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Abstract

Unlike perfect-information games, imperfect-information games cannot be solved
by decomposing the game into subgames that are solved independently. Thus
more computationally intensive equilibrium-finding techniques are used, and all
decisions must consider the strategy of the game as a whole. While it is not
possible to solve an imperfect-information game exactly through decomposition,
it is possible to approximate solutions, or improve existing solutions, by solving
disjoint subgames. This process is referred to as subgame solving. We introduce
subgame solving techniques that outperform prior methods both in theory and
practice. We also show how to adapt them, and past subgame-solving techniques,
to respond to opponent actions that are outside the original action abstraction; this
significantly outperforms the prior state-of-the-art approach, action translation.
Finally, we show that subgame solving can be repeated as the game progresses
down the tree, leading to significantly lower exploitability. Subgame solving is a
key component of Libratus, the first AI to defeat top humans in heads-up no-limit
Texas hold’em poker.

1 Introduction

Imperfect-information games model strategic settings that have hidden information. They have a
myriad of applications including negotiation, auctions, cybersecurity, and physical security. In such
games, the typical goal is to find a Nash equilibrium [26], which is a profile of strategies—one for
each player—such that no player can improve by unilaterally deviating to a different strategy.

Subgame solving is a standard technique in perfect-information games such as chess and checkers [1]
in which a piece of the game is solved in isolation. This can be accomplished in perfect-information
games because the exact state of the game is known, which allows the remaining subgame to be solved
independently from the rest of the game. For example, in chess determining the optimal response
to the Queen’s Gambit requires no knowledge of the optimal response to the Sicilian Defense. This
decomposition was key to AIs being able to defeat top humans in chess [8] and Go [33]. In checkers,
the ability to decompose the game into smaller independent subgames was even used to solve the
entire game [31].

In contrast, imperfect-information games cannot be solved via decomposition as perfect-information
games can because the optimal strategy in a subgame may depend on strategies and outcomes in
other, unreached subgames. Although this is a counter-intuitive idea, we provide a demonstration of
this in Section 2.

Rather than rely on decomposition, typical past approaches for imperfect-information games involved
solving the game as a whole. For example, heads-up limit Texas hold’em, a relatively simple form
of poker with 1013 decision points, was essentially solved without decomposition. However, this
∗A version of this paper was posted on the authors’ web pages in 2016, submitted to the AAAI-17 Workshop
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approach cannot extend to large games, such as heads-up no-limit Texas hold’em—the primary
benchmark problem in imperfect-information game solving—which has 10161 decision points, or
can even be infinite in size if fractional bets are allowed [17].2 The standard approach to computing
strategies in such large games is to first generate an abstraction of the game, which is a smaller
version of the game that retains as much as possible the strategic characteristics of the original
game [28, 30, 29]. For example, a continuous action space might be discretized. This abstract game
is solved and its solution is used when playing the full game by mapping states in the full game to
states in the abstract game (for example, by rounding to the nearest discrete action in the case of a
discretized continuous action space). In extremely large games, a small abstraction may not capture
all the strategic complexity of the game, and its solution may be far from a Nash equilibrium in the
original game.

For this reason, it seems natural to attempt to improve the strategy as we descend the game tree and
the remaining subgame becomes smaller, even though—as explained previously—this may not lead
to a Nash equilibrium. For example, at the start of a game of poker we could include in the abstraction
a large number of bet sizes for the early stages of the game, but only a few different bet sizes for
the final rounds. When we reach the final rounds of the game, we could calculate a new strategy in
the subgame we are in that has a large number of bet sizes in the final rounds. While it may not be
possible to arrive at an exact equilibrium by analyzing subgames independently in this way, it may be
possible to improve the strategies in those subgames when the original (trunk) strategy is suboptimal.

In Section 2 we first present an intuitive example demonstrating why imperfect-information subgames
cannot be solved in isolation, unlike perfect-information games. Section 3 defines notation and
provides background that is used in the remaining paper. In Section 4 we review prior forms of
subgame solving for imperfect-information games. Then in Section 5 we propose a new form of
subgame solving that retains the theoretical guarantees of the best prior methods while performing
better in practice. Next, in Section 6 we present an alternative form of subgame solving that is
more robust to errors in the assumptions of the model. This weakens the theoretical guarantees of
the algorithm, but improves practical performance dramatically. While this section is important
for those who wish to implement and build upon the algorithms in this paper, it is not necessary
for the more casual reader who wishes to gain a high-level understanding of subgame solving. In
Section 7 we introduce a method for subgame solving to be nested as players descend the game tree,
leading to substantially better performance compared to action translation, the prior state-of-the-art
approach. Finally, in section 8 we show experimentally that these new subgame solving techniques
lead to substantially lower exploitability compared to past techniques. We also present experimental
results from the 2017 Brains vs. AI competition in which Libratus, our AI which uses the techniques
presented in this paper, defeated top human specialists in heads-up no-limit Texas hold’em poker, the
primary challenge problem for imperfect-information games. This was the first time an AI defeated
top humans in heads-up no-limit Texas hold’em.

2 Coin Toss

In this section we provide intuition for why an imperfect-information subgame cannot be solved in
isolation. We demonstrate this in a simple game we call Coin Toss, shown in Figure 1a, which will
be used as a running example throughout the paper.

Coin Toss is played between players P1 and P2. A coin is flipped and lands either Heads or Tails
with equal probability; only P1 sees the outcome. P1 can then choose between actions “Sell” and
“Play.” The Sell action leads to a subgame whose details are not important, but the expected value to
P1 of choosing the Sell action will be important. (For simplicity, one can equivalently assume in this
section that Sell leads to an immediate terminal reward, where the value depends on whether the coin
landed Heads or Tails). If the coin lands Heads, it is considered lucky and P1 can receive an expected
value of $0.50 for choosing Sell. On the other hand, if the coin lands Tails, it is considered unlucky

2The version of heads-up no-limit Texas hold’em we refer to, which is the standard in the AI community,
allows bets in increments of $1, with each player having $20,000. This version has 10161 decision points.
However, this number can be made arbitrarily large by allowing finer-grained bet sizes. For example, allowing
bets in increments of $0.01 would multiply the branching factor of the game by 100, without meaningfully
changing the strategic complexity of the game. For this reason, it is more appropriate to view no-limit Texas
hold’em as a game with continuous action spaces in which traditional measurements of game size do not directly
apply.
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Figure 1: (a) The example game of Coin Toss. “C” represents a chance node. S is a Player 2 (P2)
subgame. The dotted line between the two P2 nodes means that P2 cannot distinguish between them.
(b) The public game tree of Coin Toss. The two outcomes of the coin flip are only observed by P1.

and P1 receives an expected value of −$0.50. (that is, P1 must on average pay someone $0.50 to
get rid of the coin). If P1 instead chooses Play, then P2 has the opportunity to guess how the coin
landed. If P2 guesses correctly, P1 receives a reward of −$1. The figure shows rewards only for P1;
P2 always receives the negation of P1’s reward. P2 also has the option to forfeit, which should never
be chosen but will be relevant in later sections. We wish to determine the optimal strategy for P2 in
the subgame S that occurs after P1 chooses Play, shown in Figure 1a.

Were P2 to always guess Heads, P1 would receive $0.50 for choosing Sell when the coin lands
Heads, and $1 for choosing Play when it lands Tails. This would result in an average of $0.75 for P1.
Alternatively, were P2 to always guess Tails, P1 would receive $1 for choosing Play when it lands
Heads, and −$0.50 for choosing Sell when it lands Tails. This would result in an average reward of
$0.25 for P1. However, P2 would do even better by guessing Heads with 25% probability and Tails
with 75% probability. In that case, P1 could only receive $0.50 (on average) by choosing Play when
the coin lands Heads—the same value for choosing Sell. Similarly, P1 could only receive −$0.50 by
choosing Play when the coin lands Tails, which is the same value received for choosing Sell. This
would yield an average reward of $0 for P1. It is easy to see that this is the best P2 could do, because
P1 can receive at least $0 in expectation by always choosing Sell. Therefore, choosing Heads with
75% probability and Tails with 25% probability is an optimal strategy for P2 in the “Play” subgame.

Now suppose the coin is considered lucky if it lands Tails and unlucky if it lands Heads. That is, the
expected reward for selling the coin when it lands Heads is now −$0.50 and $0.50 when it lands
Tails. It is easy to see that P2’s optimal strategy for the “Play” subgame is now to guess Heads with
75% probability and Tails with 25% probability. This shows that a player’s optimal strategy in a
subgame can depend on the strategies and outcomes in other parts of the game. Thus, one cannot
solve a subgame using information about that subgame alone. This is the central challenge of playing
imperfect-information games as opposed to perfect-information games.

