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Abstract

Machine Learning, a natural outgrowth at the intersection of Computer Science and Statistics, has evolved
into a broad, highly successful, and extremely dynamic discipline. Over the past twenty years, machine
learning methods have been applied in an ever increasing range of areas from natural language processing
to speech recognition to computer vision to computational biology, just to name a few. Moreover, many of
these areas have recently faced an explosion of data, and to better use this data a number of powerful new
learning approaches have been explored. However, the development of theoretical foundations for these
methods has been severely lacking. In this thesis, we develop theoretical foundations and new algorithms
for several important emerging learning paradigms of significant practical importance, including Semi-
Supervised Learning, Active Learning, and Learning with Kernels and more general similarity functions.
In addition, the novel insights we develop here allow us to also revisit the classic problem of Clustering
which has not been satisfactorily captured by existing models. Finally, in this dissertation we present new
applications of techniques from Machine Learning to Algorithmic Game Theory, which has been a major
area of research at the intersection of Computer Science andEconomics.

One of the major current research directions in machine learning is incorporating unlabeled data together
with labeled data in the learning process, also known as Semi-Supervised Learning. This has become a
very important area mainly due to the availability of large amounts of unlabeled data in many modern
applications. However, while many different semi-supervised learning methods have been developed, the
underlying assumptions of these methods are very distinct and their effectiveness cannot be explained by
standard theoretical models. In this thesis we introduce a new general model for semi-supervised learning,
that can be used to reason about the many different approaches taken over the past decade in the Machine
Learning community. Within this model we analyze in a unifiedway when and why unlabeled data can
help in the semi-supervised learning setting; we also develop algorithms with provably better guarantees
than those developed so far.

Another major current direction in machine learning is incorporating interaction in the learning process.
The most extensively used and studied technique in this context is Active Learning where the algorithm
can interactively ask for the labels of unlabeled examples of its own choosing. In this dissertation, we
prove for the first time, the feasibility of active learning in the presence of arbitrary forms of noise. We
also provide theoretical justification for margin-based algorithms, which have proven quite successful in
practical applications.

In the context of Kernel methods (another flourishing area ofmachine learning research), we strictly
generalize and simplify the existing theory which while quite elegant has been disconnected from practice.
In particular, we show how Random Projection techniques canbe used to convert a given kernel function
into an explicit, distribution dependent set of features, which can then be fed into more general (not
necessarily kernelizable) learning algorithms. In addition, this work shows how such methods can be
extended to more general pairwise similarity functions andalso gives a formal theory that matches the
standard intuition that a good kernel function is one that acts as a good measure of similarity. Our approach
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brings a new perspective as well as a much simpler explanation for the effectiveness of kernel methods,
which can help in the design of good kernel functions for new learning problems.

Building on the techniques and insights we develop for all these learning problems, we also propose a
new approach for analyzing the Clustering problem. Clustering is a central task in gaining knowledge
from data and it has been studied in many fields over many decades. Although a plethora of clustering
algorithms have been developed, the question of what methodis best suited to a given type of data or
what conditions are needed to produce highly accurate solutions remains poorly understood. In our work
we develop the first general framework for analyzing accuracy of clustering algorithms without making
probabilistic assumptions about the data, in which we can explicitly and formally address the question of
how much information about data objects and what propertiesof their structure are needed to be able to
cluster accurately.

This dissertation also brings forward new connections between Machine Learning and Algorithmic Game
Theory. The explosive growth of the Internet has generated an increasing need for game-theoretic algo-
rithms designed for solving problems involving multiple agents each with their own interests in mind. In
this thesis we develop fundamental new tools for the design of such “incentive compatible mechanisms”.
In particular, we present the first general framework for reducing mechanism design problems to standard
algorithmic questions for a wide range of revenue maximization problems. Our reduction is inspired by
methods and techniques in learning theory; however, from a learning perspective, these settings present
several unique challenges: the loss function is discontinuous and asymmetric, and the range of bidders’
valuations may be large.
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Chapter 1

Introduction

Machine learning studies automatic methods for learning tomake accurate predictions or useful decisions
based on past observations and experience, and it has becomea highly successful discipline with appli-
cations in many different areas such as natural language processing, speech recognition, and computer
vision. Moreover, the theoretical foundations of traditional machine learning approaches, in particular
passive supervised learning1, have played a crucial role in the development of powerful, robust, and ver-
satile machine learning techniques, which are nowadays routinely used in a wide range of commercial
systems.

Over the past twenty years, the types of applications of machine learning have grown more and more
varied ranging from computational biology to astronomy to robotic surgery. Moreover, many of the (new
and old) application areas have faced a huge increase in the volume of available data of various kinds. In
order to better use all the available data a number of powerful new learning approaches have been pro-
posed. These approaches have been intensely explored in themachine learning community, with many
heuristics and specific algorithms, as well as various successful experimental results reported. Unfortu-
nately, however, the standard theoretical models do not capture the key issues involved in these learning
techniques, and it has become clear that for developing robust, versatile, and general algorithms in these
settings a general fundamental understanding is necessary. In this thesis we develop such theoretical foun-
dations as well as new and general algorithms for these emerging machine learning paradigms, including
Semi-Supervised, Active, and Similarity-based Learning.In addition, the novel insights we develop here
allow us to also revisit the classic problem of Clustering which has not been satisfactorily captured by
existing models. This dissertation also brings forward newconnections between Machine Learning and
Algorithmic Game Theory, an emerging area at the intersection of Computer Science and Economics.

In addition to providing significant help to machine learning practitioners, our work advances the state
of the art of machine learning theory and also helps to solve important problems in Algorithmic Game
Theory, via a fresh set of ideas and techniques.

We provide a high level presentation of our work in Section 1.1, while in Section 1.2 we give a more
detailed overview of the main contributions of this thesis in each of the main directions. In Section 1.3
we summarize the main results and describe the structure of the thesis, as well as provide bibliographic
information.

1These include the development of the classic PAC learning model by Valiant [205] and of the Statistical Learning Theory
framework by Vapnik [207], the design and analysis of various boosting algorithms [188, 189], and the design and analysis of
Support Vector Machines [45, 89].
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1.1 General Overview

We start by describing at a high level the learning paradigmswe analyze and the new models and algo-
rithms we introduce in this thesis. In Section 1.1.2 we describe at a high level the new connections we
introduce between Machine Learning and Algorithmic Game Theory.

1.1.1 New Frameworks and Algorithms for Machine Learning

Machine learning techniques are nowadays routinely used incommercial systems for speech recognition,
computer vision, and spam detection. To date, the primary theoretical advances in machine learning have
been forpassive supervisedlearning problems [174], where a target function (a classification rule) is esti-
mated usinglabeled examplesonly. For example, in spam detection an automatic classifierto label emails
as “spam” or “not spam” would be trained using a sample of previous emails labeled by a human user.
The goal here is then to get as high accuracy as possible usingas little labeled data as possible. For most
modern practical problems however, there is often useful additional information available in the form of
cheap and plentifulunlabeleddata: e.g., unlabeled emails for the spam detection problem. As a conse-
quence, there has recently been substantial practical interest in using this unlabeled data together with
labeled data for learning, since any useful information that reduces the amount of labeled data needed
can be a significant benefit. A variety of algorithms for doingthis have been developed, and many suc-
cessful experimental results have been reported. Some of these algorithms simply use raw unlabeled data
in addition to labeled data, while othersinteract with the human labeler and adaptively identify specific
informative unlabeled examples to be labeled.

In parallel with this work, as the types of applications of machine learning have grown more and
more diverse, the issue of how torepresentdata to the learning algorithm has become increasingly crucial.
Typically, this representation is done using features: forexample, for spam detection one might represent
an email message by features indicating the presence or absence of various keywords in the message.
However, in many cases the problem of identifying high-quality features can in itself be quite difficult.
This has led to the development of a powerful technique knownaskernel methods. Kernel methods allow
the user to specify a particular kind of pairwise function between data objects, known as a kernel function,
which is used by the algorithm instead of explicit features.An example of a typical kernel for document
classification would be the number of content-words shared in common between two documents. Many
well-understood and well-optimized algorithms such as SVMs can be used with kernels, allowing for their
application to complex types of data.2

Overall, incorporating unlabeled data in the learning process, adding interaction capabilities to the
learning algorithm, and using kernels and similarity functions, are all areas that have been extensively
explored in the machine learning community over the past fewyears. However, their theory has been
lacking in a number of substantial ways. For example, there has been significant disagreement over when
unlabeled data or interaction can help, and how to reconcilemathematical and intuitive views of kernel
functions. In this thesis we develop new and fundamental theoretical understanding for these new learning
approaches, as well as new robust learning algorithms with strong sample-size and accuracy guarantees.
In particular, we develop new models and algorithms for semi-supervised learning and active learning,
both of which are not captured by standard models. We also simplify and generalize the existing theory
for learning with Kernel functions, which while quite elegant, is disconnected from the practical intuition
that a good kernel for the problem at hand should be one that serves as reasonable measure of similarity

2In particular, a kernel is a special kind of pairwise function that allows these algorithms to find complicated nonlinear
decision boundaries, even though the algorithms themselves view the problem as linear.
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in that domain. Finally, we also revisit the classic problemof Clustering (or unsupervised learning) that
has not been satisfactorily captured by existing models.

In the following, we describe the main learning approaches we analyze in this thesis. At a high level,
these techniques differ in how they represent the data (via features or using a measure of similarity), what
type of data they use (labeled and/or unlabeled), in the way they interact with data (does the learning
algorithm get to choose specific examples to be labeled or not).

Incorporating Unlabeled Data and Interaction in the Learning Process: A tremendously popular set-
ting for incorporating unlabeled data in the learning process is passiveSemi-Supervised Learning[2, 174]
where, in addition to a set of labeled examples from the underlying data distribution, the learning algo-
rithm can also use a (usually much larger) set ofunlabeledexamples from the same distribution. Several
different semi-supervised learning algorithms have been developed and numerous successful experimen-
tal results have been reported. However the underlying assumptions of these methods are quite different.
For instance, some that assume data lies in clusters, othersassume some kind of self-consistency in the
classification rule, and a major obstacle to progress has been that it has been unclear whether any general
principles underlie all these approaches. In particular, their effectiveness cannot be explained by standard
learning models (the PAC model or the Statistical Learning Theory framework). In this thesis, we develop
a comprehensive theoretical framework that provides a unified way for thinking about semi-supervised
learning; this model can be used to reason about many of thesedifferent approaches taken over the past
decade in the machine learning community.3 Our model allows us to address key issues such as “Under
what conditions will unlabeled data help and by how much?” and “How much data should I expect to
need in order to perform well?”, and to develop algorithms with provably better guarantees than those
developed so far.

A second setting for incorporating unlabeled data in the learning process that has been increasingly
popular in the past few years isActive Learning[31, 87, 96]. Here the learning algorithm is even more
powerful in that the algorithm can interactively ask for thelabels of unlabeled examples of its own choos-
ing. The hope is that a good classifier can be learned with evenfewer labels byactively directing the
queries toinformativeexamples. For this paradigm, we present several new theoretical results. In particu-
lar, we prove for the first time, the feasibility of active learning in the presence of arbitrary forms of noise.
Tolerance to noise had been a major sticking point of previous active learning methods because these al-
gorithms tend to hone in on very specific regions of the data space and so can be easily misled by small
amounts of misclassified data. This lack of noise tolerance has been a major barrier to their applicability.
In this thesis we describe a new active learning procedure that works in the presence of arbitrary forms of
noise. Our procedure relies only upon the assumption that samples are drawn i.i.d. from some underlying
distribution and it makes no assumptions about the mechanism producing the noise (e.g., class/target mis-
fit, fundamental randomization, etc.). We also present theoretical justification for margin-based algorithms
which have proven quite successful in practical applications,e.g., in text classification [203].

Similarity-based Learning: Kernel methodshave become especially popular and constituted a flourish-
ing area of research in recent years, both because they are very useful in practice for dealing with many
different kinds of data, and because they have a solid theoretical foundation. These methods use labeled
examples and they interact with the data via a pairwise function known as a kernel that additionally sat-
isfies certain mathematical properties. For these methods an established theory does exist in terms of
viewing kernels as implicit mappings, but does not match thepractical intuition that a good kernel for
a given problem is one that forms a natural notion of similarity in that domain. This gap between the-
ory and intuition has in turn limited the ability to use the theory as a guide for designing useful kernels

3 This work was invited to appear in a recent book about Semi-Supervised Learning [24] and it can be used to explain when
and why unlabeled data can help in many of the specific methodsgiven in the other chapters of the book.
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for new application domains. In our work, we develop more intuitive and more operational explanations
for desired properties of good kernel functions; in particular, we provide theoretical justification for the
common intuition that a good kernel function is one that actsas a good measure of similarity. Moreover,
this theory is strictly more general, applying to broader kinds of similarity functions that may not satisfy
the mathematical conditions needed for kernel functions, and involves more tangible quantities than those
used by the traditional analysis.

Clustering via Similarity Functions : Finally, we also present a new perspective on the classicCluster-
ing problem. The new applications of machine learning to areas such as computational biology and gene
discovery have also brought to the forefront more classic learning techniques such as Clustering. In this
setting, the learning algorithm does not use labeled data atall, but instead it can use a similarity measure
between pairs of objects and the goal is to uncover some unknown hidden structure of the data. Such
problems are ubiquitous in science and as a consequence clustering received substantial attention in many
different fields for many years. Although a plethora of clustering algorithms have been developed, the
question of what method is best suited to a given type of data or what conditions are needed to produce
highly accurate solutions remains poorly understood. Existing theory has been very brittle, either making
strong assumptions about the uniformity of clusters or elseoptimizing distance-based objective functions
only secondarily related to the true goals. In this thesis wepropose a new, much more general and robust
approach to analyzing the problem of clustering. We consider the goal of approximately recovering an
unknown target clustering using a similarity function (or aweighted graph), given only the assumption
of certain natural properties that the similarity or weightfunction satisfies with respect to the desired
clustering. Building on our models for learning with similarity functions in the context of supervised clas-
sification, we provide the first general framework for analyzing clustering accuracy without probabilistic
assumptions. In this model we directly address the fundamental question of what kind of information a
clustering algorithm needs in order to produce a highly accurate clustering of the data, and we analyze
both information theoretic and algorithmic aspects.

General Technical Theme: In addition to providing help to practitioners, our work also advances the
state of the art of machine learning theory. In particular, at a technical level, a common characteristic
of many of the models we introduce to study these learning paradigms (e.g., semi-supervised learning
or learning and clustering via similarity functions) is theuse ofdata dependent concept spaces, which
we expect to be a major line of research in the next years in machine learning. The variety of results
we present in these models relies on a very diverse set of insights and techniques from Algorithms and
Complexity, Empirical Processes and Statistics, Optimization, as well as Geometry and Embeddings.

1.1.2 Connections between Machine Learning and Algorithmic Game Theory

Constructing algorithms for a highly distributed medium such as the Internet requires careful consideration
of the objectives of the various parties in the system. The development of such algorithms, known as
Mechanism Design, has therefore become an increasingly important part of algorithmic research and of
computer science (more generally) in recent years. Mechanism design can be thought of as a distinct form
of algorithm design, where a central entity must perform some computation (e.g., resource allocation
or decision making) under the constraint that the agents supplying the inputs have their own interest in
the outcome of the computation. As a result, it is desirable that the employed procedure be incentive
compatible, meaning that it should be in each agent’s best interest to report truthfully, or to otherwise act
in a well-behaved manner. Typical examples of such mechanisms are auctions of products (e.g., software
packages) or pricing of shared resources (e.g., network links) where the central entity would use inputs
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(bids) from the agents in order to allocate goods in a way thatmaximizes its revenue.
Unfortunately, the requirement that such algorithms be incentive compatible (aligned with the incen-

tives of the parties involved) can make this problem substantially more complex. In this thesis we show a
novel application of machine learning techniques toautomatekey aspects of mechanism design, substan-
tially simplifying the design of suchincentive-compatiblemechanisms. In particular, we use techniques
from machine learning to provide ageneric reductionfrom the incentive-compatible mechanism design
question to more standard algorithmic questions, for a widevariety of revenue-maximization problems,
in an unlimited supply setting. In doing so, we formally address the problem of market analysis, as well
as develop pricing algorithms with improved guarantees over previous methods. It is worth noting that
our results are very general, as opposed to most of the previous work on incentive compatible mechanism
design for revenue maximization which has been focused on very restricted settings [123, 176] (e.g., one
item for sale and/or single parameter agents) and “hand-crafted” for the specific problem at hand.

1.2 Main Contributions

A more detailed overview of this thesis follows below.

1.2.1 Incorporating Unlabeled Data and Interaction in the Learning Process

As mentioned earlier, machine learning has traditionally focused on problems of learning a task from
labeled examples only. However, for many contemporary practical problems such as classifying web
pages or detecting spam, there is often additional information available; in particular, for many of these
settings unlabeled data is often much cheaper and more plentiful than labeled data. As a consequence,
there has recently been substantial interest in using unlabeled data together with labeled data for learning
[60, 63, 137, 141, 161, 178, 183, 219], since clearly, if useful information can be extracted from it that
reduces dependence on labeled examples, this can be a significant benefit [59, 174].

There are currently two main settings that have been considered for incorporating unlabeled data in
the learning process. For both of these, in addition to a set of labeled examples drawn at random from the
underlying data distribution, it is assumed that the learning algorithm can also use a (usually much larger)
set of unlabeled examples from the same distribution.

The first such setting is passiveSemi-Supervised Learning(which we will refer to as SSL) [2]. What
makes unlabeled data so useful in the SSL context and what many of the SSL methods exploit, is that for
a wide variety of learning problems, the natural regularities of the problem involve not only theform of
the function being learned by also how this functionrelatesto the distribution of data. For example, in
many problems one might expect the target function should cut through low density regions of the space,
a property used by the transductive SVM algorithm [141]. In other problems one might expect the target
to be self-consistent in some way, a property used by Co-training [63]. Unlabeled data is then potentially
useful in this setting because, in principle, it allows one to reduce search space from the whole set of
hypotheses, down to the set ofa-priori reasonable ones with respect to the underlying distribution.

The second setting, which has become increasingly popular over the past few years, isActive Learn-
ing [87, 96]. Here, the learning algorithm has both the capability of drawing random unlabeled examples
from the underlying distribution, and of asking for the labels of anyof these examples. The hope is that
a good classifier can be learned with significantly fewer labels by activelydirecting the queries toinfor-
mativeexamples. As opposed to the SSL setting, and similarly to classic supervised learning (PAC and
Statistical Learning Theory settings) the only prior belief about the learning problem in active learning
is that the target function (or a good approximation of it) belongs to a given concept class. Luckily, it
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turns out that for simple concept classes such as linear separators on the line one can achieve anexpo-
nential improvement over passive supervised learning in the labeled data sample complexity, under no
additional assumptions about the learning problem [87, 96]. In general, however, for more complicated
concept classes, the speed-ups achievable in active learning depend on the match between the distribution
over example-label pairs and the hypothesis class. Furthermore, there are simple examples where (in the
traditional models) active learning does not help at all, not even in the realizable case [96].

In this thesis we study both Active Learning and Semi-Supervised Learning. For the semi-supervised
learning problem, we provide aunified discriminative model(i.e., a PAC or Statistical Learning Theory
style model) that captures many of the ways unlabeled data istypically used, and provides a very general
framework for thinking about this issue. This model provides a unified framework for analyzing when and
why unlabeled data can help, in which one can discuss both sample-complexity and algorithmic issues.
Our model can be viewed as an extension of the standard PAC model, where in addition to a concept class
C, one also proposes a compatibility function (an abstract prior): a type of compatibility that one believes
the target concept should have with the underlying distribution of data. For example, such a belief could
be that the target should cut through a low-density region ofspace, or that it should be self-consistent
in some way as in co-training. This belief is then explicitlyrepresented in the model. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space
of hypotheses, and to reduce the size of the search space fromthe whole set of hypothesesC down to
those that, according to one’s assumptions, are a-priori reasonable with respect to the distribution. In the
agnostic case, or even in realizable case if the number of labeled examples is severely limited, we can
do (unlabeled)-data-dependent structural risk minimization to trade off labeled error and incompatibility.
After proposing the model, we analyze fundamental sample-complexity issues in this setting such as
“How much of each type of data one should expect to need in order to learn well?”, and “What are the
basic quantities that these numbers depend on?”. We presenta variety of sample-complexity bounds,
both in terms of uniform-convergence results—which apply to any algorithm that is able to find rules of
low error and high compatibility—as well asǫ-cover-based bounds that apply to a more restricted class
of algorithms but can be substantially tighter. For instance, we describe several natural cases in which
the latter types of bounds can apply even though with high probability there still exist bad hypotheses
in the class consistent with the labeled and unlabeled examples. Finally, we present several PAC-style
algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-Training with
linear separators that, if the distribution satisfies independence given the label, requires only a single
labeled example to learn to any desired error rateǫ and is computationally efficient (i.e., achieves PAC
guarantees). This substantially improves on the results of[63] which required enough labeled examples
to produce an initial weak hypothesis. and in the process we get a simplification to the noisy halfspace
learning algorithm of [65]. We describe these results in Chapter 2.

For the active learning problem, we prove for the first time, the feasibility of agnostic active learning.
Specifically we propose and analyze the first active learningalgorithm that finds anǫ-optimal hypothesis
in any hypothesis class, when the underlying distribution has arbitrary forms of noise. We also analyze
margin based active learning of linear separators. Finally, we discuss recent work in which we have shown
that in an asymptotic model for active learning where one bounds the number of queries the algorithm
makes before it finds a good function (i.e., one of arbitrarily small error rate), but not the number of
queries before itknowsit has found a good function, one can obtain significantly better bounds on the
number of label queries required to learn than in the traditional active learning models. We discuss these
results in Chapter 5.

In addition to being helpful in the semi-supervised learning and active learning settings, unlabeled
data becomes useful in other settings as well, both in partially supervised learning models and, of course,
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in purely unsupervised learning (e.g., clustering). In this thesis we study the use of unlabeled data in the
context of learning with Kernels and more general similarity functions. We also analyze how to effectively
use unlabeled data for Clustering with non-interactive feedback. We discuss these in turn below.

1.2.2 Similarity-based Learning

Kernel functionshave become an extremely popular tool in machine learning, with an attractive theory
as well [135, 142, 191, 194, 207]. They are used in domains ranging from Computer Vision [134] to
Computational Biology [191] to Language and Text Processing [142], with workshops, (e.g.[3, 4, 5, 6]),
books [135, 142, 191, 194] [207], and large portions of majorconferences (see,e.g., [1]) devoted to kernel
methods. In this thesis, we strictly generalize and simplify the existing theory of Kernel Methods. Our
approach brings a new perspective as well as a much simpler explanation for the effectiveness of kernel
methods, which can help in the design of good kernel functions for new learning problems.

At a high level, the “kernel trick” is a method for using a linear classifier algorithm to solve a non-
linear problem by mapping the original non-linear observations into a higher-dimensional space, where the
linear classifier is subsequently used; this makes a linear classification in the new space equivalent to non-
linear classification in the original space. A kernel is a function that takes in two data objects (which could
be images, DNA sequences, or points inRn) and outputs a number, with the property that the function is
symmetric and positive-semidefinite. That is, for any kernel K, there must exist an (implicit) mappingφ,
such that for all inputsx, x′ we haveK(x, x′) = φ(x)·φ(x′). The kernel is then used inside a “kernelized”
learning algorithm such as SVM or kernel-perceptron as the way in which the algorithm interacts with the
data. Typical kernel functions for structured data includethe polynomial kernelK(x, x′) = (1 + x · x′)d

and the Gaussian kernelK(x, x′) = e−||x−x′||2/2σ2
, and a number of special-purpose kernels have been

developed for sequence data, image data, and other types of data as well [89, 90, 159, 175, 197].
The theory behind kernel functions is based on the fact that many standard algorithms for learning

linear separators, such as SVMs and the Perceptron algorithm, can be written so that the only way they
interact with their data is via computing dot-products on pairs of examples. Thus, by replacing each
invocation ofx · x′ with a kernel computationK(x, x′), the algorithm behaves exactly as if we had
explicitly performed the mappingφ(x), even thoughφ may be a mapping into a very high-dimensional
space (dimensionnd for the polynomial kernel) or even an infinite-dimensional space (as in the case of the
Gaussian kernel). Furthermore, these algorithms have convergence rates that depend only on themargin
of the best separator, and not on the dimension of the space inwhich the data resides [18, 195]. Thus,
kernel functions are often viewed as providing much of the power of this implicit high-dimensional space,
without paying for it computationally (because theφ mapping is only implicit) or in terms of sample size
(if the data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. First, when designing a kernel function
for some learning problem, the intuition typically employed is that a good kernel would be one that serves
as a good similarity function for the given problem [191]. Onthe other hand, the above theory talks
about margins in an implicit and possibly very high-dimensional space. So, in this sense the theory is not
that helpful for providing intuition when selecting or designing a kernel function. Second, it may be that
the most natural similarity function for a given problem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the function, to coerce it into a legal form. Finally, from
a complexity-theoretic perspective, it is somewhat unsatisfying for the explanation of the effectiveness of
some algorithm to depend on properties of an implicit high-dimensional mapping that one may not even
be able to calculate. In particular, the standard theory at first blush has a “something for nothing” feel to it
(all the power of the implicit high-dimensional space without having to pay for it) and perhaps there is a
more prosaic explanation of what it is that makes a kernel useful for a given learning problem. For these
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reasons, it would be helpful to have a theory that involved more tangible quantities.
In this thesis we provide a new theory that address these limitations in two ways. First, we show how

Random Projection techniques can be used to convert a given kernel function into an explicit, distribution
dependent, set of features, which can then be fed into more general (not necessarily kernelizable) learning
algorithms. Conceptually, this result suggests that designing a good kernel function is much like designing
a good feature space. From a practical perspective it provides an alternative to “kernelizing” a learning
algorithm: rather than modifying the algorithm to use kernels, one can instead construct a mapping into a
low-dimensional space using the kernel and the data distribution, and then run an un-kernelized algorithm
over examples drawn from the mapped distribution.

Second, we also show how such methods can be extended to moregeneralpairwise similarity func-
tions and also give a formal theory that matches the standardintuition that a good kernel function is one
that acts as a good measure of similarity. In particular, we define a notion of what it means for a pairwise
functionK(x, x′) to be a “good similarity function” for a given learning problem that (a) does not require
the notion of an implicit space and allows for functions thatare not positive semi-definite, (b) is provably
sufficient for learning, and (c) is broad, in sense that a goodkernel in the standard sense (large margin in
the implicit φ-space) will also satisfy our definition of a good similarityfunction, though with some loss
in the parameters. This framework provides the first rigorous explanation for why a kernel function that
is good in the large-margin sense can also formally be viewedas a good measure of similarity, thereby
giving formal justification to a common intuition about kernels. We start by analyzing a first notion of a
good similarity function in Section 3.3 and analyze its relationship with the usual notion of a good kernel
function. We then present a slightly different and broader notion that we show provides an even better
kernels to similarity translation. Any large-margin kernel function is a good similarity function under
the new definition, and while we still incur some loss in the parameters, this loss is much smaller than
under the prior definition, especially in terms of the final labeled sample-complexity bounds. In particular,
when using a valid kernel function as a similarity function,a substantial portion of the previous sample-
complexity bound can be transferred over to merely a need forunlabeled examples. We also show our
new notion isstrictly more generalthan the notion of a large margin kernel. We discuss these results in
Section 3.4. In Chapter 6 we present other random projectionresults for the case whereK is in fact a
valid kernel.

1.2.3 Clustering via Similarity Functions

Problems of clustering data from pairwise similarity information are ubiquitous in science [8, 20, 84, 92,
94, 140, 148, 149, 153, 209]. A typical example task is to cluster a set of emails or documents according
to some criterion (say, by topic) by making use of a pairwise similarity measure among data objects. In
this context, a natural example of a similarity measure for document clustering might be to consider the
fraction of important words that two documents have in common.

While the study of clustering is centered around an intuitively compelling goal (and it has been a major
tool in many different fields), it has been difficult to reasonabout it at a general level in part due to the
lack of a theoretical framework along the lines we have for supervised classification.

In this thesis we develop the first general discriminative framework for Clustering,i.e., a framework for
analyzing clustering accuracy without making strong probabilistic assumptions. In particular, we present
a theoretical approach to the clustering problem that directly addresses the fundamental question of how
good the similarity measure must be in terms of its relationship to the desired ground-truth clustering (e.g.,
clustering by topic) in order to allow an algorithm to cluster well. Very strong properties and assumptions
are needed if the goal is to produce a single approximately-correct clustering; however, we show that if we
relax the objective and allow the algorithm to produce a hierarchical clustering such that desired clustering
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is close to somepruning of this tree (which a user could navigate), then we can develop a general theory
of natural properties that are sufficient for clustering viavarious kinds of algorithms. Our framework is an
analogue of the PAC learning model for clustering, where thenatural object of study, rather than being a
concept class, is instead a property of the similarity information with respect to the desired ground-truth
clustering.

As indicated above, the main difficulty that appears when phrasing the problem in this general way is
that if one defines success as outputtinga single clusteringthat closely approximates the correct clustering,
then one needs to assume very strong conditions on the similarity function. For example, if the function
provided by the domain expert is extremely good, sayK(x, y) > 1/2 for all pairsx andy that should be
in the same cluster, andK(x, y) < 1/2 for all pairsx andy that should be in different clusters, then we
could just use it to recover the clusters in a trivial way. However, if we just slightly weaken this condition
to simply require that all pointsx are more similar to all pointsy from their own cluster than to any points
y′ from any other clusters, then this is no longer sufficient to uniquely identify even a good approximation
to the correct answer. For instance, in the example in Figure1.1, there are multiple clusterings consistent
with this property (one with1 cluster, one with2 clusters, two with3 clusters, and one with4 clusters).
Even if one is told the correct clustering has3 clusters, there is no way for an algorithm to tell which of
the two (very different) possible solutions is correct. In fact, results of Kleinberg [153] can be viewed
as effectively ruling out a broad class of scale-invariant properties like this one as being sufficient for
producing the correct answer.

In our work we overcome this problem by considering two relaxations of the clustering objective
that are natural for many clustering applications. The firstis to allow the algorithm to produce a small
list of clusterings such that at least one of them has low error4. The second is (as mentioned above) to
allow the clustering algorithm to produce atree (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, the example in Figure 1.1 has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the
output being fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure how specific you wanted to be, so
if any of these clusters are too broad, just click and I will split it for you.” We then show that with
these relaxations, a number of interesting, natural learning-theoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to cluster well.

For concreteness, we summarize in the following our main results. First, we consider a family of
stability-based properties, showing that a natural generalization of the “stable marriage” property is suf-
ficient to produce a hierarchical clustering. (The propertyis that no two subsetsA ⊂ C, A′ ⊂ C ′ of
clustersC 6= C ′ in the correct clustering are both more similar on average toeach other than to the rest of
their own clusters.) Moreover, a significantly weaker notion of stability (which we call “stability of large
subsets”) is also sufficient to produce a hierarchical clustering, but requires a more involved algorithm. We
also show that a weaker “average-attraction” property (which is provably not enough to produce a single
correct hierarchical clustering) is sufficient to produce asmall list of clusterings, and give generalizations
to even weaker conditions that are related to the notion of large-margin kernel functions. We develop
a notion of theclustering complexityof a given property (the minimum possible list length that can be
guaranteed by any algorithm) and provide both upper and lower bounds for the properties we consider.
This notion is analogous to notions of capacity in classification [73, 104, 207] and it provides a formal
measure of the inherent usefulness of a given property. We show that properties implicitly assumed by
approximation algorithms for standard graph-based objective functions such as k-median or k-means can
be viewed as special cases of some of the properties considered above.

4So, this is similar in spirit to list-decoding in coding theory.
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Figure 1.1: Data lies in four regionsA,B,C,D (e.g., think of as documents on baseball, football, TCS,
and AI). Suppose thatK(x, y) = 1 if x andy belong to the same region,K(x, y) = 1/2 if x ∈ A and
y ∈ B or if x ∈ C andy ∈ D, andK(x, y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent
clusterings, including two consistent3-clusterings ((A ∪ B, C, D) or (A, B, C ∪D)). However, there is
a single hierarchical decomposition such that any consistent clustering is a pruning of this tree.

We also show how our algorithms can be extended to the inductive case,i.e., by using just a constant-
sized sample, as in property testing. While most of our algorithms extend in a natural way, for certain
properties their analysis requires more involved arguments using regularity-type results of [14, 114].

More generally, our framework provides a formal way to analyze what properties of a similarity func-
tion would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given
property. For some of our properties we are able to show that known algorithms succeed (e.g., variations
of bottom-up hierarchical linkage based algorithms). However, for the most general ones,e.g., the stability
of large subsets property, we need new algorithms that are able to take advantage of them. In fact, the al-
gorithm we develop for the stability of the large subsets property combines learning-theoretic approaches
used in Chapter 3 (and described in Section 1.2.2) with linkage-style methods. We describe these results
in Chapter 4.

1.2.4 Connections between Machine Learning and Algorithmic Game Theory

In this thesis we also present explicit connections betweenMachine Learning Theory and certain contem-
porary problems in Economics, namely mechanism design and pricing problems.

With the Internet developing as the single most important arena for resource sharing among parties
with diverse and selfish interests, traditional algorithmic and distributed systems need to be combined with
the understanding of game-theoretic and economic issues [179]. A fundamental research endeavor in this
new field is the design and analysis of auction mechanisms andpricing algorithm [71, 122, 125, 130, 130].
In this thesis we show how machine learning methods can be used in the design of auctions and other
pricing mechanisms with guarantees on their performance.

In particular, we show how sample complexity techniques from statistical learning theory can be used
to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a
wide range of revenue-maximizing problems in an unlimited supply setting. In doing so, we obtain a
unified approach for considering a variety of profit maximizing mechanism design problems, including
many that have been previously considered in the literature. We show how techniques from machine
learning theory can be used both for analyzing and designingour mechanisms. We apply our reductions
to a diverse set of revenue maximizing pricing problems, such as the problem of auctioning a digital good,
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the attribute auction problem, and the problem of item pricing in unlimited supply combinatorial auctions.

In the following paragraphs, we give more details on the setting we study in our work. Consider a seller
with multiple digital goods or services for sale, such as movies, software, or network services, over which
buyers may have complicated preferences. In order to sell these items through an incentive-compatible
auction mechanism, this mechanism should have the propertythat each bidder is offered a set of prices
that do not depend on the value of her bid. The problem of designing a revenue-maximizing auction is
known in the economics literature as the optimal auction design problem [173]. The classical model for
optimal auction design assumes a Bayesian setting in which players’ valuations (types) are drawn from
some probability distribution that furthermore is known tothe mechanism designer. For example, to sell a
single item of fixed marginal cost, one should set the price that maximizes the profit margin per sale times
the probability a random person would be willing to buy at that price. However, in complex or non-static
environments, these assumptions become unrealistic. In these settings, machine learning can provide a
natural approach to the design of near-optimal mechanisms without such strong assumptions or degree of
prior knowledge.

Specifically, notice that while a truthful auction mechanism should have the property that the prices
offered to some bidderi do not depend on the value of her bid, they can depend on the amounts bid by other
biddersj. From a machine learning perspective, this is very similar to thinking of bidders as “examples”
and our objective being to use information from examplesj 6= i to produce a good prediction with respect
to examplei. Thus, without presuming a known distribution over bidders(or even that bidders come
from any distribution at all) perhaps if the number of bidders is sufficiently large, enough information
can be learned from some of them to perform well on the rest. Inthis thesis we formalize this idea and
show indeed that sample-complexity techniques from machine learning theory [18, 207] can be adapted
to this setting to give quantitative bounds for this kind of approach. More generally, we show that sample
complexity analysis can be applied to convert incentive-compatible mechanism design problems to more
standard algorithm-design questions, in a wide variety of revenue-maximizing auction settings.

Our reductions imply that for these problems, given an algorithm for thenon incentive-compatible
pricing problem, we can convert it into an algorithm for the incentive-compatible mechanism design prob-
lem that is only a factor of(1+ǫ) worse, as long as the number of bidders is sufficiently large as a function
of an appropriate measure of complexity of the class of allowable pricing functions. We apply these results
to the problem of auctioning a digital good, to the attributeauction problem which includes a wide variety
of discriminatory pricing problems, and to the problem of item-pricing in unlimited-supply combinatorial
auctions.From a machine learning perspective, these settings present several challenges: in particular, the
loss functionis discontinuous, is asymmetric, and has a large range.

The high level idea of our most basic reduction is based on thenotion of a random sampling auction.
For concreteness, let us imagine we are selling a collectionof n goods or services of zero marginal cost
to us, ton bidders who may have complex preference functions over these items, and our objective is to
achieve revenue comparable to the best possible assignmentof prices to the various items we are selling.
So, technically speaking, we are in the setting of maximizing revenue in an unlimited supply combinatorial
auction. Then given a set of bidsS, we perform the following operations. We first randomly partition S
into two setsS1 andS2. We then consider the purely algorithmic problem of finding the best set of prices
p1 for the set of bidsS1 (which may be difficult but is purely algorithmic), and the best set of pricesp2

for the set of bidsS2. We then usep1 as offer prices for bidders inS2, giving each bidder the bundle
maximizing revealed valuation minus price, and usep2 as offer prices for bidders inS1. We then show
that even if bidders’ preferences are extremely complicated, this mechanism will achieve revenue close to
that of the best fixed assignment of prices to items so long as the number of bidders is sufficiently large
compared to the number of items for sale. For example, if all bidders’ valuations on the grand bundle of
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all n items lie in the range[1, h], thenO(hn/ǫ2) bidders are sufficient so that with high probability, we
come within a(1 + ǫ) factor of the optimal fixed item pricing. Or, if we cannot solve the algorithmic
problem exactly (since many problems of this form are often NP-hard [27, 28, 33, 130]), we lose only a
(1 + ǫ) factor over whatever approximation our method for solving the algorithmic problem gives us.

More generally, these methods apply to a wide variety of pricing problems, including those in which
bidders have both public and private information, and also give a formal framework in which one can
address other interesting design issues such as how fine-grained a market segmentation should be. This
framework provides a unified approach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature. Furthermore, our re-
sults substantially generalize the previous work on randomsampling mechanisms by both broadening the
applicability of such mechanisms and by simplifying the analysis.

Some of our techniques give suggestions for the design of mechanisms and others for their analysis.
In terms of design, these include the use of discretization to produce smaller function classes, and the use
of structural-risk minimization to choose an appropriate level of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and
the notion of multiplicative covers for better bounding thetrue complexity of a given class of offers.

Finally, from a learning perspective, this mechanism-design setting presents a number of technical
challenges when attempting to get good bounds: in particular, the payoff function is discontinuous and
asymmetric, and the payoffs for different offers are non-uniform. For example, we develop bounds based
on a different notion of covering number than typically usedin machine learning, in order to obtain results
that are more meaningful for this mechanism design setting.We describe these results in Chapter 7.

1.3 Summary of the Main Results and Bibliographic Information

This thesis is organized as follows.

• In Chapter 2 we present the first general discriminative model for Semi-Supervised Learning. In
this model we provide a variety of algorithmic and sample complexity results and we also show
how it can be used to reason about many of the different semi-supervised learning approaches taken
over the past decade in the machine learning community. Muchof this chapter is based on work that
appears in [25], [24]. Other related work we have done on Co-training (which we briefly mention)
appears in [29].

• In Chapter 3 we provide a theory of learning with general similarity functions (that is, functions
which are not necessarily legal kernels). This theory provides conditions on the suitability of a
similarity function for a given learning problem in terms ofmore tangible and more operational
quantities than those used by the standard theory of kernel functions. In addition to being provably
more general than the standard theory, our framework provides the first rigorous explanation for
why a kernel function that is good in the large-margin sense can also formally be viewed as a good
measure of similarity, thereby giving formal justificationto a common intuition about kernels. In
this chapter we analyze both algorithmic and sample complexity issues, and this is mostly based on
work that appears in [26], [39], and [40].

• In Chapter 4 we study Clustering and we present the first general framework for analyzing clustering
accuracy without probabilistic assumptions. Again, in this chapter we consider both algorithmic and
information theoretic aspects. This chapter is based on work that appears in [41] and [43].

