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Only the pattern
matters
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Being vs doing

What is polarity? One possible interpretation:

• Positive = “defined” by verification (intro rule)

• Negative = “defined” by use (elim rule)

This kind of duality is an old idea. . .

• Brouwer, Wittgenstein, Dummett, Martin-Löf, . . .

• Abramsky, Melliès, . . .

• Curien & Herbelin, Selinger, P-B Levy, McBride, . . .
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A new idea. . .

Build focused sequent calculus in two stages

1. Define restricted, linear entailment (“pattern-typing”)

2. Define arbitrary entailment (“program-typing”)

Duality made explicit

• Positive = constructor patterns

• Negative = destructor patterns

• Focus = ∃ pattern, Inversion = ∀ patterns

Curry-Howard: pattern-matching and evaluation order
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. . . but kind of an old idea

Buchholz’ Ω-rule and IID

Schroeder-Heister’s definitional reflection

More on these connections later. . .
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Initial setting

Polarized intuitionistic logic:

A+, B+ ::= 1 | A+ ⊗ B+ | 0 | A+ ⊕ B+ | N | . . .

| X+ | ↓A−

A−, B− ::= ⊤ | A−
NB− | A+ → B− | NA− | . . .

| X− | ↑A+

Intuitionistic restriction only for intuition. . .
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Hypotheses, conclusions, contexts

Hypothesis h ::= X+ | A−

Conclusion c ::= X− | A+

Linear Context ∆ ::= · | ∆, h

Inductive hyp : Set :=
PAtomH : atom -> hyp | NegH : neg -> hyp.

Inductive conc : Set :=
NAtomC : atom -> conc | PosC : pos -> conc.

Definition linctx := list hyp.
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Patterns
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Constructor patterns

Positive connectives defined by judgment ∆ 
 A+

X+

 X+ A−


 ↓A−

· 
 1
∆1 
 A+ ∆2 
 B+

∆1,∆2 
 A+ ⊗ B+

(no rule for 0)
∆ 
 A+

∆ 
 A+ ⊕ B+
∆ 
 B+

∆ 
 A+ ⊕ B+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· 
 N

∆ 
 N

∆ 
 N
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Coq. . .

Inductive patP : linctx -> pos -> Set :=
| c_avar : forall X+,

patP [ PAtomH X ] (PAtom X)
| c_nvar : forall A-,

patP [ NegH A- ] (↓ A-)
| c_unit : patP nil One
| c_pair : forall ∆1 ∆2 A+ B+,

patP ∆1 A+ -> patP ∆2 B+ ->
patP (∆1 ++ ∆2) (A+ ⊗ B+)

| c_in1 : forall ∆ A+ B+,
patP ∆ A+ -> patP ∆ (A+ ⊕ B+)

| c_in2 : forall Delta A+ B+,
patP ∆ B+ -> patP ∆ (A+ ⊕ B+)

| ...
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Destructor patterns

Negative connectives defined by judgment ∆;A−

 c

·;X−

 X− ·; ↑A+


 A+

(no rule for ⊤)

∆;A−

 c

∆;A−
NB−


 c

∆;B−

 c

∆;A−
NB−


 c

∆1 
 A+ ∆2;B
−

 c

∆1,∆2;A
+ → B−


 c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆;A−

 c

∆; NA−

 c

∆; NA−

 c

∆; NA−

 c
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Coq. . .

Inductive patN : linctx -> neg -> conc -> Set :=
| d_aid : forall X-,

patN nil (NAtom X-) (NAtomC X-)
| d_pid : forall A+,

patN nil (↑ A+) (PosC A+)
| d_pi1 : forall ∆ A- B- c,

patN ∆ A- c ->
patN ∆ (A- & B-) c

| d_pi2 : forall ∆ A- B- c,
patN ∆ B- c ->
patN ∆ (A- & B-) c

| d_app : forall ∆1 ∆2 A+ B- c,
patP ∆1 A+ -> patN ∆2 B- c ->
patN (∆1 ++ ∆2) (A+ → B-) c

| ...
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</connectives>
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Focusing
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Contexts, judgments

Unrestricted contexts Γ ::= · | Γ,∆

Γ ⊢ [A+] right-focus

Γ; c0 ⊢ c left-inversion

Γ ⊢ h right-inversion

Γ; [A−] ⊢ c left-focus

Γ ⊢ c unfocused

Γ ⊢ ∆ substitution
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Right-focus (positive value)

Γ ⊢ [A+]

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+]
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Right-focus (positive value)

Γ ⊢ [A+]

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+]

