
Modal BI and Separation Logic (DRAFT)

Noam Zeilberger

June 8, 2005

Abstract

We present modal BI and show that the necessary propositions are exactly the “pure” propositions,
in the sense of separation logic. We demonstrate the use of modal BI for reasoning with axioms and by
induction, and also relate 2 to the exponential modality !.

1 Introduction

Separation logic [10] is an extension of Hoare logic that was developed for reasoning about programs with
shared mutable data. At its heart is a novel logical operation called the “separating” conjunction ∗, which
coexists with the ordinary conjunction ∧. The basic intuition is that the assertion p ∗ q holds in a given
state only if the heap at that state can be split into disjoint parts, one in which p holds and the other in
which q holds—the extra condition of disjointness allows one to express non-aliasing of pointers much more
concisely than in ordinary Hoare Logic and thus prove correctness of programs using mutable store with
only “local” reasoning. In [4], Ishtiaq and O’Hearn noted a correspondence between separation logic and
O’Hearn and Pym’s logic of bunched implications (BI) [6], a substructural logic that combines a multiplicative
implication −∗ with an intuitionistic implication → to obtain “resource sensitivity” in a manner very different
from Girard’s linear logic [3] [9]. It turns out that separation logic can be viewed as a model of Boolean
BI (where → is classical), in which the atomic propositions are pointer assertions e1 7→ e2 (“the location
denoted by e1 contains the value denoted by e2”). Hence much of separation logic can be axiomatized as BI
together with a few axioms about the 7→ relation and arithmetic.

However, the correspondence is not perfect—real proofs in separation logic often require additional rea-
soning principles. For example, the proof of correctness of a garbage collector done in [2] took from [10]
and [11] a catalogue of special classes of assertions, along with specialized axiom schemata for manipulating
them. One such class that Reynolds defines is the “pure” assertions: an assertion p is said to be pure if for
any store (assignment to variables), p is independent of the heap. Another important class is the “precise”
assertions: an assertion p is precise if for any heap, there is at most one subheap that satisfies p. Additionally,
the proof in [2] and others (e.g. [12]) make use of abstract data structures such as lists and sets, with their
own set of axioms.

In this paper we take a step towards the formalization of separation logic by presenting modal BI. It turns
out that purity can be characterized exactly in terms of S4 necessity. Moreover, the pure modality seems
to be essential for reasoning from axioms or with inductive hypotheses, and hence for formalizing the use of
data structures in separation logic or programming with inductive types in a programming language. This is
related to recent work by Biering, Birkedal and Torp-Smith [1], in which they attempt to provide a semantic
foundation for all of separation logic by defining the notion of a BI hyperdoctrine and higher-order separation
logic. However, whereas they give a quite general semantics, we give a less general but conceptually very
simple proof system that could serve as the basis (via Curry-Howard) for a BI programming language or
type theory.

1

2 Modal BI: Syntax

2.1 BI overview

We begin by reviewing the natural deduction presentation of standard (intuitionistic) BI, adapted from
[6] and [8]. Formulas are built out of propositional atoms P using the additive connectives ∧,∨,→, the
multiplicative connectives ∗ and −∗, the additive units >,⊥, and the multiplicative unit I. Contexts are not
sets or multisets but rather “bunches”, given by the following grammar:

∆ ::= A | ∅a | (∆; ∆′) | ∅m | (∆,∆′)

A structural equivalence ≡ is defined on bunches by taking the commutative monoid equations on ; and ,
with units ∅a and ∅m respectively, together with the congruence induced by equivalence on sub-bunches.
Structural equivalence is reflected in the structural rule ≡:

∆ ` A ∆ ≡ ∆′

∆′ ` A
≡

The structural operators ∅a and ; correspond to the additives > and ∧, and obey weakening and contraction
through explicit structural rules:

∆ ` A
∆; ∆′ ` A

w
∆; ∆ ` A

∆ ` A
c

The structural operators ∅m and , correspond to the multiplicatives I and ∗, and do not have weakening or
contraction. The rest of the system is defined by the identity axiom A ` A, together with the logical rules
given below. Note that in the notation ∆′(∆), ∆′ stands for a meta-context, i.e. a context with a hole for a
context, which is filled in by ∆.