• In Chapter 5 we analyze Active Learning and present several main results. In Section 5.1, we
provide a generic active learning algorithm that works in the presence of arbitrary forms of noise.
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This section is focused mostly on sample complexity aspectsand the main contribution here is to
provide the first positive result showing that active learning can provide a significant improvement
over passive learning even in the presence of arbitrary forms of noise. In Section 5.2 we analyze
a natural margin-based active learning strategy for learning linear separators (which queries points
near the hypothesized decision boundary). We provide a detailed analysis (both sample complex-
ity and algorithmic) both in the realizable case and in a specific noisy setting related to the Tsy-
bakov noise condition. We also discuss a recent model in which we can provide better bounds than
those obtained in the traditional active learning models. This chapter is based on work that appears
in [31], [36], [34], and [42].

• In Chapter 6 we present additional results on learning with kernel functions, showing how Random
Projection techniques can be used to “demystify” kernel functions. Specifically, we show that in the
presence of a large margin, a kernel can be efficiently converted into a mapping to a low dimensional
space; in particular, we present a computationally efficient procedure that, given black-box access
to the kernel and unlabeled data, generates a small number offeatures that approximately preserve
both separability and margin. This is mainly based on work that appears in [32].

• In Chapter 7 we show how model selection and sample complexity techniques in machine learning
can be used to convert difficult mechanism design problems tomore standard algorithmic questions
for a wide range of pricing problems. We present a unified approach for considering a variety of
profit maximizing mechanism design problems, such as the problem of auctioning a digital good, the
attribute auction problem (which includes many discriminatory pricing problems), and the problem
of item pricing in unlimited supply combinatorial auctions. These results substantially generalize
the previous work on random sampling mechanisms by both broadening the applicability of such
mechanisms (e.g., to multi-parameter settings), and by simplifying and refining the analysis. This
chapter is mainly based on work that appears in [30] and [37] and it is focused on using machine
learning techniques for providing a generic reduction fromthe incentive-compatible mechanism
design question to more standard algorithmic questions, without also attempting to address the
algorithmic questions as well. In other related work (whichfor coherence and space limitations is
not included in this thesis) we have also considered variousalgorithmic problems that arise in this
context [27], [28], [33] and [38].

While we discuss both technical and conceptual connectionsbetween the various learning protocols
and paradigms studied throughout the thesis, each chapter can also be read somewhat independently.
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Chapter 2

A Discriminative Framework for
Semi-Supervised Learning

There has recently been substantial interest inSemi-Supervised Learning— a paradigm for incorporating
unlabeled data in the learning process — since any useful information that reduces the amount of labeled
data needed for learning can be a significant benefit. Severaltechniques have been developed for doing
this, along with experimental results on a variety of different learning problems. Unfortunately, the stan-
dard learning frameworks for reasoning about supervised learning do not capture the key aspects and the
assumptions underlying thesesemi-supervised learning methods.

In this chapter we describe an augmented version of the PAC model designed for semi-supervised
learning, that can be used to reason about many of the different approaches taken over the past decade in
the Machine Learning community. This model provides a unified framework for analyzing when and why
unlabeled data can help in the semi-supervised learning setting, in which one can analyze both sample-
complexity and algorithmic issues. The model can be viewed as an extension of the standard PAC model
where, in addition to a concept classC, one also proposes a compatibility notion: a type of compatibility
that one believes the target concept should have with the underlying distribution of data. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space of
hypotheses, and to reduce the size of the search space from the whole set of hypothesesC down to those
that, according to one’s assumptions, are a-priori reasonable with respect to the distribution. As we show,
many of the assumptions underlying existing semi-supervised learning algorithms can be formulated in
this framework.

After proposing the model, we then analyze sample-complexity issues in this setting: that is, how
much of each type of data one should expect to need in order to learn well, and what the key quantities are
that these numbers depend on. Our work is the first to address such important questions in the context of
semi-supervised learning in a unified way. We also consider the algorithmic question of how to efficiently
optimize for natural classes and compatibility notions, and provide several algorithmic results including
an improved bound for Co-Training with linear separators when the distribution satisfies independence
given the label.

2.1 Introduction

As mentioned in Chapter 1, given the easy availability of unlabeled data in many settings, there has been
growing interest in methods that try to use such data together with the (more expensive) labeled data
for learning. In particular, a number of semi-supervised learning techniques have been developed for
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doing this, along with experimental results on a variety of different learning problems. These include
label propagation for word-sense disambiguation [214], co-training for classifying web pages [63] and
improving visual detectors [161], transductive SVM [141] and EM [178] for text classification, graph-
based methods [219], and others. The problem of learning from labeled and unlabeled data has been the
topic of several ICML workshops [15, 118] as well as a recent book [83] and survey article [218].

What makes unlabeled data so useful and what many of these methods exploit, is that for a wide variety
of learning problems, the natural regularities of the problem involve not only theformof the function being
learned by also how this functionrelatesto the distribution of data. For example, in many problems one
might expect the target function should cut through low density regions of the space, a property used by
the transductive SVM algorithm [141]. In other problems onemight expect the target to be self-consistent
in some way, a property used by Co-training [63]. Unlabeled data is potentially useful in these settings
because it then allows one to reduce the search space to a set which is a-priori reasonable with respect to
the underlying distribution.

Unfortunately, however, the underlying assumptions of these semi-supervised learning methods are
not captured well by standard theoretical models. The main goal of this chapter is to propose aunified the-
oretical frameworkfor semi-supervised learning, in which one can analyze whenand why unlabeled data
can help, and in which one can discuss both sample-complexity and algorithmic issues in a discriminative
(PAC-model style) framework.

One difficulty from a theoretical point of view is that standard discriminative learning models do not
allow one to specify relations that one believes the target should have with the underlying distribution.
In particular, both in the PAC model [70, 151, 205] and the Statistical Learning Theory framework [207]
there is purposefully a complete disconnect between the data distributionD and the target functionf
being learned. The only prior belief is thatf belongs to some classC: even if the data distributionD is
known fully, any functionf ∈ C is still possible. For instance, in the PAC model, it is perfectly natural
(and common) to talk about the problem of learning a concept class such as DNF formulas [164, 210]
or an intersection of halfspaces [48, 62, 155, 208] over the uniform distribution; but clearly in this case
unlabeled data is useless — you can just generate it yourself. For learning over an unknown distribution,
unlabeled data can help somewhat in the standard models (e.g., by allowing one to use distribution-specific
algorithms and sample-complexity bounds [54, 145]), but this does not seem to capture the power of
unlabeled data in practical semi-supervised learning methods.

In generativemodels, onecaneasily talk theoretically about the use of unlabeled data, e.g., [77, 78].
However, these results typically make strong assumptions that essentially imply that there is only one
natural distinction to be made for a given (unlabeled) data distribution. For instance, a typical generative
model would be that we assume positive examples are generated by one Gaussian, and negative examples
are generated by another Gaussian. In this case, given enough unlabeled data, we could in principle
recover the Gaussians and would need labeled data only to tell us which Gaussian is the positive one and
which is the negative one.1 However, this is too strong an assumption for most real-world settings. Instead,
we would like our model to allow for a distribution over data (e.g., documents we want to classify) where
there are a number of plausible distinctions we might want tomake. In addition, we would like a general
framework that can be used to model many different uses of unlabeled data.

2.1.1 Our Contribution

In this chapter, we present a discriminative (PAC-style framework) that bridges between these positions
and can be used to help think about and analyze many of the waysunlabeled data is typically used. This

1[77, 78] do not assume Gaussians in particular, but they do assume the distributions are distinguishable, which from this
perspective has the same issue.
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framework extends the PAC learning model in a way that allowsone to express not only the form of
target function one is considering, but also relationshipsthat one hopes the target function and underlying
distribution will possess. We then analyze both sample-complexity issues—that is, how much of each
type of data one should expect to need in order to learn well—as well as algorithmic results in this model.
We derive bounds for both the realizable (PAC) and agnostic (statistical learning framework) settings.

Specifically, the idea of the proposed model is to augment thePAC notion of aconcept class, which
is a set of functions (such as linear separators or decision trees), with a notion ofcompatibilitybetween
a function and the data distribution that we hope the target function will satisfy. Rather than talking of
“learning a concept classC,” we will talk of “learning a concept classC under compatibility notionχ.”
For example, suppose we believe there should exist a low-error linear separator, and that furthermore, if
the data happens to cluster, then this separator does not slice through the middle of any such clusters. Then
we would want a compatibility notion that penalizes functions that do, in fact, slice through clusters. In
this framework, the ability of unlabeled data to help depends on two quantities: first, the extent to which
the target function indeed satisfies the given assumptions,and second, the extent to which the distribution
allows this assumption to rule out alternative hypotheses.For instance, if the data does not cluster at
all (say the underlying distribution is uniform in a ball), then all functions would equally satisfy this
compatibility notion and the assumption is not useful. Froma Bayesian perspective, one can think of this
as a PAC model for a setting in which one’s prior is not just over functions, but also over how the function
and underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degree of compatibility be something that
can beestimated from a finite sample. To do this, we will require that the compatibility notionχ in fact
be a function fromC × X to [0, 1], where the compatibility of a hypothesish with the data distribution
D is thenEx∼D[χ(h, x)]. That is, we require that the degree ofincompatibility be a kind of unlabeled
loss function, and the incompatibility of a hypothesish with a data distributionD is a quantity we can
think of as an “unlabeled error rate” that measures how a-priori unreasonable we believe some proposed
hypothesis to be. For instance, in the example above of a “margin-style” compatibility, we could define
χ(f, x) to be an increasing function of the distance ofx to the separatorf . In this case, the unlabeled error
rate,1 − χ(f,D), is a measure of the probability mass close to the proposed separator. In co-training,
where each examplex has two “views” (x = 〈x1, x2〉), the underlying belief is that the true targetc∗ can
be decomposed into functions〈c∗1, c∗2〉 over each view such that for most examples,c∗1(x1) = c∗2(x2). In
this case, we can defineχ(〈f1, f2〉, 〈x1, x2〉) = 1 if f1(x1) = f2(x2), and 0 iff1(x1) 6= f2(x2). Then the
compatibility of a hypothesis〈f1, f2〉 with an underlying distributionD is Pr〈x1,x2〉∼D[f1(x1) = f2(x2)].

This framework allows us to analyze the ability of a finite unlabeled sample to reduce our dependence
on labeled examples, as a function of (1) the compatibility of the target function (i.e., how correct we were
in our assumption) and (2) various measures of the “helpfulness” of the distribution. In particular, in our
model, we find that unlabeled data can help in several distinct ways.

• If the target function is highly compatible withD and belongs toC, then if we have enough unla-
beled data to estimate compatibility over allf ∈ C, we can in principle reduce the size of the search
space fromC down to just thosef ∈ C whose estimated compatibility is high. For instance, ifD is
“helpful”, then the set of such functions will be much smaller than the entire setC. In the agnostic
case we can do (unlabeled)-data-dependent structural riskminimization to trade off labeled error
and incompatibility.

• By providing an estimate ofD, unlabeled data can allow us to use a more refined distribution-
specific notion of “hypothesis space size” such as Annealed VC-entropy [104], Rademacher com-
plexities [44, 73, 157] or the size of the smallestǫ-cover [54], rather than VC-dimension [70, 151].
In fact, for many natural notions of compatibility we find that the sense in which unlabeled data
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reduces the “size” of the search space is best described in these distribution-specific measures.

• Finally, if the distribution is especially helpful, we may find that not only does the set of compatible
f ∈ C have a smallǫ-cover, but also the elements of the cover are far apart. In that case, if we
assume the target function is fully compatible, we may be able to learn from even fewer labeled
examples than theΩ(1/ǫ) needed just toverify a good hypothesis. For instance, as one application
of this, we show that under the assumption of independence given the label, one can efficiently
perform Co-Training of linear separators from a single labeled example!

Our framework also allows us to address the issue of how muchunlabeleddata we should expect to
need. Roughly, the “VCdim/ǫ2” form of standard sample complexity bounds now becomes a bound on the
number ofunlabeledexamples we need to uniformly estimate compatibilities. However, technically, the
set whose VC-dimension we now care about is notC but rather a set defined by bothC andχ: that is, the
overall complexity depends both on the complexity ofC and the complexity of the notion of compatibility
(see Section 2.3.1). One consequence of our model is that if the target function and data distribution are
both well behaved with respect to the compatibility notion,then the sample-size bounds we get for labeled
data can substantially beat what one could hope to achieve through pure labeled-data bounds, and we
illustrate this with a number of examples through the chapter.

2.1.2 Summary of Main Results

The primary contributions of this chapter are the following. First, as described above, we develop a
new discriminative (PAC-style) model for semi-supervisedlearning, that can be used to analyze when
unlabeled data can help and howmuchunlabeled data is needed in order to gain its benefits, as wellas
the algorithmic problems involved. Second, we present a number of sample-complexity bounds in this
framework, both in terms of uniform-convergence results—which apply to any algorithm that is able to
find rules of low error and high compatibility—as well asǫ-cover-based bounds that apply to a more
restricted class of algorithms but can be substantially tighter. For instance, we describe several natural
cases in whichǫ-cover-based bounds can apply even though with high probability there still exist bad
hypotheses in the class consistent with the labeled and unlabeled examples. Finally, we present several
PAC-style algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-
Training with linear separators that, if the distribution satisfies independence given the label, requires
only a single labeled example to learn to any desired error rate ǫ and is computationally efficient (i.e.,
achieves PAC guarantees). This substantially improves on the results of [63] which required enough
labeled examples to produce an initial weak hypothesis, andin the process we get a simplification to the
noisy halfspace learning algorithm of [65].

Our framework has helped analyze many of the existing semi-supervised learning methods used in
practice and has guided the development of new semi-supervised learning algorithms and analyses. We
discuss this further in Section 2.6.1.

2.1.3 Structure of this Chapter

We begin by describing the general setting in which our results apply as well as several examples to il-
lustrate our framework in Section 2.2. We then give results both for sample complexity(in principle, how
much data is needed to learn) andefficient algorithms. In terms of sample-complexity, we start by dis-
cussing uniform convergence results in Section 2.3.1. For clarity we begin with the case of finite hypoth-
esis spaces in Section 2.3.1, and then discuss infinite hypothesis spaces in Section 2.3.1. These results
give bounds on the number of examples needed for any learningalgorithm that produces a compatible

18



hypothesis of low empirical error. We also show how in the agnostic case we can do (unlabeled)-data-
dependent structural risk minimization to trade off labeled error and incompatibility in Section 2.3.1. To
achieve tighter bounds, in Section 2.3.2 we give results based on the notion ofǫ-cover size. These bounds
hold only for algorithms of a specific type (that first use the unlabeled data to choose a small set of “repre-
sentative” hypotheses and then choose among the representatives based on the labeled data), but can yield
bounds substantially better than with uniform convergence(e.g., we can learn even though there exist bad
h ∈ C consistent with the labeled and unlabeled examples).

In Section 2.4, we give our algorithmic results. We begin with a particularly simple classC and com-
patibility notionχ for illustration, and then give our main algorithmic resultfor Co-Training with linear
separators. In Section 2.5 we discuss a transductive analogof our model, connections with generative
models and other ways of using unlabeled data in machine learning, as well as the relationship between
our model and the Luckiness Framework [195] developed in thecontext of supervised learning. Finally,
in Section 2.6 we discuss some implications of our model and present our conclusions, as well a number
of open problems.

2.2 A Formal Framework

In this section we introduce general notation and terminology we use throughout the chapter, and describe
our model for semi-supervised learning. In particular, we formally define what we mean by anotion of
compatibilityand we illustrate it through a number of examples including margins and co-training.

We will focus on binary classification problems. We assume that our data comes according to a
fixed unknown distributionD over an instance spaceX, and is labeled by some unknown target function
c∗ : X → {0, 1}. A learning algorithm is given a setSL of labeled examples drawn i.i.d. fromD and
labeled byc∗ as well as a (usually larger) setSU of unlabeled examples fromD. The goal is to perform
some optimization over the samplesSL andSU and to output a hypothesis that agrees with the target over
most of the distribution. In particular, the error rate (also called “0-1 loss”) of a given hypothesisf is
defined aserr(f) = errD(f) = Prx∼D[f(x) 6= c∗(x)]. For any two hypothesesf1, f2, the distance with
respect toD betweenf1 andf2 is defined asd(f1, f2) = dD(f1, f2) = Prx∼D[f1(x) 6= f2(x)]. We will
useêrr(f) to denote the empirical error rate off on a given labeled sample (i.e., the fraction of mistakes
on the sample) and̂d(f1, f2) to denote the empirical distance betweenf1 andf2 on a given unlabeled
sample (the fraction of the sample on which they disagree). As in the standard PAC model, aconcept
classor hypothesis spaceis a set of functions over the instance spaceX. In the “realizable case”, we
make the assumption that the target is in a given classC, whereas in the “agnostic case” we do not make
this assumption and instead aim to compete with the best function in the given classC.

We now formally describe what we mean by a notion of compatibility. A notion of compatibilityis a
mapping from a hypothesisf and a distributionD to [0, 1] indicating how “compatible”f is with D. In
order for this to be estimable from a finite sample, we requirethat compatibility be an expectation over
individual examples.2 Specifically, we define:

Definition 2.2.1 A legal notion of compatibility is a functionχ : C×X → [0, 1] where we (overloading
notation) defineχ(f,D) = Ex∼D[χ(f, x)]. Given a sampleS, we defineχ(f, S) to be the empirical
average ofχ over the sample.

2One could imagine more general notions of compatibility with the property that they can be estimated from a finite sample
and all our results would go through in that case as well. We consider the special case where the compatibility is an expectation
over individual examples for simplicity of notation, and because most existing semi-supervised learning algorithms used in
practice do satisfy it.
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Note 1 One could also allow compatibility functions overk-tuples of examples, in which case our (un-
labeled) sample-complexity bounds would simply increase by a factor ofk. For settings in whichD is
actually known in advance (e.g., transductive learning, see Section 2.5.1) we can drop this requirement
entirely and allow any notion of compatibilityχ(f,D) to be legal.

Definition 2.2.2 Given compatibility notionχ, the incompatibility of f with D is 1 − χ(f,D). We will
also call this itsunlabeled error rate, errunl(f), whenχ and D are clear from context. For a given
sampleS, we useêrrunl(f) = 1− χ(f, S) to denote the empirical average overS.

Finally, we need a notation for the set of functions whose incompatibility (or unlabeled error rate) is
at most some given valueτ .
Definition 2.2.3 Given valueτ , we defineCD,χ(τ) = {f ∈ C : errunl(f) ≤ τ}. So, e.g.,CD,χ(1) = C.
Similarly, for a sampleS, we defineCS,χ(τ) = {f ∈ C : êrrunl(f) ≤ τ}

We now give several examples to illustrate this framework:

Example1. Suppose examples are points inRd andC is the class of linear separators. A natural belief
in this setting is that data should be “well-separated”: notonly should the target function separate the
positive and negative examples, but it should do so by some reasonablemarginγ. This is the assumption
used by Transductive SVM, also called Semi-Supervised SVM (S3VM) [56, 82, 141]. In this case, if we
are givenγ up front, we could defineχ(f, x) = 1 if x is farther than distanceγ from the hyperplane
defined byf , andχ(f, x) = 0 otherwise. So, the incompatibility off with D is theprobability mass
within distanceγ of the hyperplanef · x = 0. Alternatively, if we do not want to commit to a specificγ
in advance, we could defineχ(f, x) to be a smooth function of the distance ofx to the separator, as done
in [82]. Note that in contrast, defining compatibility of a hypothesis based on the largestγ such thatD
has probability massexactly zerowithin distanceγ of the separator wouldnot fit our model: it cannot be
written as an expectation over individual examples and indeed would not be a good definition since one
cannot distinguish “zero” from “exponentially close to zero” from a small sample of unlabeled data.

Example2. In co-training [63], we assume examplesx each contain two “views”:x = 〈x1, x2〉, and
our goal is to learn a pair of functions〈f1, f2〉, one on each view. For instance, if our goal is to classify web
pages, we might usex1 to represent the words on the page itself andx2 to represent the words attached
to links pointingto this page from other pages. The hope underlying co-trainingis that the two parts of
the example are generally consistent, which then allows thealgorithm to bootstrap from unlabeled data.
For example,iterative co-traininguses a small amount of labeled data to learn some initial information
(e.g., if a link with the words “my advisor” points to a page then that page is probably a faculty member’s
home page). Then, when it finds an unlabeled example where oneside is confident (e.g., the link says “my
advisor”), it uses that to label the example for training over the other view. Inregularized co-training,
one attempts to directly optimize a weighted combination ofaccuracy on labeled data and agreement over
unlabeled data. These approaches have been used for a variety of learning problems, including named
entity classification [88], text classification [117, 177],natural language processing [184], large scale
document classification [182], and visual detectors [161].As mentioned in Section 2.1, the assumptions
underlying this method fit naturally into our framework. In particular, we can define the incompatibility of
some hypothesis〈f1, f2〉 with distributionD asPr〈x1,x2〉∼D[f1(x1) 6= f2(x2)]. Similar notions are given
in subsequent work of [186, 200] for other types of learning problems (e.g. regression) and for other loss
functions.

Example3. In transductive graph-based methods, we are given a set of unlabeled examples connected
in a graphg, where the interpretation of an edge is that we believe the two endpoints of the edge should
have thesamelabel. Given a few labeled vertices, various graph-based methods then attempt to use
them to infer labels for the remaining points. If we are willing to viewD as a distribution overedges
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(a uniform distribution ifg is unweighted), then as in co-training we can define the incompatibility of
some hypothesisf as the probability mass of edges that are cut byf , which then motivates various cut-
based algorithms. For instance, if we requiref to be boolean, then the mincut method of [60] finds the
most-compatible hypothesis consistent with the labeled data; if we allow f to be fractional and define
1− χ(f, 〈x1, x2〉) = (f(x1)− f(x2))

2, then the algorithm of [219] finds the most-compatible consistent
hypothesis. If we do not wish to viewD as a distribution over edges, we could haveD be a distribution
oververticesand broaden Definition 2.2.1 to allow forχ to be a function overpairsof examples. In fact, as
mentioned in Note 1, since we have perfect knowledge ofD in this setting we can allow any compatibility
functionχ(f,D) to be legal. We discuss more connections with graph-based methods in Section 2.5.1.

Example 4. As a special case of co-training, suppose examples are pairsof points inRd, C is the
class of linear separators, and we believe the two points in each pair should both be on thesameside of
the target function. (So, this is a version of co-training where we requiref1 = f2.) The motivation is that
we want to use pairwise information as in Example3, but we also want to use the features of each data
point. For instance, in the word-sense disambiguation problem studied by [214], the goal is to determine
which of several dictionary definitions is intended for sometarget word in a piece of text (e.g., is “plant”
being used to indicate a tree or a factory?). The local context around each word can be viewed as placing
it into Rd, but the edges correspond to a completely different type of information: the belief that if a word
appears twice in the same document, it is probably being usedin thesamesense both times. In this setting,
we could use the same compatibility function as in Example3, but rather than having the concept classC
be all possible functions, we restrictC to just linear separators.

Example 5. In a related setting to co-training considered by [160], examples are single points inX
but we have a pair of hypothesis spaces〈C1, C2〉 (or more generally ak-tuple〈C1, . . . , Ck〉), and the goal
is to find a pair of hypotheses〈f1, f2〉 ∈ C1 ×C2 with low error over labeled data and that agree over the
distribution. For instance, if data is sufficiently “well-separated”, one might expect there to exist both a
good linear separator and a good decision tree, and one wouldlike to use this assumption to reduce the need
for labeled data. In this case one could define compatibilityof 〈f1, f2〉 with D asPrx∼D[f1(x) = f2(x)],
or the similar notions given in [160, 193].

2.3 Sample Complexity Results

We now present several sample-complexity bounds that can bederived in this framework, showing how
unlabeled data, together with a suitable compatibility notion, can reduce the need for labeled examples. We
do not focus on giving the tightest possible bounds, but instead on the types of bounds and the quantities
on which they depend, in order to better understand what it isabout the learningproblemone can hope to
leverage from with unlabeled data.

The high-level structure of all of these results is as follows. First, given enough unlabeled data (where
“enough” will be a function of some measure of the complexityof C and possibly ofχ as well), we can
uniformly estimate the true compatibilities of all functions inC using their empirical compatibilities over
the sample. Then, by using this quantity to give a preferenceordering over the functions inC, in the
realizable case we can reduce “C” down to “the set of functions inC whose compatibility is not much
larger than the true target function” in bounds for the number of labeledexamples needed for learning. In
the agnostic case we can do (unlabeled)-data-dependent structural risk minimization to trade off labeled
error and incompatibility. The specific bounds differ in terms of the exact complexity measures used (and a
few other issues) and we provide examples illustrating whenand how certain complexity measures can be
significantly more powerful than others. Moreover, one can prove fallback properties of these procedures
— the number of labeled examples required is never much worsethan the number of labeled examples
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required by a standard supervised learning algorithm. However, if the assumptions happen to be right, one
can significantly benefit by using the unlabeled data.

2.3.1 Uniform Convergence Bounds

We begin with uniform convergence bounds (later in Section 2.3.2 we give tighterǫ-cover bounds that
apply to algorithms of a particular form). For clarity, we begin with the case of finite hypothesis spaces
where we measure the “size” of a set of functions by just the number of functions in the set. We then
discuss several issues that arise when considering infinitehypothesis spaces, such as what is an appropriate
measure for the “size” of the set of compatible functions, and the need to account for the complexity of the
compatibility notion itself. Note that in the standard PAC model, one typically talks of either the realizable
case, where we assume that the target functionc∗ belongs toC, or the agnostic case where we allow any
target functionc∗ [151]. In our setting, we have the additional issue ofunlabelederror rate, and can either
make an a-priori assumption that the target function’s unlabeled error is low, or else provide a bound in
which our sample size (or error rate) depends on whatever itsunlabeled error happens to be. We begin in
Sections 2.3.1 and 2.3.1 with bounds for the the setting in which we assumec∗ ∈ C, and then in Section
2.3.1 we consider the agnostic case where we remove this assumption.

Finite hypothesis spaces

We first give a bound for the “doubly realizable” case where weassumec∗ ∈ C anderrunl(c
∗) = 0.

Theorem 2.3.1 If c∗ ∈ C anderrunl(c
∗) = 0, thenmu unlabeled examples andml labeled examples are

sufficient to learn to errorǫ with probability1− δ, where

mu =
1

ǫ

[
ln |C|+ ln

2

δ

]
and ml =

1

ǫ

[
ln |CD,χ(ǫ)|+ ln

2

δ

]
.

In particular, with probability at least1 − δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) = 0 have
err(f) ≤ ǫ.

Proof: The probability that a given hypothesisf with errunl(f) > ǫ has êrrunl(f) = 0 is at most
(1 − ǫ)mu < δ

2|C| for the given value ofmu. Therefore, by the union bound, the number of unlabeled

examples is sufficient to ensure that with probability1− δ
2 , only hypotheses inCD,χ(ǫ) haveêrrunl(f) =

0. The number of labeled examples then similarly ensures thatwith probability1− δ
2 , none of those whose

true error is at leastǫ have an empirical error of 0, yielding the theorem.

Interpretation: If the target function indeed is perfectly correct and compatible, then Theorem 2.3.1
gives sufficient conditions on the number of examples neededto ensure that an algorithm that optimizes
both quantities over the observed data will, in fact, achieve a PAC guarantee. To emphasize this, we will
say that an algorithm efficientlyPACunl-learns the pair(C,χ) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of Theorem 2.3.1. For a formal definition see
Definition 2.3.1 at the end of this section.

We can think of Theorem 2.3.1 as bounding the number of labeled examples we need as a function of
the “helpfulness” of the distributionD with respect to our notion of compatibility. That is, in our context,
a helpful distribution is one in whichCD,χ(ǫ) is small, and so we do not need much labeled data to identify
a good function among them. We can get a similar bound in the situation when the target function is not
fully compatible:
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Theorem 2.3.2 If c∗ ∈ C anderrunl(c
∗) = t, thenmu unlabeled examples andml labeled examples are

sufficient to learn to errorǫ with probability1− δ, for

mu =
2

ǫ2

[
ln |C|+ ln

4

δ

]
and ml =

1

ǫ

[
ln |CD,χ(t + 2ǫ)| + ln

2

δ

]
.

In particular, with probability at least1 − δ, thef ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0
haserr(f) ≤ ǫ.

Alternatively, given the above number of unlabeled examplesmu, for anynumber of labeled examples
ml, with probability at least1− δ, thef ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0 has

err(f) ≤ 1

ml

[
ln |CD,χ(errunl(c

∗) + 2ǫ)| + ln
2

δ

]
. (2.1)

Proof: By Hoeffding bounds,mu is sufficiently large so that with probability at least1− δ/2, all f ∈ C
have|êrrunl(f) − errunl(f)| ≤ ǫ. Thus,{f ∈ C : êrrunl(f) ≤ t + ǫ} ⊆ CD,χ(t + 2ǫ). For the first
implication, the given bound onml is sufficient so that with probability at least1 − δ, all f ∈ C with
êrr(f) = 0 andêrrunl(f) ≤ t+ ǫ haveerr(f) ≤ ǫ; furthermore,êrrunl(c

∗) ≤ t+ ǫ, so such a functionf
exists. Therefore, with probability at least1−δ, thef ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0
haserr(f) ≤ ǫ, as desired. For second implication, inequality (2.1) follows immediately by solving for
the labeled estimation-error as a function ofml.

Interpretation: Theorem 2.3.2 has several implications. Specifically:

1. If we can optimize the (empirical) unlabeled error rate subject to having zero empirical labeled
error, then to achieve low true error it suffices to draw a number of labeled examples that depends
logarithmically on the number of functions inC whose unlabeled error rate is at most2ǫ greater
than that of the targetc∗.

2. Alternatively, forany given number of labeled examplesml, we can provide a bound (given in
equation 2.1) on our error rate that again depends logarithmically on the number of such functions,
i.e., with high probability the functionf ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0 has
err(f) ≤ 1

ml

[
ln |CD,χ(errunl(c

∗) + 2ǫ)|+ ln 2
δ

]
.

3. If we have a desired maximum error rateǫ and do not know the value oferrunl(c
∗) but have the

ability to draw additional labeled examples as needed, thenwe can simply do a standard “doubling
trick” on ml. On each round, we check if the hypothesisf found indeed has sufficiently low
empirical unlabeled error rate, and we spread the “δ” parameter across the different runs. See, e.g.,
Corollary 2.3.6 in Section 2.3.1.

Finally, before going to infinite hypothesis spaces, we givea simple Occam-style version of the above
bounds for this setting. Given a sampleS, let us definedescS(f) = ln |CS,χ(êrrunl(f))|. That is,
descS(f) is the description length off (in “nats”) if we sort hypotheses by their empirical compatibility
and output the index off in this ordering. Similarly, defineǫ-descD(f) = ln |CD,χ(errunl(f) + ǫ)|. This
is an upper-bound on the description length off if we sort hypotheses by anǫ-approximation to the their
true compatibility. Then we immediately get a bound as follows:

Corollary 2.3.3 For any setS of unlabeled data, givenml labeled examples, with probability at least
1− δ, all f ∈ C satisfyingêrr(f) = 0 anddescS(f) ≤ ǫml − ln(1/δ) haveerr(f) ≤ ǫ. Furthermore, if
|S| ≥ 2

ǫ2
[ln |C|+ ln 2

δ ], then with probability at least1− δ, all f ∈ C satisfydescS(f) ≤ ǫ-descD(f).

Interpretation: The point of this bound is that an algorithm can use observable quantities (the “empirical
description length” of the hypothesis produced) to determine if it can be confident that its true error rate
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is low (I.e., if we can find a hypothesis withdescS(f) ≤ ǫml − ln(1/δ) and êrr(f) = 0, we can be
confident that it has error rate at mostǫ). Furthermore, if we have enough unlabeled data, the observable
quantities will be no worse than if we were learning a slightly less compatible function using an infinite-
size unlabeled sample.

Note that if we begin with a non-distribution-dependent ordering of hypotheses, inducing some de-
scription lengthdesc(f), and our compatibility assumptions turn out to be wrong, then it could well be that
descD(c∗) > desc(c∗). In this case our use of unlabeled data would end up hurting rather than helping.
However, notice that by merely interleaving the initial ordering and the ordering produced byS, we get a
new description lengthdescnew(f) such that

descnew(f) ≤ 1 + min(desc(f), descS(f)).

Thus, up to an additive constant, we can get the best of both orderings.
Also, if we have the ability to purchase additional labeled examples until the function produced is

sufficiently “short” compared to the amount of data, then we can perform the usual stratification and be
confident whenever we find a consistent functionf such thatdescS(f) ≤ ǫml − ln(ml(ml+1)

δ ), whereml

is the number of labeled examples seen so far.

Efficient algorithms in our model Finally, we end this section with a definition describing ourgoals for
efficient learning algorithms, based on the above sample bounds.

Definition 2.3.1 Given a classC and compatibility notionχ, we say that an algorithm efficientlyPACunl-
learns the pair(C,χ) if, for any distributionD, for any target functionc∗ ∈ C with errunl(c

∗) =
0, for any givenǫ > 0, δ > 0, with probability at least1 − δ it achieves error at mostǫ using
poly(log |C|, 1/ǫ, 1/δ) unlabeled examples andpoly(log |CD,χ(ǫ)|, 1/ǫ, 1/δ) labeled examples, and with
time which ispoly(log |C|, 1/ǫ, 1/δ).

We say that an algorithm semi-agnosticallyPACunl-learns(C,χ) if it is able to achieve this guarantee
for anyc∗ ∈ C even iferrunl(c

∗) 6= 0, using labeled examplespoly(log |CD,χ(errunl(c
∗)+ǫ)|, 1/ǫ, 1/δ).

Infinite hypothesis spaces

To reduce notation, we will assume in the rest of this chapterthat χ(f, x) ∈ {0, 1} so thatχ(f,D) =
Prx∼D[χ(f, x) = 1]. However, all our sample complexity results can be easily extended to the general
case.

For infinite hypothesis spaces, the first issue that arises isthat in order to achieve uniform convergence
of unlabelederror rates, the set whose complexity we care about is notC but ratherχ(C) = {χf : f ∈ C}
whereχf : X → {0, 1} andχf (x) = χ(f, x). For instance, suppose examples are just points on the line,
andC = {fa(x) : fa(x) = 1 iff x ≤ a}. In this case, VCdim(C) = 1. However, we could imagine
a compatibility function such thatχ(fa, x) depends on some complicated relationship between the real
numbersa andx. In this case, VCdim(χ(C)) is much larger, and indeed we would need many more
unlabeled examples to estimate compatibility over all ofC.

A second issue is that we need an appropriate measure for the “size” of the set of surviving functions.
VC-dimension tends not to be a good choice: for instance, if we consider the case of Example1 (margins),
then even if data is concentrated in two well-separated “blobs”, the set of compatible separators still has as
large a VC-dimension as the entire class even though they areall very similar with respect toD (see, e.g.,
Figure 2.1 after Theorem 2.3.5 below). Instead, it is betterto consider distribution dependent complexity
measures such as annealed VC-entropy [104] or Rademacher averages [44, 73, 157]. For this we introduce
some notation. Specifically, for anyC, we denote byC[m,D] the expected number of splits ofm points
(drawn i.i.d.) fromD using concepts inC. Also, for a given (fixed)S ⊆ X, we will denote byS the
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uniform distribution overS, and byC[m,S] the expected number of splits ofm points fromS using
concepts inC. The following is the analog of Theorem 2.3.2 for the infinitecase.

Theorem 2.3.4 If c∗ ∈ C anderrunl(c
∗) = t, thenmu unlabeled examples andml labeled examples are

sufficient to learn to errorǫ with probability1− δ, for

mu = O

(
V Cdim (χ(C))

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

and

ml =
2

ǫ

[
ln
(
2CD,χ(t + 2ǫ)[2ml,D]

)
+ ln

4

δ

]
,

where recallCD,χ(t + 2ǫ)[2ml,D] is the expected number of splits of2ml points drawn fromD using
concepts inC of unlabeled error rate≤ t + 2ǫ. In particular, with probability at least1 − δ, thef ∈ C
that optimizeŝerrunl(f) subject toêrr(f) = 0 haserr(f) ≤ ǫ.

Proof: Let S be the set ofmu unlabeled examples. By standard VC-dimension bounds (e.g., see
Theorem A.1.1 in Appendix A.1.1) the number of unlabeled examples given is sufficient to ensure that
with probability at least1− δ

2 we have|Prx∼S [χf (x) = 1]−Prx∼D[χf (x) = 1]| ≤ ǫ for all χf ∈ χ(C).
Sinceχf (x) = χ(f, x), this implies that we have|êrrunl(f)− errunl(f)| ≤ ǫ for all f ∈ C. So, the set
of hypotheses witĥerrunl(f) ≤ t + ǫ is contained inCD,χ(t + 2ǫ).

The bound on the number of labeled examples now follows directly from known concentration results
using the expected number of partitions instead of the maximum in the standard VC-dimension bounds
(e.g., see Theorem A.1.2 in Appendix A.1.1 ). This bound ensures that with probability1− δ

2 , none of the
functionsf ∈ CD,χ(t + 2ǫ) with err(f) ≥ ǫ haveêrr(f) = 0.

The above two arguments together imply that with probability 1 − δ, all f ∈ C with êrr(f) = 0 and
êrrunl(f) ≤ t + ǫ haveerr(f) ≤ ǫ, and furthermorec∗ hasêrrunl(c

∗) ≤ t + ǫ. This in turn implies that
with probability at least1− δ, thef ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0 haserr(f) ≤ ǫ
as desired.

We can also give a bound where we specify the number of labeledexamples as a function of theunla-
beled sample; this is useful because we can imagine our learning algorithm performing some calculations
over the unlabeled data and then deciding how many labeled examples to purchase.

Theorem 2.3.5 If c∗ ∈ C anderrunl(c
∗) = t, then an unlabeled sampleS of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

is sufficient so that if we labelml examples drawn uniformly at random fromS, where

ml >
4

ǫ

[
ln(2CS,χ(t + ǫ)

[
2ml, S

]
) + ln

4

δ

]

then with probability at least1 − δ, the f ∈ C that optimizesêrrunl(f) subject toêrr(f) = 0 has
err(f) ≤ ǫ.

Proof: Standard VC-bounds (in the same form as for Theorem 2.3.4) imply that the number oflabeled
examplesml is sufficient to guarantee the conclusion of the theorem with“err(f)” replaced by “errS(f)”
(the error with respect toS) and “ǫ” replaced with “ǫ/2”. The number ofunlabeledexamples is enough
to ensure that, with probability≥ 1− δ

2 , for all f ∈ C, |err(f)− errS(f)| ≤ ǫ/2. Combining these two
statements yields the theorem.
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Note that if we assumeerrunl(c
∗) = 0, then we can use the setCS,χ(0) instead ofCS,χ(t + ǫ) in the

formula giving the number of labeled examples in Theorem 2.3.5.

Note: Notice that for the setting of Example1, in the worst case (over distributionsD) this will essentially
recover the standard margin sample-complexity bounds for the number of labeled examples. In particular,
CS,χ(0) contains only those separators that splitS with margin≥ γ, and therefore,s =

∣∣CS,χ(0)[2ml, S]
∣∣

is no greater than the maximum number of ways of splitting2ml points with marginγ. However, if the
distribution is helpful, then the bounds can be much better because there may be many fewer ways of
splittingS with marginγ. For instance, in the case of two well-separated “blobs” illustrated in Figure 2.1,
if S is large enough, we would have justs = 4.

Figure 2.1: Linear separators with a margin-based notion ofcompatibility. If the distribution is uniform
over two well-separated “blobs” and the unlabeled setS is sufficiently large, the setCS,χ(0) contains only
four different partitions ofS, shown in the figure asf1, f2, f3, andf4. Therefore, Theorem 2.3.5 implies
that we only needO(1/ǫ) labeled examples to learn well.

Theorem 2.3.5 immediately implies the following stratifiedversion, which applies to the case in which
one repeatedly draws labeled examples until that number is sufficient to justify the most-compatible hy-
pothesis found.

Corollary 2.3.6 An unlabeled sampleS of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

is sufficient so that with probability≥ 1− δ we have that simultaneously for everyk ≥ 0 the following is
true: if we labelmk examples drawn uniformly at random fromS, where

mk >
4

ǫ

[
ln
(
2CS,χ((k + 1)ǫ)

[
2mk, S

])
+ ln

4(k + 1)(k + 2)

δ

]

then allf ∈ C with êrr(f) = 0 and êrrunl(f) ≤ (k + 1)ǫ haveerr(f) ≤ ǫ.

