The Logical Basis of
Evaluation Order & Pattern-Matching

Noam Zeilberger
Thesis Defense
April 17, 2009

-rank Pfenning (chair)

Peter Lee

Robert Harper

Paul-André Mellies (Paris V)

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

'ExplodeGorilla:
' Causes gorilla explosion when a
'Parameters:
' X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
YAdj = Scl(12)
XAdj = Scl(5)
SclX# = ScrwWidth / 320
SclY# = ScrHeight / 200
IF x# < ScrWidth / 2 THEN PlayerH
PLAY "MBOOL16EFGEFDC"

FOR i = 1 TO 8 * SclX#
CIRCLE (GorillaX(PlayerHit) + 3
Scly# + YAdj), i, ExplosionColor, ,
LINE (GorillaX(PlayerHit) + 7 *
(GorillaX(PlayerHit), GorillaY(Playe
NEXT 1
FOR i = 1 TO 16 * SclX# 2

A remarkable arategy Isomorphism

Natural

Deduction

Lambda Calculus

The foundation of FP

Lisp ML Haskell

AN

ND =)\

A shaky foundation”

Purely applicative languages are often said to be
based on a logical system called the lambda
calculus, or even to be “syntactically sugared”
versions of the lambda calculus.... However, as we
will see, although an unsugared applicative
language is syntactically equivalent to the lambda
calculus, there 1s a subtle semantic difference.
Essentially, the “real” lambda calculus implies a
different “order of application”...than most
applicative programming languages.

—John Reynolds (1972)

Evaluation order

2+ 3) (05 -7)

Evaluation order

2+ 3)*(b-=7)

Evaluation order

5" (B -7)

Evaluation order

57 (0 —-7)

Evaluation order

Evaluation order

Evaluation order

Evaluation order

2+ 3) (05 -7)

Evaluation order

2+ 3)*(5-7)

Evaluation order

(2 + 3) * -2

Evaluation order

(2 + 3) * -2

Evaluation order

Evaluation order

Evaluation order

Evaluation order

(orint “hello”; 2 + 3) * (orint “ world!™; 5

Evaluation order

(orint “hello”; 2 + 3) * (orint “ world!™; 5

Evaluation order

(2 + 3) * (print “ world!”; 5
hello

Evaluation order

5 * (print “ world!”; 5 -
hello

Evaluation order

5 * (print “ world!”; 5 -
hello

Evaluation order

hello world!

Evaluation order

-10

hello world!

Evaluation order

(orint “hello”; 2 + 3) * (orint “ world!™; 5

Evaluation order

(orint “hello”; 2 + 3) * (orint “ world!™; 5

Evaluation order

(orint “hello”; 2 + 3) ™ (-

world!

Evaluation order

(orint “hello™; 2 + 3) * -2

world!

Evaluation order

(orint “hello™; 2 + 3) * -2

world!

Evaluation order

(2 + 3) " -2

world!hello

Evaluation order

world!hello

Evaluation order

Needed to make sense of effects (+ non-termination)
(I/0, mutable state, exceptions, callcc, ...)

Not determined by A-calculus

= Functional langs use many different strategies...

Connection lost with logic & natural deduction?

But wait, there’s more...

Pattern-matching

data Nat : Set where
zero : Nat
suc : Nat —> Nat

plus : Nat -> Nat -> Nat
plus zero m = m
plus (suc n) m = suc (plus n m)

Pattern-matching

Theorem 3.8. For any A-geomeltry, 7y < \/Ef 2,
Proof. Suppose a = b = ¢ = 1. Using condition on angles of AABC [14], we
could compute the length of SMT. For this purpose, we consider the following

three cases.
Case 1. A = 3m. In this case we have Ly =2, Ly = V3, Ly/Lm = \/5;"2.