(C-H: value factors as pattern with substitution)
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Right-focus (positive value)

Γ ⊢ [A+]

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+]

(C-H: value factors as pattern with substitution)

Γ ⊢ B−
1 , B−

2

Γ ⊢ [↓A− ⊕ (↓B−
1 ⊗ ↓B−

2 )]
(B−

1 ,B−

2 
 )
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Right-focus (positive value)

Γ ⊢ [A+]

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+]

(C-H: value factors as pattern with substitution)

Γ ⊢ B−
1 Γ ⊢ B−

2

Γ ⊢ [↓A− ⊕ (↓B−
1 ⊗ ↓B−

2 )]
(B−

1 ,B−

2 
 )
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Left-inversion (positive continuation)

Γ; c0 ⊢ c

Γ;X− ⊢ X−

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A+ ⊢ c
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Left-inversion (positive continuation)

Γ; c0 ⊢ c

Γ;X− ⊢ X−

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A+ ⊢ c

(C-H: continuation defined by “abstract higher-order syntax”)
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Left-inversion (positive continuation)

Γ; c0 ⊢ c

Γ;X− ⊢ X−

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A+ ⊢ c

(C-H: continuation defined by “abstract higher-order syntax”)

Γ, A− ⊢ c Γ, B−
1 , B−

2 ⊢ c

Γ; ↓A− ⊕ (↓B−
1 ⊗ ↓B−

2 ) ⊢ c
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Left-inversion (positive continuation)

Γ; c0 ⊢ c

Γ;X− ⊢ X−

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A+ ⊢ c

This is Buchholz’ Ω-rule!
(As special case, ω-rule for N)

(C-H: continuation defined by “abstract higher-order syntax”)

Γ, A− ⊢ c Γ, B−
1 , B−

2 ⊢ c

Γ; ↓A− ⊕ (↓B−
1 ⊗ ↓B−

2 ) ⊢ c
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Coq. . .

Inductive rfoc : intctx -> pos -> Set :=
| ValP : forall Γ A+ ∆,

patP ∆ A+ -> satctx Γ ∆ ->
rfoc Γ A+

with linv : intctx -> conc -> conc -> Set :=
| IdXN : forall Γ X,

linv Γ (NAtomC X) (NAtomC X)
| ConP : forall Γ A+ c,

(forall ∆,
patP ∆ A+ -> unfoc (∆ :: Γ) c) ->

linv Γ (PosC A+) c

with ...
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Right-inversion (negative value)

Γ ⊢ h

X+ ∈ Γ
Γ ⊢ X+

∀(∆;A−

 c) : Γ,∆ ⊢ c

Γ ⊢ A−
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Right-inversion (negative value)

Γ ⊢ h

X+ ∈ Γ
Γ ⊢ X+

∀(∆;A−

 c) : Γ,∆ ⊢ c

Γ ⊢ A−

(C-H: lazy value, defined by matching against observations)
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Right-inversion (negative value)

Γ ⊢ h

X+ ∈ Γ
Γ ⊢ X+

∀(∆;A−

 c) : Γ,∆ ⊢ c

Γ ⊢ A−

(C-H: lazy value, defined by matching against observations)

Γ, A− ⊢ B+
1 Γ, A− ⊢ B+

2

Γ ⊢ ↓A− → ↑B+
1 N↑B+

2
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Left-focus (negative continuation)

Γ; [A−] ⊢ c

∆;A−

 c0 Γ ⊢ ∆ Γ; c0 ⊢ c

Γ; [A−] ⊢ c
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Left-focus (negative continuation)

Γ; [A−] ⊢ c

∆;A−

 c0 Γ ⊢ ∆ Γ; c0 ⊢ c

Γ; [A−] ⊢ c

(C-H: continuation for a lazy value)
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Left-focus (negative continuation)

Γ; [A−] ⊢ c

∆;A−

 c0 Γ ⊢ ∆ Γ; c0 ⊢ c

Γ; [A−] ⊢ c

(C-H: continuation for a lazy value)

Γ ⊢ A− Γ;B+
1 ⊢ c

Γ; [↓A− → ↑B+
1 N↑B+

2 ] ⊢ c
(A−; 
B+

1 )
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Unfocused sequents and substitutions

Γ ⊢ [A+]

Γ ⊢ A+

A− ∈ Γ Γ; [A−] ⊢ c

Γ ⊢ c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ⊢ ·

Γ ⊢ ∆ Γ ⊢ h

Γ ⊢ ∆, h

(Asymmetry of intuitionistic logic)
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Properties
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Identity principles

