
Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 3
Due: Thursday, March 8

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Do 5 out 7 problems

1. Total influence of DNFs. Let f be computable by a DNF of widthw. Show thatI(f) ≤ 2w. For extra
credit, improve on the constant2.

2. Unbiased functions can’t bethat correlation-immune. Supposef : {−1, 1}n → {−1, 1} is dth order
correlation-immune (see Homework #1) butE[f ] 6= 0. Show thatd < (2/3)n. (The example from class,
(x1 ⊕ · · · ⊕ x(2/3)n) ∧ (xn/3+1 ⊕ · · · ⊕ xn), shows that this is tight.) (Hint:f2 ≡ 1.)

3. Weak learning. A weaklearner is a learning algorithm that does not work for every accuracy parameter
ε, only for someε < 1

2 . Specifically, we sayA γ-weak-learnsa class if for target functionf , its hypothesis
h satisfiesE[fh] ≥ γ (with probability at least1− δ).

Show that iff is computable by a size-s DNF then there is someU ⊆ [n] with |U | ≤ log2(s) + O(1)
such that|f̂(U)| ≥ Ω(1/s).

(Given this, one can of courseΩ(1/s)-weak-learn size-s DNF in poly(s, n) time using membership
queries. This is the beginning of Jackson’s algorithm.)

4. ε-biased sets. LetR ⊂ {−1, 1}n. We say thatR is anε-biased setif∣∣∣∣ E
x∼R

[xS ]
∣∣∣∣ ≤ ε

for every∅ 6= S ⊆ [n]; herex ∼ R means thatx is drawn uniformly at random fromR. We say thatR
is efficiently constructibleif there is an algorithm which, on inputε andn, writes down all strings inR in
deterministic timepoly(|R|, n). Later in the course we will show efficiently constructibleε-biased sets of
cardinality(n/ε)2.

(a) Assume the existence of such efficiently constructibleε-biased sets. Given anyS ⊆ [n] and query
access to somef : {−1, 1}n → {−1, 1}, show how todeterministicallyestimatef̂(S) to within±ε in time
poly(‖f̂‖1, n, 1/ε). You may assume the algorithm knows‖f̂‖1.
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(b) In analyzing the spectral norm of DNF in class, we showed that if(I,x) is a random restriction,

then E[‖f̂x→Ī‖1] ≤ ‖f̂‖1. Show the following much stronger result: Forany restrictionfx→Ī of f ,

‖f̂x→Ī‖1 ≤ ‖f̂‖1. Conclude that for any(I, x) and anyS ⊆ I we candeterministicallyestimateFS⊆I(x)
to within±ε using queries tof and timepoly(‖f̂‖1, n, 1/ε).

(With a little bit more work one can similarly estimateEx[FS⊆I(x)] for any S and I; this yields a
deterministic version of the Goldreich-Levin algorithm running in timepoly(‖f̂‖1, n, 1/ε). In particular,
one gets a polynomial-timedeterministicalgorithm that can exactly recoverO(log n)-depth decision trees
given membership queries.)

5. Bent functions. Compute the maximum possible value of‖f̂‖1 among functionsf : {−1, 1}n → {−1, 1}.
Exhibit a function achieving this maximum. (For the latter, you may assumen is odd or even if you want;
your choice.)

6. The Low Degree Algorithm’s hypothesis.

(a) When doing the Low Degree Algorithm with a fixedd andε, for each|S| ≤ d we used an independent
batch of random examples to estimatef̂(S). Show that one can in fact first draw a single multisetE of
random examples(x, f(x)) of cardinalitypoly(nd, 1/ε) · log(1/δ), and then with probability at least1− δ

have that( ˜̂
f(S)− f̂(S))2 ≤ ε/nd for every|S| ≤ d, where

˜̂
f(S) := avg

(x,f(x))∈E
{f(x)xS}.

(b) Show that if we use this version of the Low Degree Algorithm, our final hypothesish : {−1, 1}n →
{−1, 1} is of the form

h(y) = sgn

 ∑
(x,f(x))∈E

w(∆(y, x)) · f(x)

 ,

wherew : {0, 1, . . . , n} → R is some function, and∆ denotes Hamming distance. (In other words, the
hypothesis on a giveny is equal to a weighted vote over all examples seen, where an example’s weight
depends only on its Hamming distance toy.) Simplify your expression forw as much as you can.

7. Learning via noise sensitivity. Recall thenoise sensitivity off at ε from Homework #2,NSε(f). Let
C = {f : {−1, 1}n → {−1, 1} : NSα(f) ≤ γ}. Show that the classC can be learned under the uniform
distribution from random examples, to accuracyO(γ), in timepoly(n1/α, 1/γ).

(E.g., the class of functions such thatNSε(f) ≤ O(
√

ε) is learnable from random examples, to accuracy
ε, in timenO(1/ε2). You might try to convince yourself that Majorityn is in this class, assumingn � 1/ε.)
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