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A remarkable analogy

Proving is like programming

'ExplodeGorilla:
'  Causes gorilla explosion when a direct hit occurs
'Parameters:
'  X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
  YAdj = Scl(12)
  XAdj = Scl(5)
  SclX# = ScrWidth / 320
  SclY# = ScrHeight / 200
  IF x# < ScrWidth / 2 THEN PlayerHit = 1 ELSE PlayerHit = 2
  PLAY "MBO0L16EFGEFDC"

  FOR i = 1 TO 8 * SclX#
    CIRCLE (GorillaX(PlayerHit) + 3.5 * SclX# + XAdj, GorillaY(PlayerHit) + 7 * 
SclY# + YAdj), i, ExplosionColor, , , -1.57
    LINE (GorillaX(PlayerHit) + 7 * SclX#, GorillaY(PlayerHit) + 9 * SclY# - i)-
(GorillaX(PlayerHit), GorillaY(PlayerHit) + 9 * SclY# - i), ExplosionColor
  NEXT i
  FOR i = 1 TO 16 * SclX#

~
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A remarkable analogy isomorphism

Natural Deduction Lambda Calculus

≈
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The foundation of FP

λ

Lisp HaskellML... ...

ND ≅
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Purely applicative languages are often said to be 
based on a logical system called the lambda 
calculus, or even to be “syntactically  sugared” 
versions of the lambda calculus.... However, as we 
will see, although an unsugared applicative 
language is syntactically equivalent to the lambda 
calculus, there is a subtle semantic difference.  
Essentially, the “real” lambda calculus implies a 
different “order of application”...than most 
applicative programming languages.

―John Reynolds (1972)

A shaky foundation?
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Evaluation order
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Evaluation order
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Evaluation order
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Evaluation order
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Evaluation order
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Evaluation order
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Evaluation order

Needed to make sense of effects (+ non-termination)

(I/O, mutable state, exceptions, callcc, ...)

Not determined by λ-calculus

⇒ Functional langs use many different strategies...

Connection lost with logic & natural deduction?

But wait, there’s more...
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Pattern-matching
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data Nat : Set where
  zero : Nat
  suc  : Nat -> Nat

plus : Nat -> Nat -> Nat
plus  zero   m = m
plus (suc n) m = suc (plus n m)



Pattern-matching
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Pattern-matching

Nice notation for defining fns, and proofs-by-cases

• Enables equational reasoning

• Borrowed directly from mathematical practice...

But not available in natural deduction

Hmm...maybe natural deduction is not so natural?...
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Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement
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Focusing proofs

Andreoli ’91: search strategy for linear logic sequent calculus

Exploits polarity of connectives ([⊗,⊕,1,0,!] vs [⅋,&,⊤,⊥,?])

Extends to classical + intuitionistic logic by polarization

My work: new presentation of focusing proofs

• canonical forms of proof and refutation, in terms of patterns

• combines best features of sequent calculus and ND
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Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement

40



Evaluation order is encoded in polarity

Thesis Statement, sub I

41

⇒ one language can [should] mix different evaluation 
strategies, by reflecting them at the level of types



Pattern-matching is justified by polarity

Thesis Statement, sub II

42

⇒ pattern-matching is not just “syntactic sugar”: it can 
[should] be dealt with directly in type theory



Evaluation order and pattern-matching are 
two sides of the same coin.

Thesis Statement, punchline
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This Talk

Some highlights from dissertation

• Polarity and patterns (and the meanings of the connectives)

• Proofs and programs (and pattern-generic reasoning)

• Polarization ↔ double-negation translation ↔ CPS

• Refinement types and subtyping

Related work and future work

44



Polarity and Patterns
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What is a proposition [type]?

Built out of constants/connectives

A ∨ ¬A     A ⊃(B ∧ C)    ¬A ⊃ A

nat × nat       string → bool

But what do these connectives mean?

The approach of proof-theoretic semantics...
46



Pick your side

47

An introduction rule gives, so to say, a definition 
of the constant in question... —Gentzen (1935)

To explain the meaning of an implication A⊃B, 
we must explain what is the purpose...of a 
canonical proof...  This purpose is to be applied 
to a canonical proof of...A, thereby yielding a 
canonical proof of...B.  In no way is it correct to 
say that the meaning of A⊃B is determined by 
the introduction rule...

