
The Logical Basis of
Evaluation Order & Pattern-Matching

Noam Zeilberger
Thesis Defense
April 17, 2009

Frank Pfenning (chair)
Peter Lee
Robert Harper
Paul-André Melliès (Paris VII)

A remarkable analogy

Proving is like programming

2

A remarkable analogy

Proving is like programming

2

A remarkable analogy

Proving is like programming

~
2

A remarkable analogy

Proving is like programming

'ExplodeGorilla:
' Causes gorilla explosion when a direct hit occurs
'Parameters:
' X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
 YAdj = Scl(12)
 XAdj = Scl(5)
 SclX# = ScrWidth / 320
 SclY# = ScrHeight / 200
 IF x# < ScrWidth / 2 THEN PlayerHit = 1 ELSE PlayerHit = 2
 PLAY "MBO0L16EFGEFDC"

 FOR i = 1 TO 8 * SclX#
 CIRCLE (GorillaX(PlayerHit) + 3.5 * SclX# + XAdj, GorillaY(PlayerHit) + 7 *
SclY# + YAdj), i, ExplosionColor, , , -1.57
 LINE (GorillaX(PlayerHit) + 7 * SclX#, GorillaY(PlayerHit) + 9 * SclY# - i)-
(GorillaX(PlayerHit), GorillaY(PlayerHit) + 9 * SclY# - i), ExplosionColor
 NEXT i
 FOR i = 1 TO 16 * SclX#

~
2

A remarkable analogy isomorphism

Natural Deduction Lambda Calculus

≈
3

The foundation of FP

λ

Lisp HaskellML... ...

ND ≅
4

Purely applicative languages are often said to be
based on a logical system called the lambda
calculus, or even to be “syntactically sugared”
versions of the lambda calculus.... However, as we
will see, although an unsugared applicative
language is syntactically equivalent to the lambda
calculus, there is a subtle semantic difference.
Essentially, the “real” lambda calculus implies a
different “order of application”...than most
applicative programming languages.

―John Reynolds (1972)

A shaky foundation?

5

Evaluation order

6

(2 + 3) * (5 − 7)

Evaluation order

7

(2 + 3) * (5 − 7)

Evaluation order

8

5 * (5 − 7)

Evaluation order

9

5 * (5 − 7)

Evaluation order

10

5 * -2

Evaluation order

11

5 * -2

Evaluation order

12

-10

Evaluation order

13

(2 + 3) * (5 − 7)

Evaluation order

14

(2 + 3) * (5 − 7)

Evaluation order

15

(2 + 3) * -2

Evaluation order

16

(2 + 3) * -2

Evaluation order

17

5 * -2

Evaluation order

18

5 * -2

Evaluation order

19

-10

Evaluation order

20

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

21

Evaluation order

Evaluation order

22

(2 + 3) * (print “ world!”; 5 - 7)
hello

Evaluation order

23

5 * (print “ world!”; 5 - 7)
hello

Evaluation order

24

5 * (print “ world!”; 5 - 7)
hello

Evaluation order

25

5 * (5 - 7)
hello world!

Evaluation order

26

-10
hello world!

Evaluation order

27

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

Evaluation order

28

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

Evaluation order

29

(print “hello”; 2 + 3) * (5 - 7)
world!

Evaluation order

30

(print “hello”; 2 + 3) * -2
world!

Evaluation order

31

(print “hello”; 2 + 3) * -2
world!

Evaluation order

32

(2 + 3) * -2
world!hello

Evaluation order

33

-10
world!hello

Evaluation order

Needed to make sense of effects (+ non-termination)

(I/O, mutable state, exceptions, callcc, ...)

Not determined by λ-calculus

⇒ Functional langs use many different strategies...

Connection lost with logic & natural deduction?

But wait, there’s more...
34

Pattern-matching

35

data Nat : Set where
 zero : Nat
 suc : Nat -> Nat

plus : Nat -> Nat -> Nat
plus zero m = m
plus (suc n) m = suc (plus n m)

Pattern-matching

36

Pattern-matching

Nice notation for defining fns, and proofs-by-cases

• Enables equational reasoning

• Borrowed directly from mathematical practice...

But not available in natural deduction

Hmm...maybe natural deduction is not so natural?...

37

Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement

38

Focusing proofs

Andreoli ’91: search strategy for linear logic sequent calculus

Exploits polarity of connectives ([⊗,⊕,1,0,!] vs [⅋,&,⊤,⊥,?])