Case 2. A — 3m + 1. In this case we have

1 V3 Lsin(m 4+ 1)7/2) and T = 14

L, =
© sinmw/A 2 2 sinmw/A

sin 7/3\ 4 sin 27 /3 A
sin /A ‘

Note that . /3 I _ 3
-'L"% 3‘ . f% . LH - 3‘

—— < if and only if —=—— <]
L,” 2 Lm — 2 2

and

! 1 ‘
<L B

COSs 3N

= <
mmT o T — 9oin I , T 21 1 IS
in == 2 sin £ cos ax 2 sin y 2

T r in X cos -
Lg— V3 Sin g5 COS 53
Lin — 2 S == S 35 4

Thus we have T./L,, < V3/2.
Case 3. A = 3m + 2. In this case we have
1 . 1 "::j.". Lty 5“] — + "‘::i". E
S and L, =1+ LA EE A
(me+1)r ‘m '
b}

sin E

si1 []I]_;l]ﬂ 2 in

Pattern-matching

Nice notation for defining fns, and proofs-by-cases
e Enables equational reasoning
e Borrowed directly from mathematical practice...
But not available in natural deduction

Hmm...maybe natural deduction is not so natural?...

Thesis Statement

Focusing proofs give a logical account of
evaluation order and pattern-matching

Focusing proofs

Andreoli '91: search strategy for linear logic sequent calculus
Exploits polarity of connectives ([®,9,1,0,!] vs [®,&,T,L1,7])
Extends to classical + intuitionistic logic by polarization

My work: new presentation of focusing proofs

e canonical forms of proof and refutation, in terms of patterns

e combines best features of sequent calculus and ND

Thesis Statement

Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement, sub |

Evaluation order Is encoded in polarity

= one language can [should] mix different evaluation
strategies, by reflecting them at the level of types

Thesis Statement, sub |l

Pattern-matching is justified by polarity

= pattern-matching is not just “syntactic sugar”: it can
[should] be dealt with directly in type theory

Thesis Statement, punchline

Evaluation order and pattern-matching are
two sides of the same coin.

A & - '-\ A == ’ |
BTN VIRTUE

y

| LBERTY

71 oot |
A §
AR 7

This Talk

Some highlights from dissertation
e Polarity and patterns (and the meanings of the connectives)
e Proofs and programs (and pattern-generic reasoning)
e Polarization <« double-negation translation <« CPS
e Refinement types and subtyping

Related work and future work

Polarity and Patterns

What is a proposition [type]?

Bullt out of constants/connectives

Av-A A>BAC) -A>A

nat x nat string — bool

But what do these connectives mean?

The approach of proof-theoretic semantics...

Pick your side

An introduction rule gives, so to say, a definition
of the constant in question... —Gentzen (1935)

o explain the meaning of an implication A>B,

we must explain what is the purpose...of a
canonical proof... This purpose is to be applied
to a canonical proof of...A, thereby yielding a
canonical proof of...B. In no way is it correct to
say that the meaning of A>B is determined by

the introduction rule... _ Martin-Lof (1976)

47

Dummett’s analysis

1976 William James Lectures
e Defined by intros = “verificationist”
e Defined by elims = “pragmatist”
e Described some difficulties for particular connectives...

e _..but required “harmony” between the two aspects

Embracing polarization

Dual approaches to understanding connectives really define
different connectives

(Instead of requiring harmony, accept diversity!)

"A® B” vs. "A & B”, etc.

Subject of my thesis: polarized logic (every prop has polarity)

Syntax of polarized propositions [types]

A" = A"®B* |AT®B* |1 | O
| 2AY AL | LA

| nat | ... Intuition: + eager, — lazy

A = A&B |A¥B |

| A | A+ | TAY
[A* B | ...

Polarity iIn game-theoretic semantics

Prop A describes a game between Verifier and Refuter
¢ | orenzen60, Henkin61, Blass92, ...
e A true if winning strategy for Verifier

e Polarity = who moves first

Jandwon

Polarity from patterns

|dea: define connectives by shapes of canonical inference
® + connectives defined by proof patterns
e — connectives defined by refutation patterns

Patterns are “derivations with holes”...
e Refutation holes for + propositions

* Proof holes for — propositions

Patterns, formally

Frame (list of holes):
A= -] (A1, A,)|A* false | A true
A proof pattern is a derivation of A |- A* true

A refutation pattern is a derivation A I- A" false

- is like linear entailment (but connectives nonlinear!)

Rules for I+ define the connectives...

Syntax of polarized propositions [types]

A" = A"®B* |AT®B* |1 | O
| 2AY AL | LA
| nat | ...

A = A&B |A¥B |

| A | A+ | TAY
[A* B | ...