Interpretation: This corollary is an analog of Theorem 2.3.3 and it justifies astratification based on
the estimated unlabeled error rates. That is, beginning with k = 0, one draws the specified number
of examples and checks to see if a sufficiently compatible hypothesis can be found. If so, one halts with
success, and if not, one incrementsk and tries again. Sincek ≤ 1

ǫ , we clearly have a fallback property: the
number of labeled examples required is never much worse thanthe number of labeled examples required
by a standard supervised learning algorithm.

If one does not have the ability to draw additional labeled examples, then we can fixml and instead
stratify over estimation error as in [46]. We discuss this further in our agnostic bounds in Section 2.3.1
below.

26



The agnostic case

The bounds given so far have been based on the assumption thatthe target function belongs toC (so
that we can assume there will existf ∈ C with êrr(f) = 0). One can also derive analogous results for
the agnostic (unrealizable) case, where we do not make that assumption. We first present one immediate
bound of this form, and then show how we can use it in order to trade off labeled and unlabeled error
in a near-optimal way. We also discuss the relation of this toa common “regularization” technique used
in semi-supervised learning. As we will see, the differences between these two point to certain potential
pitfalls in the standard regularization approach.

Theorem 2.3.7 Letf∗
t = argminf∈C [err(f)|errunl(f) ≤ t]. Then an unlabeled sampleS of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

and a labeled sample of size

ml ≥
8

ǫ2

[
log
(
2CD,χ(t + 2ǫ)[2ml,D]

)
+ log

4

δ

]

is sufficient so that with probability≥ 1− δ, thef ∈ C that optimizeŝerr(f) subject toêrrunl(f) ≤ t+ ǫ
haserr(f) ≤ err(f∗

t ) + ǫ +
√

log(4/δ)/(2ml) ≤ err(f∗
t ) + 2ǫ.

Proof: The given unlabeled sample size implies that with probability 1 − δ/2, all f ∈ C have
|êrrunl(f) − errunl(f)| ≤ ǫ, which also implies that̂errunl(f

∗
t ) ≤ t + ǫ. The labeled sample size,

using standard VC bounds (e.g, Theorem A.1.3 in the AppendixA.1.2) imply that with probability at least
1− δ/4, all f ∈ CD,χ(t+2ǫ) have|êrr(f)−err(f)| ≤ ǫ. Finally, by Hoeffding bounds, with probability
at least1− δ/4 we have

êrr(f∗
t ) ≤ err(f∗

t ) +
√

log(4/δ)/(2ml).

Therefore, with probability at least1 − δ, thef ∈ C that optimizesêrr(f) subject toêrrunl(f) ≤ t + ǫ
has

err(f) ≤ êrr(f) + ǫ ≤ êrr(f∗
t ) + ǫ ≤ err(f∗

t ) + ǫ +
√

log(4/δ)/(2ml) ≤ err(f∗
t ) + 2ǫ,

as desired.

Interpretation: Given a valuet, Theorem 2.3.7 bounds the number of labeled examples neededto achieve
error at mostǫ larger than that of the best functionf∗

t of unlabeled error rate at mostt. Alternatively, one
can also state Theorem 2.3.7 in the form more commonly used instatistical learning theory: givenany
number of labeled examplesml and givent > 0, Theorem 2.3.7 implies that with high probability, the
functionf that optimizesêrr(f) subject toêrrunl(f) ≤ t + ǫ satisfies

err(f) ≤ êrr(f) + ǫt ≤ err(f∗
t ) + ǫt +

√
log(4/δ)

2ml

where

ǫt =

√
8

ml
log
(
8CD,χ(t + 2ǫ)[2ml,D]/δ

)
.

Note that as usual, there is an inherent tradeoff here between the quality of the comparison functionf∗
t ,

which improves ast increases, and the estimation errorǫt, which gets worse ast increases. Ideally, one
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would like to achieve a bound ofmint[err(f
∗
t ) + ǫt] +

√
log(4/δ)/(2ml); i.e., as if the optimal value of

t were known in advance. We can perform nearly as well as this bound by (1) performing a stratification
over t (so that the bound holds simultaneously for all values oft) and (2) using an estimatêǫt of ǫt that
we can calculate from the unlabeled sample and therefore usein the optimization. In particular, letting
ft = argminf ′∈C [êrr(f ′) : êrrunl(f

′) ≤ t], we will outputf = argminft
[êrr(ft) + ǫ̂t].

Specifically, given a setS of unlabeled examples andml labeled examples, let

ǫ̂t = ǫ̂t(S,ml) =

√
24

ml
log (8CS,χ(t)[ml, S]),

where we defineCS,χ(t)[ml, S] to be the number of different partitions of the firstml points inS using
functions inCS,χ(t), i.e., using functions of empirical unlabeled error at mostt (we assume|S| ≥ ml).
Then we have the following theorem.

Theorem 2.3.8 Letf∗
t = argminf ′∈C [err(f ′)|errunl(f

′) ≤ t] and definêǫ(f ′) = ǫ̂t′ for t′ = êrrunl(f
′).

Then, givenml labeled examples, with probability at least1− δ, the function

f = argminf ′ [êrr(f ′) + ǫ̂(f ′)]

satisfies the guarantee that

err(f) ≤ min
t

[err(f∗
t ) + ǫ̂(f∗

t )] + 5

√
log(8/δ)

ml

Proof: First we argue that with probability at least1− δ/2, for all f ′ ∈ C we have

err(f ′) ≤ êrr(f ′) + ǫ̂(f ′) + 4

√
log(8/δ)

ml
.

In particular, defineC0 = CS,χ(0) and inductively fork > 0 defineCk = CS,χ(tk) for tk such that
Ck[ml, S] = 8Ck−1[ml, S]. (If necessary, arbitrarily order the functions with empirical unlabeled error
exactlytk and choose a prefix such that the size condition holds.) Also,we may assume without loss of
generality thatC0[ml, S] ≥ 1. Then, using bounds of [72] (see also Appendix A), we have that with
probability at least1− δ/2k+2, all f ′ ∈ Ck \ Ck−1 satisfy:

err(f ′) ≤ êrr(f ′) +

√
6

ml
log(Ck[ml, S]) + 4

√
1

ml
log(2k+3/δ)

≤ êrr(f ′) +

√
6

ml
log(Ck[ml, S]) + 4

√
1

ml
log(2k) + 4

√
1

ml
log(8/δ)

≤ êrr(f ′) +

√
6

ml
log(Ck[ml, S]) +

√
6

ml
log(8k) + 4

√
1

ml
log(8/δ)

≤ êrr(f ′) + 2

√
6

ml
log(Ck[ml, S]) + 4

√
1

ml
log(8/δ)

≤ êrr(f ′) + ǫ̂(f ′) + 4

√
1

ml
log(8/δ).

Now, letf∗ = argminf∗
t
[err(f∗

t )+ǫ̂(f∗
t )]. By Hoeffding bounds, with probability at least1−δ/2 we have

êrr(f∗) ≤ err(f∗)+
√

log(2/δ)/(2ml). Also, by construction we havêerr(f)+ǫ̂(f) ≤ êrr(f∗)+ǫ̂(f∗).
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Therefore with probability at least1− δ we have:

err(f) ≤ êrr(f) + ǫ̂(f) + 4
√

log(8/δ)/ml

≤ êrr(f∗) + ǫ̂(f∗) + 4
√

log(8/δ)/ml

≤ err(f∗) + ǫ̂(f∗) + 5
√

log(8/δ)/ml

as desired.

The above result bounds the error of the functionf produced in terms of the quantitŷǫ(f∗) which de-
pends on theempiricalunlabeled error rate off∗. If our unlabeled sampleS is sufficiently large to estimate
all unlabeled error rates to±ǫ, then with high probability we havêerr(f∗

t ) ≤ t + ǫ, so ǫ̂(f∗
t ) ≤ ǫ̂t+ǫ, and

moreoverCS,χ(t+ǫ) ⊆ CD,χ(t+2ǫ). So, our error term̂ǫ(f∗
t ) is at most

√
24
ml

log (8CD,χ(t + 2ǫ)[ml, S]).

Recall that our ideal error termǫt for the case thatt was given to the algorithm in advance, factoring out the

dependence onδ, was

√
8

ml
log
(
8CD,χ(t + 2ǫ)[2ml,D]

)
. [72] show that for any classC, the quantity

log(C[m,S]) is tightly concentrated aboutlog(C[m,D]) (see also Theorem A.1.6 in the Appendix A.1.2),
so up to multiplicative constants, these two bounds are quite close.

Interpretation and use of unlabeled error rate as a regularizer: The above theorem suggests to op-
timize the sum of the empirical labeled error rate and an estimation-error bound based on the unlabeled
error rate. A common related approach used in practice in machine learning (e.g., [83]) is to just di-
rectly optimize the sum of the two kinds of error: i.e., to findargminf [êrr(f) + êrrunl(f)]. However,
this is not generically justified in our framework, because the labeled and unlabeled error rates are really
of different “types”. In particular, depending on the concept class and notion of compatibility, a small
change in unlabeled error rate could substantially change the size of the compatible set.3 For example,
suppose all functions inC have unlabeled error rate 0.6, except for two: functionf0 has unlabeled er-
ror rate 0 and labeled error rate1/2, and functionf0.5 has unlabeled error rate0.5 and labeled error
rate 1/10. Suppose also thatC is sufficiently large that with high probability it containssome func-
tions f that drastically overfit, givingêrr(f) = 0 even though their true error is close to1/2. In this
case, we would like our algorithm to pick outf0.5 (since its labeled error rate is fairly low, and we
cannot trust the functions of unlabeled error 0.6). However, even if we use a regularization parame-
ter λ, there is no way to makef0.5 = argminf [êrr(f) + λerrunl(f)]: in particular, one cannot have
1/10+0.5λ ≤ min[1/2+0λ, 0+0.6λ]. So, in this case, this approach will not have the desired behavior.

Note: One could further derive tighter bounds, both in terms of labeled and unlabeled examples, that are
based on other distribution dependent complexity measuresand using stronger concentration results (see
e.g. [73]).

2.3.2 ǫ-Cover-based Bounds

The results in the previous section are uniform convergencebounds: they provide guarantees forany
algorithm that optimizes over the observed data. In this section, we consider stronger bounds based on
ǫ-covers that apply to algorithms that behave in a specific way: they first use the unlabeled examples to
choose a “representative” set of compatible hypotheses, and then use the labeled sample to choose among
these. Bounds based onǫ-covers exist in the classical PAC setting, but in our framework these bounds
and algorithms of this type are especially natural, and the bounds are often much lower than what can be
achieved via uniform convergence. For simplicity, we restrict ourselves in this section to the realizable

3On the other hand, for certain compatibility notions and under certain natural assumptions, one can use unlabeled errorrate
directly, e.g., see e.g., [200].
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case. However one can combine ideas in Section 2.3.1 with ideas in this section in order to derive bounds
in the agnostic case as well. We first present our generic bounds. In Section 2.3.2 we discuss natural
settings in which they can be especially useful, and in then Section 2.3.2 we present even tighter bounds
for co-training.

Recall that a setCǫ ⊆ 2X is anǫ-cover forC with respect toD if for every f ∈ C there is af ′ ∈ Cǫ

which isǫ-close tof . That is,Prx∼D(f(x) 6= f ′(x)) ≤ ǫ.
We start with a theorem that relies on knowing a good upper bound on the unlabeled error rate of the

target functionerrunl(c
∗).

Theorem 2.3.9 Assumec∗ ∈ C and letp be the size of a minimumǫ-cover forCD,χ(errunl(c
∗) + 2ǫ).

Then usingmu unlabeled examples andml labeled examples for

mu = O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)
andml = O

(
1

ǫ
ln

p

δ

)
,

we can with probability1− δ identify a hypothesisf ∈ C with err(f) ≤ 6ǫ.

Proof: Let t = errunl(c
∗). Now, given the unlabeled sampleSU , defineC ′ ⊆ C as follows: for

every labeling ofSU that is consistent with somef in C, choose a hypothesis inC for which êrrunl(f) is
smallest among all the hypotheses corresponding to that labeling. Next, we obtainCǫ by eliminating from
C ′ those hypothesesf with the property that̂errunl(f) > t + ǫ. We then apply a greedy procedure onCǫ

to obtainGǫ = {g1, · · · , gs}, as follows:
Initialize C1

ǫ = Cǫ andi = 1.
1. Letgi = argmin

f∈Ci
ǫ

êrrunl(f).

2. Using the unlabeled sampleSU , determineCi+1
ǫ by deleting fromCi

ǫ those hypothesesf with the
property thatd̂(gi, f) < 3ǫ.

3. If Ci+1
ǫ = ∅ then sets = i and stop; else, increasei by 1 and goto 1.

We now show that with high probability,Gǫ is a5ǫ-cover ofCD,χ(t) with respect toD and has size
at mostp. First, our bound onmu is sufficient to ensure that with probability≥ 1 − δ

2 , we have (a)

|d̂(f, g)− d(f, g)| ≤ ǫ for all f, g ∈ C and (b)|êrrunl(f)− errunl(f)| ≤ ǫ for all f ∈ C. Let us assume
in the remainder that this (a) and (b) are indeed satisfied. Now, (a) implies that any two functions inC that
agree onSU have distance at mostǫ, and thereforeC ′ is anǫ-cover ofC. Using (b), this in turn implies
that Cǫ is an ǫ-cover forCD,χ(t). By construction,Gǫ is a 3ǫ-cover ofCǫ with respect to distribution
SU , and thus (using (a))Gǫ is a4ǫ-cover ofCǫ with respect toD, which implies thatGǫ is a5ǫ-cover of
CD,χ(t) with respect toD.

We now argue thatGǫ has size at mostp. Fix some optimalǫ-cover{f1, . . . , fp} of CD,χ(errunl(c
∗)+

2ǫ). Consider functiongi and suppose thatgi is covered byfσ(i). Then the set of functions deleted in
step (2) of the procedure include those functionsf satisfyingd(gi, f) < 2ǫ which by triangle inequality
includes those satisfyingd(fσ(i), f) ≤ ǫ. Therefore, the set of functions deleted include those covered by
fσ(i) and so for allj > i, σ(j) 6= σ(i); in particular,σ is 1-1. This implies thatGǫ has size at mostp.

Finally, to learnc∗ we simply output the functionf ∈ Gǫ of lowest empirical error over the labeled
sample. By Chernoff bounds, the number of labeled examples is enough to ensure that with probability
≥ 1− δ

2 the empirical optimum hypothesis inGǫ has true error at most6ǫ. This implies that overall, with
probability≥ 1− δ, we find a hypothesis of error at most6ǫ.

Note that Theorem 2.3.9 relies on knowing a good upper bound on errunl(c
∗). If we do not have

such an upper bound, then one can perform a stratification as in Sections 2.3.1 and 2.3.1. For example,
if we have a desired maximum error rateǫ and we do not know a good upper bound forerrunl(c

∗) but
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we have the ability to draw additional labeled examples as needed, then we can simply run the procedure
in Theorem 2.3.9 for various value ofp, testing on each round to see if the hypothesisf found indeed
has zero empirical labeled error rate. One can show thatml = O

(
1
ǫ ln p

δ

)
labeled examples are sufficient

in total for all the “validation” steps.4 If the number of labeled examplesml is fixed, then one can also
perform a stratification over the target errorǫ.

Some illustrative examples

To illustrate the power ofǫ-cover bounds, we now present two examples where these bounds allow for
learning from significantly fewer labeled examples than is possible using uniform convergence.

Graph-based learning: Consider the setting of graph-based algorithms (e.g., Example 3). In particular,
the input is a graphg where each node is an example andC is the class of all boolean functions over the
nodes ofg. Let us define the incompatibility of a hypothesis to be the fraction of edges ing cut by it.
Suppose now that the graphg consists of two cliques ofn/2 vertices, connected together byǫn2/4 edges.
Suppose the target functionc∗ labels one of the cliques as positive and one as negative, so the target func-
tion indeed has unlabeled error rate less thanǫ. Now, given any setSL of ml < ǫn/4 labeled examples,
there is always a highly-compatible hypothesis consistentwith SL that just separates the positive points
in SL from the entire rest of the graph: the number of edges cut willbe at mostnml < ǫn2/4. However,
such a hypothesis has true error nearly1/2 since it has less thanǫn/4 positive examples. So, we do not
yet have uniform convergence over the space of highly compatible hypotheses, since this hypothesis has
zero empirical error but high true error. Indeed, this illustrates an overfitting problem that can occur with
a direct minimum-cut approach to learning [60, 68, 143]. On the other hand, the set of functions of unla-
beled error rate less thanǫ has a smallǫ-cover: in particular,anypartition ofg that cuts less thanǫn2/4
edges must beǫ-close to (a) the all-positive function, (b) the all-negative function, (c) the target function
c∗, or (d) the complement of the target function1− c∗. So,ǫ-cover bounds act as if the concept class had
only 4 functions and so by Theorem 2.3.9 we need onlyO(1

ǫ log 1
δ ) labeled examples to learn well.5 (In

fact, since the functions in the cover are all far from each other, we really need onlyO(log 1
δ ) examples.

This issue is explored further in Theorem 2.3.11).

Simple co-training: For another case whereǫ-cover bounds can beat uniform-convergence bounds, imag-
ine examples arepairs of points in{0, 1}d, C is the class of linear separators, and compatibility is deter-
mined by whether both points are on the same side of the separator (i.e., the case of Example4). Now
suppose for simplicity that the target function just splitsthe hypercube on the first coordinate, and the
distribution is uniform over pairs having the same first coordinate (so the target is fully compatible). We
then have the following.

Theorem 2.3.10Given poly(d) unlabeled examplesSU and 1
4 log d labeled examplesSL, with high prob-

ability there will exist functions of true error1/2 − 2−
1
2

√
d that are consistent withSL and compatible

with SU .

Proof: Let V be the set of all variables (not includingx1) that (a) appear ineverypositive example
of SL and (b) appear inno negative example ofSL. In other words, these are variablesxi such that

4Specifically, note that as we increaset (our current estimate for the unlabeled error rate of the target function), the associated
p (which is an integer) increases in discrete jumps,p1, p2, . . .. We can then simply spread the “δ” parameter across the different
runs, in particular runi would useδ/i(i + 1). Sincepi ≥ i, this implies thatml = O

`

1
ǫ
ln p

δ

´

labeled examples are sufficient
for all the “validation” steps.

5Effectively,ǫ-cover bounds allow one to rule out a hypothesis that, say, just separates the positive points inSL from the rest
of the graph by noting that this hypothesis is very close (with respect toD) to the all-negative hypothesis, andthat hypothesis
has a high labeled-error rate.
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the functionf(x) = xi correctly classifies all examples inSL. Over the draw ofSL, each variable has a
(1/2)2|SL| = 1/

√
d chance of belonging toV , so the expected size ofV is (d−1)/

√
d and so by Chernoff

bounds, with high probabilityV has size at least12
√

d. Now, consider the hypothesis corresponding to
the conjunction of all variables inV . This correctly classifies the examples inSL, and with probability
at least1 − 2|SU |2−|V | it classifieseveryother example inSU negative because each example inSU has
only a1/2|V | chance of satisfying every variable inV . Since|SU | = poly(d), this means that with high
probability this conjunction is compatible withSU and consistent withSL, even though its true error is at
least1/2− 2−

1
2

√
d.

So, given only a setSU of poly(d) unlabeled examples and a setSL of 1
4 log d labeled examples

we would not want to use a uniform convergence based algorithm since we do not yet have uniform
convergence. In contrast, the cover-size of the set of functions compatible withSU is constant, soǫ-cover
based bounds again allow learning from just onlyO(1

ǫ log 1
δ ) labeled examples (Theorem 2.3.9). In fact

as we show in Theorem 2.3.11 we only needO
(
log 1

ǫ

1
δ

)
labeled examples in this case.

Learning from even fewer labeled examples

In some cases, unlabeled data can allow us to learn from even fewer labeled examples than given by The-
orem 2.3.9. In particular, consider a co-training setting where the targetc∗ is fully compatibleandD sat-
isfies the property that the two viewsx1 andx2 are conditionally independent given the labelc∗(〈x1, x2〉).
As shown by [63], one can boost any weak hypothesis from unlabeled data in this setting (assuming one
has enough labeled data to produce a weak hypothesis). Related sample complexity results are given
in [98]. In fact, we can use the notion ofǫ-covers to show that we can learn from just a single labeled
example. Specifically, for any concept classesC1 andC2, we have:

Theorem 2.3.11Assume thaterr(c∗) = errunl(c
∗) = 0 andD satisfies independence given the label.

Then for anyτ ≤ ǫ/4, usingmu unlabeled examples andml labeled examples we can find a hypothesis
that with probability1− δ has error at mostǫ, for

mu = O

(
1

τ

[
(V Cdim(C1) + V Cdim(C2)) ln

1

τ
+ ln

2

δ

])
and ml = O

(
log 1

τ

1

δ

)
.

Proof: We will assume for simplicity the setting of Example3, wherec∗ = c∗1 = c∗2 and alsoD1 =
D2 = D̃ (the general case is handled similarly, but just requires more notation).

We start by characterizing the hypotheses with low unlabeled error rate. Recall thatχ(f,D) =
Pr〈x1,x2〉∼D[f(x1) = f(x2)], and for concreteness assumef predicts usingx1 if f(x1) 6= f(x2). Con-
siderf ∈ C with errunl(f) ≤ τ and let’s definep− = Prx∈D̃ [c∗(x) = 0], p+ = Prx∈D̃ [c∗(x) = 1] and
for i, j ∈ {0, 1} definepij = Prx∈D̃ [f(x) = i, c∗(x) = j]. We clearly haveerr (f) = p10 + p01. From
errunl(f) = Pr(x1,x2)∼D [f (x1) 6= f (x2)] ≤ τ , using the independence given the label ofD, we get

2p10p00

p10 + p00
+

2p01p11

p01 + p11
≤ τ.

In particular, the fact that2p10p00

p10+p00
≤ τ implies that we cannot have bothp10 > τ andp00 > τ , and the

fact that 2p01p11

p01+p11
≤ τ implies that we cannot have bothp01 > τ andp11 > τ . Therefore, any hypothesis

f with errunl(f) ≤ τ falls in one of the following categories:
1. f is “close toc∗”: p10 ≤ τ andp01 ≤ τ ; soerr(f) ≤ 2τ .

2. f is “close toc∗”: p00 ≤ τ andp11 ≤ τ ; soerr(f) ≥ 1− 2τ .
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3. f “almost always predicts negative”: forp10 ≤ τ andp11 ≤ τ ; soPr[f(x) = 0] ≥ 1− 2τ .

4. f “almost always predicts positive”: forp00 ≤ τ andp01 ≤ τ ; soPr[f(x) = 0] ≤ 2τ .

Let f1 be the constant positive function andf0 be the constant negative function. Now note that our
bound onmu is sufficient to ensure that with probability≥ 1 − δ

2 , we have (a)|d̂(f, g) − d(f, g)| ≤ τ
for all f, g ∈ C and (b) allf ∈ C with êrrunl(f) = 0 satisfyerrunl(f) ≤ τ . Let us assume in the
remainder that this (a) and (b) are indeed satisfied. By our previous analysis, there are at most four kinds
of hypotheses consistent with unlabeled data: those close to c∗, those close to its complementc∗, those
close tof0, and those close tof1. Furthermore,c∗, c∗, f0, andf1 arecompatible with the unlabeled data.

So, algorithmically, we first check to see if there exists a hypothesisg ∈ C with êrrunl(g) = 0 such
that d̂(f1, g) ≥ 3τ and d̂(f0, g) ≥ 3τ . If such a hypothesisg exists, then it must satisfy either case (1)
or (2) above. Therefore, we know that one of{g, g} is 2τ -close toc∗. If not, we must havep+ ≤ 4τ or
p− ≤ 4τ , in which case we know that one of{f0, f1} is 4τ -close toc∗. So, either way we have a set of two
functions, opposite to each other, one of which is at least4τ -close toc∗. We finally useO(log 1

τ

1
δ ) labeled

examples to pick one of these to output, namely the one with lowest empirical labeled error. Lemma 2.3.12
below then implies that with probability1− δ the function we output has error at most4τ ≤ ǫ.

Lemma 2.3.12 Considerτ < 1
8 . LetCτ =

{
f, f

}
be a subset ofC containing two opposite hypotheses

with the property that one of them isτ -close toc∗. Then,ml > 6 log( 1
τ )
(

1
δ

)
labeled examples are sufficient

so that with probability≥ 1− δ, the concept inCτ that isτ -close toc∗ in fact has lower empirical error.

Proof: We need to show that ifml > 6 log 1
τ

(
1
δ

)
, then

⌊ml
2
⌋∑

k=0

(ml

k

)
τ (ml−k) (1− τ)k ≤ δ.

Sinceτ < 1
8 we have:

⌊ml
2
⌋∑

k=0

(
ml

k

)
τ (ml−k) (1− τ)k ≤

⌊ml
2
⌋∑

k=0

(
ml

k

)
τ (ml−k) = τ ⌊ml

2
⌋
⌊ml

2
⌋∑

k=0

(
ml

k

)
τ ⌈ml

2
⌉−k

and soS ≤ (
√

τ · 2)ml . For τ < 1
8 andml > 6

log2 ( 1
δ )

log2 ( 1
τ )

= 6 log( 1
τ )
(

1
δ

)
it’s easy to see that(

√
τ · 2)ml <

δ, which implies the desired result.

In particular, by reducingτ to poly(δ) in Theorem 2.3.11, we can reduce the number of labeled
examples neededml to one. Note however that we will need polynomially more unlabeledexamples.

In fact, the result in Theorem 2.3.11 can be extended to the case thatD+ andD− merely satisfy
constant expansion rather than full independence given thelabel, see [29].

Note: Theorem 2.3.11 illustrates that if data is especially well behaved with respect to the compatibility
notion, then our bounds on labeled data can be extremely good. In Section 2.4.2, we show for the case of
linear separators and independence given the label, we can give efficientalgorithms, achieving the bounds
in Theorem 2.3.11 in terms of labeled examples by a polynomial time algorithm. Note, however, that
both these bounds rely heavily on the assumption that the target is fully compatible. If the assumption is
more of a “hope” than a belief, then one would need an additional sample of1/ǫ labeled examples just to
validate the hypothesis produced.
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2.4 Algorithmic Results

In this section we give several examples ofefficientalgorithms in our model that are able to learn using
sample sizes comparable to those described in Section 2.3. Note that our focus is on achieving a low-error
hypothesis (also called minimizing 0-1 loss). Another common practice in machine learning (both in the
context of supervised and semi-supervised learning) is to instead try to minimize a surrogate convex loss
that is easier to optimize [83]. While this does simplify thecomputational problem, it does not in general
solve the true goal of achieving low error.

2.4.1 A simple case

We give here a simple example to illustrate the bounds in Section 2.3.1, and for which we can give a
polynomial-time algorithm that takes advantage of them. Let the instance spaceX = {0, 1}d, and for
x ∈ X, let vars(x) be the set of variables set to1 in the feature vectorx. Let C be the class of monotone
disjunctions (e.g.,x1 ∨ x3 ∨ x6), and forf ∈ C, let vars(f) be the set of variables disjoined byf .
Now, suppose we say an examplex is compatible with functionf if either vars(x) ⊆ vars(f) or else
vars(x) ∩ vars(f) = φ. This is a very strong notion of “margin”: it says, in essence, that every variable
is either a positive indicator or a negative indicator, and no example should contain both positive and
negative indicators.

Given this setup, we can give a simplePACunl-learning algorithm for this pair(C,χ): that is, an
algorithm with sample size bounds that are polynomial (or inthis case, matching) those in Theorem 2.3.1.
Specifically, we can prove the following:

Theorem 2.4.1 The classC of monotone disjunctions isPACunl-learnable under the compatibility notion
defined above.

Proof: We begin by using our unlabeled data to construct a graph ond vertices (one per variable),
putting an edge between two verticesi and j if there is any examplex in our unlabeled sample with
i, j ∈ vars(x). We now use our labeled data to label the components. If the target function is fully
compatible, then no component will get multiple labels (if some component does get multiple labels, we
halt with failure). Finally, we produce the hypothesisf such thatvars(f) is the union of the positively-
labeled components. This is fully compatible with the unlabeled data and has zero error on the labeled
data, so by Theorem 2.3.1, if the sizes of the data sets are as given in the bounds, with high probability the
hypothesis produced will have error at mostǫ.

Notice that if we want to view the algorithm as “purchasing” labeled data, then we can simply ex-
amine the graph, count the number of connected componentsk, and then request1ǫ [k ln 2 + ln 2

δ ] labeled
examples. (Here,2k = |CS,χ(0)|.) By the proof of Theorem 2.3.1, with high probability2k ≤ |CD,χ(ǫ)|,
so we are purchasing no more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-helpful” distribution for this
problem. An especiallynon-helpful distribution would be the uniform distribution over all examplesx
with |vars(x)| = 1, in which there ared components. In this case, unlabeled data does not help at all, and
one still needsΩ(d) labeled examples (or, evenΩ

(
d
ǫ

)
if the distribution is non-uniform as in the lower

bounds of [106]). On the other hand, a helpful distribution is one such that with high probability the
number of components is small, such as the case of features appearing independently given the label.

2.4.2 Co-training with linear separators

We now consider the case of co-training where the hypothesisclassC is the class of linear separators. For
simplicity we focus first on the case of Example4: the target function is a linear separator inRd and each
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example is apair of points, both of which are assumed to be on the same side of the separator (i.e., an
example is a line-segment that does not cross the target hyperplane). We then show how our results can
be extended to the more general setting.

As in the previous example, a natural approach is to try to solve the “consistency” problem: given a set
of labeled and unlabeled data, our goal is to find a separator that is consistent with the labeled examples
and compatible with the unlabeled ones (i.e., it gets the labeled data correct and doesn’t cut too many
edges). Unfortunately, this consistency problem is NP-hard: given a graphg embedded inRd with two
distinguished pointss and t, it is NP-hard to find the linear separator withs on one side andt on the
other that cuts the minimum number of edges,even if the minimum is zero[109]. For this reason, we will
make an additional assumption, that the two points in an example are each drawnindependently given
the label. That is, there is a single distributioñD over Rd, and with some probabilityp+, two points
are drawn i.i.d. fromD̃+ (D̃ restricted to the positive side of the target function) and with probability
1 − p+, the two are drawn i.i.d from̃D− (D̃ restricted to the negative side of the target function). Note
that our sample complexity results in Section 2.3.2 extend to weaker assumptions such as distributional
expansion introduced by [29], but we need true independencefor our algorithmic results. [63] also give
positive algorithmic results for co-training when (a) the two views of an example are drawn independently
given the label (which we are assuming now), (b) the underlying function is learnable via Statistical
Query algorithms6 (which is true for linear separators [65]), and (c) we have enough labeled data to
produce a weakly-useful hypothesis (defined below) on one ofthe views to begin with. We give here an
improvement over that result by showing how we can run the algorithm in [63] with onlya singlelabeled
example, thus obtaining an efficient algorithm in our model.It is worth noticing that in the process, we
also somewhat simplify the results of [65] on efficiently learning linear separators with noise without a
margin assumption.

For the analysis below, we need the following definition. Aweakly-usefulpredictor is a functionf
such that for someβ that is at least inverse polynomial in the input size we have:

Pr[f(x) = 1|c∗(x) = 1] > Pr[f(x) = 1|c∗(x) = 0] + β. (2.2)

It is equivalent to the usual notion of a “weak hypothesis” [151] when the target function is balanced,
but requires the hypothesis give more information when the target function is unbalanced [63]. Also,
we will assume for convenience that the target separator passes through the origin, and let us denote the
separator byc∗ · x = 0.

We now describe an efficient algorithm to learn to any desirederror rateǫ in this setting from just
a single labeled example. For clarity, we first describe an algorithm whose running time depends poly-
nomially on both the dimensiond and1/γ, whereγ is a softmarginof separation between positive and
negative examples. Formally, in this case we assume that at least some non-negligible probability mass of
examplesx satisfy |x·c∗|

|x||c∗| ≥ γ; i.e., they have distance at leastγ to the separating hyperplanex · c∗ = 0
after normalization. This is a common type of assumption in machine learning (in fact, often one makes
the much stronger assumption thatnearly allprobability mass is on examplesx satisfying this condition).
We then show how one can replace the dependence on1/γ with instead a polynomial dependence on the
number of bits of precisionb in the data, using the Outlier Removal Lemma of [65] and [105].

Theorem 2.4.2 Assume that at least anα probability mass of examplesx have margin |x·c∗|
|x||c∗| ≥ γ with

respect to the target separatorc∗. There is a polynomial-time algorithm (polynomial ind, 1/γ, 1/α, 1/ǫ,
and1/δ) to learn a linear separator under the above assumptions, from a polynomial number of unlabeled
examples and a single labeled example.

6For a detailed description of the Statistical Query model see [150] and [151].
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Algorithm 1 Co-training with Linear Separators. The Soft Margin Case.

Input : ǫ, δ, T a setSL of ml labeled examples drawn i.i.d fromD, a setSU of mu unlabeled
examples drawn i.i.d fromD.

Output : Hypothesis of low error.

Let hp be the all-positive function. Lethn be the all-negative function. Letτ = ǫ/6, ǫ1 = τ/4.

(1) Fori = 1, . . . ,T do

- Choose a random halfspacefi going through the origin.

- Feedfi, SU and error parametersǫ1 and confidence parameterδ/6 into the bootstrapping
procedure of [63] to producehi.

(2) Leth beargminhi

{
êrrunl(hi)|d̂(h, hp) ≥ 3τ, d̂(h, hn) ≥ 3τ

}
.

If êrrunl(hi) ≥ 3ǫ1, then leth = hp.

(3) UseSL to output eitherh or h̄: output the hypothesis with lowest empirical error on the set SL.

Proof: Let ǫ andδ be the desired accuracy and confidence parameters. LetT = O
(

1
α·γ log

(
1
δ

))
, mu =

poly(1/γ, 1/α, 1/ǫ, 1/δ, d), andml = 1. We run Algorithm 1 with the inputsǫ, δ, T SL, SU , andml = 1.
Let τ = ǫ/6, ǫ1 = τ/4.

In order to prove the desired result, we start with a few facts.
We first note that our bound onmu is sufficient to ensure that with probability≥ 1 − δ

3 , we have (a)
|d̂(f, g)− d(f, g)| ≤ τ for all f, g ∈ C and (b) allf ∈ C have|êrrunl(f)− errunl(f)| ≤ ǫ1.

We now argue that if at least anα probability mass of examplesx have margin |x·c∗|
|x||c∗| ≥ γ with

respect to the target separatorc∗, then arandomhalfspace has at least apoly(α, γ) probability of being
a weakly-useful predictor. (Note that [65] uses the Perceptron algorithm to get weak learning; here, we
need something simpler since we need to save our labeled example to the very end.) Specifically, consider
a pointx of marginγx ≥ γ. By definition, the margin is the cosine of the angle betweenx andc∗, and
therefore the angle betweenx andc∗ is π/2 − cos−1(γx) ≤ π/2 − γ. Now, imagine that we drawf at
random subject tof · c∗ ≥ 0 (half of thef ’s will have this property) and definef(x) = sign(f · x). Then,

Pr
f

(f(x) 6= c∗(x)|f · c∗ ≥ 0) ≤ (π/2 − γ)/π = 1/2 − γ/π.

Moreover, ifx doesnothave marginγ then at the very least we havePrf (f(x) 6= c∗(x)|f ·c∗ ≥ 0) ≤ 1/2.
Now define distributionD∗ = 1

2D+ + 1
2D−; that isD∗ is the distributionD but balanced to50%

positive and50% negative. With respect toD∗ at least anα/2 probability mass of the examples have
margin at leastγ, and therefore:

Ef [errD∗(f)|f · c∗ ≥ 0] ≤ 1/2 − (α/2)(γ/π).

Sinceerr(f) is a bounded quantity, by Markov inequality this means that at least anΩ(αγ) probability
mass of functionsf must satisfyerrD∗(f) ≤ 1

2−
αγ
4π which in turn implies that they must be useful weakly

predictors with respect toD as defined in Equation (2.2) withβ = αγ
4π .

The second part of the argument is as follows. Note that in Step(1) of our algorithm we repeat the
following process forT iterations: pick a randomfi, and plug it into the bootstrapping theorem of [63]
(which, given a distribution over unlabeled pairs〈xj

1, x
j
2〉, will usefi(x

j
1) as a noisy label ofxj

2, feeding the

result into a Statistical Query algorithm). SinceT = O
(

1
α·γ log

(
1
δ

))
, using the above observation about
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random halfspaces being weak predictors, we obtain that with high probability at least1−δ/6, at least one
of the random hypothesisfi was a weakly-useful predictor; and sincemu = poly(1/γ, 1/α, 1/ǫ, 1/δ, d)
we also have the associated hypothesishi output by the bootstrapping procedure of [63] will with prob-
ability at least1 − δ/6 satisfyerr(hi) ≤ ǫ1. This implies that with high probability at least1 − 2δ/3,
at least one of the hypothesishi we find in Step1 has true labeled error at mostǫ1. For the rest of the
hypotheses we find in Step1, we have no guarantees.

We now observe the following. First of all, any functionf with small err(f) must have small
errunl(f); in particular,

errunl(f) = Pr(f(x1) 6= f(x2)) ≤ 2err(f).

This implies that with high probability at least1− 2δ/3, at least one of the hypothesishi we find in Step
1 has true unlabeled error at most2ǫ1, and therefore empirical unlabeled error at most3ǫ1. Secondly,
because of the assumption of independence given the label, as shown in Theorem 2.3.11, with high prob-
ability the only functions with unlabeled error at mostτ are functions2τ -close toc∗, 2τ -close to¬c∗,
2τ -close to the “all positive” function, or2τ -close to the “all negative” function.

In Step(2) we first examine all the hypotheses produced in Step1, and we pick the hypothesish
with the smallest empirical unlabeled error rate subject tobeing empirically at least3τ -far from the “all-
positive” or “all-negative” functions. If the the empirical error rate of this hypothesish is at most3ǫ1 we
know that its true unlabeled error rate is at most4ǫ1 ≤ τ , which further implies that eitherh or ¬h is 2τ
close toc∗. However, if the empirical unlabeled error rate ofh is greater than3ǫ1, then we know that the
target must be4τ -close to the all-positive or all-negative function so we simply chooseh = “all positive”
(this is true since the unlabeled sample was large enough so that |d̂(f, g)− d(f, g)| ≤ τ ).

So, we have argued that with probability at least1 − 2δ/3 eitherh or ¬h is 4τ -close toc∗. We can

now just useO
(
log( 1

τ )
(

1
δ

))
labeled examples to determine which case is which (Lemma 2.3.12). This

quantity is at most1 and our error rate is at mostǫ if we setτ ≤ ǫ/4 andτ sufficiently small compared to
δ. This completes the proof.

The above algorithm assumes one can efficiently pick a randomunit-length vector inRd, but the
argument easily goes through even if we do this to onlyO(log 1/γ) bits of precision.

We now extend the result to the case that we make no margin assumption.

Theorem 2.4.3 There is a polynomial-time algorithm (ind, b, 1/ǫ, and1/δ, whered is the dimension of
the space andb is the number of bits per example) to learn a linear separatorunder the above assumptions,
from a polynomial number of unlabeled examples and a single labeled example. Thus, we efficiently
PACunl-learn the class of linear separators over{−2b, . . . , 2b − 1, 2b}d under the agreement notion of
compatibility if the distributionD satisfies independence given the label.

Proof: We begin by drawing a large unlabeled sampleS (of size polynomial ind andb). We then
compute a linear transformationT that when applied toS has the property that for any hyperplanew ·
x = 0, at least a1/poly(d, b) fraction ofT (S) has margin at least1/poly(d, b). We can do this via the
Outlier Removal Lemma of [65] and [105]. Specifically, the Outlier Removal Lemma states that given
a set of pointsS, one can algorithmically remove anǫ′ fraction of S and ensure that for the remaining
setS′, for any vectorw, maxx∈S′(w · x)2 ≤ poly(d, b, 1/ǫ′)Ex∈S′ [(w · x)2], whereb is the number
of bits needed to describe the input points. Given such a setS′, one can then use its eigenvectors to
compute a standard linear transformation (also described in [65]) T : Rd → Rd′ , whered′ ≤ d is the
dimension of the subspace spanned byS′, such that in the transformed space, for all unit-lengthw, we
haveEx∈T (S′)[(w · x)2] = 1. In particular, since the maximum of(w · x)2 is bounded, this implies that

for any vectorw ∈ Rd′ , at least anα fraction of pointsx ∈ T (S′) have margin at leastα for some
α ≥ 1/poly(b, d, 1/ǫ′).
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Now, chooseǫ′ = ǫ/4, and letD′ be the distributionD̃ restricted to the space spanned byS′. By
VC-dimension bounds,|S| = Õ(d/α) is sufficient so that with high probability, (a)D′ has probability
mass at least1 − ǫ/2, and (b) the vectorT (c∗) has at least anα/2 probability mass ofT (D′) at margin
≥ α. Thus, the linear transformationT converts the distributionD′ into one satisfying the conditions
needed for Theorem 2.4.2, and any hypothesis produced with error≤ ǫ/2 on D′ will have error at mostǫ
onD. So, we simply applyT to D′ and run the algorithm for Theorem 2.4.2 to produce a low-error linear
separator.

