
Undergraduate Complexity Theory CMU 15-455, Spring 2017

Homework 5
Due: 5:00pm, Thursday February 23

NEWISH FEATURE: As before, if your homework is typeset (as opposed to handwritten),
you will receive 1 bonus point.

0. (UNSAT in NP?) (0 points, do not turn in.) Let

UNSAT = {〈φ〉 : φ is an unsatisfiable Boolean formula}.

Can you show UNSAT ≤Pm SAT?

(Probably you can’t, because in fact no one knows whether or not this is possible. But
almost everyone believes it’s impossible. Unfortunately, I can’t ask you to show it’s impossible
because. . . well, nobody knows how to prove it’s impossible. But you should think about why
it’s challenging/unlikely, and what goes wrong with some naive attempts to do it.)

1. (Reduction Timing.) (10 points.) Suppose we show that A ≤Pm B, using a reduction
algorithm R with the following two properties:

• On inputs x of length n, algorithm R runs in O(nr) time.

• On inputs x of length n, algorithm R outputs a string of length O(n`).

Furthermore, assume we find an algorithm S that, on inputs x of length n, decides whether
or not x ∈ B in time O(nb). (Here r, `, b ≥ 1 are all constants.)

Now since A ≤Pm B and B ∈ P, we know we may conclude A ∈ P. But suppose we care in
more detail about running times. What is the least constant a for which you can conclude
that there’s an algorithm, running in time O(na) on inputs x of length n, that decides whether
or not x ∈ A? Express your answer a as a function r, `, b.

2. (NTMs.) Sipser defines TMs and TM computation in Section 3.1. Recall that in our class
we depart from his definition in two slight ways. First, we use a two-way infinite tape rather
than a one-way infinite tape. Second, I think Sipser should have directly defined the transition
function δ as δ : Q′ × Γ → Q × Γ × {L,R}, where Q′ = Q \ {qaccept, qreject}. (Sipser first
defines the domain of δ as Q× Γ, but such a definition implies kind of weirdly that you have
to specify how the TM transitions out of halting states. Note that later, on page 169, he
comes to our preferred definition with Q′.)

Recall also in Lecture 3, we considered a TM variant in which, in addition to allowing the
head to move Left or Right, the head could also Stay. The resulting form of the transition
function was δ : Q′ × Γ→ Q× Γ× {L,R, S}. Recall we showed that you could simulate this
new Staying-allowed-TM with a normal Left-or-Right-only-TM with just a constant-factor
slowdown.

Sipser further defines nondeterministic Turing Machines (NTMs) and NTM computation
in Section 3.2. Let us call this definition “Sipser-NTMs” but make the above three small
changes: two-way infinite tape, Q′ instead of Q, and Staying allowed. Thus in Sipser-NTMs,
the transition function has the following form:

δ : Q′ × Γ→ P(Q× Γ× {L,R, S}),

1



where P(·) denotes power set. (Recall the two-way infinite tape aspect shows up not in
the definition of the machines but in the definition of how machines compute, involving
“configurations”.) Finally, Sipser is not exactly clear on what happens if δ(q, γ) = ∅; for
explicitness, let’s say the NTM halts and rejects if this arises.

In this problem, we will give a somewhat different definition of NTMs, call it “binary-NTMs”.
Basically, your task will be to show that Sipser-NTMs and binary-NTMs are essentially the
same.

First, recall from Lecture 2 the definition of computation for a deterministic Turing Ma-
chine M . Given its transition function δ : Q′ × Γ → Q × Γ × {L,R, S}, there is a natural
associated function NextConfigδ(C) that, given a nonhalting configuration C, outputs the
configuration C ′ resulting from doing one step according to transition function δ. Then, to
define the computation of M(x), we form C0, C1, C2, . . . , where C0 is the “initial configura-
tion” given x, and where Ct+1 = NextConfigδ(Ct). We keep doing this till we either get a
halting configuration Ct, or forever (if a halting configuration is never reached). In the former
case, we define the running time to be t, and we say that “M(x) accepts” or “M(x) rejects”
depending on whether the final configuration has the accepting state or the rejecting state.

