

The Logical Basis of Evaluation Order & Pattern-Matching

Noam Zeilberger
Thesis Defense
April 17, 2009

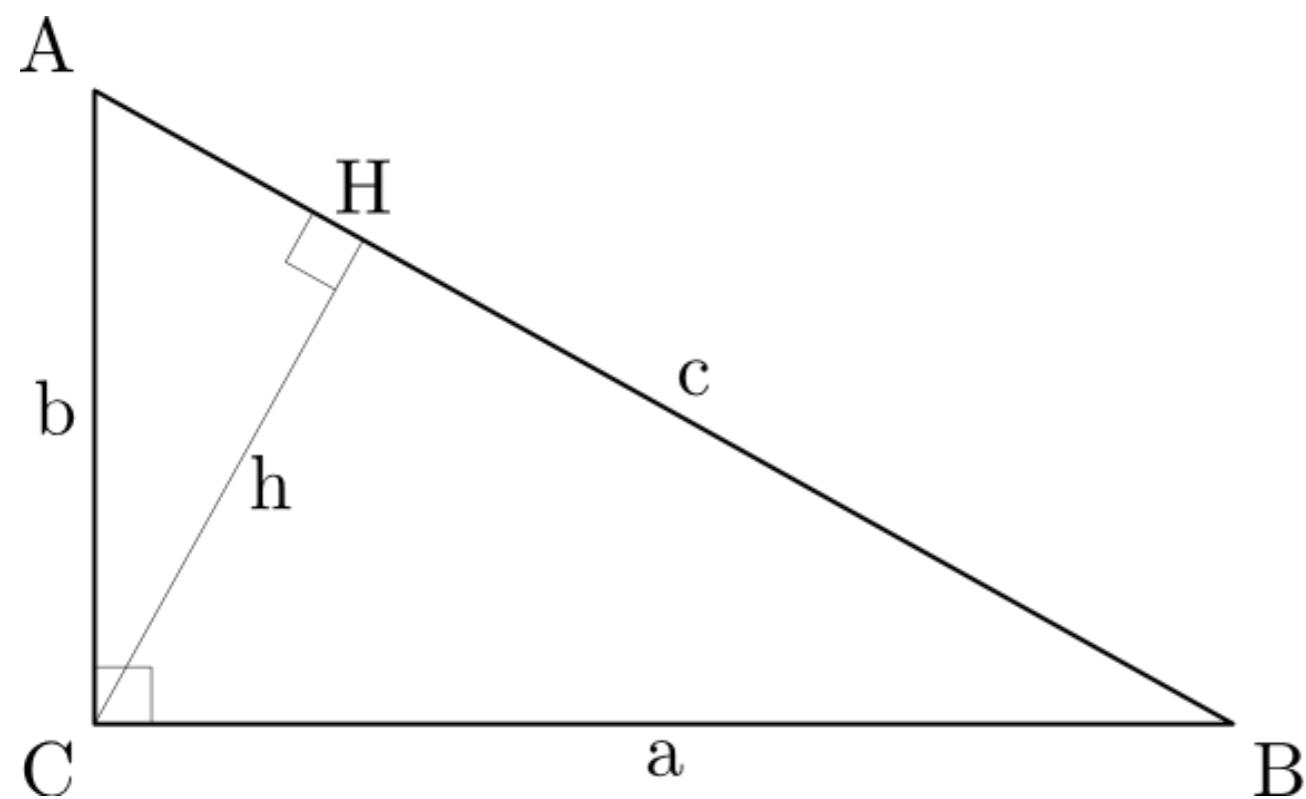
Frank Pfenning (chair)
Peter Lee
Robert Harper
Paul-André Melliès (Paris VII)

