Max-Flow is a very general algorithms problem that can be nevertheless solved efficiently. The definition of the problem involves shipping stuff around a network, but it can be used to model & solve so many other unrelated-looking problems:

a paradigm for finding optimal
- matchings in bip. graphs
- shortest paths in graphs with negative edge costs
- schedules with precedence constraints
- sports playoff scenarios...

Input:
- Directed graph \(G = (V, E) \)
- "source" \(s \in V \) (no in-edges)
- "target" \(t \in V \) (no out-edges)
- "positive capacities" \(c_e \in \mathbb{R}_+ \) on each edge \(e \in E \)

You are shipping "stuff" (e.g., tons of cement) along edges. Capacities (e.g., railroads) indicate max amount you can ship (e.g., per day). Fractional amounts OK.

Goal: ship as much from \(s \) to \(t \) as possible,

subject to "Flow constraint": \(\forall v \in \{s, t\}, \text{ incoming flow = outgoing flow} \)
Maximize the volume \(V(x) = f(x) \) (5) for all \(x \) in \([a, b] \), for all \(\epsilon \) in \(E \), capped by \(\epsilon \) cubic centimeters.

Formula: Seek \(f: E \rightarrow R \) not allowing fractions, flow \(\epsilon \) ft.

For \(m \in \log u \), \(\log(20) \) can still be used. For small exercises, you lose a lot about time.

Is it true that even controlled, "polynomial"? Is an issue. Not even considered. No Reply. This is not a work.

Also, no good if \(\epsilon \leq 1000 \text{ kg} \).

\(\log(20) \) or \(\log(4) \) is the study.

"From Euler's formula, \(\Omega(n) \) or \(\Omega(2^n) \).

\\(\text{If} \ n \text{ is odd, then} \ L = 2, \text{ and if} \ n \text{ is even, then} \ L = \text{odd}. \)

How efficient? Say capabilities in 2, 3, ..., \(\Omega \), \(\text{ if not, we edge.} \)

How much people! Say capabilities in 2, 3, ..., \(\Omega \), \(\text{ if not, we edge.} \)

"This is really nice!" "Shh, it's two of (each), not of (each)."

\(\text{If all caps} \ (c) \ \text{ are integers,} \)

\(\text{We'll see how} \)
Stop

![Graph example]

Previous example:

authors! what's good on us. An

so no big deal if running time

edges summing correctly

undone. Added parallel

now much

new cut

left hand instance \((G', c')\) found as follows.

Def: Given instance \((G, c)\) \(f\) a flow, \(f\) the

Idea 2: Greedy, but allow undirected

But max-flow was at

Such: no more paths

Example 1:

Left with free capacities:

Can push as much flow as you can report.

E.g.:

Find a path simple. Push as much flow as you can report.

Try

Greedy
In this eg, \(f_1 \cdot f_2 = \) is max flow.

[Not a coincidence, this alg works!]

FF Alg on \((G,c)\)

1. Initialize \(f(e) = 0 \) for.
2. While \(\exists \) s-t path in residual graph \(G_f \),
 - Let \(P \) be any such path
 - Let \(b = \min \{ c(e) : e \in P \} \) ("bottleneck")
 - For each \(e \in P \):
 - \(f(e) = b \)

// this creates a new residual inst. \(G_f, c_f \).

Running time:
- \(O(m) \) per iter (BFS)
- \# iters \(\leq \) value of max flow, \(F^* \)
- because flow goes up +1 each iter
- Time: \(O(F^* m) \)

e.g.

\[G, c \]

Say \(f_1 = s \rightarrow a \rightarrow s \rightarrow d \rightarrow t \). Solvent is 1, push 1 unit up

New \(G_{f_1} \):
Total: 4
Sofar
If we know that's max, I told you so.

Termination
No more s->t paths. Final flow \(f^* = f_1 + f_2 + f_3 + f_4 \).

Say, let \(R = \{ v : v \text{ reachable from } s \} = \{ s, a \} \neq \emptyset \).

Claim: in original \(G \), each edge \((u,v) \) out of \(R \) must be saturated by \(f^* \).

Else \(G_{f^*} \) would have some capacity on \((u,v) \), and so \(v \) would be reachable from \(s \) too.

Claim: in original \(G \), each edge \((u,v) \) into \(R \) must be unused by \(f^* \).

Else \(G_{f^*} \) would have some capacity on \((u,v) \).

\[
f^* (R) = f^* (R) = \sum_{(u,v) \in R} f^* (u,v) - \sum_{(u,v) \in \partial^{-} R} f^* (u,v)
\]
def \(c^* = \sum_{(u,v) \in \partial^{+} R} c^* (u,v) - \sum_{(u,v) \in \partial^{-} R} c^* (u,v) \)

def \(\text{"Net flow of } f^* \text{ out of } R \" = \) net flow of \(f^* \) out of \(R \).

Summary: At end of F.F., you get a set \(R \subseteq V \) with \(s \in R, t \notin R \) (this is called an "s-t cut")
And net flow of \(f^* \) out of \(R = \text{cap}(R \rightarrow \overline{R} \text{ cut}) \).
This is amazing. Why?

1. Suppose \(G \) is any \(s-t \) cut (\(s \in S, t \in T \)).

 Then it's easy to see: \(\text{max-flow} \leq \text{cap}(G \rightarrow \overline{G}) \).

 The total amount of capacity getting out of \(G \) is the most you could ever ship from \(s \) to \(t \). \(G \) is like an upper limit.

2. And if \(G \) is any cut, \(f \) is any flow,

 \[\text{value}(f) = \text{net flow of } f \text{ out of } G = f^\text{out}(G) - f^\text{in}(G) \]

 just because flow can't get stuck anywhere. Net flow out of \(G \) is \(f^\text{out}(G) \), out of \(\overline{G} \) is \(f^\text{in}(G) \), etc.

 So that equals \(\text{net flow out of } G = f^\text{out}(G) \).

Now look at (1):

(1) \(\implies \text{LHS} = \text{value}(f^*) \)

(1) \(\implies \text{RHS} \geq \text{max-flow} \).

So \(\text{value}(f^*) \geq \text{max-flow} \implies \text{must equal max-flow!} \)

(1) \(\implies \text{F.F. finds maximum flows} \)

Also finds \(R \) with minimum possible cut value

(1) \[\text{Theorem: Max } s-t \text{ Flow value } = \text{Min } s-t \text{ Cut value.} \]

And F.F. finds the max flow \& the Min-Cut in time \(O(m \cdot \text{Val}(f^*)) \). Great if you have reason to believe \(\text{Val}(f^*) \) not too large!...