Some positive connectives

A IFA" true A, I B* true
A]_Az - AT®B™ true

A™ false I 2A™ true
A I A" true A I+ B* true

AI-FAT®B* true A I-FAT®B* true

Some negative connectives

A, I+ A false A, I+ B false
AN, I ARB false

A" true I DA false
A I+ A false A I+ B false

AI-FA&B false A I-A&B false

Some polarity mixing connectives

A; I-FA" true A, I+ B false
AN, IFAT— B false

A true I+ LA true A* false I+ TA* false

A I+ A false A I-A" true
A IF A+ true A I-FA™ false

The basic analogy

oroof = value
refutation = continuation

= proof patterns = value patterns
e [ikein FP
e [inear (like in FP)
refutation patterns = continuation patterns

e like in FP, if you squint

A type-free notation...

Connective Patterns Connective Patterns

fst:d

(p1,) snd:d

inl p
inrp
() none

]

X

[d4, do]

A type-free notation...

Connective Patterns

1A-

A+

A+ = B

Proofs and Programs

Once we have understood how to discover individual
patterns which are alive, we may then make a

language for ourselves, for any building task we face.

—Christopher Alexander

From patterns to programs

Rule of (positive) proof:

A - AT true [= A
[— A* true

From patterns to programs

Rule of (positive) values:

battern substitution
A I A" true [= A

[= A* true

V' = plo]

(a few obvious rules for building os)

From patterns to programs

Rule of (positive) values:

battern substitution
A I A" true [= A

[= A* true

V' = plo]

slogan: a value (of + type) is a pattern
under a substitution

An Illustration from ML...

(fn x => x*x, fn x => x-3)

\

let val £
val g

From patterns to programs

Rule of (positive) refutation:

A - A" true > [A+ #
[— A" false

(notation from [ID)

From patterns to programs

Rule of (positive) continuations:

pattern expression
A I+ A" true > [LAF-#

[— A" false

K = O — (second-order definition of syntax!)

(@ few simple rules for building Es)

From patterns to programs

Rule of (positive) continuations:

pattern expression
A I+ A" true > [LA+#

[— A" false

K = o E (second-order definition of syntax!)

slogan: a continuation (of + type) is a map
from patterns to expressions

Another lllustration from ML...

(* pattern-matching function *)

Exercise In duality

A - A" true [- A A I+ A* true > [A+ #
[= A" true [- A" false

Exercise In duality

A I+ A* true [— A A I+ A* true - [A+ #
[- A" true [— A" false

So much time and so little to do. Wait a minute.

Strike that. Reverse it.
—Willy Wonka

Exercise In duality

A I A" true [- A A - A" true > [A+ #

[= A" true [— A" false

A I- A false > LA+ # A I+ A false [- A

[- A true [- A false

(compare direct/indirect proof/refutation)

(think of V' : A—B defined by pattern-matching)

(General observations

Language intrinsically forces CPS + pattern-matching
Rules of proof and refutation are generic in terms of patterns

= (Can often reason about programs in type-generic way

Generalizes (and improves) untyped reasoning

Equational theory

Admissibility of cut = composition of terms (~ B-reduction)

e value V + continuation K = expression K e V
e term t + substitution o = term t[o]

e (only defined when types line up, but defined generically)
Admissibility of initial sequents = identity terms (~ n-expansion)
e continuation /dk, substitution /dja;

Satisfy suitable unit and associativity properties

Operational semantics

Small-step, environment semantics (= cut-elimination proc.)

Two generic rules for all positive types! (2 more 4 -...)
Y Tk V) ~ {y yk) V)
vy | K1 pl[e]) ~ <y;o | K(p))

Can extend language with effects...

Definition: E1 = E» iff same result in all y

Theorem: E1 # E> implies E1 2 E»> w/abort + ground state

‘Implementation”

Two embeddings:
e In Agda (use IID to directly encode higher-order rules)
e |In Twelf (use defunctionalization to get rid of them)

Both piggyback on existing implementations of (dependent)
pattern-matching to get “pattern-matching for free”

But a lower-level implementation could be instructive...

Polarization, DNT, CPS

Polarization

Define |A| = b:

1] =T=]T]| O] = F = ||
AeB| = |AIAIB| = |ARB| |A@B| = |A|v|B| = |A®B]

HA| = A| = |TA] A—-B| = |A|>|B]
etc.

ition: A is a polarization of b if |A| and b are
ically equivalent.