A remarkable analogy

Proving is like programming

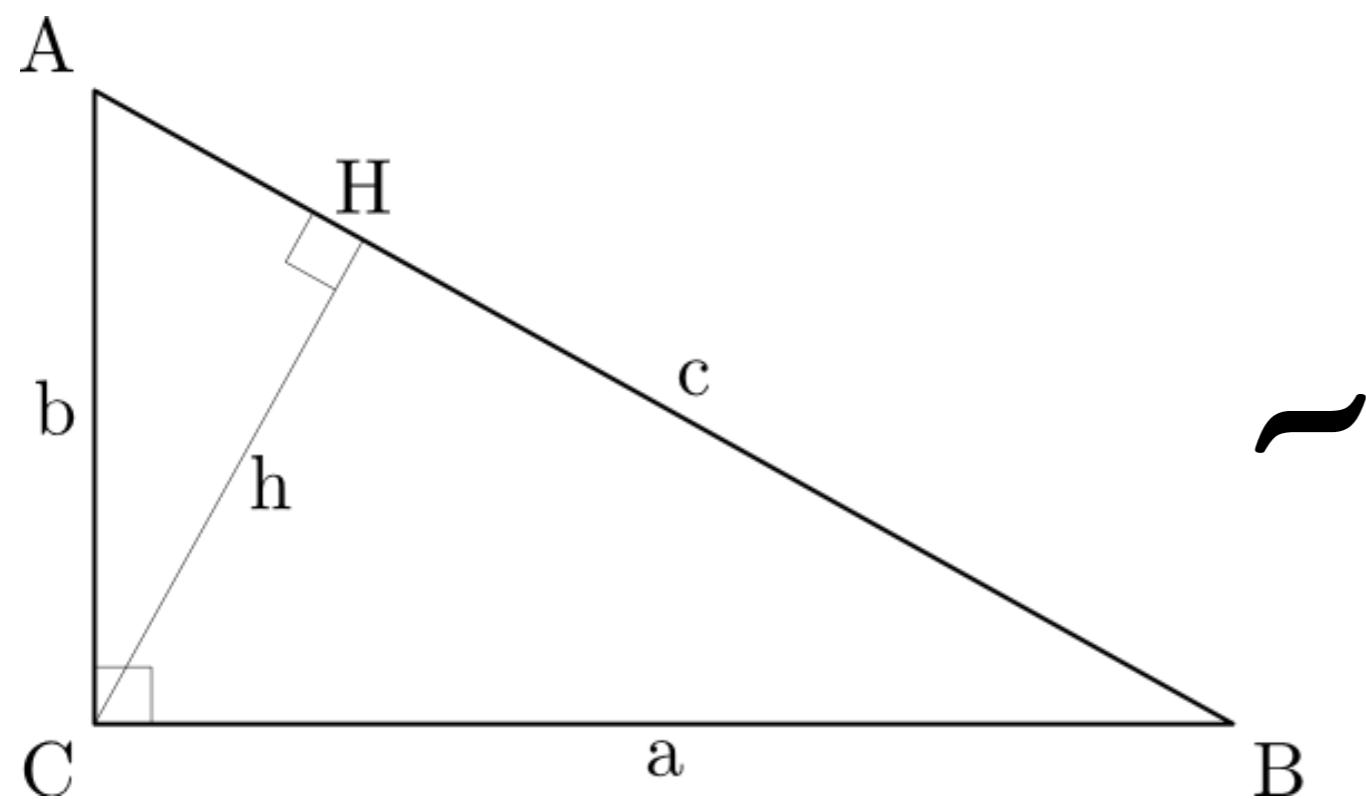
A remarkable analogy

Proving is like programming



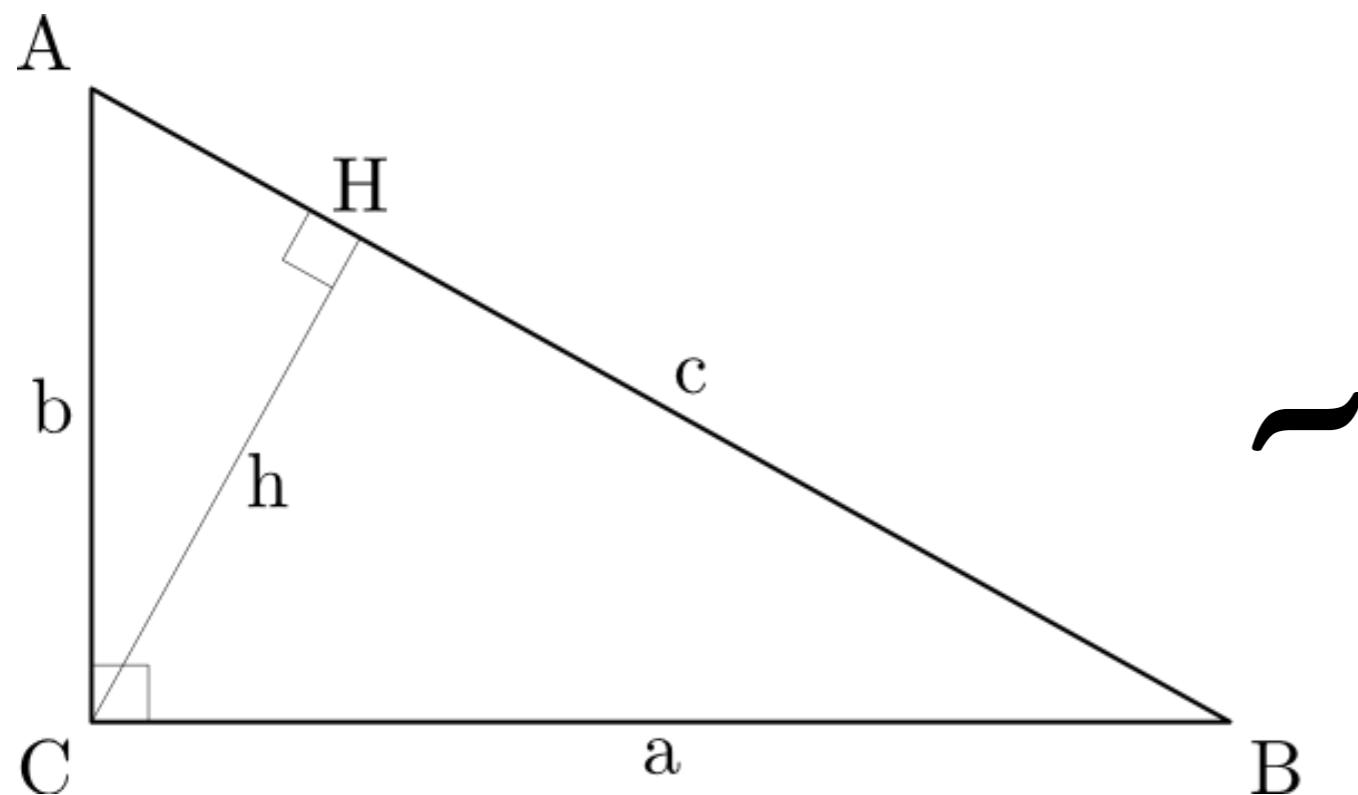
A remarkable analogy

Proving is like programming



A remarkable analogy

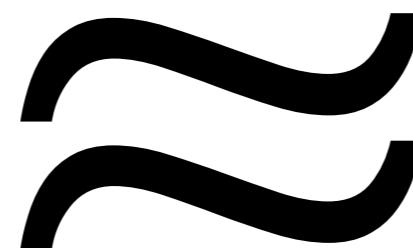
Proving is like programming



```
'ExplodeGorilla:  
' Causes gorilla explosion when a shot hits  
'Parameters:  
' x#, y# - shot location  
FUNCTION ExplodeGorilla (x#, y#)  
    YAdj = Scl(12)  
    XAdj = Scl(5)  
    SclX# = ScrWidth / 320  
    SclY# = ScrHeight / 200  
    IF x# < ScrWidth / 2 THEN PlayerHit = 1  
    PLAY "MBOOL16EFGEFDC"  
  
    FOR i = 1 TO 8 * SclX#  
        CIRCLE (GorillaX(PlayerHit) + 3 *  
        SclX# + XAdj), i, ExplosionColor, ,  
        LINE (GorillaX(PlayerHit) + 7 *  
        (GorillaX(PlayerHit), GorillaY(PlayerHit))  
    NEXT i  
    FOR i = 1 TO 16 * SclX#
```