3 Notation and Background

In an imperfect-information extensive-form game there is a finite set of players, P . H is the set of all
possible histories (nodes) in the game tree, represented as a sequence of actions, and includes the
empty history. A(h) is the actions available in a history and P (h) ∈ P ∪ c is the player who acts at
that history, where c denotes chance. Chance plays an action a ∈ A(h) with a fixed probability that is
known to all players. The history h′ reached after an action is taken in h is a child of h, represented
by h · a = h′, while h is the parent of h′. If there exists a sequence of actions from h to h′, then h is
an ancestor of h′ (and h′ is a descendant of h) denoted h @ h′. Z ⊆ H are terminal histories from
which no actions are available. For each player i ∈ P , there is a payoff function ui : Z → <. If
P = {1, 2} and u1 = −u2, the game is two-player zero-sum.
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Imperfect information is represented by information sets (infosets) for each player i ∈ P by a
partition Ii of h ∈ H : P (h) = i. For any infoset I ∈ Ii, all histories h, h′ ∈ I are indistinguishable
to i, so A(h) = A(h′). I(h) is the infoset I where h ∈ I . P (I) is the player i such that I ∈ Ii. A(I)
is the set of actions such that for all h ∈ I , A(I) = A(h).

A strategy σi(I) is a probability vector over A(I) for player i in I . The probability of a particular
action a is denoted by σi(I, a). Since all histories in an infoset belonging to player i are indistin-
guishable, the strategies in each of them must be identical. That is, for all h ∈ I , σi(h) = σi(I)
and σi(h, a) = σi(I, a). A full-game strategy σi ∈ Σi defines a strategy for each infoset belonging
to player i. A strategy profile σ is a tuple of strategies, one for each player. The expected payoff
for player i if all players play according to the strategy profile 〈σi, σ−i〉 is ui(σi, σ−i), where σ−i
denotes the strategies in σ of all players other than i.

Let πσ(h) =
∏
h′·avh σP (h′)(h

′, a) denote the joint probability of reaching h if all players play
according to σ. πσi (h) is the contribution of player i to this probability (that is, the probability of
reaching h if all players other than i, and chance, always chose actions leading to h). πσ−i(h) is the
contribution of all players other than i, and chance. πσ(h, h′) is the probability of reaching h′ given
that h has been reached, and 0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii, πi(h) = πi(h

′).
In this paper we focus specifically on two-player zero-sum perfect-recall games. Therefore, for
i = P (I) we define πi(I) = πi(h) for h ∈ I . Moreover, I ′ @ I if for some h′ ∈ I ′ and some h ∈ I ,
h′ @ h. Similarly, I ′ · a @ I if h′ · a @ h. Finally, πσ(I, I ′) is probability of reaching I ′ from I
according to the strategy σ.

We define an imperfect-information subgame, which we refer to simply as a subgame in this paper.
A subgame is easily defined in perfect-information games as containing a history (the root) and
all its descendants. The existence of infosets complicates this, because it does not make sense to
include only some of the histories from an infoset and not others. An imperfect-information subgame
overcomes this problem by expanding the subgame to include all histories (and their descendants)
which share an infoset with a history already in the subgame. In most cases (but not all) an imperfect-
information subgame can intuitively be described as including all histories which share public actions
(that is, actions viewable to both players). That is, we can construct a game tree consisting only of
public actions by players or chance, where a node in the tree is a set that contains all the histories
which involve that sequence of public actions (as well as any sequence of private actions). An
imperfect-information subgame is defined as containing all the histories in a single node (the root) in
this public-action game tree, as well as all their descendants. In poker, for example, a subgame is
uniquely defined by a sequence of bets (viewable to both players) and public board cards, but not
by private player cards. Figure 1b shows the public game tree of Coin Toss. While this view of
subgames is intuitive and covers many common cases, it is possible to construct subgames that do not
fit into this formulation.3 Formally, an imperfect-information subgame is a set of histories S ⊆ H
such that for all h ∈ S, if h @ h′, then h′ ∈ S, and for all h ∈ S, if h′ ∈ I(h) for some I ∈ IP (h)

then h′ ∈ S.

A Nash equilibrium [25] is a strategy profile σ∗ such that ∀i, ui(σ∗i , σ∗−i) = maxσ′i∈Σi ui(σ
′
i, σ
∗
−i).

In two-player zero-sum games, all Nash equilibria give identical expected values for a player. A best
response BRi(σ−i) is a strategy for player i such that ui(BRi(σ−i), σ−i) = maxσ′i∈Σi ui(σ

′
i, σ−i).

The exploitability exp(σ−i) of a strategy σ−i is defined as ui(BRi(σ−i), σ−i)− ui(σ∗), where σ∗
is a Nash equilibrium.

Counterfactual value vσ(I) is the value player i expects to achieve by playing according to σ, having
already reached infoset I . Formally, vσi (I, a) = 1

πσ−i(I)

∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
and vσi (I) = maxa∈A(I) v

σ
i (I, a)

A counterfactual best response [23] CBRi(σ−i) is similar to a best response, but additionally
maximizes counterfactual value at every infoset. Specifically, a counterfactual best response is a
strategy σi that is a best response with the additional condition that if σi(I, a) > 0 then vσi (I, a) =
maxa′ v

σ(I, a′).

3For example, games in which information is revealed at different times to each player, so that no action can
be described as “public.”
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We further define counterfactual best response value CBV σ−i(I) as the value player i expect-
s to achieve by playing according to CBRi(σ−i), having already reached infoset I . Formally,
CBV σ−i(I, a) = v

〈CBRi(σ−i),σ−i〉
i (I, a) and CBV σ−i(I) = maxa∈A(I) CBV

σ−i(I, a).

4 Prior Approaches to Subgame Solving in Imperfect-Information Games

This section reviews prior techniques for subgame solving in imperfect-information games. Our new
algorithm then builds on some of the ideas and notation.

Throughout this section, we refer to the Coin Toss game shown in Figure 1a. We focus on the Play
subgame. If P1 chooses Sell, the game continues to a separate subgame (not shown).

As discussed in Section 1, a standard approach to dealing with large imperfect-information games is
to solve an abstract, simplified version of the game. This abstract solution is a strategy profile in the
full game (which is typically quite far from a Nash equilibrium, despite being a Nash equilibrium
in the abstract game). We refer to this strategy profile in the full game as the trunk. The goal of
subgame solving is to improve the trunk by changing the strategy only in subgames. While the trunk
is frequently a Nash equilibrium (or approximate Nash equilibrium) in some abstraction of the full
game, our techniques do not assume this. The trunk can in fact be any arbitrary strategy in the full
game.

Figure 2: The trunk strategy we refer to in the game of Coin Toss. The Sell action leads to a subgame
that is not displayed. Probabilities are shown for all actions. Since both P2 nodes share an information
set, the probabilities over actions for each node must be identical. The counterfactual best response
value of each P1 action is also shown.

Assume that a trunk strategy profile σ (shown in Figure 2) has already been computed for Coin Toss
in which P1 chooses Play 3

4 of the time with Heads and 1
2 of the time with Tails, and P2 chooses

Heads 1
2 of the time, Tails 1

4 of the time, and Forfeit 1
4 of the time after P1 chooses Play.4 The details

of the trunk strategy in the Sell subgame are not relevant in this section, but the expected value for
choosing the Sell action is relevant. We assume that if P1 chose the Sell action and played optimally
thereafter, then she would receive an expected payoff of 0.5 if the coin is Heads, and −0.5 if the coin
is Tails. We will attempt to improve P2’s strategy in the subgame S that follows P1 choosing Play.

4.1 Unsafe Subgame Solving

We first review the most intuitive form of subgame solving, which we refer to as Unsafe subgame
solving [2, 13, 14, 11]. This form of subgame solving assumes that both players will play according
to their trunk strategies outside of the subgame. In other words, all nodes outside the subgame are
fixed and can be treated as chance nodes with probabilities determined by the trunk strategy. Thus,
the different roots of the subgame are reached with probabilities determined from the trunk strategies
using Bayes’ rule. A strategy is then computed for the subgame—independently from the rest of the
game.

4In many large games the trunk strategy is far from optimal either because the equilibrium-finding algorithm
did not sufficiently converge or because the game was too large and had to be abstracted. Clearly the example
trunk strategy shown here could be trivially improved; we use it for simplicity of exposition.
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In all subgame solving algorithms, an augmented subgame containing S, but much smaller than the
original game, is solved to determine the strategy for S. Applying Unsafe subgame solving to the
trunk strategy in Coin Toss (after P1 chooses Play) means solving the augmented subgame shown in
Figure 3.

Figure 3: The augmented subgame solved by Unsafe subgame solving to determine a P2 strategy in
the Play subgame of Coin Toss.

Specifically, we define R as the set of earliest-reachable histories in S. That is, h ∈ R if h ∈ S
and h′ 6∈ S for any h′ @ h. We then calculate πσ(h) for each h ∈ R. The augmented subgame
is constructed consisting only of an initial chance node and S. The initial chance node reaches
h ∈ R with probability πσ(h)∑

h′∈R π
σ(h′) . The augmented subgame is solved and its strategy is then used

whenever S is encountered.

