O(7).

We first understand some of the ideas used in the proof of¢nedrl.

Idea 1: The first idea is to replace the Gaussian random varigbby another Gaussian
random variable with same mean and variance but looks venylasito the random variable
Q(xy, - ,x,). Letgy,---, g, be iid Gaussian random variables with mean 0 and variance

1. Consider the random variab@(gi,--- ,g,.) ~ >, a;g;. It turns out thatQ (g, - ,gn) ~
i=1

N(0,>°" , a?) ~ N(0,1)* is also Gaussianly distributed. Now we can compare theiloligions
Q(xy, - ,x,) andQ(g, - - , g,) Which at least appear to look alike.

Uf X ~ N(0,1), thenaX ~ N(0,a2). If X ~ N(u,0?) andY ~ N(v,72), then X +Y ~
N(u + v,0? + 72). In other words, sum of Gaussian random variables is Gausdg@se mean and variance are
respectively equal to sum of the individual means and vadarof Gaussian random variables used in summation.
Refer http://en.wikipedia.org/wiki/Sumf_normally distributedrandomvariables



Idea 2: We shall try to see a generic way to say that two random vasa¥landY are close
in distribution. For all “nice” test functiong : R — R,

[E[(X)] - E[p(Y)]] < “small”.

1 if ¢t < to
0 otherwise
“nice”, then by lettingX = Q(x4, - ,x,) andY = Q(g1, - ,g,) we shall get statements 1
and 2 of theorem 1.1 respectively. We shall later see thailibge two functiong; and, do not

fit in our definition of “nice” but they can be approximated byi¢e” functions.

Let us look at some examples of “nice” functions with resgedhe random variableX =
Q(xy, -+ ,x,) andY = Q(gi,---,g,). Note that ifg ~ N(0,1), thenE[g?**"!] = 0 and
E[g*] = (2k — 1) - (2k — 3)---5- 3 - 1. In particularE[g*] = 3. These facts are repeatedly used
in the following examples.

First note that if the functions,, (t) = andu,(t) = |t| fit in the definition of

1. Lety(t) = a + bt. Then

E[Y(X)] — E[¢(Y)] = Ela+bX] - E[a+bY]
= H(E[X] - E[Y))
— b(E[Za,m,]—E[i;aiQi])
= 0

2. Lety(t) = a+ bt + ct®. Then

EW(X)] - E[W(Y)] = Ela+bX +cX? —Ela+bY + cY?]
= c(E[<§ i) — E“ié cig))?)
= 0

3. Lety(t) = t3. Then

Blv(X)] - Bu(Y)] = E[(3 )] - B[S ag.)’
= 2aiajakE[wimjwk] — aaiajakE[gigjgk]
=0

At this point one might conjecture that all polynomials areerfunctions. But it turns out it
is not “quite” true as we see in the next example.
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4. Lety(t) = t*. Then

B[(X)] - Bi(Y)] = B[ o) - E(L o)’
= 'ZklaiajakalE[wimjwkwl] — 4ZklaiajakalE[gigjgkgl]

- Sal-SalEl]

Since the fourth moment a¥ (0, 1) is 3, we have that

[E[y(X)] - E[p(Y)]]

IN
[\
g
S
8.

We now formally define “nice” functions.
Definition 1.2 A functiomy : R — R is B-nice, B € R™, if ¢ is smooth andy"”(t)| < B, Vt.

Remark 1.3 By bounding the fourth derivative of a function at all poim& can see that we have
an upper bound on the remainder term in the Taylor’s theor&o. if the bound on the fourth
derivative of a function is small at all points, then we geteayvgood approximation for the
function at any point by using the first four terms in the Tagleries expansion of the function.

Idea 3: The final idea required to prove our main theorem is “hybatian” of random vari-
ables. LetZ; = o191 + o+ g + 0y o+ Ty, Soz, =X (: Z?:l azmz) And
Z,=Y (= Z?:l ig;)

We shall show that for anyg-nice functiony

[E[)(Zi1] — E[Y(Z)]| < O(Boj) Yi=1-n

Then by telescoping together with triangle inequality we ge

[E[(X) ~ ER(Y)]| < 3 0(Ba))

< Of(mar (S50
< O(Br)

We shall now recall Taylor's theorem which we shall use invprg the next theorem.
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Theorem 1.4 (Taylor’s theorem) For all smooth functionsf and for anyr € N, there exists
y € [z, x + €], such that

67‘

(r—1)!

flo ) = f(a) + ef (@) + 50" @) 4 o+ e [ @) + S0

Theorem 1.5 For all B-nice functions)
[E[¢(Zi1)] - E[¢(Z)]] < O(Br).

Proof: Write R = o191 + -+ + @;_19;-1 + a;1®i1 + -+ + apx,. ThenZ,_; = R + a;x;
andZ, = R + «;g; Note thatz;, g;, R are mutually independent. We want to boyitdy (R +
a;x;)| — E[Y(R+ a,9:)]|. Sincey is aB-nice function we have” (t) < B, Vt. This gives us the
following

62 Lb”/(t) B

Vte >0, Y(t+ ) = o(t) + ' (e + v (1) 5 + Te?’ +{< ﬁe4}
Hence
B(X)] - BUY]| = [B(R + o))~ B(R + ag)]
= [B(R) + v/ (B + v (R) 2 I oy < B o)
— BIR) + 0 (R + o (B) OO T (g7 1< Baig) )
< Bl (i)'} + (o (g}
< Ea‘-1 + E3 :
- 24" 24
< O(Ba)
< O(Br)

1 if t< to

0 otherwise
and the absolute value functian(t) = [¢| fit in the definition of B-nice functions we have our
Berry-Esseen theorem proved. We can see that they arB-nate functions. However, they can
be approximated by-nice functions. We use this fact prove the Berry-Esseeorém.

Recall that we mentioned before that if the threshold fumcti,, (t) =

Claim 1.6 Vt, € RandV\,0 < A < 3, there exists &)(5;)-nice functiony,, » : R — R which
approximates),, in the following senseyy, » = 1fort <ty — A; ¢y, A(t) = 0 for ¢t > ¢, + A and
0 <y a(t) <1for|t —to] < A



We give a proof sketch for the first part of the Berry-Essearotem,vt, € R, Pr[X <
to] — Pr[g < to]| < O(7), whereX = > a,x;, with x;’s as i.i.d uniform randomt1 bits and

i=1
g~ N(0,1). Also>""  a? =1anda? < 7,Vi€ [n].
Proof Sketch:
E[t,-ax(X)] < Pr[X < to] < E[y, a1 (X)]

By Berry-Essen theorem we hali),,_x x(X)] = E[1,-x(9)] £ O(57) andE[y)y, 1\ (X)] =
E[¢to+)\,>\(g)] + O(%) BUtE[¢tO+)\7>\(g)] = Pr[g < to+ )\], which is Wlthan()\) of PI‘[g < to].
Therefore we have

[Pr(X < t] = Prlg < to]| < O(57) + O(N)

By taking\ = 75, we have

IPr[X < to] — Prlg < to]| < O(75).