Note: We can easily extend our algorithm to the standard co-training setting (wherec∗1 can be different
from c∗2) as follows: we repeat the procedure in a symmetric fashion,and then just try all combinations
of pairs of functions returned to find one of small unlabeled error rate, not close to “all positive”, or “all

negative”. Finally we useO
(
log( 1

ǫ )
(

1
δ

))
labeled examples to produce a low error hypothesis (and here

we use only one part of the example and only one of the functions in the pair).

2.5 Related Models

In this section we discuss a transductive analog of our model, some connections with generative models
and other ways of using unlabeled data in Machine Learning, and the relationship between our model and
the luckiness framework of [195].

2.5.1 A Transductive Analog of our Model

In transductivelearning, one is given a fixed setS of examples, of which some small random subset is
labeled, and the goal is to predict well on the rest ofS. That is, we know which examples we will be tested
on up front, and in a sense this a case of learning from a known distribution (the uniform distribution over
S). We can also talk about a transductive analog of our inductive model, that incorporates many of the
transductive learning methods that have been developed. Inorder to make use of unlabeled examples, we
will again express the relationship we hope the target function has with the data through a compatibility
notion χ. However, since in this case the compatibility of a given hypothesis is completely determined
by S (which is known), we will not need to require that compatibility be an expectation over unlabeled
examples. From the sample complexity point of view we only care about how much labeled data we need,
and algorithmically we need to find a highly compatible hypothesis with low error on the labeled data.

Rather than presenting general theorems, we instead focus on the modeling question, and show how
a number of existing transductive graph-based learning algorithms can be modeled in our framework. In
these methods one usually assumes that there is weighted graph g defined overS, which is given a-priori
and encodes the prior knowledge. In the following we denote by W the weighted adjacency matrix ofg

and byCS the set of all binary functions overS.

Minimum cut Suppose forf ∈ CS we define the incompatibility off to be the weight of the cut ing
determined byf . This is the implicit notion of compatibility considered in[60], and algorithmically
the goal is to find the most compatible hypothesis that is correct on the labeled data, which can be
solved efficiently using network flow. From a sample-complexity point of view, the number of
labeled examples we need is proportional to the VC-dimension of the class of hypotheses that are
at least as compatible as the target function. This is known to beO

(
k
λ

)
[152, 154], wherek is the

number of edges cut byc∗ andλ is the size of the global minimum cut in the graph. Also note that
the Randomized Mincut algorithm (considered by [68]), which is an extension of the basic mincut
approach, can be viewed as motivated by a PAC-Bayes sample complexity analysis of the problem.
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Normalized Cut For f ∈ CS definesize(f) to be the weight of the cut ing determined byf , and let
neg(f) andpos(f) be the number of points inS on whichf predicts negative and positive, re-
spectively. For the normalized cut setting of [143] we can define the incompatibility off ∈ CS

to be size(f)
neg(f)·pos(f) . This is the penalty function used in [143], and again, algorithmically the goal

would be to find a highly compatible hypothesis that is correct on the labeled data. Unfortunately,
the corresponding optimization problem is in this case is NP-hard. Still, several approximate solu-
tions have been considered, leading to different semi-supervised learning algorithms. For instance,
Joachims [143] considers a spectral relaxation that leads to the “SGT algorithm”; another relaxation
based on semidefinite programming is considered in [57].

Harmonic Function We can also model the algorithms introduced in [219] as follows. If we considerf
to be a probabilistic prediction function defined overS, then we can define the incompatibility off
to be ∑

i,j

wi,j (f(i)− f(j))2 = fT Lf,

whereL is the un-normalized Laplacian ofg. Similarly we can model the algorithm introduced
by Zhao et al. [217] by using an incompatibility off given byfTLf whereL is the normalized
Laplacian ofg. More generally, all the Graph Kernel methods can be viewed in our framework if
we consider that the incompatibility off is given by||f ||K = fTKf whereK is a kernel derived
from the graph (see for instance [220]).

2.5.2 Connections to Generative Models

It is also interesting to consider how generative models canbe fit into our model. As mentioned in Section
2.1, a typical assumption in a generative setting is thatD is a mixture with the probability density function
p(x|θ) = p0 · p0(x|θ0) + p1 · p1(x|θ1) (see for instance [77, 78, 185]). In other words, the labeled
examples are generated according to the following mechanism: a labely ∈ {0, 1} is drawn according to
the distribution of classes{p0, p1} and then a corresponding random feature vector is drawn according
to the class-conditional densitypy. The assumption typically used is that the mixture is identifiable.
Identifiability ensures that the Bayes optimal decision border {x : p0 · p0(x|θ0) = p1 · p1(x|θ1)} can
be deduced ifp(x|θ) is known, and therefore one can construct an estimate of the Bayes border by using
p(x|θ̂) instead ofp(x|θ). Essentially once the decision border is estimated, a smalllabeled sample suffices
to learn (with high confidence and small error) the appropriate class labels associated with the two disjoint
regions generated by the estimate of the Bayes decision border. To see how we can incorporate this setting
in our model, consider for illustration the setting in [185]; there they assume thatp0 = p1, and that the
class conditional densities ared-dimensional Gaussians with unit covariance and unknown mean vectors
θi ∈ Rd. The algorithm used is the following: the unknown parametervectorθ = (θ0, θ1) is estimated
from unlabeled data using a maximum likelihood estimate; this determines a hypothesis which is a linear
separator that passes through the point(θ̂0 + θ̂1)/2 and is orthogonal to the vector̂θ1 − θ̂0; finally each
of the two decision regions separated by the hyperplane is labeled according to the majority of the labeled
examples in the region. Given this setting, a natural notionof compatibility we can consider is the expected
log-likelihood function (where the expectation is taken with respect to the unknown distribution specified
by θ). Specifically, we can identify a legal hypothesisfθ with the set of parametersθ = (θ0, θ1) that
determine it, and then we can defineχ(fθ,D) = Ex∈D[log(p(x|θ))]. [185] show that if the unlabeled
sample is large enough, then all hypotheses specified by parametersθ which are close enough toθ, will
have the property that their empirical compatibilities will be close enough to their true compatibilities.
This then implies (together with other observations about Gaussian mixtures) that the maximum likelihood
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estimate will be close enough toθ, up to permutations. (This actually motivatesχ as a good compatibility
function in our model.)

More generally, we can deal with other parametric families using the same compatibility notion; how-
ever, we will need to impose constraints on the distributions allowed in order to ensure that the compati-
bility is actually well defined (the expected log-likelihood is bounded).

As mentioned in Section 2.1, this kind of generative settingis really at the extreme of our model.
The assumption that the distribution that generates the data is truly a mixture implies that if we knew the
distribution, then there are only two possible concepts left (and this makes the unlabeled data extremely
useful).

2.5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection between our approach and the luckiness frame-
work [172, 195]. In both cases, the idea is to define an ordering of hypotheses that depends on the data,
in the hope that we will be “lucky” and find that the target function appears early in the ordering. There
are two main differences, however. The first is that the luckiness framework (because it was designed for
supervised learning only) uses labeled data both for estimating compatibility and for learning: this is a
more difficult task, and as a result our bounds on labeled datacan be significantly better. For instance,
in Example4 described in Section 2.2, for any non-degenerate distribution, a dataset ofd2 pairs can with
probability 1 be completely shattered by fully-compatible hypotheses, so the luckiness framework does
not help. In contrast, with a larger (unlabeled) sample, onecan potentially reduce the space of compatible
functions quite significantly, and learn fromo(d) or evenO(1) labeled examples depending on the distri-
bution – see Section 2.3.2 and Section 2.4. Secondly, the luckiness framework talks about compatibility
between a hypothesis and asample, whereas we define compatibility with respect to a distribution. This
allows us to talk about the amount of unlabeled data needed toestimate true compatibility. There are also
a number of differences at the technical level of the definitions.

2.5.4 Relationship to Other Ways of Using Unlabeled Data forLearning

It is well known that when learning under an unknown distribution, unlabeled data might help some-
what even in the standard discriminative models by allowingone to use both distribution-specific algo-
rithms [54], [145], [198] and/or tighter data dependent sample-complexity bounds [44, 157]. However in
all these methods one chooses a class of functions or a prior over functionsbeforeperforming the infer-
ence. This does not capture the power of unlabeled data in many of the practical semi-supervised learning
methods, where typically one has some idea about what structure of the data tells about the target function,
and where the choice of prior can be made more precise after seeing the unlabeled data [63, 141, 160, 186].
Our focus in this chapter has been to provide a unified discriminative framework for reasoning about use-
fulness of unlabeled data in such settings in which one can analyze both sample complexity and algorith-
mic results.

Another learning setting where unlabeled data is useful andwhich has been increasingly popular for
the past few years isActive Learning[31, 34, 35, 42, 87, 96]. Here, the learning algorithm has both the
capability of drawing random unlabeled examples from the underlying distribution and that of asking for
the labels ofanyof these examples, and the hope is that a good classifier can belearned with significantly
fewer labels byactively directing the queries toinformative examples. Note though that as opposed
to the Semi-supervised learning setting, and similarly to the classical supervised learning settings (PAC
and Statistical Learning Theory settings) the only prior belief about the learning problem in the Active
Learning setting is that the target function (or a good approximation of it) belongs to a given concept

40



class. Luckily, it turns out that for simple concept classessuch as linear separators on the line one can
achieve anexponentialimprovement (over the usual supervised learning setting) in the labeled data sample
complexity, under no additional assumptions about the learning problem [31, 87].7 In general, however,
for more complicated concept classes, the speed-ups achievable in the active learning setting depend on
the match between the distribution over example-label pairs and the hypothesis class, and therefore on
the target hypothesis in the class. We discuss all these further as well as our contribution on the topic in
Chapter 5.

Finally, in this thesis, we present in the context of learning with kernels and more general similarity
functions one other interesting use of unlabeled data in thelearning process. While the approach of
using unlabeled data in that context does have a similar flavor to the approach in this chapter, the final
guarantees and learning procedures are somewhat differentfrom those presented here. In that case the
hypothesis space has an infinite capacity before performingthe inference. In the training process, in a
first stage, we first use unlabeled in order to extract a much smaller set of functions with the property that
with high probability the target is well approximated by onethe functions in the smaller class. In a second
stage we then use labeled examples to learn well. We present this in more details Chapter 3 in Section 3.5.

2.6 Conclusions

Given the easy availability of unlabeled data in many settings, there has been growing interest in meth-
ods that try to use such data together with the (more expensive) labeled data for learning. Nonetheless,
there has been substantial disagreement and no clear consensus about when unlabeled data helps and by
how much. In our work, we have provided a PAC-style model for semi-supervised learning that captures
many of the ways unlabeled data is typically used, and provides a very general framework for thinking
about this issue. The high level implication of our analysisis that unlabeled data is useful if (a) we have
a good notion of compatibility so that the target function indeed has a low unlabeled error rate, (b) the
distributionD is helpful in the sense that not too many other hypotheses also have a lowunlabeled error
rate, and (c) we have enoughunlabeleddata to estimate unlabeled error rates well. We then make these
statements precise through a series of sample-complexity results, giving bounds as well as identifying the
key quantities of interest. In addition, we give several efficient algorithms for learning in this framework.
One consequence of our model is that if the target function and data distribution are both well behaved
with respect to the compatibility notion, then the sample-size bounds we get can substantially beat what
one could hope to achieve using labeled data alone, and we have illustrated this with a number of examples
throughout the chapter.

2.6.1 Subsequent Work

Following the initial publication of this work, several authors have used our framework for reasoning
about semi-supervised learning, as well as for developing new algorithms and analyses of semi-supervised
learning. For example [115, 186, 193] use it in the context ofagreement-based multi-view learning for
either classification with specific convex loss functions (e.g., hinge loss) or for regression. Sridharan and
Kakade [200] use our framework in order to provide a general analysis multi-view learning for a variety
of loss functions and learning tasks (classification and regression) along with characterizations of suitable
notions of compatibility functions. Parts of this work appear as a book chapter in [83] and as stated in the

7For this simple concept class one can achieve a pure exponential improvement [87] in the realizable case, while in the
agnostic case the improvement depends upon the noise rate [31].
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introduction of that book, our framework can be used to obtain bounds for a number of the semi-supervised
learning methods used in the other chapters.

2.6.2 Discussion

Our work brings up a number of open questions, both specific and high-level. One broad category of such
questions is for what natural classesC and compatibility notionsχ can one provide an efficient algorithm
thatPACunl-learns the pair(C,χ): i.e., an algorithm whose running time and sample sizes are polynomial
in the bounds of Theorem 2.3.1? For example, a natural question of this form is: can one generalize the
algorithm of Section 2.4.1 to allow for irrelevant variables that are neither positive nor negative indicators?
That is, suppose we define a “two-sided disjunction”h to be a pair of disjunctions(h+, h−) whereh is
compatible withD iff for all examplesx, h+(x) = −h−(x) (and let us defineh(x) = h+(x)). Can we
efficiently learn the class of two-sided disjunctions underthis notion of compatibility?

Alternatively, as a different generalization of the problem analyzed in Section 2.4.1, suppose that again
every variable is either a positive or negative indicator, but we relax the “margin” condition. In particular,
suppose we require that every examplex either contain at least 60% of the positive indicators and at
most 40% of the negative indicators (for positive examples)or vice versa (for negative examples). Can
this class be learned efficiently with bounds comparable to those from Theorem 2.3.1? Along somewhat
different lines, can one generalize the algorithm given forCo-Training with linear separators, to assume
some condition weaker than independence given the label, while maintaining computational efficiency?
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Chapter 3

A General Theory of Learning with
Similarity Functions

3.1 Learning with Kernel Functions. Introduction

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well [1, 135, 142, 191, 194, 207]. A kernel is a function that takes in two data objects (which could
be images, DNA sequences, or points inRn) and outputs a number, with the property that the function
is symmetric and positive-semidefinite. That is, for any kernel K, there must exist an (implicit) mapping
φ, such that for all inputsx, x′ we haveK(x, x′) = 〈φ(x), φ(x′)〉. The kernel is then used inside a
“kernelized” learning algorithm such as SVM or kernel-perceptron in place of direct access to the data.
Typical kernel functions for structured data include the polynomial kernelK(x, x′) = (1+x ·x′)d and the
Gaussian kernelK(x, x′) = e−||x−x′||2/2σ2

, and a number of special-purpose kernels have been developed
for sequence data, image data, and other types of data as well[89, 90, 159, 175, 197].

The theory behind kernel functions is based on the fact that many standard algorithms for learning
linear separators, such as SVMs [207] and the Perceptron [111] algorithm, can be written so that the only
way they interact with their data is via computing dot-products on pairs of examples. Thus, by replacing
each invocation of〈x, x′〉 with a kernel computationK(x, x′), the algorithm behaves exactly as if we had
explicitly performed the mappingφ(x), even thoughφ may be a mapping into a very high-dimensional
space. Furthermore, these algorithms have learning guarantees that depend only on themarginof the best
separator, and not on the dimension of the space in which the data resides [18, 195]. Thus, kernel functions
are often viewed as providing much of the power of this implicit high-dimensional space, without paying
for it either computationally (because theφ mapping is only implicit) or in terms of sample size (if data is
indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. When designing a kernel function
for some learning problem, the intuition employed typically does not involve implicit high-dimensional
spaces but rather that a good kernel would be one that serves as a good measure of similarity for the given
problem [191]. So, in this sense the theory is not always helpful in providing intuition when selecting or
designing a kernel function for a particular learning problem. Additionally, it may be that the most natural
similarity function for a given problem is not positive-semidefinite1, and it could require substantial work,
possibly reducing the quality of the function, to coerce it into a “legal” form. Finally, it is a bit unsatisfying
for the explanation of the effectiveness of some algorithm to depend on properties of an implicit high-

1This is very common in the context of Computational Biology where the most natural measures of alignment between
sequences are not legal kernels. For more examples see Section 3.2.
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dimensional mapping that one may not even be able to calculate. In particular, the standard theory at
first blush has a “something for nothing” feel to it (all the power of the implicit high-dimensional space
without having to pay for it) and perhaps there is a more prosaic explanation of what it is that makes a
kernel useful for a given learning problem. For these reasons, it would be helpful to have a theory that
was in terms of more tangible quantities.

In this chapter, we develop a theory of learning with similarity functions that addresses a number of
these issues. In particular, we define a notion of what it means for a pairwise functionK(x, x′) to be a
“good similarity function” for a given learning problem that (a) does not require the notion of an implicit
space and allows for functions that are not positive semi-definite, (b) we can show is sufficient to be used
for learning, and (c)strictly generalizes the standard theory in that a good kernel in the usual sense (large
margin in the implicitφ-space) will also satisfy our definition of a good similarityfunction. In this way,
we provide the first theory that describes the effectivenessof a given kernel (or more general similarity
function) in terms of natural similarity-based properties.

More generally, our framework provides a formal way to analyze properties of a similarity function
that make it sufficient for learning, as well as what algorithms are suited for a given property. Note that
while our work is motivated by extending the standard large-margin notion of a good kernel function,
we expect one can use this framework to analyze other, not necessarily comparable, properties that are
sufficient for learning as well. In fact, recent work along these lines is given in [212].

Structure of this chapter: We start with background and notation in Section 3.2. We the present a first
notion of a good similarity function in Section 3.3 and analyze its relationship with the usual notion of a
good kernel function. (These results appear in [26] and [39].) In section 3.4 we present a slightly different
and broader notion that we show provides even better kernelsto similarity translation; in Section 3.4.3 we
give a separation result, showing that this new notion isstrictly more generalthan the notion of a large
margin kernel. (These results appear in [40].)

3.2 Background and Notation

We consider a learning problem specified as follows. We are given access to labeled examples(x, y)
drawn from some distributionP over X × {−1, 1}, whereX is an abstract instance space. The objec-
tive of a learning algorithm is to produce a classification function g : X → {−1, 1} whose error rate
Pr(x,y)∼P [g(x) 6= y] is low. We will consider learning algorithms that only access the pointsx through a
pairwise similarity functionK(x, x′) mapping pairs of points to numbers in the range[−1, 1]. Specifically,

Definition 3.2.1 A similarity functionoverX is any pairwise functionK : X × X → [−1, 1]. We say
thatK is a symmetric similarity function ifK(x, x′) = K(x′, x) for all x, x′.

A similarity function K is a valid (or legal) kernel function if it is positive-semidefinite, i.e. there
exists a functionφ from the instance spaceX into some (implicit) Hilbert “φ-space” such that

K(x, x′) =
〈
φ(x), φ(x′)

〉
.

See, e.g., Smola and Schölkopf [190] for a discussion on conditions for a mapping being a kernel function.
Throughout this chapter, and without loss of generality, wewill only consider kernels such thatK(x, x) ≤
1 for all x ∈ X . Any kernelK can be converted into this form by, for instance, defining

K̃(x, x′) = K(x, x′)/
√

K(x, x)K(x′, x′).
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We say thatK is (ǫ, γ)-kernel goodfor a given learning problemP if there exists a vectorβ in theφ-space
that has errorǫ at marginγ; for simplicity we consider only separators through the origin. Specifically:2

Definition 3.2.2 K is (ǫ, γ)-kernel goodif there exists a vectorβ, ||β|| ≤ 1 such that

Pr
(x,y)∼P

[y〈φ(x), β〉 ≥ γ] ≥ 1− ǫ.

We say thatK is γ-kernel goodif it is (ǫ, γ)-kernel goodfor ǫ = 0; i.e., it has zero error at marginγ.
Given a kernel that is(ǫ, γ)-kernel-good for some learning problemP , a predictor with error rate at

mostǫ + ǫacc can be learned (with high probability) from a sample of3 Õ
(
(ǫ + ǫacc)/(γ

2ǫ2
acc)
)

examples
(drawn independently from the source distribution) by minimizing the number of marginγ violations
on the sample [170]. However, minimizing the number of margin violations on the sample is a difficult
optimization problem [18, 21]. Instead, it is common to minimize the so-calledhinge lossrelative to a
margin.
Definition 3.2.3 We say thatK is (ǫ, γ)-kernel goodin hinge-lossif there exists a vectorβ, ||β|| ≤ 1 such
that

E(x,y)∼P [[1− y〈β, φ(x)〉/γ]+] ≤ ǫ,

where[1− z]+ = max(1− z, 0) is the hinge loss.
Given a kernel that is(ǫ, γ)-kernel-good in hinge-loss, a predictor with error rate at mostǫ + ǫacc can

be efficiently learned (with high probability) from a sampleof O
(
1/(γ2ǫ2

acc)
)

examples by minimizing
the average hinge loss relative to marginγ on the sample [44].

We end this section by noting that a general similarity function might not be a legal (valid) kernel. To
illustrate this we provide a few examples in the following.

Examples of similarity functions which are not legal kernel functions. As a simple example, let
us consider a document classification task and let us assume we have a similarity functionK such that
two documents have similarity1 if they have either an author in common or a keyword in common,and
similarity 0 otherwise. Then we could have three documentsA, B, andC, such thatK(A,B) = 1 because
A andB have an author in common,K(B,C) = 1 becauseB andC have a keyword in common, but
K(A,C) = 0 becauseA and C have neither an author nor a keyword in common (andK(A,A) =
K(B,B) = K(C,C) = 1). On the other hand, a kernel requires that ifφ(A) andφ(B) are of unit length
and〈φ(A), φ(B)〉 = 1, thenφ(A) = φ(B), so this could not happen ifK was a valid kernel.

Similarity functions that are not legal kernels are common in the context of computational biol-
ogy [162]; standard examples include various measures of alignment between sequences such as BLAST
scores for protein sequences or for DNA. Finally, one other natural example of a similarity function that
might not be a legal kernel (and which might not be even symmetric) is the following: consider a trans-
ductive setting (where we have all the points we want to classify in advance) and assume we have a
base distance functiond(x, x′). Let us defineK(x, x′) as the percentile rank ofx′ in distance tox (i.e.,
K(x, x′) = Pr [d(x, x′) ≤ d(x, x′′)]; then clearlyK might not be a legal kernel since in fact it might not
even be a symmetric similarity function.

Of course, one could modify such a function to be positive semidefinite, e.g., by blowing up the
diagonal or by using other related methods suggested in the literature [168], but none of these methods
have a formal guarantee on the final generalization bound (and these methods might significantly decrease
the “dynamic range” ofK and yield a very small margin).

2 Note that we are distinguishing between what is needed for a similarity function to be a valid or legal kernel function
(symmetric and positive semidefinite) and what is needed to be agoodkernel function for a learning problem (large margin).

3TheÕ(·) notations hide logarithmic factors in the arguments, and inthe failure probability.
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3.3 Learning with More General Similarity Functions: A Firs t Attempt

Our goal is to describe “goodness” properties that are sufficient for a similarity function to allow one to
learn well that ideally are intuitive and subsume the usual notion of good kernel function. Note that as
with the theory of kernel functions [190], “goodness” is with respect to a given learning problemP , and
notwith respect to a class of target functions as in the PAC framework [151, 205].

We start by presenting here the notion of good similarity functions introduced in [26] and further ana-
lyzed in [199] and [39], which throughout the chapter we callthe Balcan - Blum’06 definition. We begin
with a definition (Definition 3.3.1) that is especially intuitive and allows for learning via a very simple
algorithm, but is not broad enough to include all kernel functions that induce large-margin separators. We
then broaden this notion to the main definition in [26] (Definition 3.3.5) that requires a more involved
algorithm to learn, but is now able to capture all functions satisfying the usual notion of a good kernel
function. Specifically, we show that ifK is a similarity function satisfying Definition 3.3.5 then one
can algorithmically perform a simple,explicit transformation of the data under which there is a low-error
large-margin separator. We also consider variations on this definition (e.g., Definition 3.3.6) that produce
better guarantees on the quality of the final hypothesis whencombined with existing learning algorithms.

A similarity function K satisfying the Balcan - Blum’06 definition, but that is not positive semi-
definite, is not necessarily guaranteed to work well when used directly in standard learning algorithms
such as SVM or the Perceptron algorithm4. Instead, what we show is that such a similarity function
can be employed in the following two-stage algorithm. First, re-represent that data by performing what
might be called an “empirical similarity map”: selecting a subset of data points as landmarks, and then
representing each data point using the similarities to those landmarks. Then, use standard methods to find
a large-margin linear separator in the new space. One property of this approach is that it allows for the use
of a broader class of learning algorithms since one does not need the algorithm used in the second step to
be “kernalizable”. In fact, the work in this chapter is motivated by work on a re-representation method that
algorithmically transforms a kernel-based learning problem (with a valid positive-semidefinite kernel) to
an explicit low-dimensional learning problem [32]. (We present this Chapter 6.)

Deterministic Labels: For simplicity in presentation, for most of this section we will consider only
learning problems where the labely is a deterministic function ofx. For such learning problems, we can
usey(x) to denote the label of pointx, and we will usex ∼ P as shorthand for(x, y(x)) ∼ P . We will
return to learning problems where the labely may be a probabilistic function ofx in Section 3.3.5.

3.3.1 Sufficient Conditions for Learning with Similarity Fu nctions

We now provide a series of sufficient conditions for a similarity function to be useful for learning, leading
to the notions given in Definitions 3.3.5 and 3.3.6.

3.3.2 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similarity function” that is intuitive and yields
an immediate learning algorithm, but which is not broad enough to capture all good kernel functions.
Nonetheless, it provides a convenient starting point. Thisdefinition says thatK is a good similarity
function for a learning problemP if most examplesx (at least a1− ǫ probability mass) are on average at
leastγ more similar to random examplesx′ of thesamelabel than they are to random examplesx′ of the
opposite label. Formally,

4However, as we will see in Section 3.3.5, if the functionis positive semi-definite and if it is good in the Balcan -
Blum’06 sense [26, 39], or in the Balcan - Blum - Srebro’08 sense [40], then we can show it is good as a kernel as well.
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Definition 3.3.1 K is a strongly (ǫ, γ)-good similarity function for a learning problemP if at least a
1− ǫ probability mass of examplesx satisfy:

Ex′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.1)

For example, suppose all positive examples have similarityat least0.2 with each other, and all negative
examples have similarity at least0.2 with each other, but positive and negative examples have similarities
distributed uniformly at random in[−1, 1]. Then, this would satisfy Definition 3.3.1 forγ = 0.2 and
ǫ = 0. Note that with high probability this would not be positive semidefinite.5

Definition 3.3.1 captures an intuitive notion of what one might want in a similarity function. In ad-
dition, if a similarity functionK satisfies Definition 3.3.1 then it suggests a simple, naturallearning
algorithm: draw a sufficiently large setS+ of positive examples and setS− of negative examples, and
then output the prediction rule that classifies a new examplex as positive if it is on average more similar
to points inS+ than to points inS−, and negative otherwise. Formally:
Theorem 3.3.1 If K is strongly(ǫ, γ)-good, then a setS+ of (16/γ2) ln(2/δ) positive examples and a
setS− of (16/γ2) ln(2/δ) negative examples are sufficient so that with probability≥ 1 − δ, the above
algorithm produces a classifier with error at mostǫ + δ.

Proof: Let Good be the set ofx satisfying

Ex′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)] + γ.

So, by assumption,Prx∼P [x ∈ Good] ≥ 1 − ǫ. Now, fix x ∈ Good. SinceK(x, x′) ∈ [−1, 1], by
Hoeffding bounds we have that over the random draw of the sample S+,

Pr
(∣∣Ex′∈S+ [K(x, x′)]−Ex′∼P [K(x, x′)|y(x′) = 1]

∣∣ ≥ γ/2
)
≤ 2e−2|S+|γ2/16,

and similarly forS−. By our choice of|S+| and|S−|, each of these probabilities is at mostδ2/2.
So, for any givenx ∈ Good, there is at most aδ2 probability of error over the draw ofS+ andS−.

Since this is true for anyx ∈ Good, it implies that theexpectederror of this procedure, overx ∈ Good,
is at mostδ2, which by Markov’s inequality implies that there is at most aδ probability that the error rate
overGood is more thanδ. Adding in theǫ probability mass of points not inGood yields the theorem.

Before going to our main notion note that Definition 3.3.1 requires that almost all of the points (at
least a1− ǫ fraction) be on average more similar to random points of the same label than to random points
of the other label. A weaker notion would be simply to requirethat two random points of the same label
be on average more similar than two random points of different labels. For instance, one could consider
the following generalization of Definition 3.3.1:

Definition 3.3.2 K is aweakly γ-good similarity function for a learning problemP if:

Ex,x′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex,x′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.2)

While Definition 3.3.2 still captures a natural intuitive notion of what one might want in a similarity
function, it is not powerful enough to implystronglearning unlessγ is quite large. For example, suppose
the instance space isR2 and that the similarity measureK we are considering is just the product of the first
coordinates (i.e., dot-product but ignoring the second coordinate). Assume the distribution is half positive

5In particular, if the domain is large enough, then with high probability there would exist negative exampleA and positive
examplesB, C such thatK(A, B) is close to 1 (so they are nearly identical as vectors),K(A, C) is close to−1 (so they are
nearly opposite as vectors), and yetK(B, C) ≥ 0.2 (their vectors form an acute angle).
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and half negative, and that75% of the positive examples are at position(1, 1) and25% are at position
(−1, 1), and75% of the negative examples are at position(−1,−1) and25% are at position(1,−1).
ThenK is a weaklyγ-good similarity function forγ = 1/2, but the best accuracy one can hope for using
K is 75% because that is the accuracy of the Bayes-optimal predictorgiven only the first coordinate.

We can however show that for anyγ > 0, Definition 3.3.2 is enough to imply weak learning [192]. In
particular, the following simple algorithm is sufficient toweak learn. First, determine if the distribution is
noticeably skewed towards positive or negative examples: if so, weak-learning is immediate (output all-
positive or all-negative respectively). Otherwise, draw asufficiently large setS+ of positive examples and
setS− of negative examples. Then, for eachx, consider̃γ(x) = 1

2 [Ex′∈S+[K(x, x′)]−Ex′∈S− [K(x, x′)]].
Finally, to classifyx, use the following probabilistic prediction rule: classify x as positive with probability
1+γ̃(x)

2 and as negative with probability1−γ̃(x)
2 . (Notice that̃γ(x) ∈ [−1, 1] and so our algorithm is well

defined.) We can then prove the following result:

Theorem 3.3.2 If K is a weaklyγ-good similarity function, then with probability at least1−δ, the above
algorithm using setsS+, S− of size64

γ2 ln ( 64
γδ ) yields a classifier with error at most12 −

3γ
128 .

Proof: First, we assume the algorithm initially draws a sufficiently large sample such that if the distri-
bution is skewed with probability mass greater than1

2 + α on positives or negatives forα = γ
32 , then

with probability at least1 − δ/2 the algorithm notices the bias and weak-learns immediately(and if the
distribution is less skewed than12 ±

3γ
128 , with probability1− δ/2 it does not incorrectly halt in this step).

In the following, then, we may assume the distributionP is less than(1
2 + α)-skewed, and let us define

P ′ to beP reweighted to have probability mass exactly1/2 on positive and negative examples. Thus,
Definition 3.3.2 is satisfied forP ′ with margin at leastγ − 4α.

For eachx defineγ(x) as 1
2Ex′ [K(x, x′)|y(x′) = 1] − 1

2Ex′ [K(x, x′)|y(x′) = −1] and notice that
Definition 3.3.2 implies thatEx∼P ′ [y(x)γ(x)] ≥ γ/2 − 2α. Consider now the probabilistic prediction
function g defined asg(x) = 1 with probability 1+γ(x)

2 andg(x) = −1 with probability 1−γ(x)
2 . We

clearly have that for a fixedx,

Pr
g

(g(x) 6= y(x)) =
y(x)(y(x)− γ(x))

2
,

which then implies thatPrx∼P ′,g(g(x) 6= y(x)) ≤ 1
2 − 1

4γ − α. Now notice that in our algorithm we
do not useγ(x) but an estimate of it̃γ(x), and so the last step of the proof is to argue that this is good
enough. To see this, notice first thatd is large enough so that for any fixedx we have

Pr
S+,S−

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

)
≤ γδ

32
.

This implies

Pr
x∼P ′

(
Pr

S+,S−

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

))
≤ γδ

32
,

so

Pr
S+,S−

(
Pr

x∼P

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

)
≥ γ

16

)
≤ δ/2.

This further implies that with probability at least1−δ/2 we haveEx∼P ′ [y(x)γ̃(x)] ≥
(
1− γ

16

) γ
4−2 γ

16 ≥
7γ
64 . Finally using a reasoning similar to the one above (concerning the probabilistic prediction function
based onγ(x)), we obtain that with probability at least1 − δ/2 the error of the probabilistic classifier
based oñγ(x) is at most12 −

7γ
128 onP ′, which implies the error overP is at most12 −

7γ
128 + α = 1

2 −
3γ
128 .
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Figure 3.1: Positives are split equally among upper-left and upper-right. Negatives are all in the lower-
right. For α = 30o (so γ = 1/2) a large fraction of the positive examples (namely the50% in the
upper-right) have a higher dot-product with negative examples (1

2) than with a random positive example
(1
2 · 1 + 1

2(−1
2) = 1

4). However, if we assign the positives in the upper-left a weight of 0, those in the
upper-right a weight of 1, and assign negatives a weight of1

2 , then all examples have higher average
weightedsimilarity to those of the same label than to those of the opposite label, by a gap of14 .

Returning to Definition 3.3.1, Theorem 3.3.1 implies that ifK is a strongly(ǫ, γ)-good similarity
function for smallǫ and not-too-smallγ, then it can be used in a natural way for learning. However,
Definition 3.3.1 is not sufficient to capture all good kernel functions. In particular, Figure 3.1 gives a
simple example inR2 where the standard kernelK(x, x′) = 〈x, x′〉 has a large margin separator (margin
of 1/2) and yet does not satisfy Definition 3.3.1, even forγ = 0 andǫ = 0.24.

Notice, however, that if in Figure 3.1 we simply ignored the positive examples in the upper-left when
choosingx′, and down-weighted the negative examples a bit, then we would be fine. This then motivates
the following intermediate notion of a similarity functionK being good under a weighting functionw
over the input space that can downweight certain portions ofthat space.

Definition 3.3.3 A similarity functionK together with a bounded weighting functionw overX (specifi-
cally,w(x′) ∈ [0, 1] for all x′ ∈ X) is astrongly (ǫ, γ)-good weighted similarity function for a learning
problemP if at least a1− ǫ probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.3)

We can view Definition 3.3.3 intuitively as saying that we only require most examples be substantially
more similar on average torepresentativepoints of the same class than torepresentativepoints of the
opposite class, where “representativeness” is a score in[0, 1] given by the weighting functionw. A pair
(K,w) satisfying Definition 3.3.3 can be used in exactly the same way as a similarity functionK satisfying
Definition 3.3.1, with the exact same proof used in Theorem 3.3.1 (except now we vieww(y)K(x, x′) as
the bounded random variable we plug into Hoeffding bounds).

3.3.3 Main Balcan - Blum’06 Conditions

Unfortunately, Definition 3.3.3 requires the designer to construct bothK andw, rather than justK. We
now weaken the requirement to ask only that such aw exist, in Definition 3.3.4 below:

Definition 3.3.4 (Main Balcan - Blum’06 Definition, BalancedVersion) A similarity functionK is an
(ǫ, γ)-good similarity function for a learning problemP if thereexistsa bounded weighting functionw
overX (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a1− ǫ probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.4)
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As mentioned above, the key difference is that whereas in Definition 3.3.3 one needs the designer
to construct both the similarity functionK and the weighting functionw, in Definition 3.3.4 we only
require that such aw exist, but it need not be known a-priori. That is, we ask only that there exist a
large probability mass of “representative” points (a weighting scheme) satisfying Definition 3.3.3, but the
designer need not know in advance what that weighting schemeshould be.

Definition 3.3.4 can also be stated as requiring that, for at least1−ǫ of the examples, theclassification
margin

Ex′∼P

[
w(x′)K(x, x′)|y(x) = y(x′)

]
− Ex′∼P

[
w(x′)K(x, x′)|y(x) 6= y(x′)

]

= y(x)Ex′∼P

[
w(x′)y(x′)K(x, x′)/P (y(x′))

] (3.5)

be at leastγ, whereP (y(x′)) is the marginal probability underP , i.e. the prior, of the label associated
with x′. We will find it more convenient in the following to analyze instead a slight variant, dropping the
factor1/P (y(x′)) from the classification margin (3.5)—see Definition 3.3.5 inthe next Section. Any sim-
ilarity function satisfying Definition 3.3.5 also satisfiesDefinition 3.3.4 (by simply multiplyingw(x′) by
P (y(x′))). However, the learning algorithm using Definition 3.3.5 isslightly simpler, and the connection
to kernels is a bit more direct.

We are now ready to present the main sufficient condition for learning with similarity functions in [26].
This is essentially a restatement of Definition 3.3.4, dropping the normalization by the label “priors” as
discussed at the end of the preceding Section.

Definition 3.3.5 (Main Balcan - Blum’06 Definition, Margin Vi olations) A similarity functionK is an
(ǫ, γ)-good similarity function for a learning problemP if thereexistsa bounded weighting functionw
overX (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a1− ǫ probability mass of examplesx satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ. (3.6)

We would like to establish that the above condition is indeedsufficient for learning. I.e. that given an
(ǫ, γ)-good similarity functionK for some learning problemP , and a sufficiently large labeled sample
drawn fromP , one can obtain (with high probability) a predictor with error rate arbitrarily close toǫ. To
do so, we will show how to use an(ǫ, γ)-good similarity functionK, and a sampleS drawn fromP , in
order to construct (with high probability) an explicit mapping φS : X → Rd for all points inX (not only
points in the sampleS), such that the mapped data(φS(x), y(x)), wherex ∼ P , is separated with error
close toǫ (and in fact also with large margin) in the low-dimensional linear spaceRd (Theorem 3.3.3
below). We thereby convert the learning problem into a standard problem of learning a linear separator,
and can use standard results on learnability of linear separators to establish learnability of our original
learning problem, and even provide learning guarantees.

What we are doing is actually showing how to use a good similarity functionK (that is not necessarily
a valid kernel) and a sampleS drawn fromP to construct a valid kernel̃KS, given byK̃S(x, x′) =〈
φS(x), φS(x′)

〉
, that is kernel-good and can thus be used for learning (In Section 3.3.5 we show that if

K is already a valid kernel, a transformation is not necessaryasK itself is kernel-good). We are therefore
leveraging here the established theory of linear, or kernel, learning in order to obtain learning guarantees
for similarity measures that are not valid kernels.

Interestingly, in Section 3.3.5 we also show that any kernelthat is kernel-good is also a good similar-
ity function (though with some degradation of parameters).The suggested notion of “goodness” (Defini-
tion 3.3.5) thus encompasses the standard notion of kernel-goodness, and extends it also to non-positive-
definite similarity functions.

Theorem 3.3.3 Let K be an(ǫ, γ)-good similarity function for a learning problemP . For any δ > 0,
let S = {x̃1, x̃2, . . . , x̃d} be a sample of sized = 8 log(1/δ)/γ2 drawn fromP . Consider the mapping
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φS : X → Rd defined as follows:φS
i(x) = K(x,x̃i)√

d
, i ∈ {1, . . . , d}. With probability at least1 − δ

over the random sampleS, the induced distributionφS(P ) in Rd has a separator of error at mostǫ + δ
at margin at leastγ/2.