∆1 ` A ∆2 ` B

∆1,∆2 ` A ∗B
∗I

∆ ` A ∗B ∆′(A,B) ` C

∆′(∆) ` C
∗E

∆, A ` B

∆ ` A−∗B
−∗I ∆ ` A−∗B ∆′ ` B

∆,∆′ ` B
−∗E

∅m ` I
II

∆ ` I ∆′(∅m) ` C

∆′(∆) ` C
IE

∆1 ` A ∆2 ` B

∆1;∆2 ` A ∧B
∧I

∆ ` A ∧B ∆′(A;B) ` C

∆′(∆) ` C
∧E

∆; A ` B

∆ ` A→B
→I

∆ ` A→B ∆′ ` B
∆; ∆′ ` B

→E

∅a ` >
>I

∆ ` > ∆′(∅a) ` C

∆′(∆) ` C
>E

∆ ` A
∆ ` A ∨B

∨I1
∆ ` B

∆ ` A ∨B
∨I2

∆ ` A ∨B ∆(A) ` C ∆(B) ` C

∆′(∆) ` C
∨E

∆ ` ⊥
∆ ` C

⊥E

It is possible to derive the following rules for identity and the intuitionistic connectives, which build in
weakening and contraction:

∆; A ` A
id′

∆ ` A ∆ ` B
∆ ` A ∧B

∧I ′ ∆ ` A→B ∆ ` B
∆ ` B

→E′
∆ ` > >I ′

Note though that while these rules are derivable, we cannot directly use them in place of the system with
explicit structural rules—we would have to modify the introduction and elimination rules for the multiplica-
tive connectives as well to admit weakening and contraction, which results in a somewhat clunky system:
see the discussion in [5, §3.4].

2

BI has intuitionistic logic (IL) and multiplicative intuitionistic linear logic (MILL) as independent frag-
ments, but the interesting cases arise when they interact. For example, ∗ is (only) semidistributive over ∧,
in that (A ∧B) ∗C ` (A ∗C) ∧ (B ∗C) is valid but (A ∗C) ∧ (B ∗C) ` (A ∧B) ∗C is not. The following is
a proof of the first fact:

(A ∧B) ∗ C ` (A ∧B) ∗ C
id

A;B ` A
id′

C ` C
id

(A;B), C ` A ∗ C
∗I

(A ∧B) ∗ C ` A ∗ C
∧E, ∗E ...symmetric...

(A ∧B) ∗ C ` B ∗ C

(A ∧B) ∗ C ` (A ∗ C) ∧ (B ∗ C) ∧I ′

2.2 BI + 2

We now extend standard propositional BI with the S4 necessity operator 2. It may seem like we are setting
up a technical nightmare by adding modalities to a logic that already tests the limits of proof theory,
but it turns out that the extension can be made in a completely modular fashion. Pfenning and Davies
showed in [7] that a dual-zone judgment—with one context of true assumptions and a separate context of
necessary ones—can elegantly represent intuitionistic S4. Let us recall their presentation. After defining
a truth judgment A true, extending it to a hypothetical judgment ∆ ` A true (where ∆ is a set of true
assumptions), and giving introduction and elimination rules for the various logical connectives, they then
define what it means for a proposition to be necessary, or valid: A valid holds if and only if A true can be
proved from no assumptions, i.e. · ` A true. This then motivates a two zone judgment Γ;∆ ` A true where
Γ is a set of valid assumptions, and three new rules: one for using valid assumptions to make conclusions
about truth, and introduction and elimination rules for 2 to internalize the validity judgment:

A valid,Γ;∆ ` A true
hyp′

Γ; · ` A true

Γ;∆ ` 2A true
2I

Γ;∆ ` 2A true A valid,Γ;∆ ` C

Γ;∆ ` C true
2E

Modal BI is constructed by simply importing this structure. We define validity by saying that A valid
if and only if A can be proved from the empty additive context, i.e. ∅a ` A. Note this is a restriction of
the definition of a BI “theorem” from [8], which is any formula that can be proved from either ∅a or ∅m