Unsafe subgame solving lacks theoretical solution quality guarantees and there are many situations
where it performs extremely poorly, because it makes strong assumptions about P1’s strategy outside
S that may not be true. Indeed, if it were applied to the trunk strategy of Coin Toss, it would produce
a strategy in which P2 always chooses Heads—which P1 could exploit severely by only choosing
Play with Tails. Despite the lack of theoretical guarantees and potentially bad performance, Unsafe
subgame solving is simple and can sometimes produce low-exploitability strategies, as we show later.

We now move to discussing safe subgame solving techniques, that is, ones that ensure that the
exploitability of the strategy is no higher than that of the trunk strategy.

4.2 Subgame Re-Solving

In subgame re-solving [7], a safe strategy is computed for P2 in the subgame by constructing the
augmented subgame shown in Figure 4, and computing an equilibrium strategy σS for it. The
augmented subgame differs from Unsafe subgame solving by giving P1 the option to “opt out” from
entering the subgame and instead receive the value she could get for entering the subgame if P2 played
according to the trunk strategy. Specifically, for each earliest-reachable history h in the subgame
(that is, each h ∈ R), let hr be its parent and aS be the action leading to h such that hr · aS = h. We
require hr to be a P1 history; if it is not, then we can simply insert a P1 history with only a single
action between hr and h. These “parent” histories hr form the head of the subgame Sr. Sr is not
included in S. Instead, every earliest-reachable history in S has a parent in Sr (and the parent is a P1

history).

The augmented subgame consists of a starting chance node that connects to each history hr in Sr in
proportion to the probability that player P1 could reach hr if P1 tried to do so (that is, in proportion
to πσ−1(hr)). Let aS be the action in hr that connects to S in the original game (that is, hr · aS ∈ S).
After the initial chance node in the augmented subgame, P1 has two possible actions. Action a′S , the
augmented-subgame equivalent of aS , leads into S, while action a′T leads to a terminal payoff that
awards the best response value of entering the subgame if P2 plays according to the trunk strategy
(that is, CBV σ−1(I(hr), aS)). In the trunk strategy of Coin Toss, P1 choosing Play after the coin
lands Heads results in an expected value of 0, and 1

2 if the coin is Tails. Therefore, a′T leads to a
terminal payoff of 0 for Heads and 1

2 for Tails. After the equilibrium strategy σS is computed in the
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augmented subgame, P2 plays according to the computed subgame strategy σS2 rather than the trunk
strategy when in S. The P1 strategy σS1 is not used.

Clearly P1 cannot do worse than always picking action a′T (which awards the same expected value as
P1 playing a best response against P2’s trunk strategy). But P1 also cannot do better than always
picking a′T , because P2 could simply play according to the trunk strategy in S, which means action
a′S would give the same expected value to P1 as action a′T (if P1 played optimally in S). In this way,
the strategy for P2 in S is pressured to be no worse than that of the trunk strategy. In the example
game Coin Toss, if P2 were to always choose Heads (as was the case in Unsafe subgame solving),
then P1 would always choose a′T with Heads and a′S with Tails.

Figure 4: The augmented subgame used by re-solving to determine a P2 strategy in the Play subgame
of Coin Toss.

Re-solving guarantees that P2’s strategy will be no worse than the trunk (and may be better). However,
it may miss out on opportunities for improvement. For example, if we apply re-solving to the example
trunk strategy in Coin Toss, one possible solution to the augmented subgame is the trunk strategy
itself, so we may arrive at the same exact strategy as the trunk in which Player 2 chooses Forfeit 25%
of the time, even though Heads and Tails dominate that action. The next subgame solving technique
addresses this shortcoming by adding a stronger condition for a solution of the augmented subgame.

4.3 Maxmargin Solving

Maxmargin solving [23] is similar to Re-solving, except that it seeks to improve P2’s strategy in the
subgame strategy as much as possible. While Re-solving seeks a strategy for P2 in S that would
simply dissuade P1 from entering S, Maxmargin solving additionally seeks to punish P1 as much
as possible if P1 nevertheless chooses to enter S. A subgame margin is defined for each infoset
in Sr, which represents the difference in value between entering the subgame versus choosing the
alternative payoff. Specifically, for each infoset I ∈ Sr and action aS leading to S, the subgame
margin is MσS (I, aS) = vσ

S

(I, a′T )− vσS (I, a′S), or equivalently

MσS (I, aS) = CBV σ−i(I, aS)− vσ
S

(I, a′S) (1)

In Maxmargin solving, a Nash equilibrium strategy is computed such that the minimum margin
over all I ∈ Sr is maximized. Formally, Maxmargin finds a Nash equilibrium strategy profile σS
for the augmented subgame described in Re-solve subgame solving, with the additional condition
that σS = arg maxσ′S{minI∈Sr M

σ′S (I, a′S)
)
}. Aside from maximizing the minimum margin, the

augmented subgames used in Re-solving and Maxmargin solving are identical.

Given our base strategy in Coin Toss, Maxmargin solving would result in P2 choosing Heads with
probability 3

8 , Tails with probability 5
8 , and Forfeit with probability 0.

The augmented subgame can be solved in a way that maximizes the minimum margin by using a
standard LP solver. In order to use iterative algorithms such as the Excessive Gap Technique [27, 12,
20] or Counterfactual Regret Minimization (CFR) [36], one can use the gadget game described by
Moravcik et al. [23]. Details on the gadget game are provided in the Appendix. Our experiments
used CFR.
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Maxmargin solving is safe. Furthermore, it guarantees that if every Player 1 best response reaches
the subgame with positive probability through some infoset(s) that have positive margin, then
exploitability is strictly lower than that of the trunk strategy. While the theoretical guarantees
are stronger, Maxmargin may lead to worse practical performance relative to Re-solving when
combined with the techniques discussed in Section 6, due to Maxmargin’s greater tendency to overfit
to assumptions in the model.

Still, none of the prior techniques consider that in Coin Toss P1 can achieve a payoff of 0.5 by
choosing Sell with Heads, and thus has more incentive to reach S when in the Tails state. The next
section introduces our new technique, Reach subgame solving, which addresses this problem.

5 Reach Subgame Solving

In this section we introduce Reach subgame solving, an improvement to both Re-solving and
Maxmargin subgame solving that considers what payoffs are achievable from other paths in the game.
We first consider the case of solving a single subgame. We then cover independently solving multiple
subgames.

5.1 Solving a Single Subgame

All of the subgame-solving techniques described in Section 4 only consider the target subgame in
isolation. This can be improved by incorporating information about what payoffs the players could
receive by not reaching the subgame. For example in the Coin Toss trunk strategy, P1 can receive
an expected value (EV) of 0.5 by choosing Sell in the Heads state, and −0.5 in the Tails state. The
solution that Maxmargin solving produces would result in P1 receiving an EV of − 1

4 by choosing
Play in the Heads state, and 1

4 in the Tails state. Thus, P1 could simply always choose Sell in the
Heads state and Play in the Tails state against P2’s strategy and receive an EV of 3

8 .

Reach subgame solving improves upon Re-solve and Maxmargin subgame solving by considering
all the actions P1 could take along the path to the subgame. If there was an action leading away
from the subgame that had a higher expected value than the action leading to the subgame, then P1

would be making a mistake by choosing to reach the subgame. This difference in value is a gift to P2

that allows P2 to be less concerned with P1 reaching the subgame along that path. The gift can be
added to the P1 infoset in Sr that would be reached along the path. Since in Maxmargin we want to
maximize the minimum margin, and in Re-solve we want all margins to be nonnegative, this gives us
greater flexibility to increase the margin for other infosets instead.

The augmented subgame used in Reach-Maxmargin and Reach-Resolve requires additional definitions.
Define the pathQS(I) to an infoset I ∈ Sr to be the set of infosets I ′ such that I ′ v I and I ′ is not an
ancestor of any other information set in Sr. Let I0 be the earliest infoset in QS(I). At each P1 infoset
along the path from I0 to I , we add to the margin of I the difference between the value of the optimal
action (that is, the counterfactual best response value) and the value of the action taken to continue
on the path, divided by the probability of reaching the subgame. If the optimal action is to continue
along the path, then nothing is added to the margin. Specifically, for each I ′ ∈ QS(I) and action
a′ ∈ A(I ′) that leads to S, we add g(I ′, a′) = CBV σ2 (I′)−CBV σ2 (I′,a′)

πσ−i(I
′,I) to the margin of I . We divied

by πσ−i(I
′, I) because even if the counterfactual value of I increased by g(I ′, a′), the infoset I is only

reached from I ′ with probability πσ−i(I
′, I). So the counterfactual value of action a′ in I ′ would still

be at mostCBV σ2(I ′, a′)+πσ−i(I
′, I)g(I ′, a′) ≤ CBV σ2(I ′, a′)+CBV σ2(I ′)−CBV σ2(I ′, a′) ≤

CBV σ2(I ′).