Proof: Let w : X → [0, 1] be the weighting function achieving (3.6) of Definition 3.3.5. Consider the
linear separatorβ ∈ Rd, given byβi = y(x̃i)w(x̃i)√

d
; note that||β|| ≤ 1. We have, for anyx, y(x):

y(x)
〈
β, φS(x)

〉
=

1

d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) (3.7)

The right hand side of the (3.7) is an empirical average of−1 ≤ y(x)y(x′)w(x′)K(x, x′) ≤ 1, and so by
Hoeffding’s inequality, for anyx, and with probability at least1− δ2 over the choice ofS, we have:

1

d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) ≥ Ex′∼P

[
y(x)y(x′)w(x′)K(x, x′)

]
−

√
2 log( 1

δ2 )

d
(3.8)

Since the above holds for anyx with probability at least1 − δ2 over the choice ofS, it also holds with
probability at least1− δ2 over the choice ofx andS. We can write this as:

ES∼P d

[
Pr

x∼P
( violation)

]
≤ δ2 (3.9)

where “violation” refers to violating (3.8). Applying Markov’s inequality we get that with probability at
least1 − δ over the choice ofS, at mostδ fraction of points violate (3.8). Recalling Definition 3.3.5, at
most an additionalǫ fraction of the points violate (3.6). But for the remaining1 − ǫ − δ fraction of the

points, for which both (3.8) and (3.6) hold, we have:y(x)
〈
β, φS(x)

〉
≥ γ −

√
2 log( 1

δ2
)

d = γ/2, where to
get the last inequality we used = 8 log(1/δ)/γ2.

We can learn a predictor with error rate at mostǫ + ǫacc using an(ǫ, γ)-good similarity functionK
as follows. We first draw fromP a sampleS = {x̃1, x̃2, . . . , x̃d} of sized = (4/γ)2 ln(4/δǫacc) and
construct the mappingφS : X → Rd defined as follows:φS

i(x) = K(x,x̃i)√
d

, i ∈ {1, . . . , d}. The
guarantee we have is that with probability at least1 − δ over the random sampleS, the induced dis-
tribution φS(P ) in Rd, has a separator of error at mostǫ + ǫacc/2 at margin at leastγ/2. So, to learn
well, we then draw a new, fresh sample, map it into the transformed space usingφS , and then learn
a linear separator in transformed space usingφS , the new space. The number of landmarks is domi-
nated by theÕ

(
(ǫ + ǫacc)d/ǫ2

acc)
)

= Õ
(
(ǫ + ǫacc)/(γ

2ǫ2
acc)
)

sample complexity of the linear learning,
yielding the same order sample complexity as in the kernel-case for achieving error at mostǫ + ǫacc:
Õ
(
(ǫ + ǫacc)/(γ

2ǫ2
acc)
)
.

Unfortunately, the above sample complexity refers to learning by finding a linear separator minimizing
the error over the training sample. This minimization problem is NP-hard [18], and even NP-hard to
approximate [21]. In certain special cases, such as if the induced distributionφS(P ) happens to be log-
concave, efficient learning algorithms exist [147]. However, as discussed earlier, in the more typical case,
one minimizes thehinge-lossinstead of the number of errors. We therefore consider also amodification
of Definition 3.3.5 that captures the notion of good similarity functions for the SVM and Perceptron
algorithms as follows:
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Definition 3.3.6 (Main Balcan - Blum’06 Definition, Hinge Loss) A similarity functionK is an(ǫ, γ)-
good similarity function in hinge loss for a learning problemP if there exists a weighting function
w(x′) ∈ [0, 1] for all x′ ∈ X such that

Ex

[
[1− y(x)g(x)/γ]+

]
≤ ǫ, (3.10)

whereg(x) = Ex′∼P [y(x′)w(x′)K(x, x′)] is the similarity-based prediction made usingw(), and recall
that [1− z]+ = max(0, 1 − z) is the hinge-loss.

In other words, we are asking: on average, by how much, in units of γ, would a random examplex fail
to satisfy the desiredγ separation between the weighted similarity to examples of its own label and the
weighted similarity to examples of the other label.

Similarly to Theorem 3.3.3, we have:

Theorem 3.3.4 Let K be an(ǫ, γ)-good similarity function in hinge loss for a learning problemP . For
any ǫ1 > 0 and0 < δ < γǫ1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of sized = 16 log(1/δ)/(ǫ1γ)2

drawn fromP . With probability at least1− δ over the random sampleS, the induced distributionφS(P )
in Rd, for φS as defined in Theorem 3.3.3, has a separator achieving hinge-loss at mostǫ + ǫ1 at margin
at leastγ.

Proof: Let w : X → [0, 1] be the weighting function achieving an expected hinge loss of at mostǫ at
marginγ, and denoteg(x) = Ex′∼P [y(x′)w(x′)K(x, x′)]. Definingβ as in Theorem 3.3.3 and following
the same arguments we have that with probability at least1− δ over the choice ofS, at mostδ fraction of
the pointsx violate 3.8. We will only consider such samplesS. For those points that do not violate (3.8)
we have:

[1− y(x)
〈
β, φS(x)

〉
/γ]+ ≤ [1− y(x)g(x)/γ]+

1

γ

√
2 log( 1

δ2 )

d
≤ [1− y(x)g(x)/γ]+ + ǫ1/2 (3.11)

For points that do violate (3.8), we will just bound the hingeloss by the maximum possible hinge-loss:

[1− y(x)
〈
β, φS(x)

〉
/γ]+ ≤ 1 + max

x

∣∣y(x)||β||||φS(x)||
∣∣ /γ ≤ 1 + 1/γ ≤ 2/γ (3.12)

Combining these two cases we can bound the expected hinge-loss at marginγ:

Ex∼P

[
[1− y(x)

〈
β, φS(x)

〉
/γ]+

]
≤ Ex∼P [[1− y(x)g(x)/γ]+] + ǫ1/2 + Pr(violation) · (2/γ)

≤ Ex∼P [[1− y(x)g(x)/γ]+] + ǫ1/2 + 2δ/γ

≤ Ex∼P [[1− y(x)g(x)/γ]+] + ǫ1, (3.13)

where the last inequality follows fromδ < ǫ1γ/4.

We can learn a predictor with error rate at mostǫ + ǫacc using an(ǫ, γ)-good similarity functionK
as follows. We first draw fromP a sampleS = {x̃1, x̃2, . . . , x̃d} of sized = 16 log(2/δ)/(ǫaccγ)2 and
construct the mappingφS : X → Rd defined as follows:φS

i(x) = K(x,x̃i)√
d

, i ∈ {1, . . . , d}. The guarantee

we have is that with probability at least1 − δ over the random sampleS, the induced distributionφS(P )
in Rd, has a separator achieving hinge-loss at mostǫ + ǫacc/2 at marginγ. So, to learn well, we can then
use an SVM solver in theφS-space to obtain (with probability at least1 − 2δ) a predictor with error rate
ǫ + ǫacc usingÕ

(
1/(γ2ǫ2

acc)
)

examples, and time polynomial in1/γ,1/ǫacc andlog(1/δ).
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3.3.4 Extensions

We present here a few extensions of our basic setting in Section 3.3.3. For simplicity, we only consider
the margin-violation version of our definitions, but all theresults here can be easily extended to the hinge
loss case as well.

Combining Multiple Similarity Functions

Suppose that rather than having a single similarity function, we were instead givenn functionsK1, . . . ,Kn,
and our hope is that some convex combination of them will satisfy Definition 3.3.5. Is this sufficient to
be able to learn well? (Note that a convex combination of similarity functions is guaranteed to have range
[−1, 1] and so be a legal similarity function.) The following generalization of Theorem 3.3.3 shows that
this is indeed the case, though the margin parameter drops bya factor of

√
n. This result can be viewed

as analogous to the idea of learning a kernel matrix studied by [159] except that rather than explicitly
learning the best convex combination, we are simply foldingthe learning process into the second stage of
the algorithm.

Theorem 3.3.5 SupposeK1, . . . ,Kn are similarity functions such that some (unknown) convex combina-
tion of them is(ǫ, γ)-good. If one draws a setS = {x̃1, x̃2, . . . , x̃d} fromP containingd = 8 log(1/δ)/γ2

examples, then with probability at least1− δ, the mappingφS : X → Rnd defined asφS(x) = ρS(x)√
nd

,

ρS(x) = (K1(x, x̃1), . . . ,K1(x, x̃d), ...,Kn(x, x̃1), . . . ,Kn(x, yd))

has the property that the induced distributionφS(P ) in Rnd has a separator of error at mostǫ + δ at
margin at leastγ/(2

√
n).

Proof: Let K = α1K1 + . . .+αnKn be an(ǫ, γ)-good convex-combination of theKi. By Theorem 3.3.3,

had we instead performed the mapping:φ̂S : X → Rd defined aŝφS(x) = ρ̂S(x)√
d

,

ρ̂S(x) = (K(x, x̃1), . . . ,K(x, x̃d))

then with probability1− δ, the induced distribution̂φS(P ) in Rd would have a separator of error at most
ǫ + δ at margin at leastγ/2. Let β̂ be the vector corresponding to such a separator in that space. Now,
let us convert̂β into a vector inRnd by replacing each coordinatêβj with then values(α1β̂j , . . . , αnβ̂j).

Call the resulting vector̃β. Notice that by design, for anyx we have
〈
β̃, φS(x)

〉
= 1√

n

〈
β̂, φ̂S(x)

〉
.

Furthermore,||β̃|| ≤ ||β̂|| ≤ 1 (the worst case is when exactly one of theαi is equal to 1 and the rest are
0). Thus, the vector̃β under distributionφS(P ) has the similar properties as the vectorβ̂ underφ̂S(P );
so, using the proof of Theorem 3.3.3 we obtain that that the induced distributionφS(P ) in Rnd has a
separator of error at mostǫ + δ at margin at leastγ/(2

√
n).

Note that the above argument actually shows something a bit stronger than Theorem 3.3.5. In partic-
ular, if we defineα = (α1, . . . , αn) to be the mixture vector for the optimalK, then we can replace the
margin boundγ/(2

√
n) with γ/(2||α||√n). For example, ifα is the uniform mixture, then we just get

the bound in Theorem 3.3.3 ofγ/2.
Also note that if we are in fact using anL1-based learning algorithm then we could do much better —

for details on such an approach see Section 3.4.6.
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Multi-class Classification

We can naturally extend all our results to multi-class classification. Assume for concreteness that there
arer possible labels, and denote the space of possible labels byY = {1, · · · , r}; thus, by amulti-class
learning problemwe mean a distributionP over labeled examples(x, y(x)), wherex ∈ X andy(x) ∈ Y .

For this multi-class setting, Definition 3.3.4 seems most natural to extend. Specifically:

Definition 3.3.7 (main, multi-class) A similarity functionK is an(ǫ, γ)-good similarity function for a
multi-class learning problemP if there exists a bounded weighting functionw overX (w(x′) ∈ [0, 1] for
all x′ ∈ X) such that at least a1− ǫ probability mass of examplesx satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) = i] + γ for all i ∈ Y, i 6= y(x)

We can then extend the argument in Theorem 3.3.3 and learn using standard adaptations of linear-separator
algorithms to the multiclass case (e.g., see [111]).

3.3.5 Relationship Between Good Kernels and Good Similarity Measures

As discussed earlier, the similarity-based theory of learning is more general than the traditional kernel-
based theory, since a good similarity function need not be a valid kernel. However, for a similarity function
K that is a valid kernel, it is interesting to understand the relationship between the learning results guar-
anteed by the two theories. Similar learning guarantees andsample complexity bounds can be obtained
if K is either an(ǫ, γ)-good similarity function, or a valid kernel and(ǫ, γ)-kernel-good. In fact, as we
saw in Section 3.3.3, the similarity-based guarantees are obtained by transforming (using a sample) the
problem of learning with an(ǫ, γ)-good similarity function to learning with a kernel with essentially the
same goodness parameters. This is made more explicit in Corollary 3.3.11.

In this section we study the relationship between a kernel function being good in the similarity sense
of Definitions 3.3.5 and 3.3.6 and good in the kernel sense. Weshow that a valid kernel function that is
good for one notion, is in fact good also for the other notion.The qualitative notions of being “good”
are therefore equivalent for valid kernels, and so in this sense the more general similarity-based notion
subsumes the familiar kernel-based notion.

However, as we will see, the similarity-based margin of a valid kernel might be lower than the kernel-
based margin, yielding a possible increase in the sample complexity guarantees if a kernel is used as
a similarity measure. We also show that for a valid kernel, the kernel-based margin is never smaller
than the similarity-based margin. We provide a tight bound on this possible deterioration of the margin
when switching to the similarity-based notion given by definitions 3.3.5 and 3.3.6. (Note also that in the
following section 3.4 we provide an even better notion of a good similarity function that provides a better
kernels to similarity translations.)

Specifically, we show that if a valid kernel function is good in the similarity sense, it is also good in
the standard kernel sense, both for the margin violation error rate and for the hinge loss:

Theorem 3.3.6 (A kernel good as a similarity function is alsogood as a kernel) If K is a valid kernel
function, and is(ǫ, γ)-good similarity for some learning problem, then it is also(ǫ, γ)-kernel-good for the
learning problem. IfK is (ǫ, γ)-good similarity in hinge loss, then it is also(ǫ, γ)-kernel-good in hinge
loss.

We also show the converse—If a kernel function is good in the kernel sense, it is also good in the
similarity sense, though with some degradation of the margin:
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Theorem 3.3.7 (A good kernel is also a good similarity function—Margin violations) If K is (ǫ0, γ)-
kernel-good for some learning problem (with deterministiclabels), then it is also(ǫ0 + ǫ1,

1
2 (1− ǫ0)ǫ1γ

2)-
good similarity for the learning problem, for anyǫ1 > 0.

Note that in any useful situationǫ0 < 1
2 , and so the guaranteed margin is at least1

4ǫ1γ
2. A similar

guarantee holds also for the hinge loss:

Theorem 3.3.8 (A good kernel is also a good similarity function—Hinge loss) If K is (ǫ0, γ)-kernel-
good in hinge loss for learning problem (with deterministiclabels), then it is also(ǫ0 + ǫ1, 2ǫ1γ

2)-good
similarity in hinge loss for the learning problem, for anyǫ1 > 0.

These results establish that treating a kernel as a similarity function would still enable learning, al-
though with a somewhat increased sample complexity. As we show, the deterioration of the margin in the
above results, which yields an increase in the sample complexity guarantees, is unavoidable:

Theorem 3.3.9 (Tightness, Margin Violations)For any0 < γ <
√

1
2 and any0 < ǫ1 < 1

2 , there exists

a learning problem and a kernel functionK, which is(0, γ)-kernel-good for the learning problem, but
which is only(ǫ1, 4ǫ1γ

2)-good similarity. That is, it is not(ǫ1, γ
′)-good similarity for anyγ′ > 4ǫ1γ

2.

Theorem 3.3.10 (Tightness, Hinge Loss)For any 0 < γ <
√

1
2 and any0 < ǫ1 < 1

2 , there exists

a learning problem and a kernel functionK, which is(0, γ)-kernel-good in hinge loss for the learning
problem, but which is only(ǫ1, 32ǫ1γ

2)-good similarity in hinge loss.

To prove Theorem 3.3.6 we will show, for any weight function,an explicit low-norm linear predictor
β (in the implied Hilbert space), with equivalent behavior. To prove Theorems 3.3.7 and 3.3.8, we will
consider a kernel function that is(ǫ0, γ)-kernel-good and show that it is also good as a similarity function.
We will first treat goodness in hinge-loss and prove Theorem 3.3.8, which can be viewed as a more general
result. This will be done using the representation of the optimal SVM solution in terms of the dual optimal
solution. We then prove Theorem 3.3.7 in terms of the margin violation error rate, by using the hinge-loss
as a bound on the error rate. To prove Theorems 3.3.9 and 3.3.10, we present an explicit learning problem
and kernel.

Transforming a Good Similarity Function to a Good Kernel

Before proving the above Theorems, we briefly return to the mapping of Theorem 3.3.3 and explicitly
present it as a mapping between a good similarity function and a good kernel:

Corollary 3.3.11 (A good similarity function can be transformed to a good kernel) If K is an (ǫ, γ)-
good similarity function for some learning problemP , then for any0 < δ < 1, given a sample ofS size
(8/γ2) log(1/δ) drawn fromP , we can construct, with probability at least1 − δ over the draw ofS, a
valid kernelK̃S that is(ǫ + δ, γ/2)-kernel good forP .

If K is a (ǫ, γ)-good similarity function in hinge-loss for some learning problem P , then for any
ǫ1 > 0 and0 < δ < γǫ1/4, given a sample ofS size16 log(1/δ)/(ǫ1γ)2 drawn fromP , we can construct,
with probability at least1− δ over the draw ofS, a valid kernelK̃S that is(ǫ + ǫ1, γ)-kernel good forP .

Proof: Let K̃S(x, x′) =
〈
φS(x), φS(x′)

〉
whereφS is the transformation of Theorems 3.3.3 and 3.3.4.

From this statement, it is clear that kernel-based learningguarantees apply also to learning with a good
similarity function, essentially with the same parameters.
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It is important to understand that the result of Corollary 3.3.11 is of a very different nature than the
results of Theorems 3.3.6– 3.3.10. The claim here is not thata good similarity functionis a good kernel
— it can’t be if it is not positive semi-definite. But, given a good similarity function we can create a good
kernel. This transformation isdistribution-dependent, and can be calculated using a sampleS.

Proof of Theorem 3.3.6

Consider a similarity functionK that is a valid kernel, i.e.K(x, x′) = 〈φ(x), φ(x′)〉 for some mapping
φ of x to a Hilbert spaceH. For any input distribution and any valid weightingw(x) of the inputs (i.e.
0 ≤ w(x) ≤ 1), we will construct a linear predictorβw ∈ H, with ||βw|| ≤ 1, such that similarity-based
predictions usingw are the same as the linear predictions made withβw

Define the following linear predictorβw ∈ H:

βw = Ex′
[
y(x′)w(x′)φ(x′)

]
.

The predictorβw has norm at most:

||βw|| = ||Ex′
[
y(x′)w(x′)φ(x′)

]
|| ≤ max

x′
||y(x′)w(x′)φ(x′)||

≤ max ||φ(x′)|| = max
√

K(x′, x′) ≤ 1

where the second inequality follows from|w(x′)|, |y(x′)| ≤ 1.
The predictions made byβw are:

〈βw, φ(x)〉 =
〈
Ex′
[
y(x′)w(x′)φ(x′)

]
, φ(x)

〉

= Ex′
[
y(x′)w(x′)

〈
φ(x′), φ(x)

〉]
= Ex′

[
y(x′)w(x′)K(x, x′)

]

That is, usingβw is the same as using similarity-based prediction withw. In particular, if the margin
violation rate, as well as the hinge loss, with respect to anymarginγ, is the same for predictions made
using eitherw or βw. This is enough to establish Theorem 3.3.6: IfK is (ǫ, γ)-good (perhaps for to the
hinge-loss), there exists some valid weightingw the yields margin violation error rate (resp. hinge loss)
at mostǫ with respect to marginγ, and soβw yields the same margin violation (resp. hinge loss) with
respect to the same margin, establishingK is (ǫ, γ)-kernel-good (resp. for the hinge loss).

Proof of Theorem 3.3.8: Guarantee on the Hinge Loss

Recall that we are considering only learning problems wherethe labely is a deterministic function ofx.
For simplicity of presentation, we first consider finite discrete distributions, where:

Pr( xi, yi ) = pi (3.14)

for i = 1 . . . n, with
∑n

i=1 pi = 1 andxi 6= xj for i 6= j.
Let K be any kernel function that is(ǫ0, γ)-kernel good in hinge loss.Letφ be the implied feature

mapping and denoteφi = φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameterC:

minimize
1

2
||β||2 + C

n∑

i=1

pi[1− yi〈β, φi〉]+ (3.15)
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The dual of this problem, with dual variablesαi, is:

maximize
∑

i

αi −
1

2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(3.16)

There is no duality gap, and furthermore the primal optimumβ∗ can be expressed in terms of the dual
optimumα∗: β∗ =

∑
i α

∗
i yiφi.

SinceK is (ǫ0, γ)-kernel-good in hinge-loss, there exists a predictor||β0|| = 1 with average-hinge
lossǫ0 relative to marginγ. The primal optimumβ∗ of (3.15), being the optimum solution, then satisfies:

1

2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+ ≤
1

2
||1
γ

β0||2 + C
∑

i

pi[1− yi

〈
1

γ
β0, φi

〉
]+

=
1

2γ2
+ CE

[
[1− y

〈
1

γ
β0, φ(x)

〉
]+

]
=

1

2γ2
+ Cǫ0 (3.17)

Since both terms on the left hand side are non-negative, eachof them is bounded by the right hand side,
and in particular:

C
∑

i

pi[1− yi〈β∗, φi〉]+ ≤
1

2γ2
+ Cǫ0 (3.18)

Dividing by C we get a bound on the average hinge-loss of the predictorβ∗, relative to a margin of one:

E[[1− y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0 (3.19)

We now use the fact thatβ∗ can be written asβ∗ =
∑

i α∗
i yiφi with 0 ≤ α∗

i ≤ Cpi. Using the weights

wi = w(xi) = α∗
i /(Cpi) ≤ 1 (3.20)

we have for everyx, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

∑

i

piw(xi)yiK(x, xi) (3.21)

= y
∑

i

piα
∗
i yiK(x, xi)/(Cpi)

= y
∑

i

α∗
i yi〈φi, φ(x)〉/C = y〈β∗, φ(x)〉/C

Multiplying by C and using (3.19):

Ex,y

[
[ 1− CyEx′,y′

[
w(x′)y′K(x, x′)

]
]+
]

= Ex,y[ [ 1− y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ǫ0 (3.22)

This holds for anyC, and describes the average hinge-loss relative to margin1/C. To get an average
hinge-loss ofǫ0 + ǫ1, we setC = 1/(2ǫ1γ

2) and get:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/(2ǫ1γ

2) ]+
]
≤ ǫ0 + ǫ1 (3.23)

This establishes thatK is (ǫ0 + ǫ1, 2ǫ1γ
2)-good similarity in hinge-loss.
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Non-discrete distributions

The same arguments apply also in the general (not necessarily discrete) case, except that this time, instead
of a fairly standard (weighted) SVM problem, we must deal with a variational optimization problem,
where the optimization variable is a random variable (a function from the sample space to the reals). We
will present the dualization in detail.

We consider the primal objective

minimize
1

2
||β||2 + CEy,φ[[1− y〈β, φ〉]+] (3.24)

where the expectation is w.r.t. the distributionP , with φ = φ(x) here and throughout the rest of this
section. We will rewrite this objective using explicit slack, in the form of a random variableξ, which will
be a variational optimization variable:

minimize
1

2
||β||2 + CE[ξ]

subject to Pr( 1− y〈β, φ〉 − ξ ≤ 0 ) = 1

Pr( ξ ≥ 0 ) = 1

(3.25)

In the rest of this section all our constraints will implicitly be required to hold with probability one. We
will now introduce the dual variational optimization variable α, also a random variable over the same
sample space, and write the problem as a saddle problem:

minβ,ξ maxα
1

2
||β||2 + CE[ξ] + E[α(1 − y〈β, φ〉 − ξ)]

subject to ξ ≥ 0 α ≥ 0
(3.26)

Note that this choice of Lagrangian is a bit different than the more standard Lagrangian leading to (3.16).
Convexity and the existence of a feasible point in the dual interior allows us to change the order of max-
imization and minimization without changing the value of the problem, even in the infinite case [136].
Rearranging terms we obtaining the equivalent problem:

maxα minβ,ξ
1

2
||β||2 − 〈E[αyφ], β〉 + E[ξ(C − α)] + E[α]

subject to ξ ≥ 0, α ≥ 0
(3.27)

Similarly to the finite case, we see that the minimum of the minimization problem is obtained when
β = E[αyφ] and that it is finite whenα ≤ C almost surely, yielding the dual:

maximizeE[α]− 1

2
E
[
αyα′yK(x, x′)

]

subject to 0 ≤ α ≤ C
(3.28)

where(x, y, α) and(x′, y′, α′) are two independent draws from the same distribution. The primal optimum
can be expressed asβ∗ = E[α∗yφ], whereα∗ is the dual optimum. We can now apply the same arguments
as in (3.17),(3.18) to get (3.19). Using the weight mapping

w(x) = E[α∗|x] /C ≤ 1 (3.29)

we have for everyx, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

〈
Ex′,y′,α′

[
α′y′x′], x

〉
/C = y〈β∗, φ(x)〉/C. (3.30)

From here we can already get (3.22) and settingC = 1/(2ǫ1γ
2) we get (3.23), which establishes Theorem

3.3.8 for any learning problem (with deterministic labels).
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Proof of Theorem 3.3.7: Guarantee on Margin Violations

We will now turn to guarantees on similarity-goodness with respect to the margin violation error-rate.
We base these on the results for goodness in hinge loss, usingthe hinge loss as a bound on the margin
violation error-rate. In particular, a violation of marginγ/2 implies a hinge-loss at marginγ of at least12 .
Therefore, twice the average hinge-loss at marginγ is an upper bound on the margin violation error rate
at marginγ/2.

The kernel-separable case, i.e.ǫ0 = 0, is simpler, and we consider it first. Having no margin violations
implies zero hinge loss. And so if a kernelK is (0, γ)-kernel-good, it is also(0, γ)-kernel-good in hinge
loss, and by Theorem 3.3.8 it is(ǫ1/2, 2(ǫ1/2)γ

2)-good similarity in hinge loss. Now, for anyǫ1 > 0, by
bounding the margin12ǫ1γ

2 error-rate by theǫ1γ
2 average hinge loss,K is (ǫ1,

1
2ǫ1γ

2)-good similarity,
establishing Theorem 3.3.7 for the caseǫ0 = 0.

We now return to the non-separable case, and consider a kernel K that is(ǫ0, γ)-kernel-good, with
some non-zero error-rateǫ0. Since we cannot bound the hinge loss in terms of the margin-violations, we
will instead consider a modified distribution where the margin-violations are removed.

Let β∗ be the linear classifier achievingǫ0 margin violation error-rate with respect to marginγ, i.e.
such thatPr( y〈β∗, x〉 ≥ γ ) > 1− ǫ0. We will consider a distribution which is conditioned ony〈β∗, x〉 ≥
γ. We denote this event asOK(x) (recall thaty is a deterministic function ofx). The kernelK is obviously
(0, γ)-kernel-good, and so by the arguments above also(ǫ1,

1
2ǫ1γ

2)-good similarity, on the conditional
distribution. Letw be the weight mapping achieving

Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)|OK(x′)

]
< γ1|OK(x)

)
≤ ǫ1, (3.31)

whereγ1 = 1
2ǫ1γ

2, and setw(x) = 0 whenOK(x) does not hold. We have:

Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)

]
< (1− ǫ0)γ1

)

≤ Pr( not OK(x) ) + Pr( OK(x) )Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)

]
< (1− ǫ0)γ1 | OK(x)

)

= ǫ0 + (1−ǫ0)Pr
x,y

(
y(1−ǫ0)Ex′,y′

[
w(x′)y′K(x, x′)|OK(x)

]
< (1−ǫ0)γ1|OK(x)

)

= ǫ0 + (1− ǫ0)Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)|OK(x)

]
< γ1|OK(x)

)

≤ ǫ0 + (1− ǫ0)ǫ1 ≤ ǫ0 + ǫ1 (3.32)

establishing thatK is (ǫ0 + ǫ1, γ1)-good similarity for the original (unconditioned) distribution, thus
yielding Theorem 3.3.7.

Tightness

We now turn to proving of Theorems 3.3.9 and 3.3.10. This is done by presenting a specific distribution
P and kernel in which the guarantees hold tightly.

Consider the standard Euclidean inner-product and a distribution on four labeled points inR3, given
by:

x1 = (γ, γ,
√

1− 2γ2), y1 = 1, p1 =
1

2
− ǫ

x2 = (γ,−γ,
√

1− 2γ2), y2 = 1, p2 = ǫ

x3 = (−γ, γ,
√

1− 2γ2), y3 = −1, p3 = ǫ

x4 = (−γ,−γ,
√

1− 2γ2), y4 = −1, p4 =
1

2
− ǫ
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for some (small)0 < γ <
√

1
2 and (small) probability0 < ǫ < 1

2 . The four points are all on the unit

sphere (i.e.||xi|| = 1 and soK(xi, xj) = 〈xi, xj〉 ≤ 1), and are clearly separated byβ = (1, 0, 0) with a
margin ofγ. The standard inner-product kernel is therefore(0, γ)-kernel-good on this distribution.

Proof of Theorem 3.3.9: Tightness for Margin-Violations

We will show that when this kernel (the standard inner product kernel in R3) is used as a similarity
function, the best margin that can be obtained on all four points, i.e. on at least1− ǫ probability mass of
examples, is8ǫγ2.

Consider the classification margin on pointx2 with weightsw (denotewi = w(xi)):

E[w(x)yK(x2, x)]

= (
1

2
− ǫ)w1(γ

2 − γ2 + (1− 2γ2)) + ǫw2(2γ
2 + (1− 2γ2))

−ǫw3(−2γ2 + (1− 2γ2))− (
1

2
− ǫ)w4(−γ2 + γ2 + (1− 2γ2))

=

(
(
1

2
− ǫ)(w1 − w4) + ǫ(w2 − w3)

)
(1− 2γ2) + 2ǫ(w2 + w3)γ

2 (3.33)

If the first term is positive, we can consider the symmetric calculation

−E[w(x)yK(x3, x)] = −
(

(
1

2
− ǫ)(w1 − w4) + ǫ(w2 − w3)

)
(1− 2γ2) + 2ǫ(w2 + w3)γ

2

in which the first term is negated. One of the above margins must therefore be at most

2ǫ(w2 + w3)γ
2 ≤ 4ǫγ2 (3.34)

This establishes Theorem 3.3.9.

Proof of Theorem 3.3.10: Tightness for the Hinge Loss

In the above example, suppose we would like to get an average hinge-loss relative to marginγ1 of at most
ǫ1:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/γ1 ]+

]
≤ ǫ1 (3.35)

Following the arguments above, equation (3.34) can be used to bound the hinge-loss on at least one of the
pointsx2 or x3, which, multiplied by the probabilityǫ of the point, is a bound on the average hinge loss:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/γ1 ]+

]
≥ ǫ(1− 4ǫγ2/γ1) (3.36)

and so to get an an average hinge-loss of at mostǫ1 we must have:

γ1 ≤
4ǫγ2

1− ǫ1/ǫ
(3.37)

For any target hinge-lossǫ1, consider a distribution withǫ = 2ǫ1, in which case we get that the maximum
margin attaining average hinge-lossǫ1 is γ1 = 16ǫ1γ

2, even though we can get a hinge loss of zero at
marginγ using a kernel. This establishes Theorem 3.3.10.
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Note: One might object that the example used in Theorems 3.3.9 and 3.3.10 is a bit artificial, sinceK has
marginO(γ2) in the similarity sense just because1 − 4γ2 ≤ K(xi, xj) ≤ 1. NormalizingK to [−1, 1]
we would obtain a similarity function that has marginO(1). However, this “problem” can be simply fixed
by adding the symmetric points on the lower semi-sphere:

x5 = (γ, γ,−
√

1− 2γ2), y5 = 1, p5 =
1

4
− ǫ

x6 = (γ,−γ,−
√

1− 2γ2), y6 = 1, p6 = ǫ

x7 = (−γ, γ,−
√

1− 2γ2), y7 = −1, p7 = ǫ

x8 = (−γ,−γ,−
√

1− 2γ2), y8 = −1, p8 =
1

4
− ǫ

and by changingp1 = 1
4 − ǫ andp4 = 1

4 − ǫ. The classification margins onx2 andx3 are now (compare
with (3.33)):

E[w(x)yK(x2, x)] =

(
(
1

4
− ǫ)(w1 − w4 − w5 + w8) + ǫ(w2 − w3 −w6 + w7)

)
(1− 2γ2)

+ 2ǫ(w2 + w3 + w6 + w7)γ
2

−E[w(x)yK(x3, x)] = −
(

(
1

4
− ǫ)(w1 − w4 − w5 + w8) + ǫ(w2 − w3 − w6 + w7)

)
(1− 2γ2)

+ 2ǫ(w2 + w3 + w6 + w7)γ
2

One of the above classification margins must therefore be at most2ǫ(w2 + w3 + w6 + w7)γ
2 ≤ 8ǫγ2.

And so, even though the similarity is “normalized”, and is(0, γ)-kernel-good, it is only(ǫ, 8ǫγ2)-good as
a similarity function. Proceeding as in the proof of Theorem3.3.10 establishes the modified example is
also only(ǫ, 64ǫγ2)-good in hinge loss.

Probabilistic Labels

So far, we have considered only learning problems where the labely is a deterministic function ofx. Here,
we discuss the necessary modifications to extend our theory also to noisy learning problems, where the
same pointx might be associated with both positive and negative labels with positive probabilities.

Although the learning guarantees are valid also for noisy learning problems, a kernel that is kernel-
good for a noisy learning problem might not be good as a similarity function for this learning problem. To
amend this, the definition of a good similarity function mustbe corrected, allowing the weights to depend
not only on the pointx but also on the labely:
Definition 3.3.8 (Main, Margin Violations, Corrected for Noisy Problems) A similarity functionK is
an (ǫ, γ)-good similarity function for a learning problemP if thereexistsa bounded weighting function
w over X × {−1,+1} (w(x′, y′) ∈ [0, 1] for all x′ ∈ X, y′ ∈ {−1,+1}) such that at least a1 − ǫ
probability mass of examplesx, y satisfy:

Ex′,y′∼P [yy′w(x′, y′)K(x, x′)] ≥ γ. (3.38)

It is easy to verify that Theorem 3.3.3 can be extended also tothis corrected definition. The same mapping
φS can be used, withβi = ỹiw(x̃i, ỹi), whereỹi is the training label of examplei. Definition 3.3.6 and
Theorem 3.3.4 can be extended in a similar way.

With these modified definitions, Theorems 3.3.7 and 3.3.8 extend also to noisy learning problems. In
the proof of Theorem 3.3.8, two of the pointsxi, xj might be identical, but have different labelsyi =
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1, yj = −1 associated with them. This might lead to two different weights wi, wj for the same point. But
sincew is now allowed to depend also on the label, this does not pose aproblem. In the non-discrete case,
this corresponds to defining the weight as:

w(x, y) = E[α∗|x, y] /C. (3.39)

3.4 Learning with More General Similarity Functions: A Bett er Definition

We develop here a new notion of a good similarity function that broadens the Balcan - Blum’06 notion [26]
presented in Section 3.3 while still guaranteeing learnability. As with the Balcan - Blum’06 notion, this
new definition talks in terms of natural similarity-based properties and does not require positive semi-
definiteness or reference to implicit spaces. However, thisnew notion improves on the previous Balcan -
Blum’06 definition in two important respects.

First, this new notion provides a better kernel-to-similarity translation. Any large-margin kernel func-
tion is a good similarity function under the new definition, and while we still incur some loss in the
parameters, this loss is much smaller than under the prior definition, especially in terms of the final la-
beled sample-complexity bounds. In particular, when usinga valid kernel function as a similarity function,
a substantial portion of the previous sample-complexity bound can be transferred over to merely a need
for unlabeled examples.

Second, we show that the new definition allows for good similarity functions to exist for concept
classes for which there isno good kernel. In particular, for any concept classC and sufficiently uncon-
centrated distributionD, we show there exists a similarity function under our definition with parameters
yielding a labeled sample complexity bound ofO(1

ǫ log |C|) to achieve errorǫ, matching the ideal sample
complexity for a generic hypothesis class. In fact, we also extend this result to classes of finite VC-
dimension rather than finite cardinality. In contrast, we show there exist classesC such that under the
uniform distribution over the instance space, there is no kernel with margin8/

√
|C| for all f ∈ C even if

one allows0.5 average hinge-loss. Thus, the margin-based guarantee on sample complexity for learning
such classes with kernels isΩ(|C|). This extends work of [51] and [110] who give hardness results with
comparable margin bounds, but at much lower error rates. [213] provide lower bounds for kernels with
similar error rates, but their results hold only for regression (not hinge loss). Note that given access to
unlabeled data, any similarity function under the Balcan - Blum’06 definition [26] can be converted to
a kernel function with approximately the same parameters. Thus, our lower bound for kernel functions
applies to that definition as well. These results establish agap in the representational power of similarity
functions under our new definition relative to the representational power of either kernels or similarity
functions under the old definition.

Both this new definition and the Balcan - Blum’06 definition are based on the idea of a similarity
function being good for a learning problem if there exists a non-negligible subsetR of “representative
points” such that most examplesx are on average more similar to the representative points of their own
label than to the representative points of the other label. (Formally, the “representativeness” of an example
may be given by a weight between 0 and 1 and viewed as probabilistic or fractional.) However, the
previous Balcan - Blum’06 definition combined the two quantities of interest—the probability mass of
representative points and the gap in average similarity to representative points of each label—into a single
margin parameter. The new notion keeps these quantities distinct, which turns out to make a substantial
difference both in terms of broadness of applicability and in terms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled sample complexities: while the total num-
ber of examples needed depends polynomially on the two quantities of interest, the number of labeled
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examples will turn out to depend only logarithmically on theprobability mass of the representative set
and therefore may be much smaller under the new definition. This is especially beneficial in situations as
described in Chapter 2 in which unlabeled data is plentiful but labeled data is scarce, or the distribution
is known and so unlabeled data is free. We discuss in detail the relation to the model in Chapter 2 in
Section 3.5.

Another way to view the distinction between the two notions of similarity is that we now require
good predictions using a weight function with expectation bounded by1, rather than supremum bounded
by 1: compare the old Definition 3.3.5 and the variant of the new definition given as Definition 3.4.4.
(We do in fact still have a bound on the supremum which is much larger, but this bound only affects the
labeled sampled complexity logarithmically.) In Theorem 3.4.13 we make the connection between the
two versions of the new definition explicit.

Conditioning on a subset of representative points, or equivalently bounding the expectation of the
weight function, allows us to base our learnability resultson L1-regularized linear learning. The actual
learning rule we get, given in Equation (3.49), is very similar, and even identical, to learning rules sug-
gested by various authors and commonly used in practice as analternative to Support Vector Machines
[55, 128, 187, 196, 202]. Here we give a firm theoretical basisto this learning rule, with explicit learning
guarantees, and relate it to simple and intuitive properties of the similarity function or kernel used (see the
discussion at the end of Section 3.4.2).

3.4.1 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity functions generalizing the main definitions
in Section 3.3 (Definitions 3.3.5 and 3.3.6) that we prove have a number of important advantages. For
simplicity in presentation, for most of this section we willconsider only learning problems where the
labely is a deterministic function ofx. For such learning problems, we can usey(x) to denote the label
of point x.

In the Definitions 3.3.5 and 3.3.6 in section 3.3, a weightw(x′) ∈ [0, 1] was used in defining the
quantity of interest, namelyE(x′,y′)∼P [y′w(x′)K(x, x′)]. Here, it will instead be more convenient to
think of w(x) as the expected value of an indicator random variableR(x) ∈ {0, 1} where we will view
the (probabilistic) set{x : R(x) = 1} as a set of “representative points”. Formally, for eachx ∈ X, R(x)
is a discrete random variable over{0, 1} and we will then be sampling from the joint distribution of the
form

Pr(x, y, r) = Pr(x, y) Pr(R(x) = r) (3.40)

in the discrete case or
p(x, y, r) = p(x, y) Pr(R(x) = r) (3.41)

in the continuous case, wherep is a probability density function ofP .
Our new definition is now as follows.

Definition 3.4.1 (Main, Margin Violations) A similarity functionK is an(ǫ, γ, τ)-good similarity func-
tion for a learning problemP if thereexistsan extended distributionP (x, y, r) defined as in 3.40 or 3.41
such that the following conditions hold:

1. A1− ǫ probability mass of examples(x, y) ∼ P satisfy

E(x′,y′,r′)∼P [yy′K(x, x′) | r′ = 1] ≥ γ (3.42)

2. Pr(x′,y′,r′) [r′ = 1] ≥ τ .
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If the representative setR is 50/50 positive and negative (i.e.,Pr(x′,y′,r′)[y
′ = 1|r′ = 1] = 1/2), we

can interpret the condition as stating that most examplesx are on average2γ more similar to random
representative examplesx′ of their own label than to random representative examplesx′ of the other label.
The second condition is that at least aτ fraction of the points should be representative.

We also consider a hinge-loss version of the definition:

Definition 3.4.2 (Main, Hinge Loss) A similarity functionK is an(ǫ, γ, τ)-good similarity function in
hinge lossfor a learning problemP if thereexistsan extended distributionP (x, y, r) defined as in 3.40
or 3.41 such that the following conditions hold:

1. We have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ǫ, (3.43)

whereg(x) = E(x′,y′,r′)[y
′K(x, x′) | r′ = 1].