(and proving from ∅m is strictly easier)—we will have more to say about this in Section 4. We then extend
the BI hypothetical judgment ∆ ` A to a dual-zone judgment Γ | ∆ ` A, where Γ is a flat context of valid
assumptions (we write | instead of ; to avoid confusion with the BI structural operator). The previously
defined rules simply carry Γ through, and we have a rule pure for applying valid assumptions (why this is
called “pure” will be explained in Section 3):

A,Γ | ∅a ` A
pure

Finally, introduction and elimination rules for 2 internalize validity:

Γ | ∅a ` A

Γ | ∅a ` 2A
2I

Γ |∆ ` 2A A,Γ |∆′(∅a) ` C

Γ |∆′(∆) ` C
2E

The complete formal system is summarized in Figure 1. Notice that it contains intuitionistic S4 (minus 3)
as a fragment—in fact, if we forget that the contexts are bunched and ignore the multiplicative connectives,
the system is the Pfenning-Davies presentation of modal logic, modulo the explicit structural rules—and the
following rules that implicitly maintain weakening and contraction are derivable:

A,Γ |∆ ` A
pure′

Γ | ∅a ` A

Γ |∆ ` 2A
2I ′

Γ |∆ ` 2A A,Γ |∆ ` C

Γ |∆ ` C
2E′

3

formulas
A,B ::= P | A ∗B | A−∗B | I | A ∧B | A→B | > | A ∨B | ⊥ | 2A

contexts
Γ ::= · | A,Γ
∆ ::= A | ∅a | (∆; ∆′) | ∅m | (∆,∆′)

structural

Γ |∆ ` A ∆ ≡ ∆′

Γ |∆′ ` A
≡

Γ |∆ ` A

Γ |∆; ∆′ ` A
w

Γ |∆; ∆ ` A

Γ |∆ ` A
c

Γ |A ` A
id

A,Γ | ∅a ` A
pure

multiplicative

Γ |∆1 ` A Γ |∆2 ` B

Γ |∆1,∆2 ` A ∗B
∗I

Γ |∆ ` A ∗B Γ |∆′(A,B) ` C

Γ |∆′(∆) ` C
∗E

Γ |∆, A ` B

Γ |∆ ` A−∗B
−∗I

Γ |∆ ` A−∗B Γ |∆′ ` B

Γ |∆,∆′ ` B
−∗E

Γ | ∅m ` I
II

Γ |∆ ` I Γ |∆′(∅m) ` C

Γ |∆′(∆) ` C
IE

additive

Γ |∆1 ` A Γ |∆2 ` B

Γ |∆1;∆2 ` A ∧B
∧I

Γ |∆ ` A ∧B Γ |∆′(A;B) ` C

Γ |∆′(∆) ` C
∧E

Γ |∆; A ` B

Γ |∆ ` A→B
→I

Γ |∆ ` A→B Γ |∆′ ` B

Γ |∆; ∆′ ` B
→E

Γ | ∅a ` >
>I

Γ |∆ ` > Γ |∆′(∅a) ` C

Γ |∆′(∆) ` C
>E

Γ |∆ ` A

Γ |∆ ` A ∨B
∨I1

Γ |∆ ` B

Γ |∆ ` A ∨B
∨I2

Γ |∆ ` A ∨B Γ |∆(A) ` C Γ |∆(B) ` C

Γ |∆′(∆) ` C
∨E

Γ |∆ ` ⊥
Γ |∆ ` C

⊥E

modal

Γ | ∅a ` A

Γ | ∅a ` 2A
2I

Γ |∆ ` 2A A,Γ |∆′(∅a) ` C

Γ |∆′(∆) ` C
2E

Figure 1: Natural deduction for modal BI

4

Thus the usual validities of S4 are provable in modal BI, e.g. 2(A → B) ` 2A → 2B, 2A ` 22A, etc.
(We are writing ∆ ` C as shorthand for · | ∆ ` C.) Again, however, more interesting is the interaction of
2 with the multiplicative connectives. For example, we have 2A ∗ 2B ` 2(A ∗ B) but not conversely, and
2A ∧ (B ∗ C) ` (2A ∧ B) ∗ C, as shown by the following derivations (we omit applications of ≡, and some
initial steps of eliminating connectives):

