Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 3
Due: Thursday, March 8

Homework policy: | encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Do 5 out 7 problems

1. Total influence of DNFs. Let f be computable by a DNF of width. Show thafl( f) < 2w. For extra
credit, improve on the constaft

2. Unbiased functions can’t bethat correlation-immune. Supposef : {—1,1}" — {—1, 1} isdth order
correlation-immune (see Homework #1) litf] # 0. Show thatd < (2/3)n. (The example from class,
(11 @ D x(2/3)0) N (Tnyz41 D -+ © Ty, Shows that this is tight.) (Hintf2 = 1)

3. Weak learning. A weaklearner is a learning algorithm that does not work for every accuracy parameter
€, only for somee < % Specifically, we say ~y-weak-learns class if for target functiorf, its hypothesis

h satisfiesE[fh] > ~ (with probability at least — ¢).

Show that if f is computable by a size DNF then there is som& C [n] with |U| < logy(s) + O(1)
such thalf(U)| > Q(1/s).

(Given this, one can of courde(1/s)-weak-learn size- DNF in poly(s,n) time using membership
queries. This is the beginning of Jackson’s algorithm.)

4. e-biased sets. LetR C {—1,1}". We say thafR is ane-biased setf

E
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for every() # S C [n]; herex ~ R means that: is drawn uniformly at random frork. We say thafR
is efficiently constructibléf there is an algorithm which, on inputandn, writes down all strings iR in
deterministic timepoly(|R|,n). Later in the course we will show efficiently constructileidiased sets of
cardinality(n/¢)?.

(a) Assume the existence of such efficiently constructitéased sets. Given anty C [n] and query
access to somg¢: {—1,1}" — {-1,1}, show how todeterministicallyestimatef (5) to within & in time
poly(||fll1,n,1/€). You may assume the algorithm knoWs||; .



(b) In analyzing the spectral norm of DNF in class, we showed th@k,if) is a random restriction,
thenE[||f, .zlli] < ||flli. Show the following much stronger result: Fany restriction f, .7 of f,

||E:f||1 < ||f|li. Conclude that for any!, z) and anyS C I we candeterministicallyestimateFscr(z)
to within +e using queries tg and timepoly (|| f||1, n, 1/€).

(With a little bit more work one can similarly estimake,[Fsc;(x)] for any S andI; this yields a
deterministic version of the Goldreich-Levin algorithm running in timey (|| f||1,7, 1/¢). In particular,
one gets a polynomial-timéeterministicalgorithm that can exactly recovéX(log n)-depth decision trees
given membership queries.)

5. Bent functions. Compute the maximum possible valug|gf|; among functiong : {—1,1}" — {—1,1}.
Exhibit a function achieving this maximum. (For the latter, you may assumseodd or even if you want;
your choice.)

6. The Low Degree Algorithm’s hypothesis.

(a) When doing the Low Degree Algorithm with a fixédnde, for each/S| < d we used an independent
batch of random examples to estimgtgs). Show that one can in fact first draw a single multiSedf
random examplege, f(z)) of cardinalitypoly(n?, 1/¢) - log(1/6), and then with probability at least— &

have thal f(S) — f(S))? < e/n for every|S| < d, where

f(8):=avg {f(x)xs}.
(z.f(z))e€
(b) Show that if we use this version of the Low Degree Algorithm, our final hypotliesis-1,1}" —
{—1, 1} is of the form

h(y) = sgn ( S w(Aye)- f(a:)) ,

(@,f(x))€€
wherew : {0,1,...,n} — R is some function, and\ denotes Hamming distance. (In other words, the

hypothesis on a givep is equal to a weighted vote over all examples seen, where an example’'s weight
depends only on its Hamming distancetd Simplify your expression fow as much as you can.

7. Learning via noise sensitivity. Recall thenoise sensitivity of at e from Homework #2NS,(f). Let
C=A{f:{-11}"— {-1,1} : NSo(f) < ~}. Show that the clas§ can be learned under the uniform
distribution from random examples, to accurafyy), in time poly (n*/,1/7).

(E.g., the class of functions such tlN. (f) < O(y/¢) is learnable from random examples, to accuracy
e, in timen®(/<*) You might try to convince yourself that Majorityis in this class, assuming> 1/¢.)