Formally, we define a single subgame reach margin as

MσS
ssr(I, aS) = MσS (I, aS) +

∑
I′·a′vI·aS |I′∈QS(I)

CBV σ2(I ′)− CBV σ2(I ′, a′)

πσ−i(I
′, I)

Theorem 1 shows that Reach-Maxmargin results in a combined strategy with exploitability lower
than or equal to the trunk strategy. If the opponent reaches the subgame with positive probability and

8



the margin of the reached infoset is positive, then exploitability is strictly lower than that of the trunk
strategy.5

Theorem 1. Given a strategy σ2, an imperfect-information subgame S for P2, and a solved sub-
game Nash equilibrium strategy σS2 , let σ′2 be the strategy that plays according to σS2 in sub-
game S and σ2 elsewhere. If minIMssr(I, aS) ≥ 0 for S, then exp(σ′2) ≤ exp(σ2). Fur-

thermore, if π〈BR
σ′2 ,σ′2〉(I) > 0 for some I ∈ Sr for a subgame S, then exp(σ′2) ≤ exp(σ2) −

π
σ′2
−1(I) minIMssr(I, aS).

This theorem statement is similar to that of Maxmargin [23], but the margins here are higher than (or
equal to) those in Maxmargin.

5.2 Solving Multiple Subgames Independently

Other subgames solving methods have also considered the cost of reaching a subgame [35, 16].
However, those approaches (and the version of Reach subgame solving we described above) are only
correct in theory when applied to a single subgame. Typically, we want to solve multiple subgames
independently—or, equivalently, any subgame that is reached at run time. This poses a problem
because the construction of the augmented subgame assumes that all P2 nodes outside the subgame
have strategies that are fixed according to the trunk strategy. If this assumption is violated by changing
the strategy in multiple subgames, then the safety of Reach subgame solving (that is, the guarantee
that exploitability will be no worse than the trunk) may no longer hold.

Figure 5: Left: A game with two subgames. The nodes C1 and C2 are public chance nodes whose
outcomes are seen by both P1 and P2. Right: An augmented subgame for one of the subgames. If
only one of the subgames is being solved, then the alternative payoff for Heads can be at most 1.
However, if both are solved independently, then the gift must be split among the subgames and must
sum to at most 1. For example, the alternative payoff in both subgames can be 0.5.

To address this issue, we make two changes. First, we must ensure that we do not “double count”
gifts that P1 gives us by using an entire gift in multiple subgames. For example, consider the game
shown in Figure 5 which contains two subgames S1 and S2. The Sell action leads to an expected
value of 0.5 from the Heads state, while Play leads to an expected value of 0. When solving just
one of these subgames, P2 can afford to always choose Tails, thereby letting P1 achieve a value of 1
for reaching that subgame from Heads, because due to the chance node it would only increase P1’s
value for choosing Play by 0.5. But if the same reasoning is applied to both subgames independently
then both subgames would always choose Tails, and P1’s value for choosing Play from Heads would
become 1 while the value for Sell would only be 0.5.

To avoid this double-counting issue, gifts from any P1 action a′ in an infoset I ′ must be divided
among all the subgames that can be reached from that point on. For a division to be valid, it must

5When solving only a single subgame, techniques that are similar to Reach subgame solving exist that
achieve even better theoretical performance, and indeed are provably optimal [16]. However, those techniques
do not generally apply when solving multiple subgames independently, which is typically the more relevant
problem (though they still apply in rare cases when solving multiple subgames independently). We use the
single-subgame technique described in this section because it can be more easily extend to the case of solving
multiple independent subgames.
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ensure that if all the reachable subgames made full use of their share of the gift, the counterfactual
value of a′ in I ′ would still be no higher than the counterfactual value of the best action in I ′. Any
division satisfying this condition is sufficient, and ideally the gift would be divided primarily among
the subgames that would make the greatest use of it. However, it may be difficult to know beforehand
which subgames are in greatest need of a gift. In this paper, we divide gifts among subgames
according to the probability that P1 could reach the subgame. In other words, assume action I ′ · a′
results in a gift and action I is a descendant of I ′ and has an action aS that leads to a subgame S. We
increase the margin of I in the subgame S by CBV σ(I ′)− CBV σ(I ′, a′). We refer to this division
as splitting gifts by reach. Later we prove in Theorem 2 that splitting by reach is theoretically sound.

While in theory this splitting of gifts is necessary to guarantee exploitability does not increase, in
practice it is not always necessary. Since many subgames will not use the gifts they are given,
one can heuristically increase the size of the gifts and rely on the double-counting not to occur in
practice (or at least not to occur to the fullest extent possible). In our experiments we show both
the theoretically correct splitting of gifts and the more aggressive scaling up of gifts. We use one
additional improvement in the experiments when splitting the gifts: if a subgame consists of only a
terminal node (such as a fold action in poker) then clearly any assigned gift will not be used. Thus,
we do not consider those subgames when dividing gifts.

The second issue when solving subgames independently is that gifts we assumed were present may
actually not exist. For example, in Coin Toss suppose solving the Sell subgame results in P1’s value
for Sell from the Heads state dropping from 0.5 to 0.25. If we independently solve the Play subgame
then we have no way of knowing that the gift from the Sell action dropped, so we may still assume
there is a gift of 0.5 from the Heads state based on the trunk strategy. Thus, in order to guarantee
a theoretical result on exploitability that is stronger than Maxmargin solving, we must use a lower
bound on gifts. In our experiments we use the minimum reachable payoff as a lower bound.6

Using a lower bound for gifts guarantees that exploitability will never be higher than Maxmargin
solving (and may be lower). Still, even if we do not use a lower bound and instead simply assume
that the gifts from the trunk strategies are accurate (that is, a gift is determined by the counterfactual
best response values against the P2 trunk strategy), then the resulting P2 strategy is still guaranteed
to have exploitability no higher than the trunk strategy (and therefore retain the same theoretical
guarantees as Re-solving). But the stronger theoretical guarantee from incorporating gifts is lost in
that case. In practice, it may be best to use an accurate estimate of what the gifts would be after all
subgames are solved, if such an estimate exists (that is, an estimate of CBV σ

′
2

1 (I ′) for an infoset I ′,
where σ′2 is the P2 strategy after solving all subgames). The idea of using estimates is covered in
more detail in Section 6.

Let ĝ(I ′, a′) be an estimate of CBV σ
′
2(I ′) − CBV σ

′
2(I ′, a′) such that CBV σ2(I ′) −

CBV σ2(I ′, a′) ≥ ĝ(I ′, a′) ≥ bCBV σ′2(I ′) − CBV σ′2(I ′, a′)c. When solving multiple subgames
independently, the augmented subgame is identical to that in Re-solve and Maxmargin except the
value of the alternative payoff for infoset I ∈ Sr is increased by

∑
I′·a′vI·a ĝ(I ′, a′). Formally, we

define a reach margin as7

Mr(I, aS) = M(I, aS) +
∑

I′·a′vI·a

ĝ(I ′, a′) (2)

This margin is larger than or equal to the one used in Maxmargin, because ĝ(I ′, a′) is nonnegative.
We also define bMr(I, aS)c similarly, except it uses lower bounds on CBV σ

′
2(I ′)− CBV σ′2(I ′, a′)

for gifts. Theorem 2 shows that when subgames are solved independently and splitting gifts as
described, and a subgame has positive minimum margin and is reached with positive probability, then
Reach-Maxmargin solving will produce a strategy with lower exploitability than the trunk.

Theorem 2. Given a strategy σ2, a set of disjoint subgames S for P2, and a subgame strategy σS2
for each subgame S ∈ S produced via Reach-Maxmargin solving using lower bounds for gifts
and splitting gifts by reach, let σ′2 be the strategy that plays according to σS2 in each subgame
S, respectively, and σ2 elsewhere. Moreover, let σ−S2 be the strategy that plays according to σ′2

6While this may seem like a loose lower bound, there are many situations where the off-path action simply
leads to a terminal node. For these cases, the lower bound we use is optimal.

7The definition of Mr(I, aS) uses gifts from all I ′ · a′ v I · a, not just those in Q(I).
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everywhere except for P2 nodes in S, where it instead plays according to σ2. If π〈BR
σ′2 ,σ′2〉(I) > 0

for some I ∈ Sr, then exp(σ′2) ≤ exp(σ−S2 )− πσ
′
2
−1(I) minIbMr(I, aS)c.

So far we have given techniques that guarantee a reduction in exploitability by setting a′T equal to the
best response value of the trunk. Relaxing this guarantee may lead to lower exploitability in practice,
particularly when the original trunk strategy is far from equilibrium. We discuss this approach in the
next section.

6 Modeling Error in a Subgame

In this section we consider the case where we have a good estimate of what the counterfactual values
of subgames would look like in a Nash equilibrium. We then bound exploitability as a function of
this estimate. Unlike previous sections, exploitability might be higher than the trunk when using this
approach; the solution quality ultimately depends on the estimates used. However, in practice this
approach leads to significantly lower exploitability.

When solving multiple P2 subgames, there is a minimally-exploitable strategy σ∗2 that could, in theory,
be computed by changing only the strategies in the subgames. (σ∗2 may not be a Nash equilibrium
because P2’s strategy outside the subgames is fixed, but it is the closest that can be achieved by
changing the strategy only in the subgames). However, σ∗2 can only be guaranteed to be produced
by solving all the subgames together, because the optimal strategy in one subgame depends on the
optimal strategy in other subgames.