2A ∗2B ` 2(A ∗B)

· |2A ` 2A
id

A |2B ` 2B
id

A,B | ∅a ` A
pure

A,B | ∅m ` B
pure′

A,B | ∅a ` A ∗B
∗I

A,B | ∅a, ∅a ` 2(A ∗B) 2I ′

A | ∅a,2B ` 2(A ∗B)
2E

· |2A,2B ` 2(A ∗B)
2E

2A ∧ (B ∗ C) ` (2A ∧B) ∗ C

· |2A ` 2A
id

A | ∅a ` A
pure

A | ∅a ` 2A
2I

A |B ` B
id

A |B ` 2A ∧B
∧I

A | C ` C
id

A |B,C ` (2A ∧B) ∗ C
∗I

· |2A; (B,C) ` (2A ∧B) ∗ C
2E

2.3 Axiomatic reasoning in modal BI

Our first demonstration of the use of modal BI is for reasoning in BI with additional axioms. We borrow from
[9] (who in turn borrow from Hoare) the example of buying chocolates and candy from a vending machine.
There are three basic propositions coin, choc, and candy, interpreted as follows:

• coin: I have one coin in my pocket

• choc: I have enough to buy a chocolate

• candy: I have enough to buy a candy

The fact that a candy costs one coin and a chocolate costs two is encoded by the following axioms:

coin ` candy

coin ∗ coin ` choc

With this set of axioms and the rules of BI, it is possible to prove, for example, that coin ` coin−∗ choc, i.e.
if I have one coin in my pocket, then with one more I can buy a chocolate.

Now, in ordinary predicate calculus it is straightforward to translate reasoning from axioms into hypo-
thetical reasoning, by converting each axiom into an additional assumption. But bunched contexts destroy
this property. For suppose we encode the two axioms as hypotheses coin → candy and coin ∗ coin → choc:
how do we combine these hypotheses with the context coin so as to be able to prove coin−∗ choc? We might
try combining them intuitionistically: we let ∆a = (coin → candy); (coin ∗ coin → choc), and try to prove
∆a; coin ` coin−∗ choc. But this sequent is not provable—the following is an attempt:

∆a ` coin ∗ coin→ choc coin, coin ` coin ∗ coin

∆a; (coin, coin) ` choc
→E

(∆a; coin), coin ` choc
???

∆a; coin ` coin−∗ choc
−∗I

5

s, h � e = e′ iff JeK s = Je′K s
s, h � e 7→ e1, e2 iff dom h = {Je1K s} and h(Je1K s) = 〈Je1K s, Je2K s〉

s, h � A−∗B iff ∀h0⊥h. s, h0 � A implies s, h ◦ h0 � B
s, h � A ∗B iff ∃h1, h2. h = h1 ◦ h2 and s, h1 � A and s, h2 � B
s, h � I iff h = ∅

s, h � A→B iff s, h � A implies s, h � B
s, h � A ∧B iff s, h � A and s, h � B
s, h � A ∨B iff s, h � A or s, h � B
s, h � > iff always
s, h � ⊥ iff never
s, h � ∃x.A iff ∃v ∈ V al.[s|x 7→ v], h � A

Figure 2: Separation logic assertion semantics (fragment)

The pseudo-derivation illustrates the essential problem: we want to apply the axiom coin ∗ coin → choc in
∆a not on the original hypothesis coin, but on the larger context created after −∗ introduction—yet for
this we need the (in general) unsound reasoning principle marked by ???. Nor can this problem be fixed
by combining the hypotheses multiplicatively. Instead, if we look more closely at what is going on in the
axiomatic system, we see that axioms are hypotheses that can be invoked anywhere, so to speak; that is,
∆ ` coin ∗ coin→ choc holds for arbitrary bunches ∆. Now, this is precisely the role that valid assumptions
play. Hence we can obtain a faithful translation of the axiomatic reasoning by replacing the axioms by a flat
context Γa = coin→ candy, coin ∗ coin→ choc of valid assumptions, and proving Γa | coin ` coin−∗ choc:

Γa | ∅a ` coin ∗ coin→ choc Γa | coin, coin ` coin ∗ coin

Γa | coin, coin ` choc
→E

Γa | coin ` coin−∗ choc
−∗I

3 Pure assertions and modal separation logic

As described in the introduction, proofs in separation logic typically require definitions of various special
classes of assertions, with their own set of reasoning principles beyond entailment in ordinary BI. In [10],
Reynolds defines “pure” assertions as those which, given any store, are independent of the heap. In terms
of the separation logic forcing relation s, h � A (for reference included in Figure 2) this says that:

∀s.∀h1, h2. s, h1 � A iff s, h2 � A (∗)

From the semantic definition (∗), it is possible to prove a collection of useful validities for assertions
involving pure subformulas: Reynolds gives an axiom schemata, which is shown in Figure 3. Moreover, as
he notes, it is easy to syntactically define a conservative subclass of the pure assertions by restricting to
those not containing I (emp in the usual notation of separation logic) or 7→. But this rules out many pure
assertions. Trivial examples are (x 7→ 7)→(x 7→ 7) and ⊥−∗I, but more interestingly, consider the inductive
definition of a relation List α (i, j), asserting that there is a list segment from i to j representing the sequence
α:

List ε (i, j) = I ∧ i = j

List a · α (i, k) = ∃j.i 7→ a, j ∗ List α (j, k)

From this definition it is possible to prove, e.g., that List α · β (i, k)↔∃j.List α (i, j) ∗ List β (j, k) is valid
[10]. But if the assertion List α · β (i, k)↔∃j.List α (i, j) ∗ List β (j, k) is valid, i.e. satisfied in every store

6

A ∧B →A ∗B when A or B is pure
A ∗B →A ∧B when A and B are pure

(A ∧B) ∗ C ↔A ∧ (B ∗ C) when A is pure
(A−∗B)→ (A→B) when A is pure
(A→B)→ (A−∗B) when A and B are pure

Figure 3: Reynolds’ axiom schemata for purity

2A ∧B →2A ∗B
2A ∗2B →2A ∧2B

(2A ∧B) ∗ C ↔2A ∧ (B ∗ C)
(2A−∗B)→ (2A→B)

(2A→2B)→ (2A−∗2B)

Figure 4: Reynolds’ axioms expressed as theorems of modal BI

and heap, then it is certainly independent of the heap, i.e. pure—even though the relation List involves both
I and 7→.

This last example motivates our analysis of purity as modal necessity. If an assertion A is pure according
to the semantic definition (∗), and if it is satisfied by a state s, h, then it is satisfied by all states s, h′,
where h′ is an arbitrary heap. That is, when A is pure, s, h � A iff ∀h′. s, h′ � A. Written in this way, the
modal character of pure assertions is apparent. In particular, let us define the connective 2 semantically, as
quantifying over all heaps:

s, h � 2A iff ∀h′. s, h′ � A

Then 2 internalizes the condition that an assertion is pure, that is, s, h � 2A if and only if s, h � A and
A is pure. An immediate consequence is that Reynolds’ axiom schemata can be replaced by the one given
in Figure 4, where every formula A originally marked as pure is replaced by the formula 2A, without any
restrictions on A.

In fact, the propositions in Figure 4 are all theorems of modal BI—natural deduction proofs are given in
Appendix A. Of course, we would like to know that the natural deduction rules including 2 are sound with
respect to the separation logic semantics—but that is a simple induction on derivations.

4 2, !, or both?

Whereas standard BI combines IL with MILL, the modal BI we have described combines intuitionistic S4
with MILL. A natural question is then: what about combining IL with MELL, or S4 with MELL? That is,
we can consider extending the system with the exponential ! of linear logic.

