
Undergraduate Complexity Theory CMU 15-455, Spring 2017

Homework 10
Due: 5:00pm, Thursday April 27

Note the later due date.
Feature: As before, if your homework is typeset (as opposed to handwritten),

you will receive 1 bonus point.

1. (Two-sided error versus one-sided error.) As mentioned in class, we don’t really have
any “natural” problem that we know to be in BPP (efficiently solvable with two-sided error)
but don’t know to be in either RP or coRP (efficiently solvable with one-sided error). However,
in this problem you will see that an “unnatural” problem may fit the bill. First:

(a) (2 points.) Show that if BPP = RP, then RP = ZPP.

The contrapositive of the above is RP 6= ZPP =⇒ BPP 6= RP. In other words, if you can find
a language L ∈ RP that is not in ZPP — i.e., a problem which genuinely needs the full power
of RP — then you can find some language L′ ∈ BPP that is not in RP. (L′ also wouldn’t be
in coRP.) Such an L′ would be an example of a problem efficiently solvable with two-sided
error that’s not efficiently solvable with one-sided error.

Of course, we probably can’t literally do this, since it is somewhat commonly believed that
BPP = RP = ZPP = P. However, we might be able to do it “de facto”, using a language
L ∈ RP that we currently don’t know to be in ZPP.1 The following problem shows how to
convert such an L into a language L′ ∈ BPP that isn’t obviously in RP or coRP. (However
this L′ is kind of unnatural.)

(b) (8 points.) Assume L ∈ RP \ ZPP. Define

L′ = {(x, y) : either x ∈ L and y 6∈ L, or vice versa}.

Prove that L′ ∈ BPP and also that L′ 6∈ RP ∪ coRP (4 points each).

2. (VC Dimension.) The “VC (Vapnik–Černovenkis) Dimension” is an extremely important
concept in learning theory. Let X be a “universe” (set) of “instances”. A “concept” H is a
“classifier” that labels each instance as positive or negative; more precisely, it is a function
H : X → {0, 1}. A “concept class” H is a set of concepts.

Suppose S = (x1, . . . , xm) is a “sample of size m”, meaning a sequence of m distinct instances
in X . Now for any concept H, if you apply it to the instances of S you get a sequence of labels,
H(S) ∈ {0, 1}m. We say that sample S is “shattered by H” if for every string y ∈ {0, 1}m,
there is some H ∈ H with H(S) = y. For example, if m = 1 and S = (x), then S is shattered
by H as long as there is some H ∈ H with H(x) = 0 and also some other H ′ ∈ H with
H(x) = 1. For another example (m = 2), we say S = (w, x) is shattered by H if it’s possible
to find four concepts H00, H01, H10, H11 ∈ H such that H01(w) = 0, H01(x) = 1 and similarly
for H00, H10, H11.

1An example of such an L is the language of all arithmetic formulas (with symbols for variables, ·, +, −, and 1)
that compute a nonzero polynomial. E.g., this L contains (x + y) · (x + y) + (x − y) · (x − y) but does not contain
(x+ y) · (x+ y)− (x− y) · (x− y)− (1+1) · (1+1) ·x · y. We know this language is in RP — the algorithm is basically
“plug in a few random n-bit integers, evaluate the formula modulo a random n-bit prime, and accept if you ever get
a nonzero answer”. However we don’t know if this problem is in ZPP.

1

(a) (3 points.) (This problem has nothing to do with complexity theory, it’s to help you
understand the definitions.) Suppose X = R2, so instances are points in the 2-d plane.
And supposeH is the set of all “halfspaces”; here we say H : R2 → {0, 1} is a “halfspace”
if there is some (infinite) straight line in the plane such that H labels all points on one
side of the line 0 and all points on the other side of the line 1 (say that points exactly
on the line are also labeled 1). For this problem, do three things: (i) Find a sample of
size 3 that is shattered. (ii) Find a sample of size 3 that is not shattered. (iii) Show that
a size-4 sample consisting of the corners of a square is not shattered.