—Martin-Löf (1976)



Dummett’s analysis

1976 William James Lectures

• Defined by intros = “verificationist”

• Defined by elims = “pragmatist”

• Described some difficulties for particular connectives...

• ...but required “harmony” between the two aspects
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Embracing polarization

Dual approaches to understanding connectives really define 
different connectives

(Instead of requiring harmony, accept diversity!)

“A ⊗ B” vs. “A & B”, etc.

Subject of my thesis: polarized logic (every prop has polarity)

49



Syntax of polarized propositions [types]

A+ ::= A+⊗B+ | A+⊕B+ | 1 | 0

     | ¬A+ | A-⊥ | ↓A-

     | nat | ...

A- ::= A-&B- | A-⅋B- | ⊤ | ⊥

     | ¬A- | A+⊥ | ↑A+

     | A+→B- | ...

50

Intuition: + eager, − lazy



Polarity in game-theoretic semantics

Prop A describes a game between Verifier and Refuter

• Lorenzen60, Henkin61, Blass92, ...

• A true if winning strategy for Verifier

• Polarity = who moves first
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Idea: define connectives by shapes of canonical inference

• + connectives defined by proof patterns

• − connectives defined by refutation patterns

Patterns are “derivations with holes”...

• Refutation holes for + propositions

• Proof holes for − propositions

Polarity from patterns

54



Patterns, formally

Frame (list of holes):

Δ ::= · |  (Δ₁ , Δ₂) | A+ false | A- true

A proof pattern is a derivation of Δ ⊩ A+ true

A refutation pattern is a derivation Δ ⊩ A- false

⊩ is like linear entailment (but connectives nonlinear!)

Rules for ⊩ define the connectives...
55



Syntax of polarized propositions [types]

A+ ::= A+⊗B+ | A+⊕B+ | 1 | 0

     | ¬A+ | A-⊥ | ↓A-

     | nat | ...

A- ::= A-&B- | A-⅋B- | ⊤ | ⊥

     | ¬A- | A+⊥ | ↑A+

     | A+→B- | ...
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Some positive connectives
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Δ₁ ⊩ A+ true Δ₂ ⊩ B+ true

Δ₁Δ₂  ⊩ A+⊗B+ true

Δ ⊩ A+ true

Δ  ⊩ A+⊕B+ true

Δ ⊩ B+ true

Δ  ⊩ A+⊕B+ true

 A+ false ⊩ ¬A+ true



Some negative connectives
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Δ₁ ⊩ A- false Δ₂ ⊩ B- false

Δ₁Δ₂  ⊩ A-⅋B- false

Δ ⊩ A- false

Δ  ⊩ A-&B- false

Δ ⊩ B- false

Δ  ⊩ A-&B- false

 A- true ⊩ ¬A- false



Some polarity mixing connectives
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Δ₁ ⊩ A+ true Δ₂ ⊩ B- false

Δ₁Δ₂  ⊩ A+→B- false

 A- true ⊩ ↓A- true  A+ false ⊩ ↑A+ false

Δ ⊩ A- false

Δ  ⊩ A-⊥ true

Δ ⊩ A+ true

Δ  ⊩ A+⊥ false



The basic analogy

⇒ proof patterns = value patterns

• like in FP

• linear (like in FP)

refutation patterns = continuation patterns

• like in FP, if you squint

60

proof = value
refutation = continuation



A type-free notation...
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Connective π Patterns

A+ ⊗ B+ + ( p1, p2 )

A+ ⊕ B+ +
inl p
inr p

1 + ( )

0 + none

¬A+ + k

Connective π Patterns

A- & B- −
fst;d

snd;d

A- ⅋ B- − [d1, d2]

⊤ − none
⊥ − [ ]

¬A- − x



A type-free notation...
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Connective π Patterns

↓A- + x

↑A+ − k

A+ → B- − p@d

nat +
z

s p

⋮



Proofs and Programs
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Once we have understood how to discover individual 
patterns which are alive, we may then make a 
language for ourselves, for any building task we face.