Let us now define a “binary-NTM” as follows: It is like a deterministic TM (with two-infinite
tape and Staying put), except you specify two transition functions, called δ0 and δ1:

δ0, δ1 : Q′ × Γ→ Q× Γ× {L,R, S}.

Then, we’ll say that in a binary-NTM N , the computation N(x) explores all possible com-
putation traces C0, C1, C2, . . . where Ct+1 = NextConfigδit (Ct) for bits it ∈ {0, 1}. We say

that N(x) “halts” if all the possible traces hit halting configurations (else it “loops”). In
the former case, we say that “N(x) accepts” if at least one possible computation trace halts
with the accepting state, and “N(x) rejects” if all possible computation traces halt with the
rejecting state. Either way, we define the running time of N(x) to be the maximum length
of all the possible configuration traces.

Please show two things:1 First, every binary-NTM can be viewed as a special case of a Sipser-
NTM. Second, every (decider) Sipser-NTM can be equivalently simulated by a (decider)
binary-NTM with at most constant-factor slowdown in running time.

3. (Implicit Coloring.) (10 points.) Recall our definition of the complexity class NEXP:2

NEXP = {L : there exists a nondeterministic algorithm N deciding L

with running time O(2n
k
) for some k ∈ N}.

1Honestly, a lot of the point of this problem is to just make you understand all the definitions carefully. For
this reason, I was pretty pedantic about writing out all the definitions. On the other hand, you don’t have to be
insanely pedantic in writing your solution. Basically, on page 49 of Sipser you see some pictures involving trees. For
binary-NTMs, the idea is that the trees have a certain form. . . Indeed, we basically discussed the idea for how to
solve the second part of this problem in class. But I would like you to think through the definitions a bit carefully,
and spell things out a bit.

2As with the classes P, NP, and EXP, this class is “robust” with respect to the model of computation. That is,
since TMs, multi-tape TMs, Python, “pseudocode”, etc. can all simulate each other with polynomial slowdown (and
the same is true of the nondeterministic versions), the definition of NEXP does not change depending on whether
“nondeterministic algorithm” means “nondeterministic TM”, “nondeterministic multi-tape TM”, “nondeterministic
Python”, etc. Therefore, in this problem you can and should use “nondeterministic pseudocode” (pseudocode with
“goto-both” instructions) when describing NEXP algorithms.

2



The task in this problem is to prove that IMPLICIT-4COL ∈ NEXP.

In the rest of the problem, we define the language IMPLICIT-4COL. At a high-level, the
decision problem IMPLICIT-4COL involves being given a Boolean circuit C which implicitly
defines a graph GC with 2n vertices; the task is to decide if GC is validly 4-colorable.

More precisely: Let C be a Boolean circuit and suppose (slightly contrary to normal con-
ventions) that we write 2n for the number of input gates it has. (So we assume it has an
even number of input gates.) Then we define an associated undirected graph GC = (V,E) as
follows. First, V = {0, 1, 2, . . . , 2n − 1}, so GC has 2n vertices. Next, for distinct i, j ∈ V ,
the pair {i, j} ∈ E if and only if either C(i, j) = 1 or C(j, i) = 1 (or both). Here C(i, j)
means that i and j are each written as base-2 numbers with exactly n bits (so “leading 0’s”
are used if necessary), and the resulting 2n bits are fed in as inputs to C. Roughly speaking,
C computes the adjacency matrix of GC , but with some small twists: (i) It may be the case
that C(i, j) 6= C(j, i); so as we said, we define {i, j} to be present in E if and only if either
C(i, j) = 1 or C(j, i) = 1. (ii) Whatever C(i, i) is, it doesn’t matter; by definition we say
that GC does not have self-loops. Finally,

IMPLICIT-4COL = {〈C〉 : C is a Boolean circuit with an even number of inputs

such that GC has a valid 4-coloring}.

4. (Reducing P to 3COL.) (10 points.) Show that for every L ∈ P it holds that L ≤Pm 3COL.

(Note: although we will talk about the Cook–Levin Theorem on Tuesday, you may not use
it, and do not need it, for this problem. Give a direct argument.)

3