Extends to classical + intuitionistic logic by polarization

My work: new presentation of focusing proofs

• canonical forms of proof and refutation, in terms of patterns

• combines best features of sequent calculus and ND

39

Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement

40

Evaluation order is encoded in polarity

Thesis Statement, sub I

41

⇒ one language can [should] mix different evaluation
strategies, by reflecting them at the level of types

Pattern-matching is justified by polarity

Thesis Statement, sub II

42

⇒ pattern-matching is not just “syntactic sugar”: it can
[should] be dealt with directly in type theory

Evaluation order and pattern-matching are
two sides of the same coin.

Thesis Statement, punchline

43

This Talk

Some highlights from dissertation

• Polarity and patterns (and the meanings of the connectives)

• Proofs and programs (and pattern-generic reasoning)

• Polarization ↔ double-negation translation ↔ CPS

• Refinement types and subtyping

Related work and future work

44

Polarity and Patterns

45

What is a proposition [type]?

Built out of constants/connectives

A ∨ ¬A A ⊃(B ∧ C) ¬A ⊃ A

nat × nat string → bool

But what do these connectives mean?

The approach of proof-theoretic semantics...
46

Pick your side

47

An introduction rule gives, so to say, a definition
of the constant in question... —Gentzen (1935)

To explain the meaning of an implication A⊃B,
we must explain what is the purpose...of a
canonical proof... This purpose is to be applied
to a canonical proof of...A, thereby yielding a
canonical proof of...B. In no way is it correct to
say that the meaning of A⊃B is determined by
the introduction rule...

—Martin-Löf (1976)

Dummett’s analysis

1976 William James Lectures

• Defined by intros = “verificationist”

• Defined by elims = “pragmatist”

• Described some difficulties for particular connectives...

• ...but required “harmony” between the two aspects

48

Embracing polarization

Dual approaches to understanding connectives really define
different connectives

(Instead of requiring harmony, accept diversity!)

“A ⊗ B” vs. “A & B”, etc.

Subject of my thesis: polarized logic (every prop has polarity)

49

Syntax of polarized propositions [types]

A+ ::= A+⊗B+ | A+⊕B+ | 1 | 0

 | ¬A+ | A-⊥ | ↓A-

 | nat | ...

A- ::= A-&B- | A-⅋B- | ⊤ | ⊥

 | ¬A- | A+⊥ | ↑A+

 | A+→B- | ...

50

Intuition: + eager, − lazy

Polarity in game-theoretic semantics

Prop A describes a game between Verifier and Refuter

• Lorenzen60, Henkin61, Blass92, ...

• A true if winning strategy for Verifier

• Polarity = who moves first

51

52

53

Idea: define connectives by shapes of canonical inference

• + connectives defined by proof patterns

• − connectives defined by refutation patterns

Patterns are “derivations with holes”...

• Refutation holes for + propositions

• Proof holes for − propositions

Polarity from patterns

54

Patterns, formally

Frame (list of holes):

Δ ::= · | (Δ₁ , Δ₂) | A+ false | A- true

A proof pattern is a derivation of Δ ⊩ A+ true

A refutation pattern is a derivation Δ ⊩ A- false

⊩ is like linear entailment (but connectives nonlinear!)

Rules for ⊩ define the connectives...
55

Syntax of polarized propositions [types]

A+ ::= A+⊗B+ | A+⊕B+ | 1 | 0

 | ¬A+ | A-⊥ | ↓A-

 | nat | ...

A- ::= A-&B- | A-⅋B- | ⊤ | ⊥

 | ¬A- | A+⊥ | ↑A+

 | A+→B- | ...

56

Some positive connectives

57

Δ₁ ⊩ A+ true Δ₂ ⊩ B+ true

Δ₁Δ₂ ⊩ A+⊗B+ true

Δ ⊩ A+ true

Δ ⊩ A+⊕B+ true

Δ ⊩ B+ true

Δ ⊩ A+⊕B+ true

 A+ false ⊩ ¬A+ true

Some negative connectives

58

Δ₁ ⊩ A- false Δ₂ ⊩ B- false

Δ₁Δ₂ ⊩ A-⅋B- false

Δ ⊩ A- false

Δ ⊩ A-&B- false

Δ ⊩ B- false

Δ ⊩ A-&B- false

 A- true ⊩ ¬A- false

Some polarity mixing connectives

59

Δ₁ ⊩ A+ true Δ₂ ⊩ B- false

Δ₁Δ₂ ⊩ A+→B- false

 A- true ⊩ ↓A- true A+ false ⊩ ↑A+ false

Δ ⊩ A- false

Δ ⊩ A-⊥ true

Δ ⊩ A+ true

Δ ⊩ A+⊥ false

The basic analogy

⇒ proof patterns = value patterns

• like in FP

• linear (like in FP)

refutation patterns = continuation patterns

• like in FP, if you squint

60

proof = value
refutation = continuation

A type-free notation...