The exponential has been explored to some extent before in other work, particularly the issue of (the
lack of) a decomposition A→B ∼= !A−∗B (see, e.g., [5]). Here we are more interested in comparing the 2
and ! modalities. Formally, they are very similar; we introduce a flat context Π of hypotheses provable from
the empty multiplicative context ∅m, and a set of three rules that look exactly like their counterparts for 2
except that ∅a is replaced by ∅m:

A,Π | ∅m ` A
emp

Π | ∅m ` A

Π | ∅m ` !A
!I

Π |∆ ` !A A,Π |∆′(∅m) ` C

Π |∆′(∆) ` C
!E

Categorically, this formal resemblance reflects that 2 is a comonad for the cartesian closed structure of the
doubly closed category (DCC, cf. [9]), while ! is a comonad for the symmetric monidal closed structure.
We can easily get a natural deduction including both comonads by simply using a three-zone judgment,
Π | Γ |∆ ` A.

7

As mentioned in Section 2.2, ! is the modality of what are usually called “theorems” in the BI literature,
i.e. propositions that can be proved from ∅m. We will call these !-theorems, and distinguish them from
2-theorems, which are propositions that can be proved from ∅a. It is immediate by weakening that all
2-theorems are !-theorems (and this is what motivates the definition in the literature—it expands the class
of theorems). We might then expect that 2A ` !A is provable. The following pseudo-derivation illustrates
why it is not:

· | · |2A ` 2A

· |A | ∅m ` A

· |A | ∅m ` !A
!I

· |A | ∅a ` !A
???

· | · |2A ` !A
2E

After eliminating the 2, we can assume nothing (∅a) about the context, and so in particular cannot assume
it is ∅m and introduce !. Instead we can only prove a weaker entailment 2A ` !A ∗>. However, we can also
relate uses of modal hypotheses by the following proposition:

Proposition 1 If A,Π | Γ |∆ ` C then Π |A,Γ |∆ ` C.

Proof: By induction on the derivation of A,Π | Γ |∆ ` C. The only interesting case is when the derivation
is an application of emp, since that is the only rule where Π is inspected. In that case we have C = A, and
we get the desired conclusion by applying the rule pure′. 2

Another question we can ask is whether the encoding of axioms as Γ-assumptions from Section 2.3 can
be replaced by a similar encoding using Π-assumptions. It seems this should be the case for axioms of the
form A ` B (as were those in 2.3), since the following bidirectional inferences are admissible (because the
implication introduction rules are invertible):

∅a ` A→B

A ` B

∅m ` A−∗B

Indeed, we can prove the following:

Proposition 2 Π |A→B,Γ |∆ ` C if and only if A−∗B,Π | Γ |∆ ` C

Proof: By induction on derivations. In the forward direction, the only interesting case is an application of
pure. In that case we make the following transformation:

Π |A→B,Γ | ∅a ` A→B
pure

⇒

A−∗B,Π | Γ | ∅m ` A−∗B
emp

A−∗B,Π | Γ |A ` A
id

A−∗B,Π | Γ |A ` B
−∗E

A−∗B,Π | Γ | ∅a ` A→B
→I

In the backwards direction, the interesting case is application of the rule emp:

A−∗B,Π | Γ | ∅m ` A−∗B
emp

⇒

Π |A→B,Γ | ∅a ` A→B
pure

Π |A→B,Γ |A ` A
id

Π |A→B,Γ |A ` B
→E

Π |A→B,Γ | ∅m ` A−∗B
−∗I

2

As a corollary, using the implications and logical constants, we can relate arbitrary modal assumptions as
follows:

Proposition 3 Π |A,Γ |∆ ` C if and only if >−∗A,Π | Γ |∆ ` C.

8

Proposition 4 A,Π | Γ |∆ ` C if and only if Π | I →A,Γ |∆ ` C.

As for translating the modal connectives themselves, again we cannot conclude 2(A→B) = !(A−∗B), but
instead only 2(A→B) = !(A−∗B)∗> (whence 2A = !(>−∗A)∗>) and !(A−∗B) = 2(A→B)∧ I (whence
!A = 2(I →A) ∧ I).

We may now legitimately wonder whether there is any reason to have separate modalities 2 and !, since
they are interdefinable. However, we should first realize that the translation of 2 to ! requires the presence
of > and −∗, and the translation of ! to 2 requires I and →, yet it is certainly possible to consider fragments
of the logic with both 2 and ! but without any of these other connectives or constants. Moreover, there
is reason to keep 2 primitive from a conceptual point of view, simply because it arises as the very natural
notion of purity in separation logic, as we saw in Section 3. The same could certainly turn out to be the
case for ! in a different domain.

