

HOMEWORK 6
Due: 5:00pm, Thursday March 2

Feature: As before, if your homework is typeset (as opposed to handwritten), you will receive 1 bonus point.

1. **(3-coloring with unary constraints.)** (10 points.) Let 3COL+UNARY be the same problem as 3COL, except that there can be additional constraints of the form “*This vertex must be $\langle \text{color} \rangle$* ”. That is, the input is an undirected graph in which some of the vertices may be prelabeled with either R , B , or Y . The task is to decide if the unlabeled vertices can be colored with $\{R, B, Y\}$ so that the whole graph becomes validly 3-colored (no edge having the same colors for its endpoints). Show that $3\text{COL+UNARY} \leq_m^P 3\text{COL}$. Please do this reduction “directly”.¹
2. **(NP-hard but not NP-complete.)** (10 points.) Show that the IMPLICIT-4COL problem (from Homework 5, #3) is NP-hard.
(Remark: It can be shown that IMPLICIT-4COL is *not* in NP. We may show this later in the course.)
3. **(MAX-2SAT.)** (10 points.) Recall that the 2SAT problem is in P. Show that the analogous “optimization version”, MAX-2SAT, is NP-complete. The definition is:

$$\text{MAX-2SAT} = \{ \langle \phi, k \rangle : \phi \text{ is a 2-CNF formula for which} \\ \text{there is a truth assignment satisfying at least } k \text{ of } \phi \text{'s clauses} \}.$$

(Hint: Maybe reduce from NAE-E3SAT. Maybe use six width-2 clauses per NAE constraint.)

4. **(A generic NP-complete problem.)** The Cook–Levin Theorem shows that CIRCUIT-SAT is NP-complete. The cool thing about this theorem is not so much that an NP-complete language *exists*, as that there is a pretty *natural* NP-complete problem, namely CIRCUIT-SAT. If you understand the (verifier-based) definition of NP well, it is not too hard to show that the language

$$\text{TS} := \{ \langle M, x, 1^w, 1^t \rangle : M \text{ is a 2-input TM; } x \text{ is a Boolean string; } w, t \in \mathbb{N}; \\ \exists u \in \{0, 1\}^w \text{ such that } M(\langle x, u \rangle) \text{ accepts within } t \text{ steps} \}$$

is NP-complete. (A small note here: 1^w denotes the string of all-1’s of length w , and similarly for 1^t . This is a common complexity theory trick, “encoding numbers in unary”, to allow a Turing Machine to run in time polynomial in the number itself, rather than in the length of its base-2 representation.)

- (a) (2 points.) Show that $\text{TS} \in \text{NP}$.
- (b) (8 points.) Complete the proof that TS is NP-complete by *directly* showing that every language² in NP has a polynomial-time mapping reduction to TS .³

¹That is, please don’t reduce 3COL+UNARY to some other well-known NP problem and then say “3COL is NP-complete”.

²For simplicity, you may concern yourself only with languages over the alphabet $\{0, 1\}$.

³That is, please do not appeal to the Cook–Levin Theorem in your proof.