Completeness of focusing

Neo

Neorernr
assical

assl

‘eIm.

cal

. Let A+ be a polarization of b. Ifbis a
v theorem, then A* false +— #.

et A" be a polarization of b. [fbis a
vy theorem, then — A" true.

Translation into minimal logic

Define A" = b
1Mm=T=1" Of=F=T1m
A®B)" = AMAB™ = (AM9B™) (A@B)" = ATvB™ = (A&B)"

(LAY = ~AT = (TA)" A—=B)" = AMABT
etc.

Theorem: If A* false — # then ~~A*™M Is a minimal
theorem. If = A true then ~A™ Is a minimal theorem

83

Double-negation [CPS]| translation

polarized logic

(')* (_)m

classical logic « minimal logic

different polarizations = different CPS translations

The polarity jungle

Polarizations of the function space:

Polarization

CPS translation

LAt = 1B

Reynolds CBV

1A= B

Streicher CBN

TL{A — B)

Plotkin CBN

-At® Bt

fals

Polarity pocket dictionary

Rough guide to ML:

ML type + type

(A — 1B)

Rough guide to Haskell:

Haskell type

— type

(A,B)

Either A B

From Intrinsic

lo Extrinsic lypes

What is a type”?

Intrinsic (“Church”) vs extrinsic (“Curry”) interpretations
Above: intrinsically-typed terms, but type-free notation
e A type is a promise about the way a program is structured
e But doesn’t promise very much...
Chap. 6: extrinsic refinement of intrinsically-typed terms
e Static guarantee of richer properties
® intersection & union types, subtyping, etc.

¢ Freeman-Pf.91, Freeman94, Xi98, Davies05, Dunfield07 ...

Sorts refine types

SCA

Examples:

even C nat odd C nat pos C nat

even n odd C nat even u pos C nat

even — even C nat — nat

(C is not subtyping!)

Summary

Sorts defined by pattern-inversion
Sort-generic refinement typing rules
Sort-generic safety theorem for environment semantics

Value + evaluation context restrictions reconstructed

Two interpretations of subtyping...

Subtyping

|dentity coercion interpretation:
S<T ifft k:Tfalset\ Idk:S false
(or equivalent coercions)
No-counterexamples interpretation:
S<T iff everyV:Strue and K: T false are safe
Soundness: S < T implies S < T (explicit witness to safety)

Completeness: S £ T implies S ¥ T, given enough effects

e.g., safety violations of ==S n =7 < -—=(S n), etc.

Conclusions

Thesis Contributions

Focusing proofs as a new take on proofs-as-programs that...
e accounts for important features of modern PLs

e allows mixing of evaluation strategies, and definition of
types by either constructors or destructors

e uniformly accounts for untyped computation, intrinsic types,
and extrinsic refinement types

® |S In many ways easier to reason about meta-theoretically,
by pattern-generic arguments (cf. infinitary proof theory)

Related Work

Lots of it! See thesis...

Most closely related: ludics, and Levy’s call-by-push-value...

* Very ~ distinction between value and computation types

* Very ~ origin (trying to unite models of CBV and CBN)

e Complementary viewpoints

Some unexpected connections
e Realizability (BHK, NuPRL, Krivine, etc.)

e |nfinitary proof theory (Buchholz’ Q-rule, Mints78, etc.)

Future Work, abstractly

"

progra oolarized
langL type theory

\A

More concretely...

Extend polarized approach to more high-powered type theory
e Dependent types (meta-circular!) [cf. Licata&Harper09]
e Polymorphism [cf. Lassen&Levy08, for CBPV]
e Pronominal binding [LZH08], module systems, etc.
e Hopefully sheds light on how to do effects and equality...
Full compiler for HOT language w/effects
e Systematic construction, from proof-theoretic principles?

e Relation to line of work initiated by Danvy03?

More concretely...

Better account of asynchronous/pure computation
e Linearity and modalities?
e Delimited continuations?

Categorical/topological/algebraic semantics...

Thanks!

Focusing proofs as a new take on proofs-as-programs that...

e accounts for important features of modern PLs

allows mixing of evaluation strategies, and definition of
types by either constructors or destructors

uniformly accounts for untyped computation, intrinsic
types, and extrinsic refinement types

IS INn many ways easier to reason about meta-theoretically,
by pattern-generic arguments (cf. infinitary proof theory)

any questions”