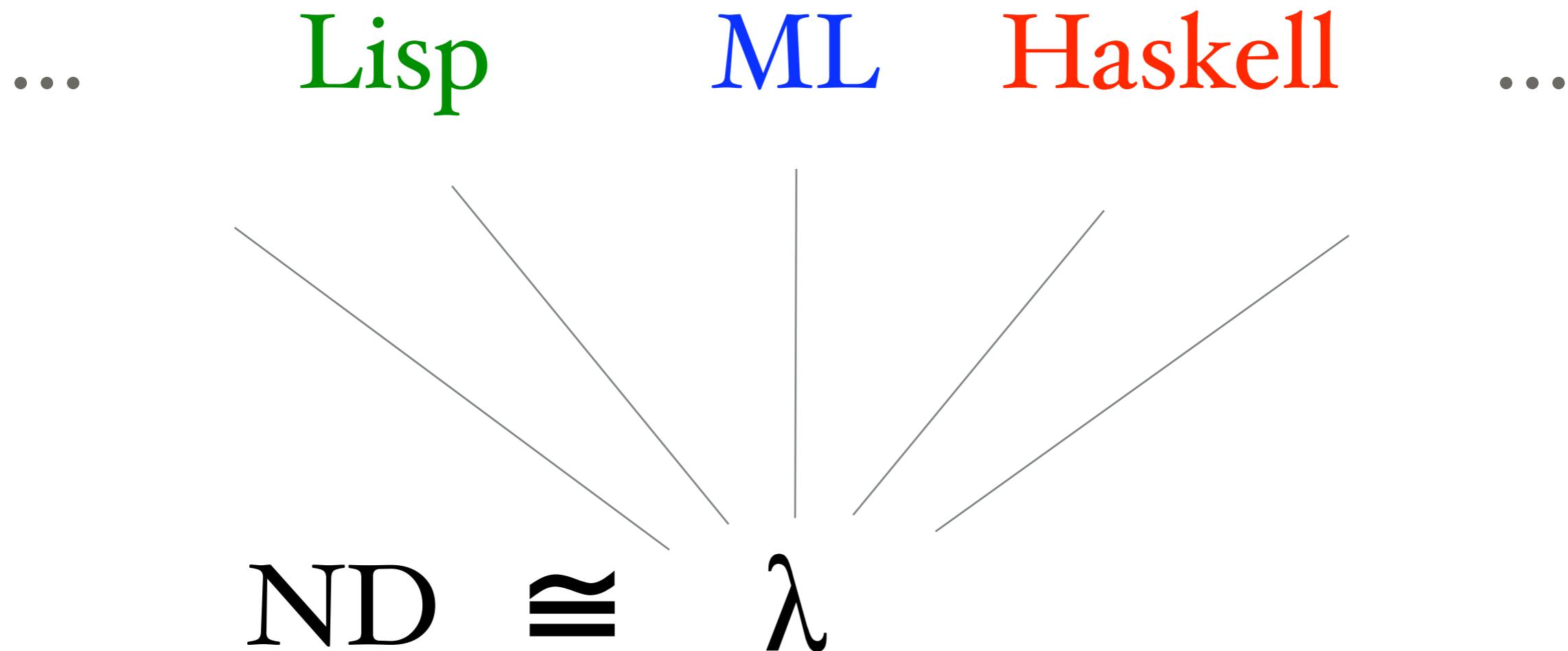
A remarkable ~~analogy~~ isomorphism

Natural Deduction



Lambda Calculus

The foundation of FP



A shaky foundation?

Purely applicative languages are **often said to be based on a logical system called the lambda calculus**, or even to be “syntactically sugared” versions of the lambda calculus.... **However**, as we will see, although an unsugared applicative language is syntactically equivalent to the lambda calculus, **there is a subtle semantic difference**. Essentially, the “real” lambda calculus implies a different “order of application”...than most applicative programming languages.

—John Reynolds (1972)

Evaluation order

$$(2 + 3) * (5 - 7)$$

Evaluation order

$$(2 + 3) * (5 - 7)$$

Evaluation order

$$5 * (5 - 7)$$

Evaluation order

$$5 * (5 - 7)$$

Evaluation order

5 * -2

Evaluation order

5 * -2

Evaluation order

-10

Evaluation order

$$(2 + 3) * (5 - 7)$$

Evaluation order

$$(2 + 3) * (5 - 7)$$

Evaluation order

$$(2 + 3) * -2$$

Evaluation order

$$(2 + 3) * -2$$

Evaluation order

5 * -2

Evaluation order

5 * -2

Evaluation order

-10

Evaluation order

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

Evaluation order

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

Evaluation order

(2 + 3) * (print “ world!”; 5 - 7)

hello

Evaluation order

5 * (print “ world!”; 5 - 7)

hello

Evaluation order

$5 * (\text{print "world!"}; 5 - 7)$

hello

Evaluation order

$$5 * (5 - 7)$$

hello world!

Evaluation order

-10

hello world!

Evaluation order

(print “hello”; 2 + 3) * (print “ world!”; 5 - 7)

Evaluation order

```
(print "hello"; 2 + 3) * (print " world!"; 5 - 7)
```

Evaluation order

(print “hello”; 2 + 3) * (5 - 7)

world!

Evaluation order

(print “hello”; 2 + 3) * **-2**

world!

Evaluation order

(print “hello”; 2 + 3) * -2

world!

Evaluation order

$$(2 + 3)^* - 2$$

world!hello

Evaluation order

-10

world!hello

Evaluation order

Needed to make sense of *effects* (+ non-termination)

(I/O, mutable state, exceptions, callcc, ...)

Not determined by λ -calculus

⇒ Functional langs use many different strategies...

Connection lost with logic & natural deduction?

But wait, there's more...

Pattern-matching

```
data Nat : Set where
  zero : Nat
  suc  : Nat -> Nat

plus : Nat -> Nat -> Nat
plus zero      m = m
plus (suc n)  m = suc (plus n m)
```

Pattern-matching

Theorem 3.8. For any λ -geometry, $\bar{r}_\lambda \leq \sqrt{3}/2$.

Proof. Suppose $a = b = c = 1$. Using condition on angles of $\triangle ABC$ [14], we could compute the length of SMT. For this purpose, we consider the following three cases.

Case 1. $\lambda = 3m$. In this case we have $\bar{L}_s = 2$, $\bar{L}_m = \sqrt{3}$, $\bar{L}_s/\bar{L}_m = \sqrt{3}/2$.

Case 2. $\lambda = 3m + 1$. In this case we have

$$\bar{L}_s = \frac{1}{\sin m\pi/\lambda} + \frac{\sqrt{3}}{2} - \frac{1}{2} \frac{\sin(m+1)\pi/2\lambda}{\sin m\pi/\lambda} \text{ and } \bar{L}_m = 1 + \frac{\sin \pi/3\lambda + \sin 2\pi/3\lambda}{\sin \pi/\lambda}.$$

Note that

$$\frac{\bar{L}_s}{\bar{L}_m} \leq \frac{\sqrt{3}}{2} \text{ if and only if } \frac{\bar{L}_s - \sqrt{3}}{\bar{L}_m - 2} \leq \frac{\sqrt{3}}{2},$$

and

$$\frac{\bar{L}_s - \sqrt{3}}{\bar{L}_m - 2} = \frac{\sin \frac{\pi}{6\lambda} \cos \frac{\pi}{2\lambda}}{\sin \frac{m\pi}{\lambda} \sin \frac{\pi}{3\lambda}} \leq \frac{\cos \frac{\pi}{2\lambda}}{2 \sin \frac{\pi}{4} \cos \frac{\pi}{6\lambda}} \leq \frac{1}{2 \sin \frac{\pi}{4}} < \frac{\sqrt{3}}{2}.$$

Thus we have $\bar{L}_s/\bar{L}_m \leq \sqrt{3}/2$.

