Undergraduate Complexity Theory CMU 15-455, Spring 2017

HOMEWORK 4
Due: 5:00pm, Thursday February 16

NEW FEATURE: If your homework is typeset (as opposed to handwritten),
you will receive 1 bonus point.

1. (Problems in NP.) (10 points.)

(a) (5 points.) Let HMLCS (“half-length multi longest common subsequence”) be the lan-

guage of all lists (wy,wa, ..., wp,), where:
o wy,...,wy € {0,1} for some ¢ € N;
e wi,...,wy have a common subsequence z € {0, 1}* with k& > ¢/2.

Prove that HMLCS € NP.

(b) (5 points.) Let DCF (“different circuit functionality”) denote the language of all pairs
(C1, C3) where:
e (1 and (5 are Boolean circuits;
e (1 and Cy have the same number of input gates (we will refer to this number as n,
bearing in mind it’s not the same as |(C1, C2)|);
e () and Cy do not compute the same function {0,1}"™ — {0, 1}.

Prove that DCF € NP.
2. (NP in EXP.) (10 points.) Prove NP C EXP.

3. (Unit Clauses and Horn-SAT.) In this problem, you will want to use the convention that
an “empty clause” (i.e., a clause containing 0 literals) is equivalent to L (False). This makes
sense: the definition of an “OR”-clause is that it is T (True) iff at least one literal in it is T;
so if there are no literals in it, it’s indeed vacuously L. Similarly, you will want to use the
convention that an “empty CNF” (i.e., one with no clauses in it) is equivalent to T. Again
this makes sense: the definition of an “AND” of clauses is that it is T iff all of its clauses
are T; so if it has no clauses, it’s indeed vacuously T.

(a) (5 points.) Let C' be a CNF formula for which we are interested in deciding satisfiability.
A unit clause in C' is simply a clause with one literal, so either x; or T;. If C has a
unit clause, say x;, the following is an “obvious” thing to do: for every clause where x;
appears, delete that clause; and, for every clause where T; appears, delete T; from that
clause. Similarly, if C' contains the unit clause z;, the “obvious” thing to do is delete
every clause containing T; and delete x; from every clause. In either case, doing this
“obvious” thing is called doing unit clause propagation.

Prove that doing unit clause propagation preserves the satisfiability of C'; i.e., when you
do it, if C' was satisfiable before then it is satisfiable afterward, and if it was unsatisfiable
before then it is unsatisfiable afterward.

(b) (5 points.) A formula C' is called a Horn-CNF if every clause contains at most one
positive literal. Prove that HORN-SAT, the task of deciding whether an input Horn-
CNF is satisfiable or not, is solvable in polynomial time. (Hint: Given a Horn-CNF,
split into two cases: (i) every clause contains at least one negative literal; (ii) there is a
clause containing zero negative literals.)



4. (XOR-SAT.) XOR-SAT is a problem similar to CNF-SAT, except instead of all the clauses
being ORs of literals, all the clauses are XORs of literals. E.g., an input might look like this:

(1 Dz BT3Dxg) AN(T2Dw3) A+ A (T7 B 23 D Tyy),

where @ denotes XOR. As usual, the XOR-SAT problem is to determine if there is a truth
assignment to the variables that satisfies the whole formula.

(a)

(2 points.) Show that we can equivalently think of an XOR-SAT input as a system
(collection) of equations mod 2; meaning a system where the variables are supposed to
take values in {0, 1}, and every equation is of the form

zi, + iy + - + 2, = ¢ (mod 2).

Here ¢ € {0, 1}, and the left-hand side is the sum of zero or more distinct variables. The
equations may have different numbers of variables on the LHS, and different RHS’s.

(2 points.) Suppose &£; and & are equations as above. Explain how & + &; can also be
thought of as such an equation. Also, show that an assignment satisfies both &1, & if
and only if it satisfies both &1, & + &s.

(2 points.) Given a system of equations as above, show how it can be transformed, in
polynomial time, to an equivalent system in which x; appears in at most one equation.
(Here “equivalent” is in the sense of satisfiability: the transformed system is satisfiable
if and only if the original system is satisfiable.)

(1 point.) Suppose we are given a system of equations in which x; appears in at most
one equation — call it &1, if it exists. Show that in polynomial time we can transform the
system into an equivalent one in which furthermore x2 appears in at most two equations,
at most one of which is not & . (Hint: Your proof can begin, “Ignoring & (if it exists),
again...”)

(3 points.) Write the words “Et cetera.” Now assume we have an (equivalent) system
of equations in which z; appears in at most one equation (call it &), zo appears in
at most two equations (call them &, &), ..., z, appears in at most n equations (call
them &p,...,&,). (Each & might “not exist”.) Explain why the original system is
unsatisfiable if the final system includes the equation “0 = 1”7 and why the original
system is satisfiable otherwise. (For the latter: show how to actually find a satisfying
assignment — the key phrase is “back-substitution”. If one of the &;’s does not exist,
simply add in the equation z; = 0 and show that nothing is harmed.)