Still, suppose that we know CBV σ
∗
2 (I) for every infoset I ∈ Sr for every subgame. By setting

the P1 alternative payoff for every infoset I in the head of a subgame to v(I, a′T ) = CBV σ
∗
2 (I),

safe subgame solving guarantees a strategy will be produced with exploitability no worse than σ∗2 .
So achieving a strategy equivalent to σ∗2 does not require knowledge of σ∗2 ; rather, it only requires
knowledge of CBV σ

∗
2 (I) for infosets I in the heads of the subgames.

While we may not know CBV σ
∗
2 (I) exactly without knowing σ∗2 itself, we may nevertheless be

able to produce (or learn) good estimates of CBV σ
∗
2 (I). For example, in Section 8 we compute the

solution to the game of no-limit Flop hold’em (NLFH), and find that in perfect play P2 can expect to
win about 37 mbb/h8 (that is, if P1 plays perfectly against the computed P2 strategy, then P1 earns
−37; if P2 plays perfectly against the computed P1 strategy, then P2 earns 37). An abstraction of the
game which is only 0.02% of the size of the full game produces a P1 strategy that can be beaten by
112 mbb/h, and a P2 strategy that can be beaten by 21 mbb/h. Still, the abstract strategy estimates
that at equilibrium, P2 can expect to win 35 mbb/h. So even though the abstraction produces a very
poor estimate of the strategy σ∗, it produces a good estimate of the value of σ∗. In our experiments,
we estimate CBV σ

∗
2 (I) by using the P1 counterfactual value from the trunk strategy CBV σ2(I).

Theorem 3 proves that if we use estimates of CBV σ
∗
2 (I) as the alternative payoffs in Re-solve

subgame solving, then we can bound exploitability by the distance of the estimates from the true
values. This is in contrast to the previous algorithms which guaranteed exploitability no worse than
the trunk.
Theorem 3. Let S be a set of subgames being solved. Let σ∗2 be a minimally-exploitable P2 strategy
that differs from the trunk strategy only in S. Let d = maxS∈S,I∈Sr |CBV σ

∗
2 (I) − v(I, a′T )|.

Applying Re-solving to each subgame produces a P2 strategy with exploitability no higher than
exp(σ∗2) + d.

So if one can accurately estimate what the P1 counterfactual values would be against an optimal P2

strategy in the subgames, then that may be a better option than using the counterfactual best response
values from the trunk.9 In our experiments, this approach tends to be do better than the theoretically
safe options described in Section 4.10

8In poker, the performance of one strategy against another depends on how much money is being wagered.
For this reason, expected value and exploitability are measured in milli big blinds per hand (mbb/h). A big blind
is the amount of money one of the players is required to put into the pot at the beginning of each hand.

9It is also possible to combine the safety of past approaches with some of the better performance of using
estimates by adding the original Re-solve conditions as additional constraints.

10Subsequent to our study, the AI DeepStack used a technique similar to this form of subgame solving [24].
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6.1 Distributional Alternative Payoffs

One problem with existing safe subgame solving techniques is that they may “overfit” to the alternative
payoffs, even when we use estimates. Consider for instance a subgame that P1 could enter from two
different information sets I1 and I2. Assume P1’s counterfactual value for I1 is estimated to be 1, and
for I2 is 10. Now suppose during subgame solving, P2 has a choice between two different strategies.
The first sets P1’s value for entering the subgame from I1 to 0.99 and from I2 to 9.99. The second
lowers P1’s value for entering the subgame from I1 to 1.01 and from I2 to 0. The safe subgame
solving methods described so far would choose the first strategy, because the second strategy leaves
one of the margins negative. However, intuitively, the second strategy is likely the better option,
because it is more robust to errors in the model. For example, perhaps we are not confident that 10 is
the exact counterfactual value, but instead believe its true value is normally distributed with 10 as the
mean and a standard deviation of 1. In this case, we would prefer the strategy that lowers the value
for I2 to 0.

To address this problem, we introduce a way to incorporate the modeling uncertainty into the game
itself. Specifically, we introduce a new augmented subgame that makes subgame solving more robust
to errors in the model. This augmented subgame changes the augmented subgame used in subgame
re-solving (shown in Figure 4) so that the alternative payoffs are random variables, and P1 is informed
at the start of the augmented subgame of the values drawn from the random variables (but P2 is not).
The augmented subgame is otherwise identical. A visualization of this change is shown in Figure 6.
As the distributions of the random variables narrow, the augmented subgame converges to the re-solve
augmented subgame (but still maximizes the minimum margin when all margins are positive). As the
distributions widen, P2 seeks to maximize the sum over all margins, regardless of which are positive
or negative.

Figure 6: A visualization of the change in the augmented subgame from Figure 4 when using
distributional alternative payoffs.

This modification makes the augmented subgame infinite in size because the random variables
may be real-valued and P1 could have a unique strategy for each outcome of the random variable.
Fortunately, the special structure of the game allows us to arrive at a P2 Nash equilibrium strategy for
this infinite-sized augmented subgame by solving a much simpler gadget game.

The gadget game is identical to the augmented subgame used in Re-solve subgame solving (shown
in Figure 4), except at each initial P1 information set in Sr, P1 chooses action a′S (that is, chooses
to enter the subgame rather than take the alternative payoff) with probability P

(
XI ≤ v(I, a′S)

)
,

where v(I, a′S) is the expected value of action a′S . (When solving via CFR, it is the expected value
on each iteration, as described in CFR-BR [18]). This leads to Theorem 4, which proves that solving
this simplified gadget game produces a P2 strategy that is a Nash equilibrium in the infinite-sized
augmented subgame illustrated in Figure 6.
Theorem 4. Let S′ be a Re-solve subgame and S′r its root. Let S be a Distributional subgame
similar to S′, except at each infoset I ∈ Sr, P1 observes the outcome of a random variable XI and
the alternative payoff is equal to that outcome. If CFR is used to solve S′ except that the action
leading to S′ is taken from each I ∈ S′r with probability P

(
XI ≤ vt(I, a′S)

)
, where vt(I, a′S) is the
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counterfactual value on iteration t of action a′S , then the resulting P2 strategy σS
′

2 in S′ is a P2 Nash
equilibrium strategy in S.

Another option which also solves the game but has better empirical performance relies on the softmax
(also known as Hedge) algorithm [22]. This gadget game is more complicated, and is described in
detail in Appendix B. We use the softmax gadget game in our experiments.

The correct distribution to use for the random variables ultimately depends on the actual unknown
errors in the model. In our experiments for this technique, we set XI ∼ N

(
µI , s

2
I

)
, where µI is the

trunk counterfactual value (plus any gifts). sI is set as the difference between the trunk counterfactual
value of I , and the true (that is, unabstracted) counterfactual best response value of I . Our experiments
show that this heuristic works well, and future research could yield even better options.

7 Nested Subgame Solving

As we have discussed, large games must be abstracted to reduce the game to a tractable size. This is
particularly common in games with large or continuous action spaces. Typically the action space
is discretized by action abstraction so only a few actions are included in the abstraction. While we
might limit ourselves to the actions we included in the abstraction, an opponent might choose actions
that are not in the abstraction. In that case, the off-tree action can be mapped to an action that is
in the abstraction, and the strategy from that in-abstraction action can be used. For example, in an
auction game we might include a bid of $100 in our abstraction. If a player bids $101, we simply
treat that as a bid of $100. This is referred to as action translation [15, 32, 9]. Action translation is
the state-of-the-art prior approach to dealing with this issue. It has been used, for example, by all
the leading competitors in the Annual Computer Poker Competition (ACPC). The leading action
translation mapping used by most of the top teams in the ACPC is the pseudoharmonic mapping [9].
That is the action mapping that we will benchmark against in our experiments.

In this section, we develop techniques for applying subgame solving to calculate responses to
opponent’s off-tree actions, thereby obviating the need for action translation. In other words, rather
than simply treat a bid of $101 as $100, we calculate in real time a unique response to the bid of $101.
The approach can also be used in a nested fashion in response to subsequent opponent off-tree actions.
We present two methods that dramatically outperform the leading action translation technique. The
same techniques can also be used more generally to calculate finer-grained card or action abstractions
as play progresses down the game tree. In this section, for exposition, we assume that P2 wishes to
respond to P1 choosing an off-tree action.

We refer to the first method as the inexpensive method. When P1 chooses an off-tree action a in
infoset I , a subgame S is generated such that I ∈ Sr and I · a leads to S. This subgame may itself
be an abstraction. S is solved using any of the safe subgame solving techniques discussed earlier,
except that we use CBV σ−1(I) in place of CBV σ−1(I, a) for the alternative payoff (since a is not a
valid action in I according to σ). The solution σS is combined with σ to form σ′. Counterfactual
values are then updated for every infoset I ′ ∈ S and each I ′ ∈ QS(I) (that is, on the path to I). The
process repeats whenever P1 again chooses an off-tree action.