Case 3. $\lambda = 3m + 2$. In this case we have

$$\bar{L}_s = \frac{1}{\sin \frac{(m+1)\pi}{\lambda}} + \frac{\sqrt{3}}{2} - \frac{1}{2} \frac{\sin \frac{m\pi}{2\lambda}}{\sin \frac{(m+1)\pi}{\lambda}} \text{ and } \bar{L}_m = 1 + \frac{\sin \frac{\pi}{3\lambda} + \sin \frac{2\pi}{3\lambda}}{\sin \frac{\pi}{\lambda}}.$$

Pattern-matching

Nice notation for defining fns, and proofs-by-cases

- Enables equational reasoning
- Borrowed directly from mathematical practice...

But not available in natural deduction

Hmm...maybe natural deduction is not so natural?...

Thesis Statement

Focusing proofs give a logical account of evaluation order and pattern-matching

Focusing proofs

Andreoli '91: search strategy for linear logic sequent calculus

Exploits **polarity** of connectives $([\otimes, \oplus, 1, 0, !] \text{ vs } [\wp, \&, \top, \perp, ?])$

Extends to classical + intuitionistic logic by *polarization*

My work: new presentation of focusing proofs

- canonical forms of proof and refutation, in terms of **patterns**
- combines best features of sequent calculus and ND

Thesis Statement

Focusing proofs give a logical account of
evaluation order and pattern-matching

Thesis Statement, sub I

Evaluation order is encoded in polarity

⇒ one language can [should] mix different evaluation strategies, by reflecting them at the level of types

Thesis Statement, sub II

Pattern-matching is justified by polarity

⇒ pattern-matching is not just “syntactic sugar”: it can [should] be dealt with directly in type theory

Thesis Statement, punchline

Evaluation order and pattern-matching are two sides of the same coin.

This Talk

Some highlights from dissertation

- Polarity and patterns (and the meanings of the connectives)
- Proofs and programs (and pattern-generic reasoning)
- Polarization \leftrightarrow double-negation translation \leftrightarrow CPS
- Refinement types and subtyping

Related work and future work

Polarity and Patterns

What is a proposition [type]?

Built out of constants/connectives

$$A \vee \neg A \quad A \supset (B \wedge C) \quad \neg A \supset A$$

nat \times nat

string \rightarrow bool

But what do these connectives *mean*?

The approach of **proof-theoretic semantics**...

Pick your side

An introduction rule gives, so to say, a definition of the constant in question... — Gentzen (1935)

To explain the meaning of an implication $A \supset B$, we must explain what is the purpose... of a canonical proof... This purpose is to be applied to a canonical proof of... A , thereby yielding a canonical proof of... B . In no way is it correct to say that the meaning of $A \supset B$ is determined by the introduction rule... — Martin-Löf (1976)

Dummett's analysis

1976 William James Lectures

- Defined by intros = “verificationist”
- Defined by elims = “pragmatist”
- Described some difficulties for particular connectives...
- ...but required “harmony” between the two aspects

Embracing polarization

Dual approaches to understanding connectives really define *different connectives*

(Instead of requiring harmony, accept diversity!)

“ $A \otimes B$ ” vs. “ $A \& B$ ”, etc.

Subject of my thesis: **polarized logic** (every prop has polarity)

Syntax of polarized propositions [types]

$$A^+ ::= A^+ \otimes B^+ \mid A^+ \oplus B^+ \mid 1 \mid 0$$
$$\mid \neg A^+ \mid A^{-\perp} \mid \downarrow A^-$$
$$\mid \text{nat} \mid \dots$$