―Christopher Alexander



From patterns to programs

Rule of (positive) proof:
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Δ ⊩ A+ true    Γ ⊢ Δ
Γ  ⊢ A+ true



From patterns to programs

Rule of (positive) values:

66

pattern   substitution
Δ ⊩ A+ true    Γ ⊢ Δ

Γ  ⊢ A+ true

(a few obvious rules for building σs)

V = p[σ]



From patterns to programs

Rule of (positive) values:

67

a value (of + type) is a pattern 
under a substitution

slogan:

pattern   substitution
Δ ⊩ A+ true    Γ ⊢ Δ

Γ  ⊢ A+ true

V = p[σ]



An illustration from ML...

68

(fn x => x*x, fn x => x-3)

(f,g)

let val f = fn x => x*x
    val g = fn x => x-3
in [ ]



From patterns to programs

Rule of (positive) refutation:
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Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false

(notation from IID)



From patterns to programs

Rule of (positive) continuations:

70

(a few simple rules for building Es)

pattern       expression
Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false

K = p → E (second-order definition of syntax!)



From patterns to programs

Rule of (positive) continuations:

71

a continuation (of + type) is a map 
from patterns to expressions

slogan:

pattern       expression
Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false

K = p → E (second-order definition of syntax!)



Another illustration from ML...
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(* pattern-matching function *)



Exercise in duality
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Δ ⊩ A+ true    Γ ⊢ Δ
Γ  ⊢ A+ true

Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false



Exercise in duality
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So much time and so little to do.  Wait a minute.  
Strike that.  Reverse it.

―Willy Wonka

Δ ⊩ A+ true    Γ ⊢ Δ
Γ  ⊢ A+ true

Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false



Exercise in duality
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(think of V : A→B defined by pattern-matching)

Δ ⊩ A+ true    Γ ⊢ Δ
Γ  ⊢ A+ true

Δ ⊩ A+ true       Γ, Δ ⊢ #

Γ  ⊢ A+ false

Δ ⊩ A- false    Γ ⊢ Δ
Γ  ⊢ A- false

Δ ⊩ A- false       Γ, Δ ⊢ #

Γ  ⊢ A- true

(compare direct/indirect proof/refutation)



General observations

Language intrinsically forces CPS + pattern-matching

Rules of proof and refutation are generic in terms of patterns

⇒ Can often reason about programs in type-generic way

Generalizes (and improves) untyped reasoning

76



Equational theory

Admissibility of cut = composition of terms (~ β-reduction)

• value V + continuation K ⇒ expression K • V

• term t + substitution σ ⇒ term t[σ]

• (only defined when types line up, but defined generically)

Admissibility of initial sequents = identity terms (~ η-expansion)

• continuation Idk, substitution Id[Δ]

Satisfy suitable unit and associativity properties
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Operational semantics

Small-step, environment semantics (= cut-elimination proc.)

Two generic rules for all positive types!  (2 more 4 -...)

〈γ | k V〉 ↝ 〈γ | γ(k) | V〉

〈γ | K | p[σ]〉 ↝ 〈γ;σ | K(p)〉

Can extend language with effects...

Definition: E1 ≅ E2 iff same result in all γ

Theorem: E1 ≠ E2 implies E1 ≇ E2 w/abort + ground state

78



“Implementation”

Two embeddings:

• In Agda (use IID to directly encode higher-order rules)

• In Twelf (use defunctionalization to get rid of them)

Both piggyback on existing implementations of (dependent) 
pattern-matching to get “pattern-matching for free”

But a lower-level implementation could be instructive...

79



Polarization, DNT, CPS
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Polarization

81

|1| = T = |⊤| |0| = F = |⊥|

|A⊗B| = |A|∧|B| = |A&B| |A⊕B| = |A|∨|B| = |A⅋B|

|↓A| = |A| = |↑A| |A→B| = |A|⊃|B|

Define |A| = b:

etc.

Definition: A is a polarization of b if |A| and b are 
classically equivalent.



Completeness of focusing

82

Theorem: Let A+ be a polarization of b.  If b is a 
classically theorem, then A+ false ⊢ #.

Theorem: Let A- be a polarization of b.  If b is a 
classically theorem, then ⊢ A- true.



Translation into minimal logic
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etc.