1. Γ; c ⊢ c

2. If h ∈ Γ then Γ ⊢ h

3. Γ,∆ ⊢ ∆

Defined mutually, e.g. (2) reduces to (1) and (3):

∀(∆;A−

 c) :

Γ,∆ ⊢ ∆ Γ,∆; c ⊢ c

Γ,∆; [A−] ⊢ c
(∆;A−


c)

Γ,∆ ⊢ c
(A−∈Γ)

Γ ⊢ A−
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Cut principles

1. If Γ ⊢ [A+] and Γ;A+ ⊢ c then Γ ⊢ c

2. If Γ ⊢ A− and Γ; [A−] ⊢ c then Γ ⊢ c

3. (a) If Γ ⊢ c0 and Γ; c0 ⊢ c then Γ ⊢ c

(b) If Γ; [A−] ⊢ c0 and Γ; c0 ⊢ c then Γ; [A−] ⊢ c

(c) If Γ; c1 ⊢ c0 and Γ; c0 ⊢ c then Γ; c1 ⊢ c

4. If Γ ⊢ ∆ and Γ,∆ ⊢ J then Γ ⊢ J

For the proof-theorists:
(1) and (2) are principal cuts
(3) are left-commutative cuts
(4) are right-commutative cuts
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Cut principles

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+] cut

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A− ⊢ c
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Cut principles

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+] cut

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A− ⊢ c

 

Γ ⊢ ∆ cut Γ,∆ ⊢ c
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Cut principles

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+] cut

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A− ⊢ c

 

Γ ⊢ ∆ cut Γ,∆ ⊢ c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ⊢ ∆ Γ ⊢ A−

Γ ⊢ ∆, A− cut

Γ, (∆, A−); [A−] ⊢ c

Γ, (∆, A−) ⊢ c
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Cut principles

∆ 
 A+ Γ ⊢ ∆
Γ ⊢ [A+] cut

∀(∆ 
 A+) : Γ,∆ ⊢ c

Γ;A− ⊢ c

 

Γ ⊢ ∆ cut Γ,∆ ⊢ c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ⊢ ∆ Γ ⊢ A−

Γ ⊢ ∆, A− cut

Γ, (∆, A−); [A−] ⊢ c

Γ, (∆, A−) ⊢ c

 

Γ ⊢ A− cut Γ; [A−] ⊢ c
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Modularity

The proofs of identity and cut are completely generic!
(No connective mentioned.)

Though not necessarily terminating. . .

• ∆ 
 A+ and ∆;A−

 c induce a subformula ordering

• Ask whether it is well-founded

Modularity is nice:

• Simple cut-elimination for powerful logics (cf. Buchholz)

• Can add new connectives without worrying too much. . .
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From AHOS to HOAS
(joint work with Dan Licata and Bob Harper)
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A reflection on ∇

Definitional reflection defines propositional constants by rules:

A1 . . . An

P

Notation: P ⇐ A1 ⇐ . . . ⇐ An

∇x.A introduces a new, scoped term constant

Idea: can we introduce new, scoped rules?
(C-H: scoped constructor patterns)

28



Definitional variation

Pattern-typing indexed by signature

Ψ; ∆ 
 A+ Ψ; ∆;A−

 c

Pattern-typing for definitions:

P ⇐ A+
1 ⇐ . . . ⇐ A+

n ∈ Ψ
Ψ; ∆1 
 A+

1 . . . Ψ; ∆n 
 A+
n

Ψ; ∆1, . . . ,∆n 
 P

Positive R ⇒ A+, negative R f A−

Ψ, R; ∆ 
 A+

Ψ; ∆ 
 R ⇒ A+

Ψ, R; ∆;A−

 c

Ψ; ∆;R f A−

 c

(C-H: higher-order patterns λu.p and [u]; d)
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Definitional variation (cont.)

Make (non-atomic) hypotheses & conclusions contextual

Hypothesis h ::= X+ | 〈Ψ〉A−

Conclusion c ::= X− | 〈Ψ〉A+

Reuse the same focusing rules! (And proofs of identity & cut.)

System implemented in Agda2

• Uses de Bruijn indices to implement higher-order patterns

• Ψ does not always obey substitution (or weakening)

• But generic substitution for LF fragment

• For details, see tech report
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Conclusions
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Focusing is awesome!
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Some directions & questions. . .

Proof theory

• More refined analysis of cut-elimination

• Second-order quantifiers (uniformity), dependent types

Programming languages

• Intersection & union types, dependent types

• Multiple polarities for notions of effects (Filinski, McBride)

Proof search

• Are Ω-rules useful?

• Proof search with effects?
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