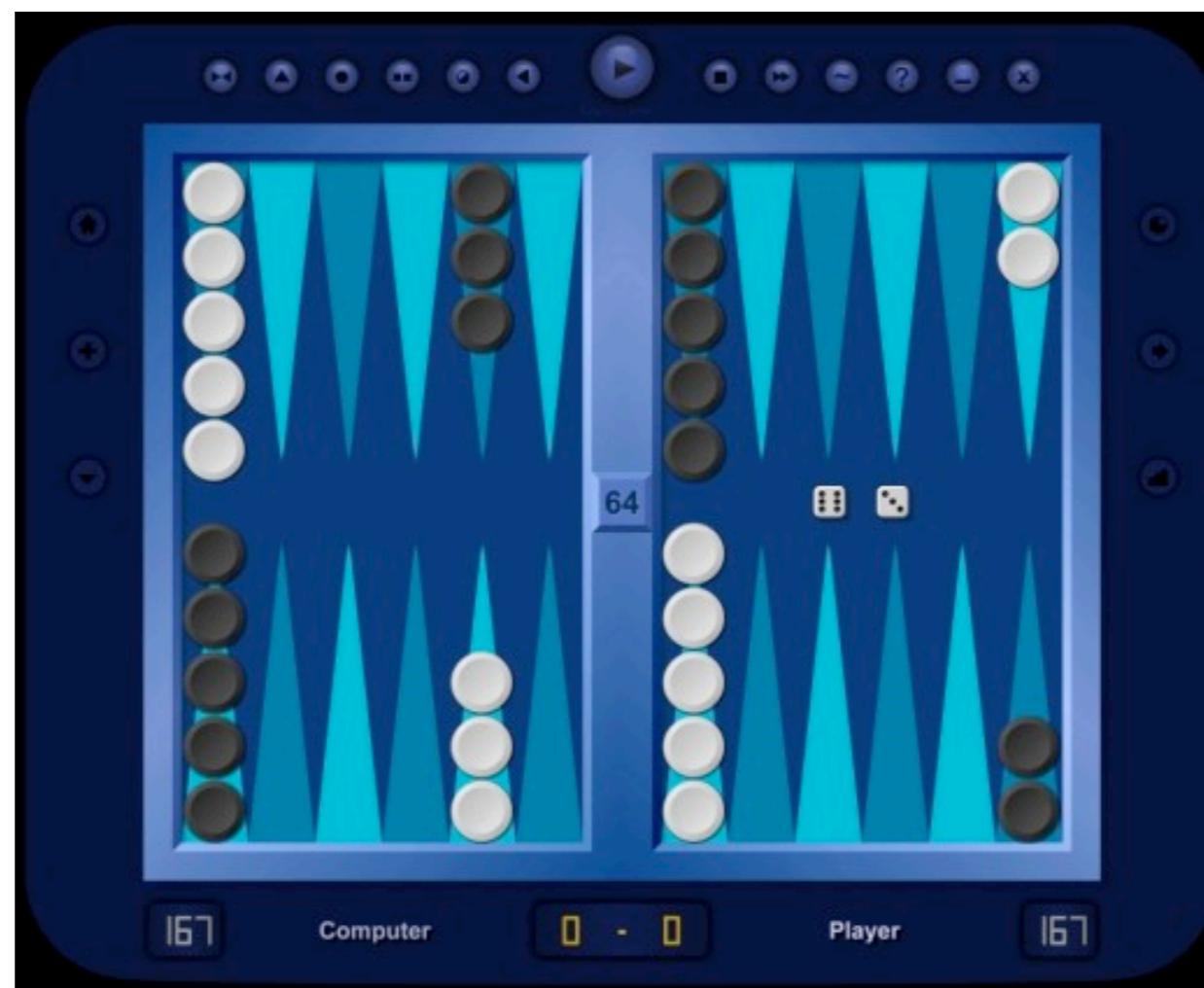
Intuition: + **eager**, - **lazy**

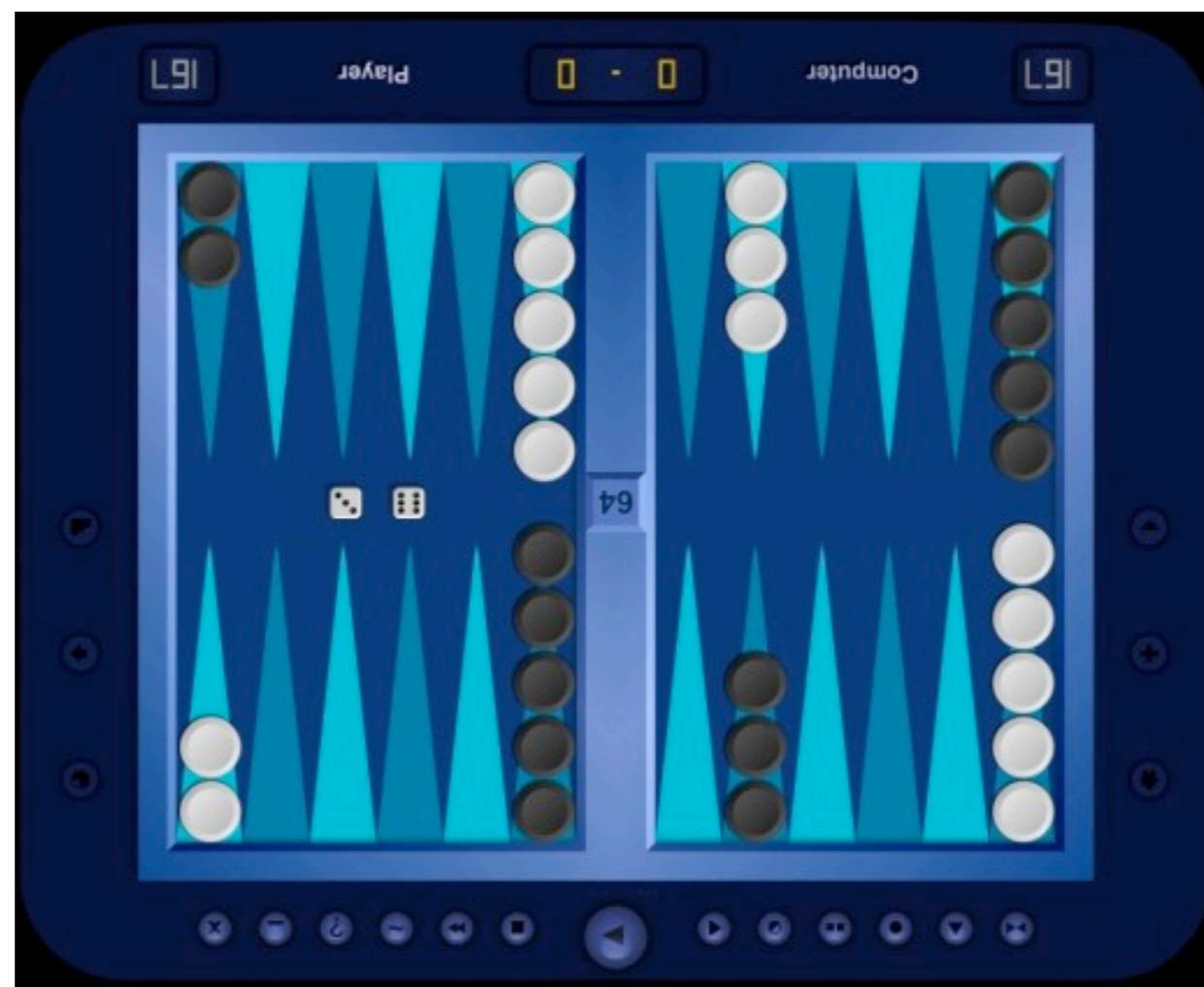
$$A^- ::= A^- \& B^- \mid A^- \wp B^- \mid \top \mid \perp$$
$$\mid \neg A^- \mid A^{+\perp} \mid \uparrow A^+$$
$$\mid A^+ \rightarrow B^- \mid \dots$$

Polarity in game-theoretic semantics

Prop A describes a game between Verifier and Refuter

- Lorenzen60, Henkin61, Blass92, ...
- A true if winning strategy for Verifier
- Polarity = **who moves first**





Polarity from patterns

Idea: *define* connectives by shapes of canonical inference

- + connectives defined by **proof patterns**
- – connectives defined by **refutation patterns**

Patterns are “derivations with holes”...