2. Pr(x′,y′,r′) [r′ = 1] ≥ τ .

It is not hard to see that an(ǫ, γ)-good similarity function under Definitions 3.3.5 and 3.3.6is also
an(ǫ, γ, γ)-good similarity function under Definitions 3.4.1 and 3.4.2, respectively. In the reverse direc-
tion, an(ǫ, γ, τ)-good similarity function under Definitions 3.4.1 and 3.4.2is an(ǫ, γτ)-good similarity
function under Definitions 3.3.5 and 3.3.6 (respectively).Specifically:

Theorem 3.4.1 If K is an (ǫ, γ)-good similarity function under Definitions 3.3.5 and 3.3.6, thenK is
also an(ǫ, γ, γ)-good similarity function under Definitions 3.4.1 and 3.4.2, respectively.

Proof: If we setPr(x′,y′,r′)(r
′ = 1 | x′) = w(x′), we get that in order for any pointx to fulfill equation

(3.6), we must have

Pr(x′,y′,r′)(r
′ = 1) = Ex′ [w(x′)] ≥ E(x′,y′)[yy′w(x′)K(x, x′)] ≥ γ.

Furthermore, for anyx, y for which (3.6) is satisfied, we have

E(x′,y′,r′)[yy′K(x, x′)|r′ = 1] = E(x′,y′)[yy′K(x, x′)w(x′)]/Pr(x′,y′,r′) (r′ = 1)

≥ E(x′,y′)[yy′K(x, x′)w(x′)] ≥ γ.

Theorem 3.4.2 If K is an(ǫ, γ, τ)-good similarity function under Definitions 3.4.1 and 3.4.2, thenK is
an (ǫ, γτ)-good similarity function under Definitions 3.3.5 and 3.3.6(respectively).

Proof: Settingw(x′) = Pr(x′,y′,r′)(r
′ = 1 | x′) we have for anyx, y satisfying (3.42) that

E(x′,y′)[yy′K(x, x′)w(x′)] = E(x′,y′,r′)[yy′K(x, x′)r′ = 1]

= E(x′,y′,r′s)[yy′K(x, x′)|r′ = 1]Pr(x′,y′,r′)(r
′ = 1) ≥ γτ.

A similar calculation establishes the correspondence for the hinge loss.

As we will see, under both old and new definitions, the number of labeled samples required for learn-
ing grows as1/γ2. The key distinction between them is that we introduce a new parameter,τ , that
primarily affects the number ofunlabeledexamples required. This decoupling of the number of labeled
and unlabeled examples enables us to handle a wider variety of situations with an improved labeled sam-
ple complexity. In particular, in translating from a kernelto a similarity function, we will find that much
of the loss can now be placed into theτ parameter.
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In the following we prove three types of results about this new notion of similarity. The first is
that similarity functions satisfying these conditions aresufficient for learning (in polynomial time in the
case of Definition 3.4.2), with a sample size ofO( 1

γ2 ln( 1
γτ )) labeled examples andO( 1

τγ2 ) unlabeled
examples. This is particularly useful in settings where unlabeled data is plentiful and cheap—such settings
are increasingly common in learning applications [83, 174]—or for distribution-specific learning where
unlabeled data may be viewed as free.

The second main theorem we prove is thatany classC, over a sufficiently unconcentrated distribu-
tion on examples, has a(0, 1, 1/(2|C|))-good similarity function (under either definition 3.4.1 or3.4.2),
whereas there exist classesC that have no(0.5, 8/

√
|C|)-good kernel functions in hinge loss. This pro-

vides a clear separation between the similarity and kernel notions in terms of the parameters controlling
labeled sample complexity. The final main theorem we prove isthat any large-margin kernel function
also satisfies our similarity definitions, with substantially less loss in the parameters controlling labeled
sample complexity compared to the Balcan - Blum’06 definitions. For example, ifK is a (0, γ)-good
kernel, then it is an(ǫ′, ǫ′γ2)-good similarity function under Definitions 3.3.5 and 3.3.6, and this is tight
[199], resulting in a sample complexity of̃O

(
1/(γ4ǫ3)

)
to achieve errorǫ. However, we can showK is

an(ǫ′, γ2, ǫ′)-good similarity function under the new definition,6 resulting in a sample complexity of only
Õ
(
1/(γ4ǫ)

)
.

3.4.2 Good Similarity Functions Allow Learning

The basic approach proposed for learning using a similarityfunction is similar to that in Section 3.3 and in
[26]. First, a feature space is constructed, consisting of similarities to randomly chosen landmarks. Then,
a linear predictor is sought in this feature space. However,for the previous Balcan - Blum’06 definitions
(Definitions 3.3.5 and 3.3.6 in Section 3.3), we used guarantees for largeL2-margin in this feature space,
whereas under the new definitions we will be using guaranteesabout largeL1-margin in the feature space.7

After recalling the notion of anL1-margin and its associated learning guarantee, we first establish
that, for an(ǫ, γ, τ)-good similarity function, the feature map constructed using Õ

(
1/(τγ2)

)
landmarks

indeed has (with high probability) a largeL1-margin separator. Using this result, we then obtain a learning
guarantee by following the strategy outlined above.

In speaking ofL1-marginγ, we refer to separation with a marginγ by a unit-L1-norm linear separator,
in a unit-L∞-bounded feature space. Formally, letφ : x 7→ φ(x), φ(x) ∈ Rd, with ||φ(x)||∞ ≤ 1 be a
mapping of the data to ad-dimensional feature space. We say that a linear predictorα ∈ Rd, achieves
error ǫ relative toL1-marginγ if Pr(x,y(x))(y(x)〈α, φ(x)〉 ≥ γ) ≥ 1 − ǫ (this is the standard margin
constraint) and||α||1 = 1.

Given ad-dimensional feature map under which there exists some (unknown) zero-error linear sepa-
rator withL1-marginγ, we can with high probability1− δ efficiently learn a predictor with error at most

ǫacc usingO
(

log(d/δ)
ǫaccγ2

)
examples. This can be done using the Winnow algorithm with a standard online-

to-batch conversion [166]. If we can only guarantee the existence of a separator with errorǫ > 0 relative
to L1-marginγ, then a predictor with errorǫ + ǫacc can be theoretically learned (with high probability
1 − δ) from a sample ofÕ

(
(log(d/δ))/(γ2ǫ2

acc)
)

examples by minimizing the number ofL1-marginγ
violations on the sample [216].

We are now ready to state the main result enabling learning using good similarity functions:

6Formally, the translation produces an(ǫ′, γ2/c, ǫ′c)-good similarity function for somec ≤ 1. However, smaller values ofc
only improve the bounds.

7 Note that in fact even for the previous Balcan - Blum’06 definitions we could have used guarantees for largeL1-margin
in this feature space; however for the new definitions we cannot necessarily use guarantees about largeL2-margin in the feature
space.
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Theorem 3.4.3 Let K be an (ǫ, γ, τ)-good similarity function for a learning problemP . Let S =
{x′

1, x
′
2, . . . , x

′
d} be a (potentially unlabeled) sample of

d =
2

τ

(
log(2/δ) + 8

log(2/δ)

γ2

)

landmarks drawn fromP . Consider the mappingφS : X → Rd defined as follows:φS
i(x) = K(x, x′

i),
i ∈ {1, . . . , d}. Then, with probability at least1− δ over the random sampleS, the induced distribution
φS(P ) in Rd has a separator of error at mostǫ + δ relative toL1 margin at leastγ/2.

Proof: First, note that since|K(x, x)| ≤ 1 for all x, we have||φS(x)||∞ ≤ 1.
For each landmarkx′

i, let r′i be a draw from the distribution given byR(x′
i). Consider the linear

separatorα ∈ Rd, given byαi = y(x′
i)r

′
i/d1 whered1 =

∑
i r

′
i is the number of landmarks with

R(x̃) = 1. This normalization ensures||α||1 = 1.
We have, for anyx, y(x):

y(x)
〈
α, φS(x)

〉
=

∑d
i=1 y(x)y(x′

i)r
′
iK(x, x′

i)

d1
(3.44)

This is an empirical average ofd1 terms

−1 ≤ y(x)y(x′)K(x, x′) ≤ 1

for which R(x′) = 1. For anyx we can apply Hoeffding’s inequality, and obtain that with probability at
least1− δ2/2 over the choice ofS, we have:

y(x)
〈
α, φS(x)

〉
≥ Ex′ [K(x, x′)y(x′)y(x)|R(x′)]−

√
2 log( 2

δ2 )

d1
(3.45)

Since the above holds for anyx with probability at least1− δ2/2 overS, it also holds with probability
at least1− δ2/2 over the choice ofx andS. We can write this as:

ES∼P d

[
Pr

x∼P
( violation)

]
≤ δ2/2 (3.46)

where “violation” refers to violating (3.45). Applying Markov’s inequality we get that with probability at
least1 − δ/2 over the choice ofS, at mostδ fraction of points violate (3.45). Recalling Definition 3.4.1,
at most an additionalǫ fraction of the points violate (3.42). But for the remaining1− ǫ− δ fraction of the
points, for which both (3.45) and (3.42) hold, we have:

y(x)
〈
α, φS(x)

〉
≥ γ −

√
2 log( 1

δ2 )

d1
. (3.47)

To bound the second term we need an upper bound ond1, the number of representative landmarks. The
probability of each of thed landmarks being representative is at leastτ and so the number of representative
landmarks follows a Binomial distribution, ensuringd1 ≥ 8 log(1/δ)/γ2 with probability at least1− δ/2.

When this happens, we have

√
2 log( 1

δ2
)

d1
≤ γ/2. We get then, that with probability at least1 − δ, for at

least1− ǫ− δ of the points:
y(x)

〈
α, φS(x)

〉
≥ γ/2. (3.48)

For the realizable(ǫ = 0) case, we obtain:
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Corollary 3.4.4 If K is a (0, γ, τ)-good similarity function then with high probability we canefficiently

find a predictor with error at mostǫacc from an unlabeled sample of sizedu = Õ
(

1
γ2τ

)
and from a labeled

sample of sizedl = Õ
(

log du

γ2ǫacc

)
.

Proof: We have proved in Theorem 3.4.3 that ifK is(0, γ, τ)-good similarity function, then with high
probability there exists a low-error large-margin (at least γ

2 ) separator in the transformed space under
mappingφS . Thus, all we need now to learn well is to draw a new fresh sample S̃, map it into the
transformed space usingφS , and then apply a good algorithm for learning linear separators in the new
space that produces a hypothesis of error at mostǫacc with high probability. In particular, remember that
the vectorα has error at mostδ atL1 marginγ/2 overφS(P ), where the mappingφS produces examples
of L∞ norm at most1. In order to enjoy the better learning guarantees of the separable case, we will set
δu small enough so that no bad points appear in the sample. Specifically, if we draw

du = d(γ, δu, τ) =
2

τ

(
log(2/δu) + 8

log(2/δu)

γ2

)

unlabeled examples then with probability at least1−δu over the random sampleS, the induced distribution
φS(P ) in Rdu has a separator of error at mostδu relative toL1 margin at leastγ/2. So, if we draw
O
(

1
γ2ǫacc

ln (du/δ)
)

new labeled examples then with high probability1 − δfinal these points are linearly

separable at marginγ/2, whereδfinal = c1δu
1

ǫaccγ2 ln (du/δ), wherec1 is a constant.

Settingδu = ǫaccγ
2τδ/(c2 ln (1/(ǫaccγτδ))) (wherec2 is a constant) we get that high probability

1 − δ/2 these points are linearly separable at marginγ/2 in the new feature space. The Corollary now
follows from theL1-margin learning guarantee in the separable case, discussed earlier in the section.

For the most general(ǫ > 0) case, Theorem 3.4.3 implies that by following our two-stageapproach,

first usingdu = Õ
(

1
γ2τ

)
unlabeled examples as landmarks in order to constructφS(·), and then using a

fresh sample of sizedl = Õ
(

1
γ2ǫ2acc

ln du

)
to learn a low-errorL1-marginγ separator inφS(·), we have:

Corollary 3.4.5 If K is a (ǫ, γ, τ)-good similarity function then by minimizingL1 margin violations we

can find a predictor with error at mostǫ + ǫacc from an unlabeled sample of sizedu = Õ
(

1
γ2τ

)
and from

a labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)
.

The procedure described above, although well defined, involves a difficult optimization problem: min-
imizing the number ofL1-margin violations. In order to obtain a computationally tractable procedure, we
consider the hinge-loss instead of the margin error. In a feature space with||φ(x)||∞ ≤ 1 as above,
we say that a unit-L1-norm predictorα, ||α||1 = 1, has expected hinge-lossE [[1− y(x)〈α, φ(x)〉/γ]+]
relative toL1-marginγ. Now, if we know there is some (unknown) predictor with hinge-loss ǫ relative
L1-marginγ, than a predictor with errorǫ + ǫacc can be learned (with high probability) from a sample of
Õ
(
log d/(γ2ǫ2

acc)
)

examples by minimizing the empirical average hinge-loss relative toL1-marginγ on
the sample [216].

Before proceeding to discussing the optimization problem of minimizing the average hinge-loss rela-
tive to a fixedL1-margin, let us establish the analogue of Theorem 3.4.3 for the hinge-loss:

Theorem 3.4.6 Assume thatK is an(ǫ, γ, τ)-good similarity function in hinge-loss for a learning prob-
lem P . For any ǫ1 > 0 and 0 < λ < γǫ1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of sized =
2
τ

(
log(2/δ) + 16 log(2/δ)/(ǫ1γ)2

)
drawn fromP . With probability at least1−δ over the random sample

S, the induced distributionφS(P ) in Rd, for φS as defined in Theorem 3.4.3, has a separator achieving
hinge-loss at mostǫ + ǫ1 at marginγ.
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Proof: We use the same construction as in Theorem 3.4.3.

Corollary 3.4.7 K is an (ǫ, γ, τ)-good similarity function in hinge loss then we can efficiently find a

predictor with error at mostǫ + ǫacc from an unlabeled sample of sizedu = Õ
(

1
γ2ǫ2accτ

)
and from a

labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)
.

For the hinge-loss, our two stage procedure boils down to solving the following optimization problem
w.r.t. α:

minimize
dl∑

i=1



1−
du∑

j=1

αjy(xi)K(xi, x̃j)





+

s.t.
du∑

j=1

|αj| ≤ 1/γ

(3.49)

This is a linear program and can thus be solved in polynomial time, establishing the efficiency in Corollary
3.4.7.

We can in fact use results in [116] to extend Corollary 3.4.7 abit and get a better bound as follows:

Corollary 3.4.8 If K is a (ǫacc/8, γ, τ)-good similarity function then with high probability we caneffi-

ciently find a predictor with error at mostǫacc from an unlabeled sample of sizedu = Õ
(

1
γ2τ

)
and from

a labeled sample of sizedl = Õ
(

log du

γ2ǫacc

)
.

An optimization problem similar to (3.49), though usually with the same set of points used both
as landmarks and as training examples, is actually fairly commonly used as a learning rule in practice
[55, 128, 187]. Such a learning rule is typically discussed as an alternative to SVMs. In fact, [202]
suggest the Relevance Vector Machine (RVM) as a Bayesian alternative to SVMs. The MAP estimate
of the RVM is given by an optimization problem similar to (3.49), though with a loss function different
from the hinge loss (the hinge-loss cannot be obtained as a log-likelihood). Similarly, [196] suggests
Norm-Penalized Leveraging Procedures as a boosting-like approach that mimics SVMs. Again, although
the specific loss functions studied by [196] are different from the hinge-loss, the method (with a norm
exponent of 1, as in [196]’s experiments) otherwise corresponds to a coordinate-descent minimization of
(3.49). In both cases, no learning guarantees are provided.

The motivation for using (3.49) as an alternative to SVMs is usually that theL1-regularization on
α leads to sparsity, and hence to “few support vectors” (although [211], who also discuss (3.49), argue
for more direct ways of obtaining such sparsity), and also that the linear program (3.49) might be easier
to solve than the SVM quadratic program. However, we are not aware of a previous discussion on how
learning using (3.49) relates to learning using a SVM, or on learning guarantees using (3.49) in terms of
properties of the similarity functionK. Guarantees solely in terms of the feature space in which we seek
low L1-margin (φS in our notation) are problematic, as this feature space is generated randomly from
data.

In fact, in order to enjoy the SVM guarantees while usingL1 regularization to obtain sparsity, some
authors suggest regularizing both theL1 norm ||α||1 of the coefficient vectorα (as in (3.49)), and the
norm ||β|| of the corresponding predictorβ =

∑
j αjφ(x̃j) in the Hilbert space implied byK, where

K(x, x′) = 〈φ(x), φ(x′)〉, as when using a SVM withK as a kernel [129, 181].
Here, we provide a natural condition on the similarity function K (Definition 3.4.2), that justifies

the learning rule (3.49). Furthermore, we show (in Section 3.4.4) than any similarity function that is
good as a kernel, and can ensure SVM learning, is also good as asimilarity function and can thus also
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ensure learning using the learning rule (3.49) (though possibly with some deterioration of the learning
guarantees). These arguments can be used to justify (3.49) as an alternative to SVMs.

Before concluding this discussion, we would like to mentionthat [119] previously established a rather
different connection between regularizing theL1 norm ||α||1 and regularizing the norm of the corre-
sponding predictorβ in the implied Hilbert space. [119] considered a hard-margin SVR (Support Vector
Regression Machine, i.e. requiring each prediction to be within (y(x)− ǫ, y(x)+ ǫ)), in the noiseless case
where the mappingx 7→ y(x) is in the Hilbert space. In this setting, [119] showed that a hard-margin
SVR is equivalent to minimizing the distancein the implied Hilbert spacebetween the correct mapping
x 7→ y(x) and the predictionsx 7→∑

j αjK(x, x̃j), with anL1 regularization term||α||1. However, this
distance between prediction functions is very different than the objective in (3.49), and again refers back
to the implied feature space which we are trying to avoid.

3.4.3 Separation Results

In this Section, we show an example of a finite concept class for which no kernel yields good learning
guarantees when used as a kernel, but for which there does exist a good similarity function yielding the
optimal sample complexity. That is, we show that some concept classes cannot be reasonably represented
by kernels, but can be reasonably represented by similarityfunctions.

Specifically, we consider a classC of n pairwise uncorrelated functions. This is a finite class of
cardinality|C| = n, and so if the target belongs toC thenO(1

ǫ log n) samples are enough for learning a
predictor with errorǫ.

Indeed, we show here that foranyconcept classC, so long as the distributionD is sufficiently uncon-
centrated, there exists a similarity function that is(0, 1, 1

2|C|)-good under our definition for everyf ∈ C.

This yields a (labeled) sample complexityO(1
ǫ log |C|) to achieve errorǫ, matching the ideal sample com-

plexity. In other words, for distribution-specific learning (where unlabeled data may be viewed as free)
and finite classes, there is nointrinsic loss in sample-complexity incurred by choosing to learn viasimilar-
ity functions. In fact, we also extend this result to classesof bounded VC-dimension rather than bounded
cardinality.

In contrast, we show that ifC is a class ofn functions that are pairwise uncorrelated with respect to
distributionD, thenno kernel is(ǫ, γ)-good in hinge-loss for allf ∈ C even forǫ = 0.5 andγ = 8/

√
n.

This extends work of [51, 110] who give hardness results withcomparable margin bounds, but at a much
lower error rate. Thus, this shows thereis an intrinsic loss incurred by using kernels together with margin
bounds, since this results in a sample complexity bound of atleastΩ(|C|), rather than the idealO(log |C|).

We thus demonstrate a gap between the kind of prior knowledgecan be represented with kernels
as opposed to general similarity functions and demonstratethat similarity functions are strictly more
expressive (up to the degradation in parameters discussed earlier).

Definition 3.4.3 We say that a distributionD overX is α-unconcentratedif the probability mass on any
givenx ∈ X is at mostα.

Theorem 3.4.9 For any class finite class of functionsC and for any1/|C|-unconcentrated distribution
D over the instance spaceX, there exists a similarity functionK that is a (0, 1, 1

2|C|)-good similarity
function for allf ∈ C.

Proof: Let C = {f1, . . . , fn}. Now, let us partitionX into n regionsRi of at least1/(2n) probability
mass each, which we can do sinceD is 1/n-unconcentrated. Finally, defineK(x, x′) for x′ in Ri to be
fi(x)fi(x

′). We claim that for this similarity function,Ri is a set of “representative points” establishing
marginγ = 1 for targetfi. Specifically,

E[K(x, x′)fi(x)fi(x
′)|x′ ∈ Ri] = E[fi(x)fi(x

′)fi(x)fi(x
′)] = 1.
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SincePr(Ri) ≥ 1
2n , this implies that under distributionD, K is a(0, 1, 1

2n)-good similarity function for
all fi ∈ C.

Note 1: We can extend this argument to any classC of small VC dimension. In particular, for any
distributionD, the classC has anǫ-coverCǫ of size(1/ǫ)O(d/ǫ), whered is the VC-dimension ofC [53].
By Theorem 3.4.9, we can have a(0, 1, 1/|Cǫ|)-good similarity function for the coverCǫ, which in turn
implies an(ǫ, 1, 1/|Cǫ|)-good similarity function for the original set (even in hinge loss sinceγ = 1).
Plugging in our bound on|Cǫ|, we get an(ǫ, 1, ǫO(d/ǫ))-good similarity function forC. Thus, the labeled
sample complexity we get for learning with similarity functions is onlyO((d/ǫ) log(1/ǫ)), and again there
is no intrinsic loss in sample complexity bounds due to learning with similarity functions.

Note 2: The need for the underlying distribution to be unconcentrated stems from our use of this distri-
bution for both labeled and unlabeled data. We could furtherextend our definition of “good similarity
function” to allow for the unlabeled pointsx′ to come from some other distributionD′ given apriori, such
as the uniform distribution over the instance spaceX. Now, the expectation overx′ and the probability
mass ofR would both be with respect toD′, and the generic learning algorithm would draw pointsx′

i

from D′ rather thanD. In this case, we would only needD′ to be unconcentrated, rather thanD.

We now prove our lower bound for margin-based learning with kernels.

Theorem 3.4.10Let C be a class ofn pairwise uncorrelated functions over distributionD. Then, there
is no kernel that for allf ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5 andγ = 8/

√
n.

Proof: Let C = {f1, . . . , fn}. We begin with the basic fourier setup [164, 169]. Given two functions
f andg, define〈f, g〉 = Ex[f(x)g(x)] to be their correlation with respect to distributionD. (This is their
inner-product if we viewf as a vector whosejth coordinate isf(xj)[D(xj)]

1/2). Because the functions
fi ∈ C are pairwise uncorrelated, we have〈fi, fj〉 = 0 for all i 6= j, and because thefi are boolean
functions we have〈fi, fi〉 = 1 for all i. Thus they form at least part of an orthonormal basis, and forany
hypothesish (i.e. any mappingX → {±1}) we have

∑

fi∈C

〈h, fi〉2 ≤ 1.

So, this implies ∑

fi∈C

|〈h, fi〉| ≤
√

n.

or equivalently
Efi∈C |〈h, fi〉| ≤ 1/

√
n. (3.50)

In other words, for any hypothesish, if we pick the target at random fromC, the expected magnitude
of the correlation betweenh and the target is at most1/

√
n.

We now consider the implications of having a good kernel. Suppose for contradiction that there exists
a kernelK that is(0.5, γ)-good in hinge loss for everyfi ∈ C. What we will show is this implies that
for anyfi ∈ C, the expected value of|〈h, fi〉| for a randomlinear separatorh in theφ-space is greater
thanγ/8. If we can prove this, then we are done because this implies there mustexist an h that has
Efi∈C |〈h, f〉| > γ/8, which contradicts equation (3.50) forγ = 8/

√
n.

So, we just have to prove the statement about random linear separators. Letw∗ denote the vector
in the φ-space that has hinge-loss at most0.5 at marginγ for target functionfi. For any examplex,
defineγx to be the margin ofφ(x) with respect tow∗, and defineαx = sin−1(γx) to be the angular
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margin ofφ(x) with respect tow∗.8 Now, consider choosing a random vectorh in the φ-space, where
we associateh(x) = sign(h · φ(x)). Since we only care about the absolute value|〈h, fi〉|, and since
〈−h, fi〉 = −〈h, fi〉, it suffices to show thatEh[〈h, fi〉 | h · w∗ ≥ 0] > γ/8. We do this as follows.

First, for any examplex, we claim that:

Pr
h

[(h(x) 6= fi(x)|h · w∗ ≥ 0] = 1/2 − αx/π. (3.51)

This is because we look at the2-dimensional plane defined byφ(x) andw∗, and consider the half-circle
of ||h|| = 1 such thath · w∗ ≥ 0, then (3.51) is the portion of the half-circle that labelsφ(x) incorrectly.
Thus, we have:

Eh[err(h)|h · w∗ ≥ 0] = Ex[1/2 − αx/π],

and so, using〈h, fi〉 = 1− 2 err(h), we have:

Eh[〈h, fi〉 | h · w∗ ≥ 0] = 2Ex[αx]/π.

Finally, we just need to relate angular margin and hinge loss: if Lx is the hinge-loss ofφ(x), then a
crude bound onαx is

αx ≥ γ(1− (π/2)Lx).

Since we assumed thatEx[Lx] ≤ 0.5, we have:

Ex[αx] ≥ γ(1− π/4).

Putting this together we get expected magnitude of correlation of a random halfspace is at least2γ(1 −
π/4)/π > γ/8 as desired, proving the theorem.

An example of a classC satisfying the above conditions is the class of parity functions over{0, 1}lg n,
which are pairwise uncorrelated with respect to the uniformdistribution. Note that the uniform distribu-
tion is 1/|C|-unconcentrated, and thus thereis a good similarity function. (In particular, one could use
K(xi, xj) = fj(xi)fj(xj), wherefj is the parity function associated with indicator vectorxj .)

We can extend Theorem 3.4.10 to classes of large StatisticalQuery dimension as well. In particular,
the SQ-dimension of a classC with respect to distributionD is the sized of the largest set of functions
{f1, f2, . . . , fd} ⊆ C such that|〈fi, fj〉| ≤ 1/d3 for all i 6= j [64]. In this case, we just need to adjust
the Fourier analysis part of the argument to handle the fact that the functions may not be completely
uncorrelated.

Theorem 3.4.11Let C be a class of functions of SQ-dimensiond with respect to distributionD. Then,
there is no kernel that for allf ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5 andγ = 16/

√
d.

Proof: Let f1, . . . , fd be d functions inC such that|〈fi, fj〉| ≤ 1/d3 for all i 6= j. We can define
an orthogonal set of functionsf ′

1, f
′
2, . . . , f

′
d as follows: letf ′

1 = f1, f ′
2 = f2 − f1〈f2, f1〉, and in

general letf ′
i be the portion offi orthogonal to the space spanned byf1, . . . , fi−1. (That is,f ′

i = fi −
proj(fi, span(f1, . . . , fi−1)), where “proj” is orthogonal projection.) Since thef ′

i are orthogonal and have
length at most 1, for any boolean functionh we have

∑
i 〈h, f ′

i〉2 ≤ 1 and thereforeEi|〈h, f ′
i〉| ≤ 1/

√
d.

Finally, since〈fi, fj〉 ≤ 1/d3 for all i 6= j, one can show this implies that|fi − f ′
i | ≤ 1/d for all i. So,

Ei|〈h, fi〉| ≤ 1/
√

d + 1/d ≤ 2/
√

d. The rest of the argument in the proof of Theorem 3.4.10 now applies
with γ = 16/

√
d.

8So,αx is a bit larger in magnitude thanγx. This works in our favor when the margin is positive, and we just need to be
careful when the margin in negative.
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For example, the class of size-n decision trees over{0, 1}n hasnΩ(log n) pairwise uncorrelated func-
tions over the uniform distribution (in particular, any parity of log n variables can be written as ann-node
decision tree). So, this means we cannot have a kernel with margin 1/poly(n) for all size-n decision trees
over{0, 1}n. However, wecanhave a similarity function with margin1, though theτ parameter (which
controls running time) will be exponentially small.

3.4.4 Relation Between Good Kernels and Good Similarity Functions

We start by showing that a kernel good as a similarity function is also good as a kernel. Specifically, if
a similarity functionK is indeed a kernel, and it is(ǫ, γ, τ)-good as a similarity function (possibly in
hinge-loss), than it is also(ǫ, γ)-good as a kernel (respectively, in hinge loss). That is, although the notion
of a good similarity function is more widely applicable, forthose similarity functions that are positive
semidefinite, a good similarity function is also a good kernel.

Theorem 3.4.12 If K is a valid kernel function, and is(ǫ, γ, τ)-good similarity for some learning prob-
lem, then it is also(ǫ, γ)-kernel-good for the learning problem. IfK is (ǫ, γ, τ)-good similarity in hinge
loss, then it is also(ǫ, γ)-kernel-good in hinge loss.

Proof: Consider a similarity functionK that is a valid kernel, i.e.K(x, x′) = 〈φ(x), φ(x′)〉 for some
mappingφ of x to a Hilbert spaceH. For any input distribution and any probabilistic set of representative
pointsR of the input we will construct a linear predictorβR ∈ H, with ||βR|| ≤ 1, such that similarity-
based predictions usingR are the same as the linear predictions made withβR.

Define the following linear predictorβR ∈ H:

βR = E
(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]
.

The predictorβR has norm at most:

||βR|| = ||E
(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]
|| ≤ max

x′
||y(x′)φ(x′)||

≤ max ||φ(x′)|| = max
√

K(x′, x′) ≤ 1

where the second inequality follows from|y(x′)| ≤ 1.
The predictions made byβR are:

〈βR, φ(x)〉 =
〈
E(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]
, φ(x)

〉

= E(x′,y′,r′)

[
y′
〈
φ(x′), φ(x)

〉
|r′ = 1

]

= E(x′,y′,r′)

[
y′K(x, x′)|r′ = 1

]

That is, usingβR is the same as using similarity-based prediction withR. In particular, the margin
violation rate, as well as the hinge loss, with respect to anymarginγ, is the same for predictions made
using eitherR or βR. This is enough to establish Theorem 3.4.12: IfK is (ǫ, γ)-good (perhaps for to the
hinge-loss), there exists some validR that yields margin violation error rate (resp. hinge loss) at mostǫ
with respect to marginγ, and soβR yields the same margin violation (resp. hinge loss) with respect to the
same margin, establishingK is (ǫ, γ)-kernel-good (resp. for the hinge loss).

We now show the converse: if a kernel function is good in the kernel sense, it is also good in the
similarity sense, though with some degradation of the margin. This degradation is much smaller than the
one incurred previously by the Balcan - Blum’06 definitions (and the proofs in [26], [199], and [39]).
Specifically, we can show that ifK is a (0, γ)-good kernel, thenK is (ǫ, γ2, ǫ)-good similarity function
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for any ǫ (formally, it is (ǫ, γ2/c, ǫc)-good for somec ≤ 1). The proof is based on the following idea.
Say we have a good kernel in hinge loss. Then we can choose an appropriate regularization parameter
and write a “distributional SVM” such that there exists a solution vector that gets a large fraction of the
distribution correct, and moreover, the fraction of support vectors is large enough. Any support vector
will then be considered a representative point in our similarity view, and the probability that a point is
representative is proportional toαi, whereαi is dual variable associated withxi.

To formally prove the desired result, we introduce an intermediate notion of a good similarity function.

Definition 3.4.4 (Intermediate, Margin Violations) A similarity functionK is arelaxed(ǫ, γ,M)-good
similarity function for a learning problemP if there existsa bounded weighting functionw over X,
w(x′) ∈ [0,M ] for all x′ ∈ X, Ex′∼P [w(x′)] ≤ 1 such that at least a1− ǫ probability mass of examples
x satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ. (3.52)

Definition 3.4.5 (Intermediate, Hinge Loss)A similarity functionK is a relaxed (ǫ, γ,M)-good simi-
larity function in hinge loss for a learning problemP if there exists a weighting functionw(x′) ∈ [0,M ]
for all x′ ∈ X, Ex′∼P [w(x′)] ≤ 1 such that

Ex

[
[1− y(x)g(x)/γ]+

]
≤ ǫ, (3.53)

whereg(x) = Ex′∼P [y(x′)w(x′)K(x, x′)] is the similarity-based prediction made usingw(·).
These intermediate definitions are closely related to our main similarity function definitions: in par-

ticular, if K is a relaxed(ǫ, γ,M)-good similarity function for a learning problemP , then it is also an
(ǫ, γ/c, c/M)-good similarity function for someγ ≤ c ≤ 1.

Theorem 3.4.13 If K is a relaxed(ǫ, γ,M)-good similarity function for a learning problemP , then
there existsγ ≤ c ≤ 1 such thatK is a (ǫ, γ/c, c/M)-good similarity function forP . If K is a relaxed
(ǫ, γ,M)-good similarity function in hinge loss forP , then there existsγ ≤ c ≤ 1 such thatK is a
(ǫ, γ/c, c/M)-good similarity function forP .

Proof: First, dividew(x) by M to scale its range to[0, 1], soE[w] = c/M for somec ≤ 1 and the
margin is nowγ/M . Define random indicatorR(x′) to equal 1 with probabilityw(x′) and 0 with proba-
bility 1−w(x′), and let the extended probabilityP overX × Y × {0, 1} be defined as in Equations 3.40
or 3.41.

We have
τ = Pr(x′,y′,r′)[r

′ = 1] = Ex′ [w(x′)] = c/M,

and we can rewrite (3.52) as

E(x′,y′,r′)[y(x)y′I(r′ = 1)K(x, x′)] ≥ γ/M. (3.54)

Finally, divide both sides of (3.54) byτ = c/M , producing the conditionalE(x′,y′,r′)[y(x)y(x′)K(x, x′) |
r′ = 1] on the LHS and a margin ofγ/c on the RHS. The case of hinge-loss is identical.

Note that since our guarantees for(ǫ, γ, τ)-good similarity functions depend onτ only throughγ2τ ,
a decrease inτ and a proportional increase inγ (as whenc < 1 in Theorem 3.4.13) only improves
the guarantees. However, allowing flexibility in this tradeoff will make the kernel-to-similarity function
translation much easier.

We will now establish that a similarity functionK that is good as a kernel, is also good as a similarity
function in this intermediate sense, and hence, by Theorem 3.4.13, also in our original sense. We begin
by considering goodness in hinge-loss, and will return to margin violations at the end of the Section.
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Theorem 3.4.14 If K is (ǫ0, γ)-good kernel in hinge loss for learning problem (with deterministic labels),

then it is also a relaxed(ǫ0 + ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good similarity in hinge loss for the learning problem,

for anyǫ1 > 0.

Proof: We initially only consider finite discrete distributions, where:

Pr( xi, yi ) = pi (3.55)

for i = 1 . . . n, with
∑n

i=1 pi = 1 andxi 6= xj for i 6= j.
Let K be any kernel function that is(ǫ0, γ)-kernel good in hinge loss. Letφ be the implied feature

mapping and denoteφi = φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameterC:

minimize
1

2
||β||2 + C

n∑

i=1

pi[1− yi〈β, φi〉]+ (3.56)

The dual of this problem, with dual variablesαi, is:

maximize
∑

i

αi −
1

2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(3.57)

There is no duality gap, and furthermore the primal optimumβ∗ can be expressed in terms of the dual
optimumα∗: β∗ =

∑
i α

∗
i yiφi.

SinceK is (ǫ0, γ)-kernel-good in hinge-loss, there exists a predictor||β0|| = 1 with average-hinge
lossǫ0 relative to marginγ. The primal optimumβ∗ of (3.56), being the optimum solution, then satisfies:

1

2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+ ≤ 1

2
||1
γ

β0||2 + C
∑

i

pi[1− yi

〈
1

γ
β0, φi

〉
]+

=
1

2γ2
+ CE

[
[1− y

〈
1

γ
β0, φ(x)

〉
]+

]

=
1

2γ2
+ Cǫ0

Since both terms on the left hand side are non-negative, eachof them is bounded by the right hand side,
and in particular:

C
∑

i

pi[1− yi〈β∗, φi〉]+ ≤
1

2γ2
+ Cǫ0

Dividing by C we get a bound on the average hinge-loss of the predictorβ∗, relative to a margin of one:

E[[1− y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0 (3.58)

We now use the fact thatβ∗ can be written asβ∗ =
∑

i α
∗
i yiφi with 0 ≤ α∗

i ≤ Cpi. Let us consider
the weights

wi = w(xi) = α∗
i /(Api) (3.59)
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So,wi ≤ C
A andE[w] =

P

i α∗
i

A . Furthermore, since we have no duality gap we also have

∑

i

α∗
i −

1

2
||β∗||2 =

1

2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+,

so
∑

i α
∗
i ≤ 1

γ2 + Cǫ0.
So, we have for everyx, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

∑

i

piw(xi)yiK(x, xi)

= y
∑

i

piα
∗
i yiK(x, xi)/(Api)

= y
∑

i

α∗
i yi〈φi, φ(x)〉/A

= y〈β∗, φ(x)〉/A

Multiplying by A and using (3.58):

Ex,y

[
[ 1−AyEx′,y′

[
w(x′)y′K(x, x′)

]
]+
]

= Ex,y[ [ 1− y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ǫ0 (3.60)

Sincewi ≤ C
A , E[w] =

P

i α∗
i

A , and
∑

i α
∗
i ≤ 1

γ2 + Cǫ0, and we wantE[w] ≤ 1, we need to impose

that
(

1
γ2 + Cǫ0

)
1
A ≤ 1. We also wantwi ∈ [0,M ], so we also have the constraintC

A ≤ M . Choosing

M = 1
2ǫ1+ǫ0

, A = 1+ǫ0/2ǫ1
γ2 , andC = 1/(2ǫ1γ

2) we get an average hinge-loss ofǫ0 + ǫ1 at margin1/A

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/(1/A) ]+

]
≤ ǫ0 + ǫ1 (3.61)

as desired. This establishes that ifK is (ǫ0, γ)-good kernel in hinge loss then it is also a relaxed(ǫ0 +

ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good similarity in hinge loss, for anyǫ1 > 0, at least for finite discrete distributions.

To extend the result also to non-discrete distributions, wecan consider the variational “infinite SVM”
problem and apply the same arguments, as in [199] and in Section 3.3.

Interpretation The proof of theorem 3.4.14 shows the following. Assume thatK is (0, γ)-good kernel.
Assume thatτ is our desired error rate. Then we can choose a regularization parameterC = 1/(2γ2 · τ)
for the “distributional SVM” (Eq. 3.56) such that there exists a solution vector that gets a(1− τ) fraction
of the distribution correct, and moreover, the number of support vectors is at leastγ2 · τ fraction of the
whole distribution; so, we do end up spread out a bit the support vectors of the SVM in Eq. 3.56. Any
support vector will then be considered a representative point in our similarity view, and the probability
that a point is representative is proportional toαi/pi.

Note however that if theK is a good kernel, then there might exist multiple different good sets of
representative points ; and the argument in theorem 3.4.14 shows the existence of such a set based on an
SVM argument.9

We can now use the hinge-loss correspondence to get a similarresult for the margin-violation defini-
tions:

9In fact, the original proof that a good kernel is a good similarity function in the Balcan - Blum’06 sense which appeared
in [26] was based on a different Perceptron based argument.
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Theorem 3.4.15 If K is (ǫ0, γ)-good kernel for a learning problem (with deterministic labels), then it is
also a relaxed(ǫ0 + ǫ1, γ

2/2, 1
(1−ǫ0)ǫ1

)-good similarity function for the learning problem, for anyǫ1 > 0.

Proof: If K is (0, γ)-good as a kernel, it is also(0, γ) good as a kernel in hinge loss, and we can apply
Theorem 3.4.14 to obtain thatK is also(ǫ0/2, γ1, τ1)-good, whereγ1 = γ2 andτ1 = 1/ǫ1. We can then
bound the number of margin violations atγ2 = γ1/2 by half the hinge loss at marginγ1 to obtain the
desired result.

If K is only (ǫ, γ)-good as a kernel, we follow a similar procedure to that described in [199] and in
Section 3.3, and consider a distribution conditioned only on those places where there is no error. Returning
to the original distribution, we must scale the weights up byan amount proportional to the probability of
the event we conditioned on (i.e. the probability of no margin violation). This yields the desired bound.

