Undergraduate Complexity Theory CMU 15-455, Spring 2017

HoMEWORK 10
Due: 5:00pm, Thursday April 27

Note the later due date.
Feature: As before, if your homework is typeset (as opposed to handwritten),
you will receive 1 bonus point.

1. (Two-sided error versus one-sided error.) As mentioned in class, we don’t really have
any “natural” problem that we know to be in BPP (efficiently solvable with two-sided error)
but don’t know to be in either RP or coRP (efficiently solvable with one-sided error). However,
in this problem you will see that an “unnatural” problem may fit the bill. First:

(a) (2 points.) Show that if BPP = RP, then RP = ZPP.

The contrapositive of the above is RP # ZPP = BPP # RP. In other words, if you can find
a language L € RP that is not in ZPP — i.e., a problem which genuinely needs the full power
of RP — then you can find some language L’ € BPP that is not in RP. (L’ also wouldn’t be
in coRP.) Such an L’ would be an example of a problem efficiently solvable with two-sided
error that’s not efficiently solvable with one-sided error.

Of course, we probably can’t literally do this, since it is somewhat commonly believed that
BPP = RP = ZPP = P. However, we might be able to do it “de facto”, using a language
L € RP that we currently don’t know to be in ZPPE] The following problem shows how to
convert such an L into a language L’ € BPP that isn’t obviously in RP or coRP. (However
this L’ is kind of unnatural.)

(b) (8 points.) Assume L € RP\ ZPP. Define
L' = {(x,y) : either z € L and y € L, or vice versa}.
Prove that L' € BPP and also that L' € RP U coRP (4 points each).

2. (VC Dimension.) The “VC (Vapnik-Cernovenkis) Dimension” is an extremely important
concept in learning theory. Let X be a “universe” (set) of “instances”. A “concept” H is a
“classifier” that labels each instance as positive or negative; more precisely, it is a function
H:X — {0,1}. A “concept class” H is a set of concepts.

Suppose S = (z!,...,2™) is a “sample of size m”, meaning a sequence of m distinct instances
in X. Now for any concept H, if you apply it to the instances of .S you get a sequence of labels,
H(S) € {0,1}™. We say that sample S is “shattered by H” if for every string y € {0,1}"™,
there is some H € H with H(S) = y. For example, if m = 1 and S = (x), then S is shattered
by H as long as there is some H € H with H(z) = 0 and also some other H' € H with
H(z) = 1. For another example (m = 2), we say S = (w, z) is shattered by H if it’s possible
to find four concepts Hoog, Ho1, H10, H11 € H such that Hyi(w) = 0, Hoi(x) = 1 and similarly
for Hoo, H107 Hll-

! An example of such an L is the language of all arithmetic formulas (with symbols for variables, -, +, —, and 1)
that compute a nonzero polynomial. E.g., this L contains (z +y) - (z + y) + (z — y) - (x — y) but does not contain
(z+y) (z4+y)—(x—y) - (z—y)—(1+1)-(14+1) -x-y. We know this language is in RP — the algorithm is basically
“plug in a few random n-bit integers, evaluate the formula modulo a random n-bit prime, and accept if you ever get
a nonzero answer”. However we don’t know if this problem is in ZPP.

(a) (3 points.) (This problem has nothing to do with complexity theory, it’s to help you
understand the definitions.) Suppose X = R2, so instances are points in the 2-d plane.
And suppose H is the set of all “halfspaces”; here we say H : R? — {0,1} is a “halfspace”
if there is some (infinite) straight line in the plane such that H labels all points on one
side of the line 0 and all points on the other side of the line 1 (say that points exactly
on the line are also labeled 1). For this problem, do three things: (i) Find a sample of
size 3 that is shattered. (ii) Find a sample of size 3 that is not shattered. (iii) Show that
a size-4 sample consisting of the corners of a square is not shattered.

Actually, something stronger than (iii) is true: there is no size-4 sample that is shattered.
You can probably convince yourself this is true, although you’re not asked to prove it.

Here is the key definition for this problem: given a concept class H, its VC Dimension VCO(H)
is the largest possible size of a set that is shattered. Thus in the example where X = RR?
and H = {halfspaces}, we have VC(H) = 3, because there is a shattered size-3 sample, and
there isn’t a shattered size-4 sample.

(b) (1 point.) Assume H is finite. Show that VC(H) < log, |H|.

In a typical learning theory scenario, there is a “dimension” d (the number of “features”),
the universe is X = {0, 1}d, and the concept class H contains an exponential-in-d number of
concepts. However, each H € H has a relatively short descriptor h (like, the equation of the
line, in the case of halfspaces), and given this descriptor and an instance z € X, it is easy
to tell if H(z) is 0 or 1. More formally, let C' be a Boolean circuit that takes as input two
strings € {0,1}¢ and h € {0,1}¢. We say that C “implicitly defines” a concept class Hc
of cardinality 2¢, consisting of a concept Hj, for each h € {0,1}¢ defined by Hy(x) = C(x,h).
In other words, C' takes as input the name of an instance and the name of a concept and
outputs the label that concept gives to that instance.

(c) (6 points.) Let VCD = {(C, k) : VC(Hc) > k}. Here C' is the encoding of a two-input
circuit as before, and k is a natural number encoded in binary. In words, the VCD
problem is to decide if the VC Dimension of an (implicitly defined) concept class is at
least k.

Prove that VCD e Xs.

(Slight hint: You might find it easier to prove that it’s in 34; you may need part (b) to
get it down to Xs.)

In fact, VCD is ¥3-complete, but this is noticeably harder to prove.

. (2P in NP with a SAT oracle.) A nondeterministic SAT-oracle TM N is the non-
deterministic analogue of a SAT-oracle TM, as defined in Lecture 24. Specifically, N is a
nondeterministic Turing Machine with an extra power. It has an extra read/write tape,
called the “oracle tape”, and it has an new “ORACLE” instruction with the following behav-
ior: when ORACLE is called with string ¢ on the oracle tape, the oracle tape’s contents are
replaced with “1” if ¢ € SAT and with “0” if ¢ € SAT. Note that the ORACLE instruction is
completely deterministic (albeit unrealistic). The nondeterministic aspect is as usual: besides
the ORACLE instruction, N has the usual “goto-both” /nondeterministic-branching feature,
and we say that N (z) overall accepts if there exists a computation branch on which ends in
an accepting state.

We write NPSAT for the class of all languages L that are accepted by a polynomial-time
nondeterministic SAT-oracle TM.

More generally, given any language B, we can analogously define a nondeterministic B-oracle
TM, and NP5,

(a) (2 points.) Prove that NPB = NPB, where B is the complement of language B.

(b) (2 points.) Prove that if A <P B, then NP4 C NP5,

(¢) (3 points.) Prove that if B is NP-complete or if B is coNP-complete, then NPSAT = NP5,
(For this reason, NP3AT is often denoted NPNP.)
(

Hint: Parts (a), (b), (c) are all equally true about deterministic oracle-computation; is
there any difference for nondeterministic oracle-computation?)

(d) (3 points.) Prove that $5P C NPSAT. (Hint: your SAT-oracle NTM will probably only
need to use the ORACLE once, but possibly not in the very last step.)

4. (And the other way around.) (10 points.) Prove that NPSAT C $5P. (Thus X5P is the
same as NPSAT = NPNP and indeed it is sometimes defined this way.)

(Hint: Mimic, fill in details for, and extend the proof from Lecture 24 that PSAT C YoP.)