- **Refutation holes** for + propositions
- **Proof holes** for – propositions

Patterns, formally

Frame (list of holes):

$$\Delta ::= \cdot \mid (\Delta_1, \Delta_2) \mid A^+ \text{ false} \mid A^- \text{ true}$$

A **proof pattern** is a derivation of $\Delta \Vdash A^+ \text{ true}$

A **refutation pattern** is a derivation $\Delta \Vdash A^- \text{ false}$

\Vdash is like linear entailment (but connectives nonlinear!)

Rules for \Vdash define the connectives...

Syntax of polarized propositions [types]

$$A^+ ::= A^+ \otimes B^+ \mid A^+ \oplus B^+ \mid 1 \mid 0$$
$$\mid \neg A^+ \mid A^{-\perp} \mid \downarrow A^-$$
$$\mid \text{nat} \mid \dots$$
$$A^- ::= A^- \& B^- \mid A^- \wp B^- \mid \top \mid \perp$$
$$\mid \neg A^- \mid A^{+\perp} \mid \uparrow A^+$$
$$\mid A^+ \rightarrow B^- \mid \dots$$

Some positive connectives

$$\frac{\Delta_1 \Vdash A^+ \text{ true } \Delta_2 \Vdash B^+ \text{ true}}{\Delta_1 \Delta_2 \Vdash A^+ \otimes B^+ \text{ true}}$$

$$\frac{}{A^+ \text{ false } \Vdash \neg A^+ \text{ true}}$$

$$\frac{\Delta \Vdash A^+ \text{ true} \qquad \Delta \Vdash B^+ \text{ true}}{\Delta \Vdash A^+ \oplus B^+ \text{ true} \qquad \Delta \Vdash A^+ \oplus B^+ \text{ true}}$$

Some negative connectives

$$\frac{\Delta_1 \Vdash A^- \text{ false} \quad \Delta_2 \Vdash B^- \text{ false}}{\Delta_1 \Delta_2 \Vdash A^- \wp B^- \text{ false}}$$

$$A^- \text{ true} \Vdash \neg A^- \text{ false}$$
$$\frac{\Delta \Vdash A^- \text{ false}}{\Delta \Vdash A^- \& B^- \text{ false}}$$
$$\frac{\Delta \Vdash B^- \text{ false}}{\Delta \Vdash A^- \& B^- \text{ false}}$$

Some polarity mixing connectives

$$\frac{\Delta_1 \Vdash A^+ \text{ true } \Delta_2 \Vdash B^- \text{ false}}{\Delta_1 \Delta_2 \Vdash A^+ \rightarrow B^- \text{ false}}$$

$$A^- \text{ true } \Vdash \downarrow A^- \text{ true}$$

$$A^+ \text{ false } \Vdash \uparrow A^+ \text{ false}$$

$$\Delta \Vdash A^- \text{ false}$$

$$\Delta \Vdash A^{-\perp} \text{ true}$$

$$\Delta \Vdash A^+ \text{ true}$$

$$\Delta \Vdash A^{+\perp} \text{ false}$$

The basic analogy

proof = value
refutation = continuation

⇒ proof patterns = value patterns

- like in FP
- *linear* (like in FP)

refutation patterns = continuation patterns

- like in FP, if you squint

A type-free notation...

Connective	π	Patterns
$A^+ \otimes B^+$	+	(p_1, p_2)
$A^+ \oplus B^+$	+	inl p inr p
1	+	$()$
0	+	none
$\neg A^+$	+	k

Connective	π	Patterns
$A^- \& B^-$	-	fst; d snd; d
$A^- \wp B^-$	-	$[d_1, d_2]$
\top	-	none
\perp	-	$[]$
$\neg A^-$	-	x

A type-free notation...

Connective	π	Patterns
$\downarrow A^-$	+	x
$\uparrow A^+$	-	k
$A^+ \rightarrow B^-$	-	$p @ d$
nat	+	z $s\ p$
	⋮	

Proofs and Programs

Once we have understood how to discover individual patterns which are alive, we may then make a language for ourselves, for any building task we face.

—Christopher Alexander

From patterns to programs

Rule of (positive) proof:

$$\frac{\Delta \Vdash A^+ \text{ true} \quad \Gamma \vdash \Delta}{\Gamma \vdash A^+ \text{ true}}$$

From patterns to programs

Rule of (positive) values:

$$\frac{\begin{array}{c} \text{pattern} \\ \Delta \Vdash A^+ \text{ true} \end{array} \qquad \begin{array}{c} \text{substitution} \\ \Gamma \vdash \Delta \end{array}}{\Gamma \vdash A^+ \text{ true}}$$

$V = p[\sigma]$

(a few obvious rules for building σ s)

From patterns to programs

Rule of (positive) values:

$$\frac{\begin{array}{c} \text{pattern} \\ \Delta \Vdash A^+ \text{ true} \end{array} \qquad \begin{array}{c} \text{substitution} \\ \Gamma \vdash \Delta \end{array}}{\Gamma \vdash A^+ \text{ true}}$$

$V = p[\sigma]$

slogan: **a value (of + type) is a pattern under a substitution**

An illustration from ML...

$(\text{fn } x \Rightarrow x*x, \text{fn } x \Rightarrow x-3)$

The diagram illustrates the conversion of a lambda expression into a let-expression. At the top, the lambda expression $(\text{fn } x \Rightarrow x*x, \text{fn } x \Rightarrow x-3)$ is shown. Two arrows point downwards to the resulting let-expression. The first arrow points to the opening bracket of the let-expression. The second arrow points to the word "in". The let-expression is enclosed in large brackets: $\left[\begin{matrix} \text{let val } f = \text{fn } x \Rightarrow x*x \\ \text{val } g = \text{fn } x \Rightarrow x-3 \\ \text{in} \end{matrix} \right]$.

```
let val f = fn x => x*x
val g = fn x => x-3
in
```

(f, g)

From patterns to programs

Rule of (positive) refutation:

$$\frac{\Delta \Vdash A^+ \text{ } true \longrightarrow \Gamma, \Delta \vdash \#}{\Gamma \vdash A^+ \text{ } false}$$

(notation from IID)

From patterns to programs

Rule of (positive) continuations:

$$\frac{\begin{array}{c} \text{pattern} & \text{expression} \\ \Delta \Vdash A^+ \text{ true} & \longrightarrow \Gamma, \Delta \vdash \# \end{array}}{\Gamma \vdash A^+ \text{ false}}$$

$K = p \rightarrow E$ (second-order definition of syntax!)