By using CBV σ−1(I) in place of CBV σ
′
−1(I ′, a), we can retain some of the theoretical guarantees

of Reach-Maxmargin and Maxmargin. For example, if in every information set I P1 is better off
taking an existing action than the new action that was added, then the new strategy has exploitability
no higher than the original strategy. More generally, Proposition 1 proves that we can bound the
increase in exploitability of the expanded strategy by the sum of the positive margins. The proposition
follows trivially from the definition of M(I, aS).

Proposition 1. Let aS be an action in information sets in Sr that leads to a subgame S. Let
CBR1(σ−1)6→Sr·aS be a P1 strategy that maximizes counterfactual value in every information
set, except that it never chooses action aS in Sr, and define its value as CBV σ−1 6→Sr·aS . If S is
solved via nested subgame solving, then exploitability is bounded as CBV σ−1 ≤ CBV σ−1 6→Sr·aS +∑
I∈Sr max

(
0,M(I, aS)

)
.

The “inexpensive” approach cannot be combined with Unsafe subgame solving because the probability
of reaching an action outside of a player’s abstraction is undefined. That is, πσ(h · a) is undefined
when a is not considered a valid action in h according to the abstraction. Nevertheless, a similar
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but more expensive approach is possible with Unsafe subgame solving (as well as all the other
subgame-solving techniques) by starting the subgame solving at h rather than at h · a. In other words,
if action a taken in history h is not in the abstraction, then Unsafe subgame solving is conducted in
the smallest subgame containing h (and action a is added to that abstraction). This increases the size
of the subgame compared to the inexpensive method because a strategy must be recomputed for every
action a′ ∈ A(h) in addition to a. For example, if an off-tree action is chosen by the opponent as the
first action in the game, then the strategy for the entire game must be recomputed. We therefore call
this method the expensive method. We present experiments with both methods.

8 Experiments

Our experiments were conducted on two poker games we call no-limit flop hold’em (NLFH) and
no-limit turn hold’em (NLTH). NLFH is similar to the popular poker game of heads-up no-limit
Texas hold’em except that there are only two rounds, called the pre-flop and flop. Poker was chosen
because we can leverage certain domain-specific optimizations to speed up computation by multiple
orders of magnitude, allowing us to solve and calculate exploitability for large-scale games [19]. At
the beginning of both NLFH and NLTH, each player receives two private cards from a 52-card deck.
Player 1 puts in the “big blind” of 100 chips, and Player 2 puts in the “small blind” of 50 chips. A
round of betting then proceeds starting with Player 2, referred to as the preflop, in which a specific
number of bets or raises are allowed (where the number varies depending on the version of NLFH or
NLTH). Either player may fold on their turn, in which case the game immediately ends and the other
player wins the pot. After the first betting round is completed, three community cards are dealt out,
and another round of betting is conducted (starting with Player 1), referred to as the flop. That is the
final round in NLFH, but NLTH has an additional round in which another single community card is
dealt and another round of betting occurs, referred to as the turn. At the end of the final round of
betting, both players form the best possible five-card poker hand using their two private cards and the
community cards. The player with the better hand wins the pot. For equilibrium finding, we used a
version of CFR called CFR+ [34]. There is no randomness in our experiments.

Our first experiment compares the performance of the subgame solving techniques when applied
to information abstraction (which is card abstraction in the case of poker). Specifically, we solve
NLFH with no information abstraction on the preflop. On the flop, there are 1,286,792 infosets for
each betting sequence; the abstraction buckets them into 200, 2,000, or 30,000 abstract ones (using a
leading information abstraction algorithm [10]). We then apply subgame solving immediately after
the flop community cards are dealt. We experiment with two versions of the game, one small and
one large, which include only a few of the available actions in each infoset. The small game requires
1.1 GB to store the unabstracted strategy as double-precision floats. The large game requires 4 GB.
We also experimented on abstractions of NLTH. In that case, we solve NLTH with no information
abstraction on the preflop or flop. On the turn, there are 55,190,538 infosets for each betting sequence;
the abstraction buckets them into 200, 2,000, or 20,000 abstract ones. We apply subgame solving
immediately after the turn community card is dealt. NLTH requires 35 GB to store the unabstracted
strategy. Tables 1, 2, and 3 show the performance of each technique. In all our experiments,
exploitability is measured in the standard units used in this field: milli big blinds per hand (mbb/h).

Small Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 886.9 373.7 91.28
Unsafe 146.8 39.58 5.514
Resolve 601.6 177.9 54.07
Maxmargin 300.5 139.9 43.43
Reach-Maxmargin 298.8 139.0 41.47
Reach-Maxmargin (not split) 248.7 98.07 25.88
Estimated 116.6 62.61 24.23
Estimated + Distributional 104.4 62.45 34.30
Reach-Estimated + Distributional 102.1 57.98 22.58
Reach-Estimated + Distributional (not split) 95.60 49.24 17.33

Table 1: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in small flop Texas hold’em.
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Large Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 283.7 165.2 41.41
Unsafe 65.59 38.22 396.8
Resolve 179.6 101.7 23.11
Maxmargin 134.7 77.89 19.50
Reach-Maxmargin 134.0 72.22 18.80
Reach-Maxmargin (not split) 130.3 66.79 16.41
Estimated 52.62 41.93 30.09
Estimated + Distributional 49.56 38.98 10.54
Reach-Estimated + Distributional 49.33 38.52 9.840
Reach-Estimated + Distributional (not split) 49.13 37.22 8.777

Table 2: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in large flop Texas hold’em.

Turn Hold’em Turn Buckets: 200 2,000 20,000
Trunk Strategy 684.6 465.1 345.5
Unsafe 130.4 85.95 79.34
Resolve 454.9 321.5 251.8
Maxmargin 427.6 299.6 234.4
Reach-Maxmargin 424.4 298.3 233.5
Reach-Maxmargin (not split) 333.4 229.4 175.5
Estimated 120.6 89.43 76.44
Estimated + Distributional 119.4 87.83 74.35
Reach-Estimated + Distributional 116.8 85.80 72.59
Reach-Estimated + Distributional (not split) 113.3 83.24 70.68

Table 3: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in turn Texas hold’em.

We use a normal distribution in the Distributional subgame solving experiments, with standard
deviation determined by the heuristic presented in Section 6.1. Since subgame solving begins
immediately after a chance node with an extremely high branching factor (1, 755 in NLFH), the gifts
for the Reach algorithms are divided inefficiently. Many subgames do not use the gifts at all, while
others would make use of more. The result is that the theoretically safe version of Reach splits gifts
very conservatively. In the experiments we show results both for this theoretically safe splitting of
gifts, as well as a more aggressive version where gifts are not split at all, but instead are given in
full to each subgame. This weakens the theoretical guarantees of the algorithm, but performs better
empirically and is still potentially safe if only a few of the subgames make full use of the gifts.

Despite lacking theoretical guarantees, Unsafe subgame solving does surprisingly well in most
games. However, it did substantially worse in Large NLFH with 30,000 buckets. This exemplifies
its variability. Among the safe methods, all of the changes we introduce show improvement over
past techniques. The Reach-Estimated + Distributional algorithm generally resulted in the lowest
exploitability among the various choices, and in most cases beat unsafe subgame solving.

In general, not splitting the gifts did better than splitting gifts in a theoretically correct manner.
However, this is not universally true. Appendix D shows that in at least one case, exploitability
increased when gifts were scaled up too aggressively. In all cases, using Reach subgame solving in
the theoretical safe method led to lower exploitability.

In all but one case, using estimated counterfactual values lowered exploitability more than Maxmargin
and Resolve subgame solving. Also, in all but one case using distributional alternative payoffs lowered
exploitability.

The second experiment evaluates nested subgame solving, and compares it to action translation. In
order to also evaluate action translation, in this experiment, we create an NLFH game that includes 3
bet sizes at every point in the game tree (0.5, 0.75, and 1.0 times the size of the pot); a player can also
decide not to bet. Only one bet (i.e., no raises) is allowed on the preflop, and three bets are allowed
on the flop. There is no information abstraction anywhere in the game. We also created a second,
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smaller abstraction of the game in which there is still no information abstraction, but the 0.75× pot
bet is never available. We calculate the exploitability of one player using the smaller abstraction,
while the other player uses the larger abstraction. Whenever the large-abstraction player chooses a
0.75× pot bet, the small-abstraction player generates and solves a subgame for the remainder of the
game (which again does not include any 0.75× pot bets) using the nested subgame solving techniques
described above. This subgame strategy is then used as long as the large-abstraction player plays
within the small abstraction, but if she chooses the 0.75× pot bet later again, then the subgame
solving is used again, and so on.

Table 4 shows that all the subgame solving techniques substantially outperform action translation.
Resolve, Maxmargin, and Reach-Maxmargin use inexpensive nested subgame solving, while Unsafe
and “Reach-Maxmargin (expensive)” use the expensive approach. We did not test distributional
alternative payoffs in this experiment, since the calculated best response values are likely quite
accurate. Reach-Maxmargin performed the best, outperforming Maxmargin and unsafe subgame
solving. These results suggest that nested subgame solving is preferable to action translation (if there
is sufficient time to solve the subgame).