References

[1] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI hyperdoctrines and higher-order separation
logic. To appear in ESOP 2005.

[2] Lars Birkedal, Noah Torp-Smith, and John Reynolds. Local reasoning about a copying garbage collector.
In POPL, pages 220–231. 2004.

[3] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard, Y. Lafont, and L. Regnier,
editors, Advances in Linear Logic (Proc. of the Workshop on Linear Logic, Cornell University, June
1993), number 222. Cambridge University Press, 1995.

[4] S. Ishtiaq and P.W. O’Hearn. Bi as an assertion language for mutable data structures. In POPL, pages
14–26, 2001.

[5] Peter O’Hearn. On bunched typing. Journal of Functional Programming, 13(4):747–796, 2002.

[6] P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–
244, June 1999.

[7] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical Structures
in Computer Science, 11(4):511–540, 2001.

[8] David Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of
Applied Logic Series. Kluwer Academic Publishers, 2002.

[9] David Pym, Peter O’Hearn, and Hongseok Yang. Possible worlds and resources: The semantics of BI.
Theoretical Computer Science, 315(1):257–305, 2004.

[10] John Reynolds. Separation logic: a logic for shared mutable data structures. In LICS, pages 55–74,
2002.

[11] Hongseok Yang. Local Reasoning for Stateful Programs. Ph. D dissertation, University of Illinois,
Urbana-Champaign, Illinois, July 2001.

[12] Hongseok Yang. Relational separation logic, March 2004. Submitted to Theoretical Computer Science.

9

A Derivations for Reynolds’ axiom schemata

In these derivations we omit applications of ≡, and some initial steps of eliminating connectives.

2A ∧B ` 2A ∗B

· |2A ` 2A

A | ∅a ` A

A | ∅m ` 2A
2I ′

A |B ` B

A |B ` 2A ∗B
∗I

· |2A;B ` 2A ∗B
2E

2A ∗2B ` 2A ∧2B

· |2A ` 2A

A | ∅a ` A

A | ∅a,2B ` 2A
2I ′

· |2A,2B ` 2A
2E

· |2B ` 2B

B | ∅a ` B

B |2A, ∅a ` 2B
2I ′

· |2A,2B ` 2B
2E

· |2A,2B ` 2A ∧2B
∧I ′

(2A ∧B) ∗ C ` 2A ∧ (B ∗ C)

· |2A ` 2A

A | ∅a ` A

A |B,C ` 2A
2I ′

A |B,C ` 2A ∧ (B ∗ C) ∧I

· | (2A;B), C ` 2A ∧ (B ∗ C)
2E

2A ∧ (B ∗ C) ` (2A ∧B) ∗ C

· |2A ` 2A

A |B ∗ C ` B ∗ C

A | ∅a ` A

A | ∅a ` 2A
2I

A |B ` B

A |B ` 2A ∧B
∧I

A | C ` C

A |B,C ` (2A ∧B) ∗ C
∗I

A |B ∗ C ` (2A ∧B) ∗ C
∗E

· |2A; (B ∗ C) ` (2A ∧B) ∗ C
2E

2A−∗B ` 2A→B

· |2A ` 2A

A |2A−∗B ` 2A−∗B

A | ∅a ` A

A | ∅m ` 2A
2I ′

A |2A−∗B ` B
−∗E

· |2A−∗B;2A ` B
2E

· |2A−∗B ` 2A→B
→I

10

2A→2B ` 2A−∗2B

· |2A ` 2A

A |2A→2B ` 2A→2B

A | ∅a ` A

A | ∅a ` 2A
2I

A |2A→2B ` 2B
→E

A,B | ∅a ` B

A,B | ∅a, ∅a ` 2B
2I ′

A |2A→2B, ∅a ` 2B
2E

· |2A→2B,2A ` 2B
2E

· |2A→2B ` 2A−∗2B
−∗I

11