61

Connective π Patterns

A+ ⊗ B+ + (p1, p2)

A+ ⊕ B+ +
inl p
inr p

1 + ()

0 + none

¬A+ + k

Connective π Patterns

A- & B- −
fst;d

snd;d

A- ⅋ B- − [d1, d2]

⊤ − none
⊥ − []

¬A- − x

A type-free notation...

62

Connective π Patterns

↓A- + x

↑A+ − k

A+ → B- − p@d

nat +
z

s p

⋮

Proofs and Programs

63

64

Once we have understood how to discover individual
patterns which are alive, we may then make a
language for ourselves, for any building task we face.

―Christopher Alexander

From patterns to programs

Rule of (positive) proof:

65

Δ ⊩ A+ true Γ ⊢ Δ
Γ ⊢ A+ true

From patterns to programs

Rule of (positive) values:

66

pattern substitution
Δ ⊩ A+ true Γ ⊢ Δ

Γ ⊢ A+ true

(a few obvious rules for building σs)

V = p[σ]

From patterns to programs

Rule of (positive) values:

67

a value (of + type) is a pattern
under a substitution

slogan:

pattern substitution
Δ ⊩ A+ true Γ ⊢ Δ

Γ ⊢ A+ true

V = p[σ]

An illustration from ML...

68

(fn x => x*x, fn x => x-3)

(f,g)

let val f = fn x => x*x
 val g = fn x => x-3
in []

From patterns to programs

Rule of (positive) refutation:

69

Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

(notation from IID)

From patterns to programs

Rule of (positive) continuations:

70

(a few simple rules for building Es)

pattern expression
Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

K = p → E (second-order definition of syntax!)

From patterns to programs

Rule of (positive) continuations:

71

a continuation (of + type) is a map
from patterns to expressions

slogan:

pattern expression
Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

K = p → E (second-order definition of syntax!)

Another illustration from ML...

72

(* pattern-matching function *)

Exercise in duality

73

Δ ⊩ A+ true Γ ⊢ Δ
Γ ⊢ A+ true

Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

Exercise in duality

74

So much time and so little to do. Wait a minute.
Strike that. Reverse it.

―Willy Wonka

Δ ⊩ A+ true Γ ⊢ Δ
Γ ⊢ A+ true

Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

Exercise in duality

75

(think of V : A→B defined by pattern-matching)

Δ ⊩ A+ true Γ ⊢ Δ
Γ ⊢ A+ true

Δ ⊩ A+ true Γ, Δ ⊢ #

Γ ⊢ A+ false

Δ ⊩ A- false Γ ⊢ Δ
Γ ⊢ A- false

Δ ⊩ A- false Γ, Δ ⊢ #

Γ ⊢ A- true

(compare direct/indirect proof/refutation)

General observations

Language intrinsically forces CPS + pattern-matching

Rules of proof and refutation are generic in terms of patterns

⇒ Can often reason about programs in type-generic way

Generalizes (and improves) untyped reasoning

76

Equational theory

Admissibility of cut = composition of terms (~ β-reduction)

• value V + continuation K ⇒ expression K • V

• term t + substitution σ ⇒ term t[σ]

• (only defined when types line up, but defined generically)

Admissibility of initial sequents = identity terms (~ η-expansion)

• continuation Idk, substitution Id[Δ]

Satisfy suitable unit and associativity properties

77

Operational semantics

Small-step, environment semantics (= cut-elimination proc.)

Two generic rules for all positive types! (2 more 4 -...)

〈γ | k V〉 ↝ 〈γ | γ(k) | V〉

〈γ | K | p[σ]〉 ↝ 〈γ;σ | K(p)〉

Can extend language with effects...

Definition: E1 ≅ E2 iff same result in all γ

Theorem: E1 ≠ E2 implies E1 ≇ E2 w/abort + ground state

78

“Implementation”

Two embeddings:

• In Agda (use IID to directly encode higher-order rules)

• In Twelf (use defunctionalization to get rid of them)

Both piggyback on existing implementations of (dependent)
pattern-matching to get “pattern-matching for free”

But a lower-level implementation could be instructive...

79

Polarization, DNT, CPS

80

Polarization

81

|1| = T = |⊤| |0| = F = |⊥|

|A⊗B| = |A|∧|B| = |A&B| |A⊕B| = |A|∨|B| = |A⅋B|

|↓A| = |A| = |↑A| |A→B| = |A|⊃|B|

Define |A| = b:

etc.

Definition: A is a polarization of b if |A| and b are
classically equivalent.

Completeness of focusing

82

Theorem: Let A+ be a polarization of b. If b is a
classically theorem, then A+ false ⊢ #.

Theorem: Let A- be a polarization of b. If b is a
classically theorem, then ⊢ A- true.