(a few simple rules for building E s)

From patterns to programs

Rule of (positive) continuations:

$$\frac{\begin{array}{c} \text{pattern} & \text{expression} \\ \Delta \Vdash A^+ \text{ true} & \longrightarrow \Gamma, \Delta \vdash \# \end{array}}{\Gamma \vdash A^+ \text{ false}}$$

$K = p \rightarrow E$ (second-order definition of syntax!)

slogan: **a continuation (of + type) is a map from patterns to expressions**

Another illustration from ML...

(* pattern-matching function *)

Exercise in duality

$$\frac{\Delta \Vdash A^+ \text{ true} \quad \Gamma \vdash \Delta}{\Gamma \vdash A^+ \text{ true}}$$

$$\frac{\Delta \Vdash A^+ \text{ true}}{\Gamma, \Delta \vdash \#} \longrightarrow \Gamma \vdash A^+ \text{ false}$$

Exercise in duality

$$\frac{\Delta \Vdash A^+ \text{ true} \quad \Gamma \vdash \Delta}{\Gamma \vdash A^+ \text{ true}} \qquad \frac{\Delta \Vdash A^+ \text{ true} \quad \longrightarrow \quad \Gamma, \Delta \vdash \#}{\Gamma \vdash A^+ \text{ false}}$$

So much time and so little to do. Wait a minute.
Strike that. Reverse it.

—Willy Wonka

Exercise in duality

$$\frac{\Delta \Vdash A^+ \text{ true} \quad \Gamma \vdash \Delta}{\Gamma \vdash A^+ \text{ true}}$$

$$\frac{\Delta \Vdash A^+ \text{ true} \quad \longrightarrow \quad \Gamma, \Delta \vdash \#}{\Gamma \vdash A^+ \text{ false}}$$

$$\frac{\Delta \Vdash A^- \text{ false} \quad \longrightarrow \quad \Gamma, \Delta \vdash \#}{\Gamma \vdash A^- \text{ true}}$$

$$\frac{\Delta \Vdash A^- \text{ false} \quad \Gamma \vdash \Delta \quad \longrightarrow \quad \Gamma \vdash A^- \text{ false}}{\Gamma \vdash A^- \text{ false}}$$

(compare direct/indirect proof/refutation)

(think of $V : A \rightarrow B$ defined by pattern-matching)

General observations

Language intrinsically forces CPS + pattern-matching

Rules of proof and refutation are *generic* in terms of patterns

⇒ Can often reason about programs in type-generic way

Generalizes (and improves) untyped reasoning

Equational theory

Admissibility of cut = composition of terms ($\sim \beta$ -reduction)

- value V + continuation $K \Rightarrow$ expression $K \bullet V$
- term t + substitution $\sigma \Rightarrow$ term $t[\sigma]$
- (only defined when types line up, but defined generically)

Admissibility of initial sequents = identity terms ($\sim \eta$ -expansion)

- continuation Id_k , substitution $Id_{[\Delta]}$

Satisfy suitable unit and associativity properties

Operational semantics

Small-step, environment semantics (= **cut-elimination** proc.)

Two generic rules for all positive types! (2 more 4 -...)

$$\langle \gamma \mid k \ V \rangle \sim \langle \gamma \mid \gamma(k) \mid V \rangle$$

$$\langle \gamma \mid K \mid p[\sigma] \rangle \sim \langle \gamma; \sigma \mid K(p) \rangle$$

Can extend language with effects...

Definition: $E_1 \cong E_2$ iff same result in all γ

Theorem: $E_1 \neq E_2$ implies $E_1 \not\cong E_2$ w/abort + ground state

“Implementation”

Two embeddings:

- In Agda (use IID to directly encode higher-order rules)
- In Twelf (use defunctionalization to get rid of them)

Both piggyback on existing implementations of (dependent) pattern-matching to get “pattern-matching for free”

But a lower-level implementation could be instructive...

Polarization, DNT, CPS

Polarization

Define $|A| = b$:

$$|1| = T = |\top|$$

$$|0| = F = |\perp|$$

$$|A \otimes B| = |A| \wedge |B| = |A \& B| \quad |A \oplus B| = |A| \vee |B| = |A \& B|$$

$$|\downarrow A| = |A| = |\uparrow A|$$

$$|A \rightarrow B| = |A| \supset |B|$$

etc.

Definition: A is a **polarization** of b if $|A|$ and b are classically equivalent.

Completeness of focusing

Theorem: Let A^+ be a polarization of b . If b is a classically theorem, then $A^+ \text{ false} \vdash \#$.

Theorem: Let A^- be a polarization of b . If b is a classically theorem, then $\vdash A^- \text{ true}$.

Translation into minimal logic

Define $A^m = b$:

$$1^m = T = \perp^m \qquad |0| = F = \top^m$$

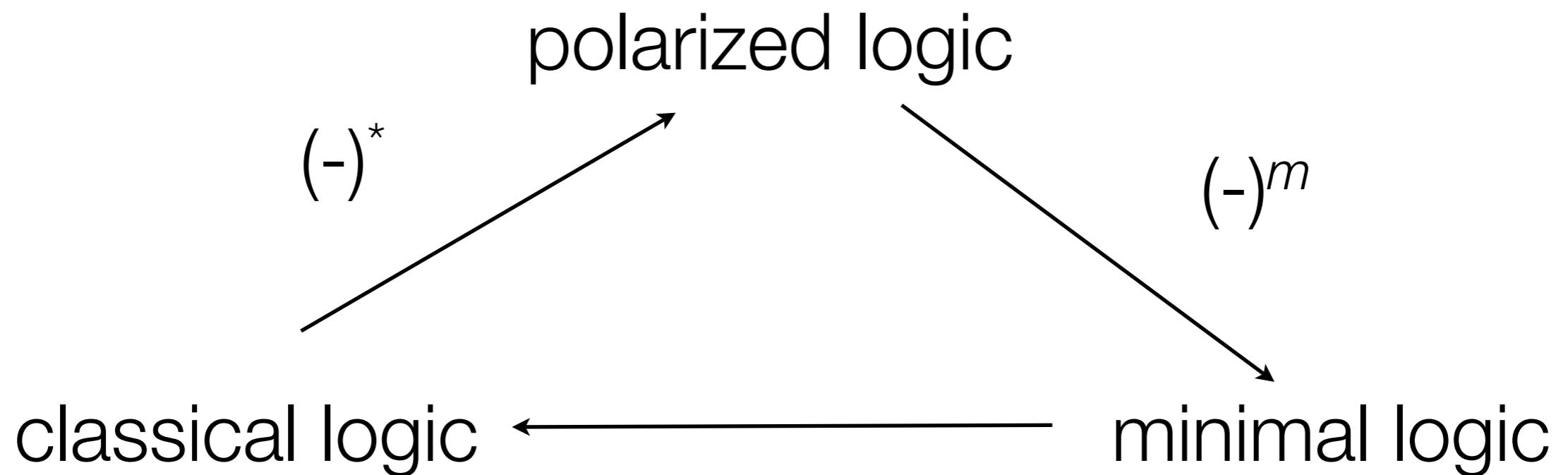
$$(A \otimes B)^m = A^m \wedge B^m = (A^m \wp B^m) \quad (A \oplus B)^m = A^m \vee B^m = (A \& B)^m$$

$$(\downarrow A)^m = \sim A^m = (\uparrow A)^m \quad (A \rightarrow B)^m = A^m \wedge B^m$$

etc.

