Undergraduate Complexity Theory

CMU 15-455, Spring 2017

SOME MIDTERM PRACTICE PROBLEMS

No warranty is made or implied regarding whether these are good problems, or
whether they are harder, easier, or about the same difficulty level as the problems
on the midterm.

0 Write the definition of the following terms:

alphabet

string

(X)s

decision problem

function problem

search problem

language

Boolean circuit

Boolean formula

Boolean function

the PATH problem

the PALINDROMES problem

the BOUNDED-ACCEPTANCE (,,y problem
the kCOL problem (for k£ > 2)

the LCS (longest common subsequence) problem
the CLIQUE and k-CLIQUE problems

the HAMILTONIAN-PATH problem

CIRCUIT-SAT, (FORMULA-)SAT, CNF-SAT, kSAT, ELSAT, and NAEASAT problems

the CIRCUIT-EVAL problem

CNF formula, DNF formula, literal
Church—Turing Thesis

Extended Church—Turing Thesis
Turing Machine

transition function

configuration

computation trace of a Turing Machine
decider

Turing Machine M decides language L



e Turing Machine M runs in time f(n)
e f(n)is O(g(n))
e multitape Turing Machine

e nondeterministic pseudocode / Turing Machines (including what it means for such a
machine to “accept string z” and what its “running time” is)

e universal Turing Machine

e TIME(f(n))

e NTIME(f(n))

o P

e NP

e EXP

e NEXP

e V is a verifier for language L

e polynomial-time verifier

e Exponential Time Hypothesis (ETH), Strong Exponential Time Hypothesis (SETH)
e polynomial-time mapping reductions (A <” B)

e NP-hard

o NP-complete

e search-to-decision reduction

e “padding” (we didn’t give a completely formal definition, but give the concept)

1. Let L € NP. First, show that if L = () or L = {0, 1}* then L is not NP-hard. Otherwise, show
that P = NP implies L is NP-complete.

2. A “two-dimensional Turing Machine” is one where the tape — rather than being a one-
dimensional bi-infinite grid with cells indexed by Z — is a two-dimensional bi-infinite grid
with cells indexed by Z x Z. Assume it allows head movements of North, South, East, and
West. Write explicitly what a transition function would look like. Sketch an appropriate
definition of “configuration” and an appropriate definition of “NextConfig” (i.e., the function
used in defining computation trace). Sketch a proof that a two-dimensional Turing Machine
running in time 7'(n) can be simulated by a one-dimensional Turing Machine running in time

poly(T'(n)).
3. Suppose L € NP. Show that L* € NP.

4. Write pseudocode for checking if an input number (written in binary) is a perfect square.
Assuming two n-bit integers can be multiplied in time M (n), analyze the running time of
your algorithm as a function of M(n). Can you get a faster running time if you allow your
pseudocode to be nondeterministic?

5. Complete the proof (begun in Lecture 12) that INDEPENDENT-SET is NP-complete.

6. Write careful proofs/disproofs of each of the following statements: “<P is reflexive”, “<P
is symmetric”, “<P is transitive”. (Look it up on Wikipedia if you forget what those terms
about relations mean.)



7.
8.

10.

Show that if f(n) and g(n) are time-constructible, then so is f(n) + g(n).

Analyze the running time and correctness of the following 3SAT algorithm (which has the
flavor of “search-to-decision”) due to Monien and Speckenmeyer. Given a 3SAT instance ¢,
if all ¢’s clauses have width at most 2 then use the polynomial-time algorithm for 2SAT to
decide it. Otherwise, pick any clause, say (¢;V{;V{), and recursively decide ¢y, =T, ¢¢,=F ¢,=T,
and ¢gi:F7gj:F7gk —T, accepting iff at least one recursive call accepts. (Here the ¢’s are “literals”
— either a variable or its negation — and the things that look like ¢,— . are sub-3CNFs you
get by plugging in values for literals and simplifying.) You may like to prove/use the fact
that the recurrence T'(m) = T'(m — 1) + T (m — 2) + T (m — 3), with T'(const.) = const. solves
to T'(m) = O(c"), where c is the real solution of ¢® — ¢ —c —1 = 0.

Write down the Time Hierarchy Theorem, but replace every instance of TIME(-) with NTIME(-).
Now go through the proof of the theorem — does the proof still work? (Remark: depending
on time, we may prove the Nondeterministic Time Hierarchy Theorem in this course.)

k
Define EEXP = UpenTIME(22" ), and define NEEXP to be the nondeterministic analogue.
Prove that EXP = NEXP implies EEXP = NEEXP.