Exploitability
Randomized Pseudo-Harmonic Mapping 1,465
Resolve 150.2
Reach-Maxmargin (Expensive) 149.2
Unsafe (Expensive) 148.3
Maxmargin 122.0
Reach-Maxmargin 119.1

Table 4: Comparison of the various subgame solving techniques in nested subgame solving. The
performance of the pseudo-harmonic action translation is also shown. Exploitability is evaluated in
the large action abstraction, and there is no information abstraction in this experiment.

8.1 Evaluation against top humans

We used the techniques presented in this paper in our AI Libratus, which competed against four top
human specialists in heads-up no-limit Texas hold’em in the January 2017 Brains vs. AI competition.
Libratus was constructed by first solving an abstraction of the game via a new variant of Monte
Carlo CFR [21] that samples negative-regret actions less frequently [4, 5, 6]. Libratus applied nested
subgame solving (solved with CFR+ [34]) upon reaching the third betting round, and in response to
every subsequent opponent bet thereafter. This allowed Libratus to avoid information abstraction
during play, and leverage nested subgame solving’s far lower exploitability in response to opponent
off-tree actions.

Heads-up no-limit Texas hold’em has been the primary benchmark challenge for AI in imperfect-
information games. The competition was played over the course of 20 days, and involved 120,000
hands of poker. A prize pool of $200,000 was split among the four humans based on their performance
against the AI to incentivize strong play. The AI decisively defeated the team of human players by a
margin of 147 mbb / hand, with 99.98 statistical significance (see Figure 7). This was the first, and so
far only, time an AI defeated top humans in no-limit poker.

Figure 7: Libratus’s performance over the course of the 2017 Brains vs. AI competition.
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9 Conclusion

We introduced a subgame solving technique for imperfect-information games that has stronger
theoretical guarantees and better practical performance than prior subgame-solving methods. We
presented results on exploitability of both safe and unsafe subgame solving techniques. We also
introduced a method for nested subgame solving in response to the opponent’s off-tree actions, and
demonstrated that this leads to dramatically better performance than the usual approach of action
translation. This is, to our knowledge, the first time that exploitability of subgame solving techniques
has been measured in large games.

Finally, we demonstrated the effectiveness of these techniques in practice against top human profes-
sionals in the game of heads-up no-limit Texas hold’em poker, the main benchmark challenge for AI
in imperfect-information games. In the 2017 Brains vs. AI competition, our AI Libratus became the
first AI to reach the milestone of defeating top humans in heads-up no-limit Texas hold’em.
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Appendix: Supplementary Material

A Description of Gadget Game

Solving the augmented subgame described in Maxmargin solving and Reach-Maxmargin solving
will not, by itself, necessarily maximize the minimum margin. While LP solvers can easily handle
this objective, the process is more difficult for iterative algorithms such as Counterfactual Regret
Minimization (CFR) and the Excessive Gap Technique (EGT). For these iterative algorithms, the
augmented subgame can be modified into a gadget game that, when solved, will provide a Nash
equilibrium to the augmented subgame and will also maximize the minimum margin [23]. This
gadget game is unnecessary when using distributional alternative payoffs, which is introduced in
section 6.1.

The gadget game differs from the augmented subgame in two ways. First, all P1 payoffs that are
reached from the initial information set of I ∈ Sr are shifted by the alternative payoff of I . Second,
rather than the game starting with a chance node that determines P1’s starting state, P1 decides for
herself which state to begin the game in. Specifically, the game begins with a P1 node where each
action in the node corresponds to an information set I in Sr. After P1 chooses to enter an information
set I , chance chooses the precise history h ∈ I in proportion to πσ−1(h).

By shifting all payoffs in the game by the size of the alternative payoff, the gadget game forces P1 to
focus on improving the performance of each information set over some baseline, which is the goal of
Maxmargin and Reach-Maxmargin solving. Moreover, by allowing P1 to choose the state in which
to enter the game, the gadget game forces P2 to focus on maximizing the minimum margin.

Figure 8 illustrates the gadget game used in Maxmargin and Reach-Maxmargin.

Figure 8: An example of a gadget game in Maxmargin refinement. P1 picks the initial information
set she wishes to enter Sr in. Chance then picks the particular history of the information set, and play
then proceeds identically to the augmented subgame (except there is no alternative payoff for infosets
in Sr). All P1 payoffs are shifted by πσ−1(I ′)CBV σ−1(I ′, a).

B Hedge for Distributional Subgame Solving

In this paper we use CFR [36] with Hedge in Sr, which allows us to leverage a useful property of the
Hedge algorithm [22] to update all the information sets resulting from outcomes of XI simultane-
ously.11 When using Hedge, action a′S is chosen on iteration t with probability eηtv̂(I,a

′
S)

eηtv̂(I,a
′
S

)+eηtv̂(I,a
′
T

)
.

11Another option is to apply CFR-BR [18] only at the initial P1 nodes when deciding between a′T and a′S .
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Where v̂(I, a′T ) is the observed expected value of action a′T , v̂(I, a′S) is the observed expected value
of action a′S , and ηt is a tuning parameter. Since, action a′S leads to identical play by both players
for all outcomes of X , v̂(I, a′S) is identical for all outcomes of X . Moreover, v̂(I, a′T ) is simply the
outcome of XI . So the probability that a′S is taken across all information sets on iteration t is∫ ∞

−∞

eηtv̂(a′S)

eηtv̂(a′S) + eηtx
fXI (x)dx (3)

where fXI (x) is the pdf of XI . In other words, if CFR is used to solve the augmented subgame, then
the game being solved is identical to Figure 4 except that action a′S is always chosen in information
set I on iteration t with probability given by (3). In our experiments, we set the Hedge tuning

parameter η as suggested in [3]: ηt =

√
ln(|A(I)|)

3
√
V AR(I)t

√
t
, where V AR(I)t is the observed variance in

the payoffs the information set has received across all iterations up to t. In the subgame that follows
Sr, we use CFR+ as the solving algorithm.

C Proof of Theorem 1

Proof. Assume Mssr(I, aS) ≥ 0 for every information set I in Sr for a subgame S and let ε =
minIMssr(I, aS).

For an information set I ∈ Sr, let I ′ be the earliest information set in QS(I). Then
πσ−1(I ′)CBV σ−1(I ′) ≥ πσ−1(I ′)CBV σ

′
−i→I·a

′
S (I ′) + ε.

First suppose that π〈BR(σ′2),σ′2〉(I) = 0. Then either π〈BR(σ′2),σ′2〉(I ′) = 0 or π〈BR(σ′2),σ′2〉(I ′, I) = 0.
If it is the former case, then CBV σ−1(I ′) does not affect exp(σ′2). If it is the latter case, then since I
is the only information set in Sr reachable from I ′, so in any best response I ′ only reaches nodes
outside of S with positive probability. The nodes outside S belonging to P2 were unchanged between
σ and σ′, so CBV σ

′
−1(I ′) ≤ CBV σ−1(I ′).

Now suppose that π〈BR(σ′2),σ′2〉(I) > 0. Since BR(σ′2) already reaches I ′ on its own, so
CBV σ

′
−i(I ′) = CBV σ

′
−i→I·a

′
S (I ′). Since πσ−1(I ′)CBV σ−1(I ′) ≥ πσ−1(I ′)CBV σ

′
−i→I·a

′
S (I ′)+ε,

so we get πσ−1(I ′)CBV σ−1(I ′) ≥ πσ−1(I ′)CBV σ
′
−i(I ′) + ε. Following Theorem 1 in Moravcik et

al. [23], we get that exp(σ′2) ≤ exp(σ2)− ε.
Now consider any information set I ′′ @ I ′. Before encountering any P2 nodes whose strategies are
different in σ′ (that is, P2 nodes in S), P1 must first traverse a I ′ information set as previously defined.
But for every I ′ information set, CBV σ

′
−1(I ′) ≤ CBV σ−1(I ′). Therefore, CBV σ

′
−1(I ′′) ≤

CBV σ−1(I ′′).

D Scaling of Gifts

To retain the theoretical guarantees of Reach subgame solving, it is necessary to divide gifts among
reachable subgames. However, empirical performance may increase if these gifts are scaled up by
some factor. In most games we experimented on, exploitability decreased the further the gifts were
scaled. However, Figure 9 shows one case in which we observe the exploitability increasing when
the gifts are scaled up too far. The graph shows exploitability when the gifts are scaled by various
factors. At 0, the algorithm is identical to Maxmargin. at 1, the algorithm is the theoretically correct
form of Reach-Maxmargin. Optimal performance in this game occurs when the gifts are scaled
by a factor of about 1,000. Scaling the gifts by 100,000 leads to performance that is worse than
Maxmargin subgame solving. This empirically demonstrates that while scaling up gifts may lead to
better performance in some cases (because an entire gift is unlikely to be used in every subgame that
receives one), it may also lead to far worse performance in some cases.

