
Undergraduate Complexity Theory CMU 15-455, Spring 2017

Homework 6
Due: 5:00pm, Thursday March 2

Feature: As before, if your homework is typeset (as opposed to handwritten),
you will receive 1 bonus point.

1. (3-coloring with unary constraints.) (10 points.) Let 3COL+UNARY be the same
problem as 3COL, except that there can be additional constraints of the form “This vertex
must be 〈color〉”. That is, the input is an undirected graph in which some of the vertices may
be prelabeled with either R, B, or Y . The task is to decide if the unlabeled vertices can be
colored with {R,B, Y } so that the whole graph becomes validly 3-colored (no edge having
the same colors for its endpoints). Show that 3COL+UNARY ≤P

m 3COL. Please do this
reduction “directly”.1

2. (NP-hard but not NP-complete.) (10 points.) Show that the IMPLICIT-4COL problem
(from Homework 5, #3) is NP-hard.

(Remark: It can be shown that IMPLICIT-4COL is not in NP. We may show this later in
the course.)

3. (MAX-2SAT.) (10 points.) Recall that the 2SAT problem is in P. Show that the analogous
“optimization version”, MAX-2SAT, is NP-complete. The definition is:

MAX-2SAT = {〈φ, k〉 : φ is a 2-CNF formula for which

there is a truth assignment satisfying at least k of φ’s clauses}.

(Hint: Maybe reduce from NAE-E3SAT. Maybe use six width-2 clauses per NAE constraint.)

4. (A generic NP-complete problem.) The Cook–Levin Theorem shows that CIRCUIT-
SAT is NP-complete. The cool thing about this theorem is not so much that an NP-complete
language exists, as that there is a pretty natural NP-complete problem, namely CIRCUIT-
SAT. If you understand the (verifier-based) definition of NP well, it is not too hard to show
that the language

TS := {〈M,x, 1w, 1t〉 : M is a 2-input TM; x is a Boolean string; w, t ∈ N;

∃u ∈ {0, 1}w such that M(〈x, u〉) accepts within t steps}

is NP-complete. (A small note here: 1w denotes the string of all-1’s of length w, and similarly
for 1t. This is a common complexity theory trick, “encoding numbers in unary”, to allow a
Turing Machine to run in time polynomial in the number itself, rather than in the length of
its base-2 representation.)

(a) (2 points.) Show that TS ∈ NP.

(b) (8 points.) Complete the proof that TS is NP-complete by directly showing that every
language2 in NP has a polynomial-time mapping reduction to TS.3

1That is, please don’t reduce 3COL+UNARY to some other well-known NP problem and then say “3COL is
NP-complete”.

2For simplicity, you may concern yourself only with languages over the alphabet {0, 1}.
3That is, please do not appeal to the Cook–Levin Theorem in your proof.

1


