PROBLEM SET 3 **Due: Thursday, March 8**

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate as long as you do the writeup yourself and list the people you talked with.

Do 5 out 7 problems

- **1. Total influence of DNFs.** Let f be computable by a DNF of width w. Show that $\mathbb{I}(f) \leq 2w$. For extra credit, improve on the constant 2.
- **2.** Unbiased functions can't be *that* correlation-immune. Suppose $f: \{-1, 1\}^n \to \{-1, 1\}$ is dth order correlation-immune (see Homework #1) but $\mathbf{E}[f] \neq 0$. Show that d < (2/3)n. (The example from class, $(x_1 \oplus \cdots \oplus x_{(2/3)n}) \land (x_{n/3+1} \oplus \cdots \oplus x_n)$, shows that this is tight.) (Hint: $f^2 \equiv 1$.)
- **3. Weak learning.** A *weak* learner is a learning algorithm that does not work for every accuracy parameter ϵ , only for *some* $\epsilon < \frac{1}{2}$. Specifically, we say A γ -weak-learns a class if for target function f, its hypothesis h satisfies $\mathbf{E}[fh] \geq \gamma$ (with probability at least 1δ).

Show that if f is computable by a size-s DNF then there is some $U \subseteq [n]$ with $|U| \le \log_2(s) + O(1)$ such that $|\hat{f}(U)| \ge \Omega(1/s)$.

(Given this, one can of course $\Omega(1/s)$ -weak-learn size-s DNF in poly(s,n) time using membership queries. This is the beginning of Jackson's algorithm.)

4. ϵ -biased sets. Let $\mathcal{R} \subset \{-1,1\}^n$. We say that \mathcal{R} is an ϵ -biased set if

$$egin{aligned} \mathbf{E}_{oldsymbol{x} \sim \mathcal{R}}[oldsymbol{x}_S] \end{aligned} \leq \epsilon$$

for every $\emptyset \neq S \subseteq [n]$; here $\boldsymbol{x} \sim \mathcal{R}$ means that \boldsymbol{x} is drawn uniformly at random from \mathcal{R} . We say that \mathcal{R} is *efficiently constructible* if there is an algorithm which, on input ϵ and n, writes down all strings in \mathcal{R} in deterministic time $\operatorname{poly}(|\mathcal{R}|, n)$. Later in the course we will show efficiently constructible ϵ -biased sets of cardinality $(n/\epsilon)^2$.

(a) Assume the existence of such efficiently constructible ϵ -biased sets. Given any $S \subseteq [n]$ and query access to some $f: \{-1,1\}^n \to \{-1,1\}$, show how to *deterministically* estimate $\hat{f}(S)$ to within $\pm \epsilon$ in time $\operatorname{poly}(\|\hat{f}\|_1, n, 1/\epsilon)$. You may assume the algorithm knows $\|\hat{f}\|_1$.

(b) In analyzing the spectral norm of DNF in class, we showed that if (I,x) is a random restriction, then $\mathbf{E}[\|\widehat{f}_{x \to \overline{I}}\|_1] \leq \|\widehat{f}\|_1$. Show the following much stronger result: For any restriction $f_{x \to \overline{I}}$ of f, $\|\widehat{f}_{x \to \overline{I}}\|_1 \leq \|\widehat{f}\|_1$. Conclude that for any (I,x) and any $S \subseteq I$ we can deterministically estimate $F_{S \subseteq I}(x)$ to within $\pm \epsilon$ using queries to f and time $\operatorname{poly}(\|\widehat{f}\|_1, n, 1/\epsilon)$.

(With a little bit more work one can similarly estimate $\mathbf{E}_{\boldsymbol{x}}[F_{S\subseteq I}(\boldsymbol{x})]$ for any S and I; this yields a deterministic version of the Goldreich-Levin algorithm running in time $\operatorname{poly}(\|\hat{f}\|_1, n, 1/\epsilon)$. In particular, one gets a polynomial-time *deterministic* algorithm that can exactly recover $O(\log n)$ -depth decision trees given membership queries.)

5. Bent functions. Compute the maximum possible value of $\|\hat{f}\|_1$ among functions $f: \{-1,1\}^n \to \{-1,1\}$. Exhibit a function achieving this maximum. (For the latter, you may assume n is odd or even if you want; your choice.)

6. The Low Degree Algorithm's hypothesis.

(a) When doing the Low Degree Algorithm with a fixed d and ϵ , for each $|S| \leq d$ we used an independent batch of random examples to estimate $\hat{f}(S)$. Show that one can in fact first draw a single multiset \mathcal{E} of random examples (x, f(x)) of cardinality $\operatorname{poly}(n^d, 1/\epsilon) \cdot \log(1/\delta)$, and then with probability at least $1 - \delta$ have that $(\tilde{f}(S) - \hat{f}(S))^2 \leq \epsilon/n^d$ for every $|S| \leq d$, where

$$\tilde{\hat{f}}(S) := \underset{(x, f(x)) \in \mathcal{E}}{\operatorname{avg}} \{ f(x) x_S \}.$$

(b) Show that if we use this version of the Low Degree Algorithm, our final hypothesis $h: \{-1,1\}^n \to \{-1,1\}$ is of the form

$$h(y) = \operatorname{sgn}\left(\sum_{(x,f(x))\in\mathcal{E}} w(\Delta(y,x)) \cdot f(x)\right),$$

where $w:\{0,1,\ldots,n\}\to\mathcal{R}$ is some function, and Δ denotes Hamming distance. (In other words, the hypothesis on a given y is equal to a weighted vote over all examples seen, where an example's weight depends only on its Hamming distance to y.) Simplify your expression for w as much as you can.

7. Learning via noise sensitivity. Recall the *noise sensitivity of* f *at* ϵ from Homework #2, $\mathbb{NS}_{\epsilon}(f)$. Let $\mathcal{C} = \{f : \{-1,1\}^n \to \{-1,1\} : \mathbb{NS}_{\alpha}(f) \leq \gamma\}$. Show that the class \mathcal{C} can be learned under the uniform distribution from random examples, to accuracy $O(\gamma)$, in time $\operatorname{poly}(n^{1/\alpha}, 1/\gamma)$.

(E.g., the class of functions such that $\mathbb{NS}_{\epsilon}(f) \leq O(\sqrt{\epsilon})$ is learnable from random examples, to accuracy ϵ , in time $n^{O(1/\epsilon^2)}$. You might try to convince yourself that Majority_n is in this class, assuming $n \gg 1/\epsilon$.)