Theorem: If $A^+ \text{ false} \vdash \#$ then $\sim\sim A^{+m}$ is a minimal theorem. If $\vdash A^- \text{ true}$ then $\sim A^{-m}$ is a minimal theorem

Double-negation [CPS] translation

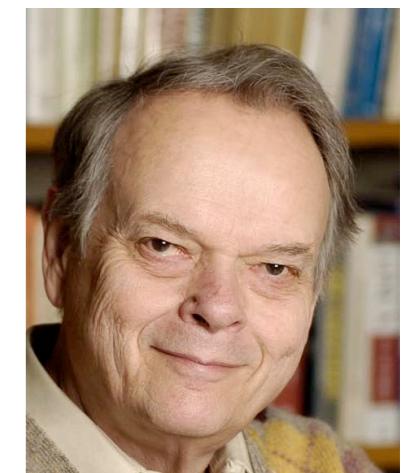


different polarizations \Rightarrow different CPS translations

The polarity jungle

Polarizations of the function space:

Polarization	CPS translation
$\downarrow(A^+ \rightarrow \uparrow B^+)$	Reynolds CBV
$\downarrow A^- \rightarrow B^-$	Streicher CBN
$\uparrow \downarrow(\downarrow A^- \rightarrow B^-)$	Plotkin CBN
$\neg A^+ \oplus B^+$??
\vdots	\vdots



Polarity pocket dictionary

Rough guide to ML:

ML type	+ type
$A \rightarrow B$	$\downarrow(A \rightarrow \uparrow B)$
$A * B$	$A \otimes B$
$A + B$	$A \oplus B$

Rough guide to Haskell:

Haskell type	- type
$A \rightarrow B$	$\downarrow A \rightarrow B$
(A, B)	$A \& B$
Either A B	$\uparrow(\downarrow A \oplus \downarrow B)$

From Intrinsic To Extrinsic Types

What is a type?

Intrinsic (“Church”) vs extrinsic (“Curry”) interpretations

Above: intrinsically-typed terms, but type-free notation

- A type is a promise about the way a program is structured
- But doesn’t promise very much...

Chap. 6: extrinsic **refinement** of intrinsically-typed terms

- Static guarantee of richer properties
- intersection & union types, subtyping, etc.
- Freeman-Pf.91, Freeman94, Xi98, Davies05, Dunfield07...

Sorts refine types

$$S \sqsubseteq A$$

Examples:

$$\text{even} \sqsubseteq \text{nat}$$

$$\text{odd} \sqsubseteq \text{nat}$$

$$\text{pos} \sqsubseteq \text{nat}$$

$$\text{even} \sqcap \text{odd} \sqsubseteq \text{nat}$$

$$\text{even} \sqcup \text{pos} \sqsubseteq \text{nat}$$

$$\text{even} \rightarrow \text{even} \sqsubseteq \text{nat} \rightarrow \text{nat}$$

(\sqsubseteq is not subtyping!)

Summary

Sorts **defined** by *pattern-inversion*

Sort-generic refinement typing rules

Sort-generic safety theorem for environment semantics

Value + evaluation context restrictions reconstructed

Two interpretations of subtyping...

Subtyping

Identity coercion interpretation:

$$S \leq T \text{ iff } k : T \text{ false } \vdash Id_k : S \text{ false}$$

(or equivalent coercions)

No-counterexamples interpretation:

$$S \leq T \text{ iff every } V : S \text{ true and } K : T \text{ false are safe}$$

Soundness: $S \leq T$ implies $S \leq T$ (explicit witness to safety)

Completeness: $S \not\leq T$ implies $S \not\leq T$, given enough effects

e.g., safety violations of $\neg\neg S \cap \neg\neg T \leq \neg\neg(S \cap T)$, etc.

Conclusions

Thesis Contributions

Focusing proofs as a new take on proofs-as-programs that...

- accounts for important features of modern PLs
- allows mixing of evaluation strategies, and definition of types by either constructors or destructors
- uniformly accounts for untyped computation, intrinsic types, and extrinsic refinement types
- is in many ways *easier* to reason about meta-theoretically, by pattern-generic arguments (cf. infinitary proof theory)

Related Work

Lots of it! See thesis...

Most closely related: ludics, and Levy's call-by-push-value...

- Very ~ distinction between *value* and *computation types*
- Very \nsim origin (trying to unite models of CBV and CBN)
- Complementary viewpoints

Some unexpected connections

- Realizability (BHK, NuPRL, Krivine, etc.)
- Infinitary proof theory (Buchholz' Ω -rule, Mints78, etc.)

Future Work, abstractly

programming
languages

polarized
type theory

More concretely...

Extend polarized approach to more high-powered type theory

- Dependent types (meta-circular!) [cf. Licata&Harper09]
- Polymorphism [cf. Lassen&Levy08, for CBPV]
- Pronominal binding [LZH08], module systems, etc.
- Hopefully sheds light on how to do effects and equality...

Full compiler for HOT language w/effects

- Systematic construction, from proof-theoretic principles?
- Relation to line of work initiated by Danvy03?

More concretely...

Better account of asynchronous/pure computation

- Linearity and modalities?
- Delimited continuations?

Categorical/topological/algebraic semantics...

Thanks!

Focusing proofs as a new take on proofs-as-programs that...

- accounts for important features of modern PLs
- allows mixing of evaluation strategies, and definition of types by either constructors or destructors
- uniformly accounts for untyped computation, intrinsic types, and extrinsic refinement types
- is in many ways *easier* to reason about meta-theoretically, by pattern-generic arguments (cf. infinitary proof theory)

any questions?