Actually, something stronger than (iii) is true: there is no size-4 sample that is shattered.
You can probably convince yourself this is true, although you’re not asked to prove it.

Here is the key definition for this problem: given a concept class H, its VC Dimension VC(H)
is the largest possible size of a set that is shattered. Thus in the example where X = R

2

and H = {halfspaces}, we have VC(H) = 3, because there is a shattered size-3 sample, and
there isn’t a shattered size-4 sample.

(b) (1 point.) Assume H is finite. Show that VC(H) ≤ log2 |H|.

In a typical learning theory scenario, there is a “dimension” d (the number of “features”),
the universe is X = {0, 1}d, and the concept class H contains an exponential-in-d number of
concepts. However, each H ∈ H has a relatively short descriptor h (like, the equation of the
line, in the case of halfspaces), and given this descriptor and an instance x ∈ X , it is easy
to tell if H(x) is 0 or 1. More formally, let C be a Boolean circuit that takes as input two
strings x ∈ {0, 1}d and h ∈ {0, 1}e. We say that C “implicitly defines” a concept class HC

of cardinality 2e, consisting of a concept Hh for each h ∈ {0, 1}e defined by Hh(x) = C(x, h).
In other words, C takes as input the name of an instance and the name of a concept and
outputs the label that concept gives to that instance.

(c) (6 points.) Let VCD = {〈C, k〉 : VC(HC) ≥ k}. Here C is the encoding of a two-input
circuit as before, and k is a natural number encoded in binary. In words, the VCD
problem is to decide if the VC Dimension of an (implicitly defined) concept class is at
least k.

Prove that VCD ∈ Σ3.

(Slight hint: You might find it easier to prove that it’s in Σ4; you may need part (b) to
get it down to Σ3.)

In fact, VCD is Σ3-complete, but this is noticeably harder to prove.

3. (Σ2P in NP with a SAT oracle.) A nondeterministic SAT-oracle TM N is the non-
deterministic analogue of a SAT-oracle TM, as defined in Lecture 24. Specifically, N is a
nondeterministic Turing Machine with an extra power. It has an extra read/write tape,
called the “oracle tape”, and it has an new “ORACLE” instruction with the following behav-
ior: when ORACLE is called with string φ on the oracle tape, the oracle tape’s contents are
replaced with “1” if φ ∈ SAT and with “0” if φ 6∈ SAT. Note that the ORACLE instruction is
completely deterministic (albeit unrealistic). The nondeterministic aspect is as usual: besides
the ORACLE instruction, N has the usual “goto-both”/nondeterministic-branching feature,
and we say that N(x) overall accepts if there exists a computation branch on which ends in
an accepting state.

2

We write NPSAT for the class of all languages L that are accepted by a polynomial-time
nondeterministic SAT-oracle TM.

More generally, given any language B, we can analogously define a nondeterministic B-oracle
TM, and NPB.

(a) (2 points.) Prove that NPB = NPB, where B is the complement of language B.

(b) (2 points.) Prove that if A ≤P
m B, then NPA ⊆ NPB.

(c) (3 points.) Prove that if B is NP-complete or if B is coNP-complete, then NPSAT = NPB.
(For this reason, NPSAT is often denoted NPNP.)

(Hint: Parts (a), (b), (c) are all equally true about deterministic oracle-computation; is
there any difference for nondeterministic oracle-computation?)

(d) (3 points.) Prove that Σ2P ⊆ NPSAT. (Hint: your SAT-oracle NTM will probably only
need to use the ORACLE once, but possibly not in the very last step.)

4. (And the other way around.) (10 points.) Prove that NPSAT ⊆ Σ2P. (Thus Σ2P is the
same as NPSAT = NPNP, and indeed it is sometimes defined this way.)

(Hint: Mimic, fill in details for, and extend the proof from Lecture 24 that PSAT ⊆ Σ2P.)

3