Note: We also note that if we want our Definitions 3.4.1 and Definition 3.4.2 to include the usual notions
of good kernel functions, we do need to allow the set{x : R(x) = 1} to be probabilistic. To see this, let
us consider the following example.

x1 = (
√

1− γ2, γ), y1 = 1, p1 =
1

2
− ǫ

x2 = (−
√

1− γ2, γ, ), y2 = 1, p2 = ǫ

x3 = (
√

1− γ2,−γ, ), y3 = −1, p3 = ǫ

x4 = (−
√

1− γ2,−γ), y4 = −1, p4 =
1

2
− ǫ

for some (small)0 < γ <
√

1
2 and (small) probability0 < ǫ < 1

2 . The four points are all on the unit

sphere (i.e.||xi|| = 1 and soK(xi, xj) = 〈xi, xj〉 ≤ 1), and are clearly separated byβ = (0, 1) with a
margin ofγ. The standard inner-product kernel is therefore(0, γ)-kernel-good on this distribution. Note
however that for anyτ , in order to getK to be a(0, γ, τ)-good similarity function we need to allowR
to be probabilistic. This can be easily verified by a case analysis. Clearly we cannot haveR contain just
one point. Also, we cannotR be only{x1, x4} sincex3 will fail to satisfy the condition. Similarly wrt
{x2, x3}. Other cases can be easily verified as well.

One can use the same example in order to show that we need to considerw(x) ∈ [0, 1] rather than
w ∈ {0, 1} in the context Definitions 3.3.5 and Definitions 3.3.6.

3.4.5 Tighteness

We show here that in fact we need to allowO(γ2) loss in the kernel to similarity translation. Specifically:

Theorem 3.4.16 (Tightness, Margin Violations)For anyε, τ , andγ there exists a learning problem and
a kernel functionK, which is(0, γ)-kernel-good for the learning problem, but which cannot be(ε, γ̃, τ)-
good similarity forγ̃ ≥ 2γ2.

Proof: Assume thatX ∈ Rd, for d ≥ 1
γ2 . Assume thatxi has all coordinates0 except for coordinates1

andi which are set toy(xi)γ and
√

1− γ2, respectively. It is easy to verify that the standard inner-product
kernel is a(0, γ)-kernel-good on this distribution – it is separated byβ = (1, 0, . . . , 0) with a margin of
γ. We also clearly have|K(xi, xj)| ≤ γ2 for all i 6= j andK(x, x) = 1 for all x, which implies that
E(x′,y′,r′)∼P [yy′K(x, x′) | r′ = 1] ≤ 2γ2 for any extended distributionP (x, y, r). This then implies the
desired conclusion.
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Theorem 3.4.17 (Tightness, Hinge Loss)For anyε ≤ 1
2 , τ , andγ there exists a learning problem and a

kernel functionK, which is(0, γ)-kernel-good in hinge loss for the learning problem, but which cannot
be(ε, γ̃, τ)-good similarity in hinge loss for̃γ ≥ 4γ2.

Proof: The same example as in Theorem 3.4.16 gives us the desired conclusion.
Let g(x) = E(x′,y′,r′)[y

′K(x, x′) | r′ = 1] be defined as in Definition 3.4.2. We clearly haveg(x) ∈
[−2γ2, 2γ2]. So, clearly for̃γ ≥ 4γ2 we have[1 − y(x)g(x)/γ̃ ]+ ≥ [1 − y(x)γ2/(2γ2)]+ ≥ 1/2. This
then implies the desired conclusion.

3.4.6 Learning with Multiple Similarity Functions

We consider here as in Section 3.3.4 the case of learning withmultiple similarity functions. Suppose that
rather than having a single similarity function, we were instead givenn functionsK1, ...,Kn, and our
hope is that some convex combination of them will satisfy Definition 3.4.1. Is this sufficient to be able to
learn well? The following generalization of Theorem 3.4.3 shows that this is indeed the case. (The analog
of Theorem 3.4.6 can be derived similarly.)

Theorem 3.4.18SupposeK1, . . . ,Kn are similarity functions such that some (unknown) convex com-
bination of them is(ǫ, γ, τ)-good. For anyδ > 0, let S = {x′

1, x
′
2, . . . , x

′
d} be a sample of size

d = 16 log(1/δ)
τγ2 drawn fromP . Consider the mappingφS : X → Rnd defined as follows:φS

i(x) =

(K1(x, x′
1), . . . ,Kn(x, x′

1), . . . ,K1(x, x′
d), . . . ,Kn(x, x′

d)).

With probability at least1− δ over the random sampleS, the induced distributionφS(P ) in Rnd has
a separator of error at mostǫ + δ at L1, L∞ margin at leastγ/2.

Proof: Let K = α1K1 + . . . + αnKn be an(ǫ, γ, τ)-good convex-combination of theKi. By Theorem
3.4.3, had we instead performed the mapping:φ̃S : X → Rd defined as

φ̃S(x) = (K(x, x̃1), . . . ,K(x, x̃d)),

then with probability1− δ, the induced distributioñφS(P ) in Rd would have a separator of error at most
ǫ+δ at margin at leastγ/2. Let β̂ be the vector corresponding to such a separator in that space. Now, let us
convertβ̂ into a vector inRnd by replacing each coordinatêβj with then values(α1β̂j , . . . , αnβ̂j). Call

the resulting vector̃β. Notice that by design, for anyx we have
〈
β̃, φS(x)

〉
=
〈
β̂, φ̃S(x)

〉
. Furthermore,

||β̃||1 = ||β̂||1. Thus, the vector̃β under distributionφS(P ) has the same properties as the vectorβ̂ under
φ̃S(P ). This implies the desired result.

Note that we get significantly better bounds here than in Section 3.3.4 and in [26], since the margin
does not drop by a factor of1√

n
since we use anL1 based learning algorithm.

3.5 Connection to the Semi-Supervised Learning Setting

We discuss here how we can connect the framework in this chapter with the Semi-Supervised Learning
model in Chapter 2. The approach here does have a similar flavor to the approach in in Chapter 2, however,
at a technical level, the final guarantees and learning procedures are somewhat different.

Given a similarity functionK let us defineCK as the set of functions of the form

fα =
∑

xi∈X

α(xi)K(·, xi).
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Clearly, in generalCK may have infinite capacity.10 Our assumptions on the similarity function, e.g., the
assumption in Definition 3.3.5 can be interpreted as saying that the target function has unlabeled errorǫ at
marginγ, where the unlabeled error rate of a functionfα specified by coefficientsα(xi) is defined as

errunl(fα) = 1− χ(fα, P ) = Pr
[∣∣Ex′ [K(x, x′)α(x′)]

∣∣ ≤ γ
]
.

Note that here we can defineχ(fα, x) = 1 if |Ex′ [K(x, x′)α(x′)]| ≤ γ and0 otherwise.
Let us definePχ = P|x:χ(fα,x)=1 and letdχ(f, g) = Prx∼Pχ [f(x) 6= g(x)]. What we are effectively

doing in Section 3.4 is the following. Given a fixedγ, we extract a(δ, δ/2)-randomized approximate
cover ofCK with respect to distancedχ. 11 In particular, the guarantee we get is that for any function
fα with probability at least1 − δ/2, we can find a functioñfα in the cover such thatdχ(fα, f̃α) ≤ δ.
SinceK is (ǫ, γ)-good in the sense of Definition 3.3.5, it follows that there exist a functionfα such that
errunl(fα) + errχ(fα) ≤ ǫ, where

errχ(fα) = Pr
x∼Pχ

[f(x) 6= y(x)] Pr
x

[χ(f, x) = 1].

Since we extract a(δ, δ/2)-randomized approximate cover ofCK , it follows that with high probability, at
least1− δ/2, we can find a functioñfα such thaterr(f̃α) ≤ errunl(fα) + errχ(fα) + δ . Once we have
constructed the randomized approximate cover, we then in a second stage use labeled examples to learn
well.

So, in the case studied in this chapter, the hypothesis spacemay have aninfinite capacitybefore
performing the inference. In the training process, in a firststage, we first use unlabeled in order to extract
a much smaller set of functions with the property that with high probability the target is well approximated
by one the functions in the smaller class. In a second stage wethen use labeled examples to learn well.
(Note that our compatibility assumption implies an upper bound on the best labeled error we could hope
for.)

For the hinge loss definition 3.3.6, we need to consider a cover according to the distance

dχ(f, g) = E[|f(x)− g(x)|/γ.

3.6 Conclusions

The main contribution of this chapter is to develop a theory of learning with similarity functions—namely,
of when a similarity function is good for a given learning problem—that is more general and in terms of
more tangible quantities than the standard theory of kernelfunctions. We provide a definition that we show
is both sufficient for learning and satisfied by the usual large-margin notion of a good kernel. Moreover,
the similarity properties we consider do not require reference to implicit high-dimensional spaces nor do
they require that the similarity function be positive semi-definite. In this way, we provide the first rigorous
explanation showing why a kernel function that is good in thelarge-margin sense can also formally be
viewed as a good similarity function, thereby giving formaljustification to the standard intuition about
kernels. We prove that our main notion of a “good similarity function” is strictly more powerful than
the traditional notion of a large-margin kernel. This notion relies uponL1 regularized learning, and our

10By capacity of a set of functions here we mean a distribution independent notion of dimension of the given set of functions,
e.g., VC-dimension.

11Given a class of functionsC, we define an(α, β)-cover ofC with respect to distanced to be a probability distribution over
sets of functions̃C such that for anyf ∈ C with probability at least1−α, the randomly choseñC from the distribution contains
f̃ such thatd(f, f̃) ≤ β.
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separation result is related to a separation result betweenwhat is learnable withL1 vs.L2 regularization.
In a lower bound of independent interest, we show that ifC is a class ofn pairwise uncorrelated functions,
thennokernel is(ǫ, γ)-good in hinge-loss for allf ∈ C even forǫ = 0.5 andγ = 8/

√
n.

From a practical perspective, the results of Section 3.3 and3.4 suggest that ifK is in fact a valid
kernel, we are probably better off using it as a kernel, e.g. in an SVM or Perceptron algorithm, rather
than going through the transformation of Section 3.3.3. However, faced with a non-positive-semidefinite
similarity function (coming from domain experts), the transformation of Theorem 3.3.3 might well be
useful. In fact, Liao and Noble have used an algorithm similar to the one we propose in the context of
protein classification [162]. Furthermore, a direct implication of our results is that we can indeed think (in
the design process) of the usefulness of a kernel function interms of more intuitive, direct properties of
the data in the original representation, without need to refer to implicit spaces.

Finally, our algorithms (much like those of [32]) suggest a natural way to use kernels or other similarity
functions in learning problems for which one also wishes to use the native features of the examples. For
instance, consider the problem of classifying a stream of documents arriving one at a time. Rather than
running a kernelized learning algorithm, one can simply take the native features (say the words in the
document) and augment them with additional features representing the similarity of the current example
with each of a pre-selected set of initial documents. One canthen feed the augmented example into a
standard unkernelized online learning algorithm. It wouldbe interesting to explore this idea further.

It would be interesting to explore whether the lower bound could be extended to covermargin vio-
lations with a constant error rateǫ > 0 rather than only hinge-loss. In addition, it would be particularly
interesting to develop even broader natural notions of goodsimilarity functions, that allow for functions
that are not positive-semidefinite and yet provide even better kernel-to-similarity translations (e.g., not
squaring the margin parameter).

Subsequent Work: Inspired by our work in [26], Wang et. al [212] have recently analyzed different,
alternative sufficient conditions for learning via pairwise functions. In particular, Wang et. al [212]
analyze unbounded dissimilarity functions which are invariant to order preserving transformations. They
provide conditions that they prove are sufficient for learning, though they may not include all good kernel
functions.

On a different line of inquiry, we have used this approach [41] for analyzing similarity functions in
the context ofclustering (i.e. learning from purelyunlabeleddata). Specifically, in [41] we ask what
(stronger) properties would be sufficient to allow one to produce an accurate hypothesis without any
label information at all. We show that if one relaxes the objective (for example, allows the algorithm
to produce a hierarchical clustering such that some pruningis close to the correct answer), then one can
define a number of interesting graph-theoretic and game-theoretic properties of similarity functions that
are sufficient to cluster well. We present this in detail in Chapter 4.
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Chapter 4

A Discriminative Framework for
Clustering via Similarity Functions

Problems of clustering data from pairwise similarity information are ubiquitous in Machine Learning and
Computer Science. Theoretical treatments often view the similarity information as ground-truth and then
design algorithms to (approximately) optimize various graph-based objective functions. However, in most
applications, this similarity information is merely basedon some heuristic; the ground truth is really the
unknown correct clustering of the data points and the real goal is to achieve low error on the data. In this
work, we develop a theoretical approach to clustering from this perspective. In particular, motivated by
our work in Chapter 3 that asks “what natural properties of a similarity (or kernel) function are sufficient
to be able to learn well?” we ask “what natural properties of asimilarity function are sufficient to be able
to clusterwell?”

To study this question we develop a theoretical framework that can be viewed as an analog for clus-
tering of the discriminative models for Supervised classification (i.e., the Statistical Learning Theory
framework and the PAC learning model), where the object of study, rather than being a concept class, is
a class of (concept, similarity function) pairs, or equivalently, aproperty the similarity function should
satisfy with respect to the ground truth clustering. Our notion of property is similar to the large margin
property for a kernel or the properties given in Definitions 3.3.1, 3.3.5, 3.3.6, 3.4.1 or 3.4.2 for supervised
learning, though we will need to consider stronger conditions since we have no labeled data.

We then analyze both algorithmic and information theoreticissues in our model. While quite strong
properties are needed if the goal is to produce a single approximately-correct clustering, we find that a
number of reasonable properties are sufficient under two natural relaxations: (a) list clustering: analo-
gous to the notion of list-decoding, the algorithm can produce a small list of clusterings (which a user
can select from) and (b) hierarchical clustering: the algorithm’s goal is to produce a hierarchy such that
desired clustering is some pruning of this tree (which a usercould navigate). We develop a notion of
theclustering complexityof a given property (analogous to the notion ofǫ-cover examined in Chapter 2),
that characterizes its information-theoretic usefulnessfor clustering. We analyze this quantity for several
natural game-theoretic and learning-theoretic properties, as well as design new efficient algorithms that
are able to take advantage of them. Our algorithms for hierarchical clustering combine recent learning-
theoretic approaches with linkage-style methods. We also show how our algorithms can be extended to
the inductive case, i.e., by using just a constant-sized sample, as in property testing. The analysis here
uses regularity-type results of [114] and [14].
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4.1 Introduction

Clustering is an important problem in the analysis and exploration of data. It has a wide range of ap-
plications in data mining, computer vision and graphics, and gene analysis. It has many variants and
formulations and it has been extensively studied in many different communities.

In the Algorithms literature, clustering is typically studied by posing some objective function, such
ask-median, min-sum ork-means, and then developing algorithms for approximately optimizing this
objective given a data set represented as a weighted graph [84, 140, 148]. That is, the graph is viewed as
“ground truth” and then the goal is to design algorithms to optimize various objectives over this graph.
However, for most clustering problems such as clustering documents by topic or clustering web-search
results by category, ground truth is really the unknown truetopic or true category of each object. The
construction of the weighted graph is just done using some heuristic: e.g., cosine-similarity for clustering
documents or a Smith-Waterman score in computational biology. In all these settings, the goal is really
to produce a clustering that is as accurate as possible on thedata. Alternatively, methods developed both
in the algorithms and in the machine learning literature forlearning mixtures of distributions [8, 20, 92,
94, 149, 209] explicitly have a notion of ground-truth clusters which they aim to recover. However, such
methods are based on very strong assumptions: they require an embedding of the objects intoRn such that
the clusters can be viewed as distributions with very specific properties (e.g., Gaussian or log-concave). In
many real-world situations (e.g., clustering web-search results by topic, where different users might have
different notions of what a “topic” is) we can only expect a domain expert to provide a notion of similarity
between objects that is related in some reasonable ways to the desired clustering goal, and not necessarily
an embedding with such strong properties.

In this work, we develop a theoretical study of the clustering problem from this perspective. In
particular, motivated by our work on similarity functions presented in Chapter 3 that asks “what nat-
ural properties of a given kernel (or similarity) functionK are sufficient to allow one tolearn well?”
[26, 32, 135, 191, 194] we ask the question “what natural properties of a pairwise similarity function are
sufficient to allow one toclusterwell?” To study this question we develop a theoretical framework which
can be thought of as a discriminative (PAC style) model for clustering, though the basic object of study,
rather than a concept class, is apropertyof the similarity functionK in relation to the target concept much
like the types of properties stated in Chapter 3.

The main difficulty that appears when phrasing the problem inthis general way is that if one defines
success as outputtinga single clusteringthat closely approximates the correct clustering, then oneneeds
to assume very strong conditions on the similarity function. For example, if the function provided by our
expert is extremely good, sayK(x, y) > 1/2 for all pairsx andy that should be in the same cluster, and
K(x, y) < 1/2 for all pairsx andy that should be in different clusters, then we could just use it to recover
the clusters in a trivial way.1 However, if we just slightly weaken this condition to simplyrequire that all
pointsx are more similar to all pointsy from their own cluster than to any pointsy from any other clusters,
then this is no longer sufficient to uniquely identify even a good approximation to the correct answer. For
instance, in the example in Figure 4.1, there are multiple clusterings consistent with this property. Even
if one is told the correct clustering has3 clusters, there is no way for an algorithm to tell which of the
two (very different) possible solutions is correct. In fact, results of Kleinberg [153] can be viewed as
effectively ruling out a broad class of scale-invariant properties such as this one as being sufficient for
producing the correct answer.

1Correlation Clustering can be viewed as a relaxation that allows somepairs to fail to satisfy this condition,
and the algorithms of [11, 67, 85, 201] show this is sufficientto cluster well if the number of pairs that fail is small.
Planted partitionmodels [13, 93, 171] allow for many failures so long as they occur atrandom. We will be interested
in much more drastic relaxations, however.
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Figure 4.1: Data lies in four regionsA,B,C,D (e.g., think of as documents on baseball, football, TCS,
and AI). Suppose thatK(x, y) = 1 if x andy belong to the same region,K(x, y) = 1/2 if x ∈ A and
y ∈ B or if x ∈ C andy ∈ D, andK(x, y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent
clusterings, including two consistent3-clusterings ((A ∪ B, C, D) or (A, B, C ∪D)). However, there is
a single hierarchical decomposition such that any consistent clustering is a pruning of this tree.

In our work we overcome this problem by considering two relaxations of the clustering objective that
are natural for many clustering applications. The first is asin list-decoding to allow the algorithm to
produce a smalllist of clusterings such that at least one of them has low error. The second is instead to
allow the clustering algorithm to produce atree (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, the example in Figure 4.1 has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the
output being fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure how specific you wanted to be, so
if any of these clusters are too broad, just click and I will split it for you.” We then show that with
these relaxations, a number of interesting, natural learning-theoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to cluster well.

At the high level, our framework has two goals. The first is to provide advice about what type ofalgo-
rithms to use given certain beliefs about the relation of the similarity function to the clustering task. That
is, if a domain expert handed us a similarity function that they believed satisfied a certain natural property
with respect to the true clustering, what algorithm would bemost appropriate to use? The second goal
is providing advice to thedesignerof a similarity function for a given clustering task (such asclustering
web-pages by topic). That is, if a domain expert is trying up to come up with a similarity measure, what
properties should they aim for?

4.1.1 Perspective

The standard approach in theoretical computer science to clustering is to choose some objective function
(e.g.,k-median) and then to develop algorithms that approximatelyoptimize that objective [84, 101, 140,
148]. If the true goal is to achieve low error with respect to an underlying correct clustering (e.g., a user’s
desired clustering of search results by topic), however, then one can view this as implicitly making the
strong assumption that not only does the correct clusteringhave a good objective value, but also that all
clusterings that approximately optimize the objective must be close to the correct clustering as well. In
this work, we instead explicitly consider the goal of producing a clustering of low error and then ask what
natural properties of the similarity function in relation to the target clustering are sufficient to allow an
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algorithm to do well.
In this respect we are closer to work done in the area of clustering or learning with mixture models [8,

20, 94, 149, 209]. That work, like ours, has an explicit notion of a correct ground-truth clustering of
the data points and to some extent can be viewed as addressingthe question of what properties of an
embedding of data intoRn would be sufficient for an algorithm to cluster well. However, unlike our
focus, the types of assumptions made are distributional andin that sense are much more stringent than the
types of properties we will be considering. This is similarly the case with work on planted partitions in
graphs [13, 93, 171]. Abstractly speaking, this view of clustering parallels thegenerativeclassification
setting [104], while the framework we propose parallels thediscriminativeclassification setting (i.e. the
PAC model of Valiant [205] and the Statistical Learning Theory framework of Vapnik [207] and the setting
used in Chapters 2, 3, 6 and 5 of this thesis).

In the PAC model for learning [205], the basic object of studyis the concept class, and one asks
what natural classes are efficiently learnable and by what algorithms. In our setting, the basic object of
study isproperty, which can be viewed as a set of (concept, similarity function) pairs, i.e., the pairs for
which the target concept and similarity function satisfy the desired relation. As with the PAC model for
learning, we then ask what natural properties are sufficientto efficiently cluster well (in either the tree or
list models) and by what algorithms. Note that an alternative approach in clustering is to pick some specific
algorithm(e.g.,k-means, EM) and analyze conditions for that algorithm to “succeed”. While there is also
work in classification of that type (e.g., when does some heuristic like ID3 work well), another important
aspect is in understanding which classes of functions are learnable and by what algorithms. We study
the analogous questions in the clustering context: what properties are sufficient for clustering, and then
ideally the simplest algorithm to cluster given that property.

4.1.2 Our Results

We provide a PAC-style framework for analyzing what properties of a similarity function are sufficient to
allow one to cluster well under the above two relaxations (list and tree) of the clustering objective. We
analyze both algorithmic and information theoretic questions in our model and provide results for several
natural game-theoretic and learning-theoretic properties. Specifically:
• We consider a family of stability-based properties, showing that a natural generalization of the

“stable marriage” property is sufficient to produce a hierarchical clustering. (The property is that
no two subsetsA ⊂ C, A′ ⊂ C ′ of clustersC 6= C ′ in the correct clustering are both more similar
on average to each other than to the rest of their own clusters.) Moreover, a significantly weaker
notion of stability is also sufficient to produce a hierarchical clustering, but requires a more involved
algorithm.

• We show that a weaker “average-attraction” property (whichis provably not enough to produce a
single correct hierarchical clustering) is sufficient to produce a small list of clusterings, and give
generalizations to even weaker conditions that generalizethe notion of large-margin kernel func-
tions.

• We define theclustering complexityof a given property (the minimum possible list length that can
be guaranteed by any algorithm) and provide both upper and lower bounds for the properties we
consider. This notion is analogous to notions of capacity inclassification [73, 104, 207] and it
provides a formal measure of the inherent usefulness of a given property.

• We also show that properties implicitly assumed by approximation algorithms for standard graph-
based objective functions can be viewed as special cases of some of the properties considered above.

• We show how our methods can be extended to theinductivecase, i.e., by using just aconstant-sized
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sample, as in property testing. While most of our algorithms extendin a natural way, for certain
properties their analysis requires more involved arguments using regularity-type results of [14, 114].

More generally, our framework provides a formal way to analyze what properties of a similarity function
would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given
property. For some of our properties we are able to show that known algorithms succeed (e.g. variations
of bottom-up hierarchical linkage based algorithms), but for the most general ones we need new algorithms
that are able to take advantage of them.

4.1.3 Connections to other chapters and to other related work

Some of the questions we address can be viewed as a generalization of questions studied in Chapter 3 or in
other work machine learning that asks what properties of similarity functions (especially kernel functions)
are sufficient to allow one tolearnwell [26, 32, 135, 191, 194]. E.g., the usual statement is that if a kernel
function satisfies the property that the target function is separable by a large margin in the implicit kernel
space, then learning can be done from few labeled examples. The clustering problem is more difficult
because there is no labeled data, and even in the relaxationswe consider, the forms of feedback allowed
are much weaker.

We note that as in learning, given an embedding of data into some metric space, the similarity function
K(x, x′) neednot be a direct translation of distance likee−d(x,x′), but rather may be a derived function
based on the entire dataset. For example, in thediffusion kernelof [158], the similarityK(x, x′) is related
to the effective resistance betweenx andx′ in a weighted graph defined from distances in the original
metric. This would be a natural similarity function to use, for instance, if data lies in two well-separated
pancakes.

In the inductive setting, where we imagine our given data is only a small random sample of the entire
data set, our framework is close in spirit to recent work doneon sample-based clustering (e.g., [50]) in
the context of clustering algorithms designed to optimize acertain objective. Based on such a sample,
these algorithms have to output a clustering of the full domain set, that is evaluated with respect to the
underlying distribution.

We also note that the assumption that the similarity function satisfies a given property with respect
to the target clustering is analogous to the assumption considered in Chapter 2 that the target satisfies a
certain relation with respect to the underlying distribution. That is, the similarity function plays the role
of the distribution in Chapter 2. At a technical level however the results are not directly comparable. In
particular in Chapter 2 we focus on compatibility notions that can be estimated from a finite sample and
the main angle there is understanding what is a good target for a given distribution given a compatibility
relation and what is a good distribution for a given compatibility notion. Here we imagine fixing the both
the target, and we are trying to understand what is a good similarity function for the given target pair.

4.2 Definitions and Preliminaries

We consider a clustering problem(S, l) specified as follows. Assume we have a data setS of n objects,
where each object is an element of an abstract instance spaceX. Eachx ∈ S has some (unknown)
“ground-truth” labell(x) in Y = {1, . . . , k}, where we will think ofk as much smaller thann. The goal
is to produce a hypothesish : X → Y of low error up to isomorphism of label names. Formally, we define
the error ofh to beerr(h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= l(x)]]. We will assume that a target error rate
ǫ, as well ask, are given as input to the algorithm.
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We will be considering clustering algorithms whose only access to their data is via a pairwise similarity
functionK(x, x′) that given two examples outputs a number in the range[−1, 1].2 We will say thatK is
a symmetric similarity function ifK(x, x′) = K(x′, x) for all x, x′.

Our focus is to analyze natural properties that sufficient for a similarity functionK to begood for
a clustering problem(S, l) which (ideally) are intuitive, broad, and imply that such a similarity function
results in the ability tocluster well. Formally, a propertyP is a relation{(l,K)} and we say thatK has
propertyP with respect toP if (l,K) ∈ P.

As mentioned in the introduction, however, requiring an algorithm to output a single low-error clus-
tering rules out even quite strong properties. Instead we will consider two objectives that are natural if
one assumes the ability to get some limited additional feedback from a user. Specifically, we consider the
following two models:

1. List model: In this model, the goal of the algorithm is to propose a small number of clusterings
such that at least one has error at mostǫ. As in work on property testing, the list length should
depend onǫ andk only, and be independent ofn. This list would then go to a domain expert or
some hypothesis-testing portion of the system which would then pick out the best clustering.

2. Tree model: In this model, the goal of the algorithm is to produce a hierarchical clustering: that
is, a tree on subsets such that the root is the setS, and the children of any nodeS′ in the tree form
a partition ofS′. The requirement is that there must exist apruning h of the tree (not necessarily
using nodes all at the same level) that has error at mostǫ. In many applications (e.g. document
clustering) this is a significantly more user-friendly output than the list model. Note that any given
tree has at most22k prunings of sizek [156], so this model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “transductive” [207] problem in that we are
asked to cluster agivenset of pointsS. We can also consider aninductivemodel in whichS is merely a
small random subset of points from a much larger abstract instance spaceX, and our goal is to produce a
hypothesish : X → Y of low error onX. For a given property of our similarity function (with respect
to X) we can then ask how large a setS we need to see in order for our list or tree produced with respect
to S to induce a good solution with respect toX. For clarity of exposition, for most of this chapter we
will focus on the transductive setting. In Section 4.6 we show how our algorithms can be adapted to the
inductive setting.

Realizable vs Agnostic.For most of the properties we consider here, our assumptionsare analogous to
the realizablecase in supervised learning and our goal is to getǫ-close to the target (in a tree of list) for
any desiredǫ > 0. For other properties, our assumptions are more like theagnosticin that we will assume
only that1−ν fraction of the data satisfies a certain condition. In these cases our goal os to getν +ǫ-close
to the target.

Notation. We will denote the underlying ground-truth clusters asC1, . . . , Ck (some of which may be
empty). Forx ∈ X, we useC(x) to denote the clusterCl(x) to which pointx belongs. ForA ⊆
X,B ⊆ X, let K(A,B) = Ex∈A,x′∈B [K(x, x′)]. We call this theaverage attractionof A to B. Let
Kmax(A,B) = maxx∈A,x′∈B K(x, x′); we call thismaximum attractionof A toB. Given two clusterings
g andh we define the distanced(g, h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= g(x)]], i.e., the fraction of points in
the symmetric difference under the optimal renumbering of the clusters.

We are interested in naturalpropertiesthat we might ask a similarity function to satisfy with respect
to the ground truth clustering. For example, one (strong) property would be that all pointsx are more
similar to all pointsx′ ∈ C(x) than to anyx′ 6∈ C(x) – we call this thestrict separationproperty. A

2That is, the input to the clustering algorithm is just a weighted graph. However, we still want to conceptually
view K as afunctionover abstract objects.
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weaker property would be to just require that pointsx areon averagemore similar to their own cluster
than to any other cluster, that is,K(x,C(x)−{x}) > K(x,Ci) for all Ci 6= C(x). We will also consider
intermediate “stability” conditions. For properties suchas these we will be interested in the size of the
smallest list any algorithm could hope to output that would guarantee that at least one clustering in the list
has error at mostǫ. Specifically, we define theclustering complexityof a property as:

Definition 4.2.1 Given a propertyP and similarity functionK, define the(ǫ, k)-clustering complexity
of the pair(P,K) to be the length of the shortest list of clusteringsh1, . . . , ht such that any consistent
k-clustering isǫ-close to some clustering in the list.3 That is, at least onehi must have error at mostǫ.
The(ǫ, k)-clustering complexity ofP is the maximum of this quantity over all similarity functions K.

The clustering complexity notion is analogous to notions ofcapacity in classification [73, 104, 207]
and it provides a formal measure of the inherent usefulness of a given property.

Computational Complexity. In the transductive case, our goal will be to produce a list ora tree in time
polynomial inn and ideally polynomial inǫ andk as well. We will indicate when our running times
involve a non-polynomial dependence on these parameters. In the inductive case, we want the running
time to depend only onk andǫ and to be independent of the size of the overall instance space X, under
the assumption that we have an oracle that in constant time can sample a random point fromX.

In the following sections we analyze both the clustering complexity and the computational complexity
of several natural properties and provide efficient algorithms to take advantage of such functions. We
start by analyzing the strict separation property as well asa natural relaxation in Section 4.3. We also
give formal relationships between these properties and those considered implicitly by approximation al-
gorithms for standard clustering objectives. We then analyze a much weaker average-attraction property
in Section 4.4 that is similar to Definition 3.3.1 in Chapter 3(and which, as we have seen, has close con-
nections to large margin properties studied in Learning Theory [26, 32, 135, 191, 194].) This property is
not sufficient to produce a hierarchical clustering, however, so we then turn to the question of how weak
a property can be and still be sufficient for hierarchical clustering, which leads us to analyze properties
motivated by game-theoretic notions of stability in Section 4.5.

Our framework allows one to study computational hardness results as well. While our focus is on
getting positive algorithmic results, we discuss a simple few hardness examples in Section 4.8.1.

4.3 Simple Properties

We begin with the simple strict separation property mentioned above.
Property 1 The similarity functionK satisfies thestrict separation property for the clustering problem
(S, l) if all x are strictly more similar to any pointx′ ∈ C(x) than to everyx′ 6∈ C(x).

Given a similarity function satisfying the strict separation property, we can efficiently construct a tree
such that the ground-truth clustering is a pruning of this tree (Theorem 4.3.2). As mentioned above, a
consequence of this fact is a2O(k) upper bound on the clustering complexity of this property. We begin
by showing a matching2Ω(k) lower bound.

Theorem 4.3.1 For ǫ < 1
2k , the strict separation property has(ǫ, k)-clustering complexity at least2k/2.

Proof: The similarity function is a generalization of the similarity in the picture in Figure 4.1. Specifically,
partition then points intok subsets{R1, . . . , Rk} of n/k points each. Group the subsets into pairs
{(R1, R2), (R3, R4), . . .}, and letK(x, x′) = 1 if x andx′ belong to the sameRi, K(x, x′) = 1/2 if
x andx′ belong to two subsets in the same pair, andK(x, x′) = 0 otherwise. Notice that in this setting

3A clusteringC is consistent ifK has propertyP with respect toC.
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there are2
k
2 clusterings (corresponding to whether or not to split each pair Ri ∪Ri+1) that are consistent

with Property 1 and differ from each other on at leastn/k points. Sinceǫ < 1
2k , any given hypothesis

clustering can beǫ-close to at most one of these and so the clustering complexity is at least2k/2.

We now present the upper bound.

Theorem 4.3.2 Let K be a similarity function satisfying the strict separation property. Then we can
efficiently construct a tree such that the ground-truth clustering is a pruning of this tree.
Proof: If K is symmetric, then to produce a tree we can simply use bottom up “single linkage” (i.e.,
Kruskal’s algorithm). That is, we begin withn clusters of size 1 and at each step we merge the two clusters
C,C ′ maximizingKmax(C,C ′). This maintains the invariant that at each step the current clustering is
laminar with respect to the ground-truth: if the algorithm merges two clustersC andC ′, andC is strictly
contained in some clusterCr of the ground truth, then by the strict separation property we must have
C ′ ⊂ Cr as well. If K is not symmetric, then single linkage may fail.4 However, in this case, the
following “Boruvka-inspired” algorithm can be used. Starting with n clusters of size 1, draw a directed
edge from each clusterC to the clusterC ′ maximizingKmax(C,C ′). Then pick some cycle produced
(there must be at least one cycle) and collapse it into a single cluster, and repeat. Note that if a cluster
C in the cycle is strictly contained in some ground-truth cluster Cr, then by the strict separation property
its out-neighbor must be as well, and so on around the cycle. So this collapsing maintains laminarity as
desired.

Note: Even though the strict separation property is quite strong,a similarity function satisfying this prop-
erty can still fool a top-down spectral clustering approach. See Figure 4.2 in Section 4.8.4.

We can also consider the agnostic version of the strict separation property, where we require thatK
satisfies strict separation formostof the data.

Property 2 The similarity functionK satisfiesν-strict separation for the clustering problem(S, l) if for
someS′ ⊆ S of size(1− ν)n, K satisfies strict separation for(S′, l).

We can then show that:

Theorem 4.3.3 If K satisfiesν-strict separation, then so long as the smallest correct cluster has size
greater than5νn, we can produce a tree such that the ground-truth clusteringis ν-close to a pruning of
this tree.

For a proof see Section 4.7, where we also show that properties implicitly assumed by approximation
algorithms for standard graph-based objective functions can be viewed as special cases of theν-strict
separation property.

4.4 Weaker properties

A much weaker property to ask of a similarity function is justthat most points are noticeably more similar
on averageto points in their own cluster than to points in any other cluster. This is similar to Defini-
tion 3.3.1 in Chapter 3 (and which, as we have seen, has close connections to large margin properties
studied in Learning Theory [26, 32, 135, 191, 194].)

Specifically, we define:

4Consider 3 pointsx, y, z whose correct clustering is({x}, {y, z}). If K(x, y) = 1, K(y, z) = K(z, y) = 1/2,
andK(y, x) = K(z, x) = 0, then this is consistent with strict separation and yet the algorithm will incorrectly
mergex andy in its first step.
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Property 3 A similarity functionK satisfies the(ν, γ)-average attraction property for the clustering
problem(S, l) if a 1− ν fraction of examplesx satisfy:

K(x,C(x)) ≥ K(x,Ci) + γ for all i ∈ Y, i 6= l(x).

This is a fairly natural property to ask of a similarity function: if a point x is more similar on av-
erage to points in a different cluster than to those in its own, it is hard to expect an algorithm to label
it correctly. The following is a simple clustering algorithm that given a similarity functionK satisfying
the average attraction property produces a list of clusterings of size that depends only onǫ, k, andγ.
Specifically,

Algorithm 2 Sampling Based Algorithm, List Model

Input: Data setS, similarity functionK, parametersγ, ǫ > 0, k ∈ Z
+; N(ǫ, γ, k), s(ǫ, γ, k).

• SetL = ∅.
• RepeatN(ǫ, γ, k) times

Fork′ = 1, . . . , k do:
- Pick a setRk′

S of s(ǫ, γ, k) random points fromS.

- Let h be the average-nearest neighbor hypothesis induced by the setsRi
S , 1 ≤ i ≤ k′. That is,

for any pointx ∈ S, defineh(x) = argmaxi∈{1,...k′}[K(x,Ri
S)]. Add h toL.

• Output the listL.

Theorem 4.4.1 Let K be a similarity function satisfying the(ν, γ)-average attraction property for the
clustering problem(S, l). Using Algorithm 2 with the parameterss(ǫ, γ, k) = 4

γ2 ln
(

8k
ǫδ

)
andN(ǫ, γ, k) =

(
2k
ǫ

) 4k

γ2 ln
(

8k
ǫδ

)
ln(1

δ ) we can produce a list of at mostk
O
(

k

γ2 ln
(

1
ǫ

)
ln
(

k
ǫδ

))
clusterings such that with prob-

ability 1− δ at least one of them is(ν + ǫ)-close to the ground-truth.

Proof: We say that a ground-truth cluster is big if it has probability mass at leastǫ2k ; otherwise, we say
that the cluster is small. Letk′ be the number of “big” ground-truth clusters. Clearly the probability mass
in all the small clusters is at mostǫ/2.

Let us arbitrarily number the big clustersC1, . . . , Ck′ . Notice that in each round there is at least a(
ǫ
2k

)s(ǫ,γ,k)
probability thatRS

i ⊆ Ci, and so at least a
(

ǫ
2k

)ks(ǫ,γ,k)
probability thatRS

i ⊆ Ci for all

i ≤ k′. Thus the number of rounds
(

2k
ǫ

) 4k

γ2 ln
(

8k
ǫδ

)
ln(1

δ ) is large enough so that with probability at least
1− δ/2, in at least one of theN(ǫ, γ, k) rounds we haveRS

i ⊆ Ci for all i ≤ k′. Let us fix now one such
good round. We argue next that the clustering induced by the sets picked in this round has error at most
ν + ǫ with probability at least1− δ.

Let Good be the set ofx in the big clusters satisfying

K(x,C(x)) ≥ K(x,Cj) + γ for all j ∈ Y, j 6= l(x).

By assumption and from the previous observations,Prx∼S[x ∈ Good] ≥ 1−ν−ǫ/2. Now, fixx ∈ Good.
SinceK(x, x′) ∈ [−1, 1], by Hoeffding bounds we have that over the random draw ofRS

j, conditioned
onRS

j ⊆ Cj,

Pr
RS

j

(∣∣∣Ex′∼RS
j [K(x, x′)]−K(x,Cj)

∣∣∣ ≥ γ/2
)
≤ 2e−2|RS

j |γ2/4,

for all j ∈ {1, . . . , k′}. By our choice ofRS
j, each of these probabilities is at mostǫδ/4k. So, for any

givenx ∈ Good, there is at most aǫδ/4 probability of error over the draw of the setsRS
j . Since this is
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true for anyx ∈ Good, it implies that theexpectederror of this procedure, overx ∈ Good, is at most
ǫδ/4, which by Markov’s inequality implies that there is at most aδ/2 probability that the error rate over
Good is more thanǫ/2. Adding in theν + ǫ/2 probability mass of points not inGood yields the theorem.

Note that Theorem 4.4.1 immediately implies a corresponding upper bound on the(ǫ, k)-clustering
complexity of the(ǫ/2, γ)-average attraction property. Note that this bound howeveris not polynomial in
k andγ. We can also give a lower bound showing that the exponential dependence onγ is necessary, and
furthermore this property is not sufficient to cluster in thetree model:

Theorem 4.4.2 For ǫ < γ/2, the(ǫ, k)-clustering complexity of the(0, γ)-average attraction property is

at leastmax
k′≤k

k
′ 1
γ /k′!, and moreover this property is not sufficient to cluster in the tree model.

Proof: Consider1γ regions{R1, . . . , R1/γ} each withγn points. AssumeK(x, x′) = 1 if x andx′ belong
to the same regionRi andK(x, x′) = 0, otherwise. Notice that in this setting all the k-way partitions
of the set{R1, . . . , R1/γ} are consistent with Property 3 and they are all pairwise at distance at leastγn
from each other. Sinceǫ < γ/2, any given hypothesis clustering can beǫ-close to at most one of these
and so the clustering complexity is at least the sum of Stirling numbers of the 2nd kind

∑k
k′=1 S(1/γ, k′)

which is at leastmax
k′≤k

k′1/γ/k′!.