Translation into minimal logic

83

etc.

Theorem: If A+ false ⊢ # then ~~A+m is a minimal
theorem. If ⊢ A- true then ~A-m is a minimal theorem

1m = T = ⊥m |0| = F = ⊤m

(A⊗B)m = Am∧Bm = (Am⅋Bm) (A⊕B)m = Am∨Bm = (A&B)m

(↓A)m = ~Am = (↑A)m (A→B)m = Am∧Bm

Define Am = b:

Double-negation [CPS] translation

84

classical logic

polarized logic

minimal logic

(-)m(-)*

different polarizations ⇒ different CPS translations

The polarity jungle

85

Polarization CPS translation

↓(A+ → ↑B+) Reynolds CBV

↓A- → B- Streicher CBN

↑↓(↓A- → B-) Plotkin CBN

¬A+ ⊕ B+ ??

⋮ ⋮

Polarizations of the function space:

Polarity pocket dictionary

86

ML type + type

A -> B ↓(A → ↑B)

A ＊ B A ⊗ B

A + B A ⊕ B

Rough guide to ML: Rough guide to Haskell:

Haskell type − type

A -> B ↓A → B

(A , B) A & B

Either A B ↑(↓A ⊕ ↓B)

From Intrinsic
To Extrinsic Types

87

What is a type?

Intrinsic (“Church”) vs extrinsic (“Curry”) interpretations

Above: intrinsically-typed terms, but type-free notation

• A type is a promise about the way a program is structured

• But doesn’t promise very much...

Chap. 6: extrinsic refinement of intrinsically-typed terms

• Static guarantee of richer properties

• intersection & union types, subtyping, etc.

• Freeman-Pf.91, Freeman94, Xi98, Davies05, Dunfield07...
88

Sorts refine types

89

S ⊑ A

Examples:

even ⊑ nat odd ⊑ nat pos ⊑ nat

even → even ⊑ nat → nat

even ∪ pos ⊑ nateven ∩ odd ⊑ nat

(⊑ is not subtyping!)

Summary

Sorts defined by pattern-inversion

Sort-generic refinement typing rules

Sort-generic safety theorem for environment semantics

Value + evaluation context restrictions reconstructed

Two interpretations of subtyping...

90

Subtyping

Identity coercion interpretation:

S ≤ T iff k : T false ⊢ Idk : S false

(or equivalent coercions)

No-counterexamples interpretation:

S ≼ T iff every V : S true and K : T false are safe

Soundness: S ≤ T implies S ≼ T (explicit witness to safety)

Completeness: S ≰ T implies S ⋠ T, given enough effects

91

e.g., safety violations of ¬¬S ∩ ¬¬T ≤ ¬¬(S ∩ T), etc.

Conclusions

92

Thesis Contributions

Focusing proofs as a new take on proofs-as-programs that...

• accounts for important features of modern PLs

• allows mixing of evaluation strategies, and definition of
types by either constructors or destructors

• uniformly accounts for untyped computation, intrinsic types,
and extrinsic refinement types

• is in many ways easier to reason about meta-theoretically,
by pattern-generic arguments (cf. infinitary proof theory)

93

Related Work

Lots of it! See thesis...

Most closely related: ludics, and Levy’s call-by-push-value...

• Very ~ distinction between value and computation types

• Very ≁ origin (trying to unite models of CBV and CBN)

• Complementary viewpoints

Some unexpected connections

• Realizability (BHK, NuPRL, Krivine, etc.)

• Infinitary proof theory (Buchholz’ Ω-rule, Mints78, etc.)
94

Future Work, abstractly

95

programming
languages

polarized
type theory

⤺
⤻

More concretely...

Extend polarized approach to more high-powered type theory

• Dependent types (meta-circular!) [cf. Licata&Harper09]

• Polymorphism [cf. Lassen&Levy08, for CBPV]

• Pronominal binding [LZH08], module systems, etc.

• Hopefully sheds light on how to do effects and equality...

Full compiler for HOT language w/effects

• Systematic construction, from proof-theoretic principles?

• Relation to line of work initiated by Danvy03?
96

More concretely...

Better account of asynchronous/pure computation

• Linearity and modalities?

• Delimited continuations?

Categorical/topological/algebraic semantics...

97

Thanks!

98

any questions?

Focusing proofs as a new take on proofs-as-programs that...

• accounts for important features of modern PLs

• allows mixing of evaluation strategies, and definition of
types by either constructors or destructors

• uniformly accounts for untyped computation, intrinsic
types, and extrinsic refinement types

• is in many ways easier to reason about meta-theoretically,
by pattern-generic arguments (cf. infinitary proof theory)