Theorem: If A+ false ⊢ # then ~~A+m is a minimal 
theorem.  If ⊢ A- true then ~A-m is a minimal theorem

1m = T = ⊥m |0| = F = ⊤m

(A⊗B)m = Am∧Bm = (Am⅋Bm) (A⊕B)m = Am∨Bm = (A&B)m

(↓A)m = ~Am = (↑A)m (A→B)m = Am∧Bm

Define Am = b:



Double-negation [CPS] translation

84

classical logic

polarized logic

minimal logic

(-)m(-)*

different polarizations ⇒ different CPS translations



The polarity jungle
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Polarization CPS translation

↓(A+ → ↑B+) Reynolds CBV

↓A- → B- Streicher CBN

↑↓(↓A- → B-) Plotkin CBN

¬A+ ⊕ B+ ??

⋮ ⋮

Polarizations of the function space:



Polarity pocket dictionary
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ML type + type

A -> B ↓(A → ↑B)

A ＊ B A ⊗ B

A + B A ⊕ B

Rough guide to ML: Rough guide to Haskell:

Haskell type − type

A -> B ↓A → B

( A , B ) A & B

Either A B ↑(↓A ⊕ ↓B)



From Intrinsic
To Extrinsic Types
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What is a type?

Intrinsic (“Church”) vs extrinsic (“Curry”) interpretations

Above: intrinsically-typed terms, but type-free notation

• A type is a promise about the way a program is structured

• But doesn’t promise very much...

Chap. 6: extrinsic refinement of intrinsically-typed terms

• Static guarantee of richer properties

• intersection & union types, subtyping, etc.

• Freeman-Pf.91, Freeman94, Xi98, Davies05, Dunfield07...
88



Sorts refine types
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S ⊑ A

Examples:

even ⊑ nat odd ⊑ nat pos ⊑ nat

even → even ⊑ nat → nat

even ∪ pos ⊑ nateven ∩ odd ⊑ nat

(⊑ is not subtyping!)



Summary

Sorts defined by pattern-inversion

Sort-generic refinement typing rules

Sort-generic safety theorem for environment semantics

Value + evaluation context restrictions reconstructed

Two interpretations of subtyping...
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Subtyping

Identity coercion interpretation:

S ≤ T   iff    k : T false ⊢ Idk : S false

(or equivalent coercions)

No-counterexamples interpretation:

S ≼ T    iff   every V : S true and K : T false are safe

Soundness: S ≤ T implies S ≼ T (explicit witness to safety)

Completeness: S ≰ T implies S ⋠ T, given enough effects

91

e.g., safety violations of ¬¬S ∩ ¬¬T ≤ ¬¬(S ∩ T), etc.



Conclusions
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Thesis Contributions

Focusing proofs as a new take on proofs-as-programs that...

• accounts for important features of modern PLs

• allows mixing of evaluation strategies, and definition of 
types by either constructors or destructors

• uniformly accounts for untyped computation, intrinsic types, 
and extrinsic refinement types

• is in many ways easier to reason about meta-theoretically, 
by pattern-generic arguments (cf. infinitary proof theory)
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Related Work

Lots of it!  See thesis...

Most closely related: ludics, and Levy’s call-by-push-value...

• Very ~ distinction between value and computation types

• Very ≁ origin (trying to unite models of CBV and CBN)

• Complementary viewpoints

Some unexpected connections

• Realizability (BHK, NuPRL, Krivine, etc.)

• Infinitary proof theory (Buchholz’ Ω-rule, Mints78, etc.)
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Future Work, abstractly

95

programming
languages

polarized
type theory

⤺
⤻



More concretely...

Extend polarized approach to more high-powered type theory

• Dependent types (meta-circular!) [cf. Licata&Harper09]

• Polymorphism [cf. Lassen&Levy08, for CBPV]

• Pronominal binding [LZH08], module systems, etc.

• Hopefully sheds light on how to do effects and equality...

Full compiler for HOT language w/effects

• Systematic construction, from proof-theoretic principles?

• Relation to line of work initiated by Danvy03?
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More concretely...

Better account of asynchronous/pure computation

• Linearity and modalities?

• Delimited continuations?

Categorical/topological/algebraic semantics...
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Thanks!
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any questions?

Focusing proofs as a new take on proofs-as-programs that...

• accounts for important features of modern PLs

• allows mixing of evaluation strategies, and definition of 
types by either constructors or destructors

• uniformly accounts for untyped computation, intrinsic 
types, and extrinsic refinement types

• is in many ways easier to reason about meta-theoretically, 
by pattern-generic arguments (cf. infinitary proof theory)