E Proof of Theorem 2

Proof. Similar to Theorem 1, assume Mr(I, aS) ≥ 0 for every information set I and let ε =
minI∗∈Sr Mr(I

∗, aS).

21



Figure 9: Exploitability in Flop Texas hold’em of Reach-Maxmargin as we scale up the size of gifts.

We show that for every P1 infoset I v I∗, CBV σ′2(I) ≤ CBV σ2(I) +
∑
I′′·a′′vI

(
bCBV σ′2(I ′′)−

CBV σ
′
2(I ′′, a′′)c

)
− πσ2
−1(I, I∗)ε. Clearly this holds for I∗ itself. Moreover, the condition holds for

every other I ∈ Sr, because by assumption every margin is nonnegative and πσ2
−1(I, I∗) = 0 for any

other I in the root of a subgame. The condition also clearly holds for any I with no descendants in S
because then πσ2

−1(I, I∗) = 0 and CBV σ2(I) = CBV σ
S
2 (I) since nothing has changed.

Next, consider an information set I ′ v I∗ such that every descendant satisfies the inductive step. Let
Succ(I ′, a′) be the set of immediate successor information sets from I ′. Then CBV σ

′
2(I ′, a′) =

CBV σ2(I ′, a′) +
∑
I∈Succ(I′,a′) π

σ′2
−1(I ′, I)(CBV σ

′
2(I) − CBV σ2(I)). Since every successor of

I ′ satisfies the inductive step, and exactly one of them leads to I∗, so

CBV σ
′
2(I ′, a′) ≤ CBV σ2(I ′, a′)− πσ2

−1(I ′, I∗)ε+∑
I∈Succ(I′,a′)

π
σ′2
−1(I ′, I)

( ∑
I′′·a′′vI

(
bCBV σ

′
2(I ′′)− CBV σ

′
2(I ′′, a′′)c

))

CBV σ
′
2(I ′, a′) ≤ CBV σ2(I ′, a′)− πσ2

−1(I ′, I∗)ε+
∑

I′′·a′′vI

(
bCBV σ

′
2(I ′′)− CBV σ

′
2(I ′′, a′′)c

)
Since bCBV σ′2(I ′) − CBV σ

′
2(I ′, a′)c ≤ dCBV σ′2(I ′) − CBV σ

′
2(I ′, a′)e ≤ CBV σ2(I) −

CBV σ2(I, a) so we get

CBV σ
′
2(I ′, a′) ≤ CBV σ2(I ′)− πσ2

−1(I ′, I∗)ε+
∑

I′′·a′′vI′

(
bCBV σ

′
2(I ′′)− CBV σ

′
2(I ′′, a′′)c

)
Since CBV σ

′
2(I ′) = maxa′∈A(I′) CBV

σ′2(I ′, a′), we have

CBV σ
′
2(I ′) ≤ CBV σ2(I ′)− πσ2

−1(I ′, I∗)ε+
∑

I′′·a′′vI′

(
bCBV σ

′
2(I ′′)− CBV σ

′
2(I ′′, a′′)c

)
which satisfies the inductive step. Thus, CBV σ

′
2 ≤ CBV σ2 − πσ2

−1(I∗)ε.
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F Proof of Theorem 3

Proof. Let σ′ be the strategy produced after Re-solving is applied to each subgame. Consid-
er a subgame S ∈ S. We prove that

∑
I∈Sr π

σ′2
−1(I) max{0, CBV σ′2(I) − CBV σ

∗
2 (I)|} ≤∑

I∈Sr π
σ′2
−1(I)

(
|v(I, a′T )− CBV σ∗2 (I)|

)
.

Let IU be the set of I ∈ Sr such that CBV σ
′
2(I) ≥ CBV σ∗2 (I) and v(I, a′T ) ≤ CBV σ′2(I). Let IL

be the set of I ∈ Sr such that CBV σ
′
2(I) < CBV σ

∗
2 (I) and v(I, a′T ) ≤ CBV σ∗2 (I). Then we must

prove that
∑
I∈IU π

σ′2
−1(I)

(
CBV σ

′
2(I)−CBV σ∗2 (I)

)
≤
∑
I∈IU π

σ′2
−1(I)

(
|v(I, a′T )−CBV σ∗2 (I)|

)
+∑

I∈IL π
σ′2
−1(I)

(
|v(I, a′T )− CBV σ∗2 (I)|

)
.

We will further split IU into two cases: IUA ⊆ IU such that v(I, a′T ) ≥ CBV σ∗2 (I) and IUB ⊆ IU
such that v(I, a′T ) < CBV σ

∗
2 (I).

Re-solve converges to a P2 strategy such that σ′2 =

arg minσ2

(∑
I∈Sr π

σ′2
−1(I)

(
max{0, CBV σ2(I) − v(I, a′T )}

))
. Thus, if σ′2 is such a minimum,

then
∑
I∈Sr π

σ′2
−1(I)

(
max{0, CBV σ′2(I) − v(I, a′T )

)
≤
∑
I∈Sr π

σ′2
−1(I)

(
max{0, CBV σ∗2 (I) −

v(I, a′T )
)
. So

∑
I∈IU π

σ′2
−1(I)

(
CBV σ

′
2(I) − max{v(I, a′T ), CBV σ

∗
2 (I)}

)
≤

π
σ′2
−1(I)

(∑
I∈IL CBV

σ∗2 (I)−max{v(I, a′T ), CBV σ
′
2(I)}

)
.

Since for all I ∈ IU we have CBV σ
′
2(I) − max{v(I, a′T ), CBV σ

∗
2 (I)} ≤ CBV σ

′
2(I) −

CBV σ
∗
2 (I) + |v(I, a′T ) − CBV σ

∗
2 (I)|, so we get

∑
I∈IU π

σ′2
−1(I)

(
CBV σ

′
2(I) −

CBV σ
∗
2 (I)

)
≤

∑
I∈IU π

σ′2
−1(I)

(
|v(I, a′T ) − CBV σ

∗
(I)|
)

+
∑
I∈IL π

σ′2
−1(I)

(
CBV σ

∗
2 (I) −

max{v(I, a′T ), CBV σ
′
2(I)}

)
.

Since for all I ∈ IL we have that CBV σ
∗
2 (I) ≥ v(I, a′T ) so we get

∑
I∈IU π

σ′2
−1(I)

(
CBV σ

′
2(I)−

CBV σ
∗
2 (I)

)
≤

∑
I∈IU π

σ′2
−1(I)

(
|v(I, a′T ) − CBV σ

∗
(I)|
)

+
∑
I∈IL π

σ′2
−1(I)

(
|v(I, a′T ) −

CBV σ
∗
2 (I)|

)
.

Then we need only sum over all subgames to arrive at exp(σ′2) ≤ exp(σ∗2) +∑
S∈S

∑
I∈Sr π

σ′2
−1(I)|CBV σ∗2 (I) − v(I, a′T )|. Let d = maxS∈S,I∈Sr{|CBV σ

∗
2 (I) − v(I, a′T )|}.

Then this gives us exp(σ′2) ≤ exp(σ∗2) + d.

G Proof of Theorem 4

Proof. We prove inductively that using CFR in S′ while choosing the action leading to S′ from
each I ∈ S′r with probability P

(
XI ≤ vt(I, a′S)

)
results in play that is identical to CFR in S and

CFR-BR [18] in Sr, which converges to a Nash equilibrium.

For each P2 information set I ′2 in S′, there is exactly one corresponding information set I2 in S
that is reached via the same actions, ignoring random variables. Each P1 information set I ′1 in S′
corresponds to a set of information sets in S that are reached via the same actions, where the elements
in the set differ only by the outcome of the random variables. We prove that on each iteration, the
instantaneous regret for these corresponding information sets is identical (and therefore the average
strategy played in the P2 information sets over all iterations is identical).

At the start of the first iteration of CFR, all regrets are zero. Therefore, the base case is trivially true.
Now assume that on iteration t, regrets are identical for all corresponding information sets. Then the
strategies played on iteration t in S are identical as well.

First consider an information set I ′1 in S′ and a corresponding information set I1 in S. Since the
remaining structure of the game is identical beyond I ′1 and I1, and because P2’s strategies are identical
in all P2 information sets encountered, so the immediate regret for I ′1 and I1 is identical as well.

Next consider a P1 information set I1,x in Sr in which the random variable XI has an observed
value of x. Let the corresponding P1 information set in S′r be I ′1. Since CFR-BR is played in
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this information set, and since action a′T leads to a payoff of x, so P1 will choose action a′S with
probability 1 if x ≥ a′T and with probability 0 otherwise. Thus, for all information sets in Sr
corresponding to I ′1, action a′S is chosen with probability P

(
XI ≤ v(I, a′S)

)
.

Finally consider a P2 information set I2 in S and its corresponding information set I ′2 in S′. Since
in both cases action a′T is taken in Sr with probability P

(
XI ≤ v(I, a′S)

)
, and because P1 plays

identically between corresponding information sets in S and S′, and because the structure of the
game is otherwise identical, so the immediate regret for I ′1 and I1 is identical as well.
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