Note: In fact, the clustering complexity bound immediately implies one cannot cluster in the tree model
since fork = 2 the bound is greater than 1.

We can further extend the lower bound in Theorem 4.4.3 to showthe following:

Theorem 4.4.3 For ǫ < 1/2, the(ǫ, k)-clustering complexity of the(0, γ)-average attraction property is

at leastk
k
8γ .

One can even weaken the above property to ask only that thereexistsan (unknown) weighting function
over data points (thought of as a “reasonableness score”), such that most points are on average more similar
to thereasonablepoints of their own cluster than to thereasonablepoints of any other cluster. This is a
generalization of the notion ofK being a kernel function with the large margin property [26, 195, 199, 207]
as shown in Chapter 3.

Property 4 A similarity functionK satisfies the(ν, γ)-average weighted attractionproperty for the
clustering problem(S, l) if there exists a weight functionw : X → [0, 1] such that a1 − ν fraction of
examplesx satisfy:

Ex′∈C(x)[w(x′)K(x, x′)] ≥ Kx′∈Cr [w(x′)K(x, x′)] + γ for all r ∈ Y, r 6= l(x).

If we haveK a similarity function satisfying the(ν, γ)-average weighted attraction property for the
clustering problem(S, l), then we can again cluster well in the list model, but via a more involved cluster-
ing algorithm. Formally we can show that:

Theorem 4.4.4 If K is a similarity function satisfying the(ν, γ)-average weighted attraction property

for the clustering problem(S, l), we can produce a list of at mostk
Õ
(

k

ǫγ2

)
clusterings such that with

probability 1− δ at least one of them isǫ + ν-close to the ground-truth.

We defer the proof of Theorem 4.4.4 to Section 4.10.

A too-weak property: One could imagine further relaxing the average attraction property to simply
require that for allCi, Cj in the ground truth we haveK(Ci, Ci) ≥ K(Ci, Cj) + γ; that is, the average
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intra-cluster similarity is larger than the average inter-cluster similarity. However, even fork = 2 and
γ = 1/4, this isnot sufficientto produce clustering complexity independent of (or even polynomial in)n.
In particular, suppose there are two regionsA,B of n/2 points each such thatK(x, x′) = 1 for x, x′ in
the same region andK(x, x′) = 0 for x, x′ in different regions. However, supposeC1 contains75% of
A and25% of B andC2 contains25% of C1 and75% of C2. Then this property is satisfied forγ = 1/4
and yet by classic coding results (or Chernoff bounds), clustering complexity is clearly exponential inn
for ǫ < 1/8. Moreover, this implies there is no hope in the inductive (orproperty testing) setting.

4.5 Stability-based Properties

The properties in Section 4.4 are fairly general and allow construction of a list whose length depends only
on onǫ andk (for constantγ), but are not sufficient to produce a single tree. In this section, we show that
several natural stability-based properties that lie between those considered in Sections 4.3 and 4.4 are in
fact sufficient forhierarchicalclustering.

For simplicity, we focus on symmetric similarity functions. We consider the following relaxations of
Property 1 which ask that the ground truth be “stable” in the stable-marriage sense:

Property 5 A similarity functionK satisfies thestrong stability property for the clustering problem(S, l)
if for all clustersCr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr, A′ ⊆ Cr′ we have

K(A,Cr \ A) > K(A,A′).

Property 6 A similarity functionK satisfies theweak stability property for the clustering problem(S, l)
if for all Cr, Cr′ , r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ , we have:
• If A′ ⊂ Cr′ then eitherK(A,Cr \A) > K(A,A′) or K(A′, Cr′ \ A′) > K(A′, A).
• If A′ = Cr′ thenK(A,Cr \A) > K(A,A′).

We can interpret weak stability as saying that for any two clusters in the ground truth, there does
not exist a subsetA of one and subsetA′ of the other that are more attracted to each other than to the
remainder of their true clusters (with technical conditions at the boundary cases) much as in the classic
notion of stable-marriage. Strong stability asks thatbothbe more attracted to their true clusters. To further
motivate these properties, note that if we take the example from Figure 4.1 and set a small random fraction
of the edges inside each dark-shaded region to 0, then with high probability this would still satisfy strong
stability with respect to all the natural clusters even though it no longer satisfies strict separation (or even
ν-strict separation for anyν < 1 if we included at least one edge incident to each vertex). Nonetheless,
we can show that these stability notions are sufficient to produce a hierarchical clustering. We start by
proving this for strong stability here and then in Theorem 4.5.2 we also prove it for the weak stability.

Algorithm 3 Average Linkage, Tree Model

Input: Data setS, similarity functionK. Output: A tree on subsets.

• Begin withn singleton clusters.

• Repeat till only one cluster remains: Find clustersC,C ′ in the current list which maximize
K(C,C ′) and merge them into a single cluster.

• Output the tree with single elements as leaves and internal nodes corresponding to all the merges
performed.

Theorem 4.5.1 Let K be a symmetric similarity function satisfying Property 5. Then we can efficiently
construct a binary tree such that the ground-truth clustering is a pruning of this tree.
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Proof: We will show that Algorithm 3 (Average Linkage) will producethe desired result. Note that the al-
gorithm usesK(C,C ′) rather thanKmax(C,C ′) as in single linkage; in fact in Figure 4.3 (In section 4.8.4)
we show an example satisfying this property where single linkage would fail.

We prove correctness by induction. In particular, assume that our current clustering is laminar with
respect to the ground truth clustering (which is true at the start). That is, for each clusterC in our current
clustering and eachCr in the ground truth, we have eitherC ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now,
consider a merge of two clustersC andC ′. The only way that laminarity could fail to be satisfied afterthe
merge is if one of the two clusters, say,C ′, is strictly contained inside some ground-truth clusterCr (so,
Cr − C ′ 6= ∅) and yetC is disjoint fromCr. Now, note that by Property 5,K(C ′, Cr − C ′) > K(C ′, x)
for all x 6∈ Cr, and so in particular we haveK(C ′, Cr − C ′) > K(C ′, C). Furthermore,K(C ′, Cr −C ′)
is a weighted average of theK(C ′, C ′′) over the setsC ′′ ⊆ Cr − C ′ in our current clustering and so at
least one suchC ′′ must satisfyK(C ′, C ′′) > K(C ′, C). However, this contradicts the specification of the
algorithm, since by definition it merges the pairC, C ′ such thatK(C ′, C) is greatest.

Theorem 4.5.2 Let K be a symmetric similarity function satisfying the weak stability property. Then we
can efficiently construct a binary tree such that the ground-truth clustering is a pruning of this tree.

Proof: As in the proof of theorem 4.5.1 we show that bottom-up average-linkage will produce the desired
result. Specifically, the algorithm is as follows: we begin with n clusters of size 1, and then at each step
we merge the two clustersC, C ′ such thatK(C,C ′) is highest.

We prove correctness by induction. In particular, assume that our current clustering is laminar with
respect to the ground truth clustering (which is true at the start). That is, for each clusterC in our current
clustering and eachCr in the ground truth, we have eitherC ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now,
consider a merge of two clustersC andC ′. The only way that laminarity could fail to be satisfied afterthe
merge is if one of the two clusters, say,C ′, is strictly contained inside some ground-truth clusterCr′ and
yetC is disjoint fromCr′ .

We distinguish a few cases. First, assume thatC is a clusterCr of the ground-truth. Then by definition,
K(C ′, Cr′−C ′) > K(C ′, C). Furthermore,K(C ′, Cr′−C ′) is a weighted average of theK(C ′, C ′′) over
the setsC ′′ ⊆ Cr′ − C ′ in our current clustering and so at least one suchC ′′ must satisfyK(C ′, C ′′) >
K(C ′, C). However, this contradicts the specification of the algorithm, since by definition it merges the
pairC, C ′ such thatK(C ′, C) is greatest.

Second, assume thatC is strictly contained in one of the ground-truth clustersCr. Then, by the
weak stability property, eitherK(C,Cr − C) > K(C,C ′) or K(C ′, Cr′ − C ′) > K(C,C ′). This again
contradicts the specification of the algorithm as in the previous case.

Finally assume thatC is a union of clusters in the ground-truthC1, . . . Ck′ . Then by definition,
K(C ′, Cr′ − C ′) > K(C ′, Ci), for i = 1, . . . k′, and soK(C ′, Cr′ − C ′) > K(C ′, C). This again
leads to a contradiction as argued above.

While natural, Properties 5 and 6 are still somewhat brittle: in the example of Figure 4.1, for instance,
if one adds a small number of edges with similarity 1betweenthe natural clusters, then the properties are
no longer satisfied for them (because pairs of elements connected by these edges will want to defect). We
can make the properties more robust by requiring that stability hold only for large sets. This will break
the average-linkage algorithm used above, but we can show that a more involved algorithm building on
the approach used in Section 4.4 will nonetheless find an approximately correct tree. For simplicity, we
focus on broadening the strong stability property, as follows (one should views as small compared toǫ/k
in this definition):

Property 7 The similarity functionK satisfies the(s, γ)-strong stability of large subsetsproperty for
the clustering problem(S, l) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr,
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A′ ⊆ Cr′ with |A|+ |A′| ≥ sn we have

K(A,Cr \A) > K(A,A′) + γ.

The idea of how we can use this property is we will first run an algorithm for the list model much like
Algorithm 2, viewing its output as simply a long list of candidate clusters (rather than clusterings). In

particular, we will get a listL of k
O
(

k

γ2 log 1
ǫ

log k
δf

)
clusters such that with probability at least1 − δ any

cluster in the ground-truth of size at leastǫ
4k is close to one of the clusters in the list. We then run a second

“tester” algorithm that is able to throw away candidates that are sufficiently non-laminar with respect to
the correct clustering and assembles the ones that remain into a tree. We present and analyze the tester
algorithm, Algorithm 4, below.

Algorithm 4 Testing Based Algorithm, Tree Model.

Input: Data setS, similarity functionK, parametersγ > 0, k ∈ Z
+, f, g, s, α > 0. A list of

clustersL with the property that any clusterC in the ground-truth is at leastf -close to one of them.
Output: A tree on subsets.

1. Throw out all clusters of size at mostαn. For every pair of clustersC, C ′ in our listL of clusters
that are sufficiently “non-laminar” with respect to each other in that|C \ C ′| ≥ gn, |C ′ \ C| ≥ gn
and|C ∩ C ′| ≥ gn, computeK(C ∩ C ′, C \ C ′) andK(C ∩ C ′, C ′ \ C). Throw out whichever
one does worse: i.e., throw outC if the first similarity is smaller, else throw outC ′. LetL′ be the
remaining list of clusters at the end of the process.

2. Greedily sparsify the listL′ so that no two clusters are approximately equal (that is, choose a clus-
ter, throw out all that are approximately equal to it, and repeat). We say two clustersC, C ′ are
approximately equal if|C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and |C ′ ∩C| ≥ gn. Let L′′ be the list
remaining.

3. Construct a forest on the remaining listL′′. C becomes a child ofC ′ in this forest ifC ′ approxi-
mately containsC, i.e. |C \ C ′| ≤ gn, |C ′ \ C| ≥ gn and|C ′ ∩ C| ≥ gn.

4. Complete the forest arbitrarily into a tree.

Theorem 4.5.3 Let K be a similarity function satisfying(s, γ)-strong stability of large subsets for the
clustering problem(S, l). LetL be a list of clusters such that any cluster in the ground-truth of size at
leastαn is f -close to one of the clusters in the list. Then Algorithm 4 with parameters satisfyings+f ≤ g,
f ≤ gγ/10 andα > 6kg yields a tree such that the ground-truth clustering is2αk-close to a pruning of
this tree.

Proof: Let k′ be the number of “big” ground-truth clusters: the clusters of size at leastαn; without
loss of generality assume thatC1, ...,Ck′ are the big clusters.

LetC ′
1, ...,C ′

k′ be clusters inL such thatd(Ci, C
′
i) is at mostf for all i. By Property 7 and Lemma 4.5.4

(stated below), we know that after Step1 (the “testing of clusters” step) all the clustersC ′
1, ...,C ′

k′ survive;
furthermore, we have three types of relations between the remaining clusters. Specifically, either:

(a) C andC ′ are approximately equal; that means|C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and|C ′ ∩C| ≥ gn.

(b) C andC ′ are approximately disjoint; that means|C \ C ′| ≥ gn, |C ′ \ C| ≥ gn and|C ′ ∩ C| ≤ gn.

(c) orC ′ approximately containsC; that means|C \ C ′| ≤ gn, |C ′ \ C| ≥ gn and|C ′ ∩ C| ≥ gn.
LetL′′ be the remaining list of clusters after sparsification. It’seasy to show that there existsC ′′

1 , ..., C ′′
k′

in L′′ such thatd(Ci, C
′′
i ) is at most(f + 2g), for all i. Moreover, all the elements inL′′ are either in the

relation “subset” or “disjoint”. Also, since all the clusters C1, ...,Ck′ have size at leastαn, we also have
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thatC ′′
i , C ′′

j are in the relation “disjoint”, for alli, j, i 6= j. That is, in the forest we constructC ′′
i are not

descendants of one another.
We showC ′′

1 , ..., C ′′
k′ are part of a pruning of small error rate of the final tree. We doso by exhibiting

a small extension to a list of clustersL′′′ that are all approximately disjoint and nothing else inL′′ is
approximately disjoint from any of the clusters inL′′′ (thusL′′′ will be the desired pruning). Specifically
greedily pick a cluster̃C1 in L′′ that is approximately disjoint fromC ′′

1 , ..., C ′′
k′ , and in general in step

i > 1 greedily pick a cluster̃C1 in L′′ that is approximately disjoint fromC ′′
1 , ..., C ′′

k′ , C̃1, . . . , C̃i−1. Let
C ′′

1 , ..., C ′′
k′ , C̃1, . . . , C̃k̃ be the listL′′′. By design,L′′′ will be a pruning of the final tree and we now claim

its total error is at most2αkn. In particular, note that the total number of points missingfrom C ′′
1 , ..., C ′′

k′

is at mostk(f +2g)n+kαn ≤ 3
2kαn. Also, by construction, each̃Ci must contain at leastαn−(k+i)gn

new points, which together with the above implies thatk̃ ≤ 2k. Thus, the total error ofL′′′ overall is at
most 3

2αkn + 2kk′gn ≤ 2αkn.

Lemma 4.5.4 LetK be a similarity function satisfying the(s, γ)-strong stability of large subsets property
for the clustering problem(S, l). LetC, C ′ be such that|C ∩C ′| ≥ gn, |C \C ′| ≥ gn and|C ′ \C| ≥ gn.
Let C∗ be a cluster in the underlying ground-truth such that|C∗ \ C| ≤ fn and |C \ C∗| ≤ fn. Let
I = C ∩ C ′. If s + f ≤ g andf ≤ gγ/10 , thenK(I, C \ I) > K(I, C ′ \ I).

Proof: Let I∗ = I ∩ C∗. So,I∗ = C ∩C ′ ∩ C∗. We prove first that

K(I, C \ I) > K(I∗, C∗ \ I∗)− γ/2. (4.1)

SinceK(x, x′) ≥ −1, we have

K(I, C \ I) ≥ (1− p1)K(I ∩ C∗, (C \ I) ∩C∗)− p1,

where1 − p1 = |I∗|
|I| ·

|(C\I)∩C∗|
|C\I| . By assumption we have|I| ≥ gn, and also|I \ I∗| ≤ fn. That means

|I∗|
|I| = |I|−|I\I∗|

|I| ≥ g−f
g . Similarly, |C \ I| ≥ gn and

∣∣(C \ I) ∩ C̄∗
∣∣ ≤ |C \ C∗| ≤ fn. So,

|(C \ I) ∩ C∗|
|C \ I| =

|C \ I| −
∣∣(C \ I) ∩ C̄∗

∣∣
|C \ I| ≥ g − f

g
.

Let us denote by1− p the quantity
(

g−f
g

)2
. We have:

K(I, C \ I) ≥ (1− p)K(I∗, (C \ I) ∩ C∗)− p. (4.2)

Let A = (C∗ \ I∗) ∩ C andB = (C∗ \ I∗) ∩ C̄. We have

K(I∗, C∗ \ I∗) = (1− α)K(I∗, A)− αK(I∗, B), (4.3)

where1− α = |A|
|C∗\I∗| . Note that

A = (C∗ \ I∗) ∩ C = (C∗ ∩ C) \ (I∗ ∩ C) = (C∗ ∩ C) \ I∗

and
(C \ I) ∩ C∗ = (C ∩ C∗) \ (I ∩ C∗) = (C∗ ∩ C) \ I∗,

soA = (C \ I) ∩ C∗. Furthermore

|(C \ I) ∩ C∗| = |(C\C ′)\(C\(C ′∩C∗))| ≥ |C\C ′|−|C\(C ′∩C∗)| ≥ |C\C ′|−|C\C∗| ≥ gn−fn.
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We also have|B| = |(C∗ \ I∗) ∩ C̄| ≥ |C∗ \ C|. These imply that1− α = |A|
|A|+|B| = 1

1+|B|/|A| ≥
g−f

g ,

and furthermore α
1−α = −1 + 1

1−α ≤
f

g−f . Equation (4.3) implies

K(I∗, A) =
1

1− α
K(I∗, C∗ \ I∗)− α1

1− α1
α1K(I∗, B)

and sinceK(x, x′) ≤ 1, we obtain:

K(I∗, A) ≥ K(I∗, C∗ \ I∗)− f

g − f
. (4.4)

Overall, combining (4.2) and (4.4) we obtain:K(I, C \ I) ≥ (1− p)
[
K(I∗, C∗ \ I∗)− f

g−f

]
− p, so

K(I, C \ I) ≥ K(I∗, C∗ \ I∗)− 2p − (1− p)
f

g − f
.

We prove now that2p+(1−p) f
g−f ≤ γ/2, which finally implies relation (4.1). Since1−p =

(
g−f

g

)2
, we

havep = 2gf−f2

g2 , so2p+(1−p) f
g−f = 22gf−f2

g2 + f(g−f)
g2 = 4f

g −2
(

f
g

)2
+ f

g −
(

f
g

)2
= 5f

g −2
(

f
g

)2
≤

γ/2, since by assumptionf ≤ gγ/10.
Our assumption thatK is a similarity function satisfying the strong stability property with a threshold

sn and aγ-gap for our clustering problem(S, l), together with the assumptions + f ≤ g implies

K(I∗, C∗ \ I∗) ≥ K(I∗, C ′ \ (I∗ ∪ C∗)) + γ. (4.5)

We finally prove that

K(I∗, C ′ \ (I∗ ∪ C∗)) ≥ K(I, C ′ \ I)− γ/2. (4.6)

The proof is similar to the proof of statement (4.1). First note that

K(I, C ′ \ I) ≤ (1− p2)K(I∗, (C ′ \ I) ∩ C̄∗) + p2,

where1 − p2 = |I∗|
|I| ·

|(C′\I)∩C̄∗|
|C′\I| . We know from above that|I

∗|
|I| ≥

g−f
g , and we can also show

|(C′\I)∩C̄∗|
|C′\I| ≥ g−f

g . So1− p2 ≥
(

g−f
g

)2
, and sop2 ≤ 2 g

f ≤ γ/2, as desired.

To complete the proof note that relations (4.1), (4.5) and (4.6) together imply the desired result, namely
thatK(I, C \ I) > K(I, C ′ \ I).

Theorem 4.5.5 LetK be a similarity function satisfying the(s, γ)-strong stability of large subsets prop-
erty for the clustering problem(S, l). Assume thats = O(ǫ2γ/k2). Then using Algorithm 4 with param-
etersα = O(ǫ/k), g = O(ǫ2/k2), f = O(ǫ2γ/k2), together with Algorithm 2 we can with probability
1− δ produce a tree with the property that the ground-truth isǫ-close to a pruning of this tree. Moreover,
the size of this tree isO(k/ǫ).

Proof: First, we run Algorithm 2 get a listL of clusters such that with probability at least1 − δ any
cluster in the ground-truth of size at leastǫ

4k is f -close to one of the clusters in the list. We can ensure

that our listL has size at mostk
O
(

k

γ2 log 1
ǫ

log k
δf

)
. We then run Procedure 4 with parametersα = O(ǫ/k),

g = O(ǫ2/k2), f = O(ǫ2γ/k2). We thus obtain a tree with the guarantee that the ground-truth is ǫ-close
to a pruning of this tree (see Theorem 4.5.3). To complete theproof we only need to show that this tree
hasO(k/ǫ) leaves. This follows from the fact that all leaves of our treehave at leastαn points and the
overlap between any two of them is at mostgn (for a formal proof see lemma 4.5.6).
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Lemma 4.5.6 Let P1, ..., Ps be a quasi-partition ofS such that|Pi| ≥ n ν
k and |Pi ∩ Pj | ≤ gn for all

i, j ∈ {1, . . . , s}, i 6= j. If g = ν2

5k2 , thens ≤ 2k
ν .

Proof: Assume for contradiction thats > L = 2k
ν , and consider the firstL partsP1, ..., PL. Then(

n ν
k − 2k

ν gn
)
2k

ν is a lower bound on the number of points that belong to exactlyone of the partsPi,

i ∈ {1, . . . , L}. For our choice ofg, g = ν2

5k2 , we have
(
n ν

k − 2k
ν gn

)
2k

ν = 2n − 4
5n. So 6

5n is a
lower bound on the number of points that belong to exactly oneof the partsPi, i ∈ {1, . . . , L}, which is
impossible since|S| = n. So, we must haves ≤ 2k

ν .

To better illustrate our properties, we present a few interesting examples in Section 4.8.4.

4.6 Inductive Setting

In this section we consider aninductivemodel in whichS is merely a small random subset of points from
a much larger abstract instance spaceX, and clustering is representedimplicitly through a hypothesis
h : X → Y . In the list model our goal is to produce a list of hypotheses,{h1, . . . , ht} such that at least
one of them has error at mostǫ. In the tree model we assume that each node in the tree inducesa cluster
which is implicitly represented as a functionf : X → {0, 1}. For a fixed treet and a pointx, we define
t(x) as the subset of nodes inT that containx (the subset of nodesf ∈ t with f(x) = 1). We say that a
treeT has error at mostǫ if T (X) has a pruningf1, ..., fk′ of error at mostǫ.

We analyze in the following, for each of our properties, how large a setS we need to see in order for
our list or tree produced with respect toS to induce a good solution with respect toX.

The average attraction property. Our algorithms for the average attraction property (Property 3) and the
average weighted attraction property are already inherently inductive.

The strict separation property. We can adapt the algorithm in Theorem 4.3.2 to the inductive setting as
follows. We first draw a setS of n = O

(
k
ǫ ln

(
k
δ

))
unlabeled examples. We run the algorithm described

in Theorem 4.3.2 on this set and obtain a treet on the subsets ofS. Let Q be the set of leaves of this
tree. We associate each nodeu in t a boolean functionfu specified as follows. Considerx ∈ X, and let
q(x) ∈ Q be the leaf given byargmaxq∈QK(x, q); if u appears on the path fromq(x) to the root, then set
fu(x) = 1, otherwise setfu(x) = 0.

Note thatn is large enough to ensure that with probability at least1 − δ, S includes at least a point
in each cluster of size at leastǫ

k . Remember thatC = {C1, . . . , Ck} is the correct clustering of the entire
domain. LetCS be the (induced) correct clustering on our sampleS of sizen. Since our property is
hereditary, Theorem 4.3.2 implies thatCS is a pruning oft. It then follows from the specification of our
algorithm and from the definition of the strict separation property that with probability at least1 − δ the
partition induced over the whole space by this pruning isǫ-close toC.
The strong stability of large subsets property.We can also naturally extend the algorithm for Property 7
to the inductive setting. The main difference in the inductive setting is that we have toestimate(rather
thancompute) the |Cr \ Cr′ |, |Cr′ \ Cr|, |Cr ∩ Cr′ |, K(Cr ∩ Cr′ , Cr \ Cr′) andK(Cr ∩ Cr′ , Cr′ \ Cr)
for any two clustersCr, Cr′ in the listL. We can easily do that with onlypoly(k, 1/ǫ, 1/γ, 1/δ) log(|L|))
additional points, whereL is the input list in Algorithm 4 (whose size depends on1/ǫ, 1/γ andk only).
Specifically, using a modification of the proof in Theorem 4.5.5 and standard concentration inequalities
(e.g. the McDiarmid inequality [104]) we can show that:

Theorem 4.6.1 Assume thatK is a similarity function satisfying the(s, γ)-strong stability of large subsets
property for(X, l). Assume thats = O(ǫ2γ/k2). Then using Algorithm 4 with parametersα = O(ǫ/k),
g = O(ǫ2/k2), f = O(ǫ2γ/k2), together with Algorithm 2 we can produce a tree with the property that
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the ground-truth isǫ-close to a pruning of this tree. Moreover, the size of this tree isO(k/ǫ). We use

O
(

k
γ2 ln

(
k
ǫδ

)
·
(

k
ǫ

) 4k

γ2 ln
(

k
ǫδ

)
ln(1

δ )
)

points in the first phase andO
(

1
γ2

1
g2

k
γ2 log 1

ǫ log k
δf log k

)
points in

the second phase.

Note that each cluster is represented as a nearest neighbor hypothesis over at mostk sets.

The strong stability property. We first note that we need to consider a variant of our propertythat has
a γ-gap. To see why this is necessary consider the following example. Suppose allK(x, x′) values are
equal to1/2, except for a special single center pointxi in each clusterCi with K(xi, x) = 1 for all x in
Ci. This satisfies strong-stability since for everyA ⊂ Ci we haveK(A,Ci \A) is strictly larger than1/2.
Yet it is impossible to cluster in the inductive model because our sample is unlikely to contain the center
points. The variant of our property that is suited to the inductive setting is the following:

Property 8 The similarity functionK satisfies theγ-strong stability property for the clustering problem
(X, l) if for all clustersCr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr, for all A′ ⊆ Cr′ we have

K(A,Cr \A) > K(A,A′) + γ.

For this property, we could always run the algorithm for Theorem 4.6.1, though running time would
be exponential ink and1/γ. We show here how we can get polynomial dependence on these parameters
by adapting Algorithm 3 to the inductive setting as in the case of the strict order property. Specifically, we
first draw a setS of n unlabeled examples. We run the average linkage algorithm onthis set and obtain a
treet on the subsets ofS. We then attach each new pointx to its most similar leaf in this tree as well as
to the set of nodes on the path from that leaf to the root. For a formal description see Algorithm 5. While
this algorithm looks natural, proving its correctness requires more involved arguments.

Algorithm 5 Inductive Average Linkage, Tree Model

Input: Similarity functionK, parametersγ, ǫ > 0, k ∈ Z
+; n = n(ǫ, γ, k, δ);

• Pick a setS = {x1, . . . , xn} of n random examples fromX

• Run the average linkage algorithm (Algorithm 3) on the setS and obtain a treet on the subsets of
S. Let Q be the set of leaves of this tree.

• Associate each nodeu in t a functionfu (which induces a cluster) specified as follows.

Considerx ∈ X, and letq(x) ∈ Q be the leaf given byargmaxq∈QK(x, q); if u appears on the
path fromq(x) to the root, then setfu(x) = 1, otherwise setfu(x) = 0.

• Output the treet.

We show in the following that forn = poly(k, 1/ǫ, 1/γ, 1/δ) we obtain a treeT which has a pruning
f1, ..., fk′ of error at mostǫ. Specifically:

Theorem 4.6.2 Let K be a similarity function satisfying the strong stability property for the clustering
problem(X, l). Then using Algorithm 5 with parametersn = poly(k, 1/ǫ, 1/γ, 1/δ), we can produce a
tree with the property that the ground-truth isǫ-close to a pruning of this tree.

Proof: Remember thatC = {C1, . . . , Ck} is the ground-truth clustering of the entire domain. Let
CS = {C ′

1, . . . , C
′
k} be the (induced) correct clustering on our sampleS of sizen. As in the previous

arguments we assume that a cluster is big if it has probability mass at leastǫ2k .
First, Theorem 4.6.3 below implies that with high probability the clustersC ′

i corresponding to the large
ground-truth clusters satisfy our property with a gapγ/2. (Just perform a union bound overx ∈ S \ C ′

i.)
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It may be thatC ′
i corresponding to the small ground-truth clusters do not satisfy the property. However,

a careful analysis of the argument in Theorem 4.5.1 shows that that with high probabilityCS is a pruning
of the treet. Furthermore sincen is large enough we also have that with high probabilityK(x,C(x)) is
within γ/2 of K(x,C ′(x)) for a1− ǫ fraction of pointsx. This ensures that with high probability, for any
such goodx the leafq(x) belongs toC(x). This finally implies that the partition induced over the whole
space by the pruningCS of the treet is ǫ-close toC.

Note that each clusteru is implicitly represented by the functionfu defined in the description of
Algorithm 5.

We prove in the following that for a sufficiently large value of n sampling preserves stability. Specifi-
cally:

Theorem 4.6.3 LetC1, C2, . . . , Ck be a partition of a setX such that for anyA ⊆ Ci and anyx 6∈ Ci,

K(A,Ci \A) ≥ K(A,x) + γ.

Let x 6∈ Ci and letC ′
i be a random subset ofn′ elements ofCi. Then,n′ = poly(1/γ, log(1/δ)) is

sufficient so that with probability1− δ, for anyA ⊂ C ′
i,

K(A,C ′
i \ A) ≥ K(A,x) +

γ

2
.

Proof: First of all, the claim holds for singleton subsetsA with high probability using a Chernoff bound.
This implies the condition is also satisfied for every subsetA of size at mostγn′/2. Thus, it remains
to prove the claim for large subsets. We do this using the cut-decomposition of [114] and the random
sampling analysis of [14].

Let N = |Ci|. By [114], we can decompose the similarity matrix forCi into a sum of cut-matrices
B1 + B2 + . . . + Bs plus a low cut-norm matrixW with the following properties. First, eachBj is a
cut-matrix, meaning that for some subsetSj1 of the rows and subsetSj2 of the columns and some value
dj, we have:Bj[xy] = dj for x ∈ Sj1, y ∈ Sj2 and allBj[xy] = 0 otherwise. Second, eachdj = O(1).
Finally, s = 1/ǫ2 cut-matrices are sufficient so that matrixW has cut-norm at mostǫ2N : that is, for
any partition of the verticesA,A′, we have|∑x∈A,y∈A′ W [xy]| ≤ ǫN2; moreover,||W ||∞ ≤ 1/ε and
||W ||F ≤ N .

We now closely follow arguments in [14]. First, let us imagine that we have exact equalityCi = B1 +
. . .+Bs, and we will add in the matrixW later. We are given that for allA, K(A,Ci \A) ≥ K(A,x)+γ.
In particular, this trivially means that for each “profile” of sizes{tjr}, there is no setA satisfying

|A ∩ Sjr| ∈ [tjr − α, tjr + α]N

|A| ≥ (γ/4)N

that violates our given condition. The reason for considering cut-matrices is that the values|A ∩ Sjr|
completely determine the quantityK(A,Ci \ A). We now setα so that the above constraints determine
K(A,Ci \ A) up to±γ/4. In particular, choosingα = o(γ2/s) suffices. This means that fixing a profile
of values{tjr}, we can replace “violates our given condition” withK(A,x) ≥ c0 for some valuec0

depending on the profile, losing only an amountγ/4. We now apply Theorem 9 (random sub-programs of
LPs) of [14]. This theorem states that with probability1−δ, in the subgraphC ′

i, there is no setA′ satisfying
the above inequalities where the right-hand-sides and objective c0 are reduced byO(

√
log(1/δ)/

√
n).

Choosingn ≫ log(1/δ)/α2 we get that with high probability the induced cut-matricesB′
i have the

property that there is noA′ satisfying

|A′ ∩ S′
jr| ∈ [tjr − α/2, tjr + α/2]N

|A′| ≥ (γ/2)n′
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with the objective valuec0 reduced by at mostγ/4. We now simply do a union-bound over all possible
profiles{tjr} consisting of multiples ofα to complete the argument.

Finally, we incorporate the additional matrixW using the following result from [14].

Lemma 4.6.4 [14][Random submatrix] Forε, δ > 0, and anyW an N × N real matrix with cut-norm
||W ||C ≤ εN2, ||W ||∞ ≤ 1/ε and ||W ||F ≤ N , let S′ be a random subset of the rows ofW with
n′ = |S′| and letW ′ be then′ × n′ submatrix ofW corresponding toW . For n′ > (c1/ε

4δ5) log(2/ε),
with probability at least1− δ,

||W ′||C ≤ c2
ε√
δ
n′2

wherec1, c2 are absolute constants.

We want the addition ofW ′ to influence the valuesK(A,C ′
i − A) by o(γ). We now use the fact that we

only care about the case that|A| ≥ γn′/2 and |C ′
i − A| ≥ γn′/2, so that it suffices to affect the sum∑

x∈A,y∈C′
i−A K(x, y) by o(γ2n′2). In particular, this means it suffices to haveǫ = õ(γ2), or equivalently

s = Õ(1/γ4). This in turn implies that it suffices to haveα = õ(γ6), which implies thatn′ = Õ(1/γ12)
suffices for the theorem.

4.7 Approximation Assumptions

When developing ac-approximation algorithm for some clustering objective function F , if the goal is
to actually get the points correct, then one is implicitly making the assumption (or hope) that anyc-
approximation toF must beǫ-close in symmetric difference to the target clustering. Weshow here we
show how assumptions of this kind can be viewed as special cases of theν-strict separation property.

Property 9 Given objective functionF , we say that a metricd over point setS satisfies the(c, ǫ)-F
property with respect to targetC if all clusteringsC′ that are within a factorc of optimal in terms of
objectiveF are ǫ-close toC.
We now consider in particular thek-median andk-center objective functions.

Theorem 4.7.1 If metricd satisfies the (2, ǫ)-k-median property for datasetS, then the similarity function
−d satisfies theν-strict separation property forν = 4ǫ.
Proof: Let C = C1, C2, ..., Ck be the target clustering and letOPT = {OPT1,OPT2 ...,OPTk} be the
k-median optimal clustering, where

∑
i |Ci ∩ OPTi| ≥ (1 − ǫ)n. Let’s mark the all set of points of size

at mostǫn at most whereC andOPT disagree.
If there exists an unmarkedxj that is more similar to some unmarkedzj in a different cluster than to

some unmarkedyj in its own cluster, and if so we mark all three points. If this process halts after≤ ǫn
rounds, then we are happy: the unmarked set, which has at least (1−4ǫ)n points, satisfies strict separation.
We now claim we can get a contradiction if the process lasts longer. Specifically, begin withOPT (not
C) and move eachxj to the cluster containing pointzj . Call the resultOPT′. Note that for allj, the pair
(xj, yj) are in thesamecluster inC (because we only chose from unmarked points whereC andOPT
agree) but are indifferentclusters inOPT′. So,d(OPT′, C) > ǫn. However,OPT′ has cost at most
2OPT; to see this note that movingxi into the cluster of the correspondingzi will increase thek-median
objective by at mostcost′(xj) ≤ d(xj , zj) + cost(zj) ≤ d(xj , yj) + cost(zj) ≤ cost(xj) + cost(yj) +
cost(zj). Thus, thek-median objective at most doubles, i.e,cost′(OPT′) ≤ cost(OPT) contradicting
our initial assumption.

We can similarly prove:
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Theorem 4.7.2 If the metricd satisfies the (3, ǫ)-k-center property, then the similarity function(−d)
satisfies theν-strict separation property forν = 4ǫ.

So if the metricd satisfies the (2, ǫ)-k-median or the (2, ǫ)-k-center property for datasetS, then
the similarity function−d satisfies theν-strict separation property forν = 4ǫ. Theorem 4.3.3 (in Sec-
tion 4.7.1) then implies that as long as the smallest clusterin the target has size20ǫn we can produce a
tree such that the ground-truth clustering is4ǫ-close to a pruning of this tree.

Note: In fact, the both the(2, ǫ)-k-median property and the(2, ǫ)-k-means property are quite a bit more
restrictive thanν-strict separation. They imply, for instance, that except for anO(ǫ) fraction of “bad”
points, there existsd such that all points in the same cluster have distance much less thand and all points
in different clusters have distance much greater thand. In contrast,ν-strict separation would allow for
different distance scales at different parts of the graph.

We have further exploited this in recent work [43]. Specifically in [43] we show that if we assume that
anyc-approximation to the k-median objective isǫ-close to the target—then we can produce clusterings
that areO(ǫ)-close to the target,even for valuesc for which obtaining ac-approximation is NP-hard.

In particular, the main results of [43] for the are the following:

Theorem 4.7.3 If metricd satisfies the(1+α, ǫ)-k-median property for datasetS and each cluster in the
target clustering has size at least(4+15/α)ǫn+2, then we can efficiently find a clustering that isǫ-close
to the target.

Theorem 4.7.4 If metricd satisfies the(1+α, ǫ)-k-median property for datasetS, then we can efficiently
find a clustering which isO(ǫ/α)-close to the target.

These results also highlight a somewhat surprising conceptual difference between assuming that the
optimalsolution to thek-median objective isǫ-close to the target, and assuming that anyapproximately
optimalsolution isǫ-close to the target, even for approximation factor sayc = 1.01. In the former case,
the problem of finding a solution that isO(ǫ)-close to the target remains computationally hard, and yet for
the latter we have an efficient algorithm.

We also prove in [43] similar results for thek-means and min-sum properties.

4.7.1 Theν-strict separation Property

We end this section by proving theorem 4.3.3.
Theorem 4.3.3If K satisfiesν-strict separation, then so long as the smallest correct cluster has size
greater than5νn, we can produce a tree such that the ground-truth clusteringis ν-close to a pruning of
this tree.

Proof: Let S′ ⊆ S be the set of(1 − ν)n points such thatK satisfies strict separation with respect
to S′. Call the points inS′ “good”, and those not inS′ “bad” (of course, goodness is not known to the
algorithm). We first generate a listL of n2 clusters such that, ignoring bad points, any cluster in the
ground-truth is in the list. We can do this by for each pointx ∈ S creating a cluster of thet nearest points
to it for each4νn ≤ t ≤ n.

We next run a procedure that removes points from clusters that are non-laminar with respect to each
other without hurting any of the correct clusters, until theremaining set is fully laminar. Specifically, while
there exist two clustersC andC ′ that are non-laminar with respect to each other, we do the following:

1. If eitherC or C ′ has size≤ 4νn, delete it from the list. (By assumption, it cannot be one of the
ground-truth clusters).

2. If C and C ′ are “somewhat disjoint” in that|C \ C ′| > 2νn and |C ′ \ C| > 2νn, each point
x ∈ C∩C ′ chooses one ofC or C ′ to belong to based on whichever ofC \C ′ or C ′ \C respectively
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has largermediansimilarity to x. We then removex from the cluster not chosen. Because each of
C \ C ′ andC ′ \ C has a majority of good points, if one ofC or C ′ is a ground-truth cluster (with
respect toS′), all good pointsx in the intersection will make the correct choice.C andC ′ are now
fully disjoint.

3. If C, C ′ are “somewhat equal” in that|C \ C ′| ≤ 2νn and|C ′ \ C| ≤ 2νn, we make them exactly
equal based on the following related procedure. Each pointx in the symmetric difference ofC
andC ′ decidesin or out based on whether its similarity to the(νn + 1)st most-similar point in
C ∩ C ′ is larger or smaller (respectively) than its similarity to the(νn + 1)st most similar point in
S \ (C ∪C ′). If x is a good point inC \C ′ andC is a ground-truth cluster (with respect toS′), then
x will correctly choosein, whereas ifC ′ is a ground-truth cluster thenx will correctly chooseout.
Thus, we can replaceC andC ′ with a single cluster consisting of their intersection plusall pointsx
that chosein, without affecting the correct clusters.

4. If none of the other cases apply, it may still be there existC,C ′ such thatC “somewhat contains”
C ′ in that|C \C ′| > 2νn and0 < |C ′\C| ≤ 2νn. In this case, choose the largest suchC and apply
the same procedure as in Step 3, but only over the pointsx ∈ C ′ \ C. At the end of the procedure,
we haveC ⊇ C ′ and the correct clusters have not been affected with respectto the good points.

Since all clusters remaining are laminar, we can now arrangethem into a forest, which we then arbitrarily
complete into a tree.

4.8 Other Aspects and Examples

4.8.1 Computational Hardness Results

Our framework also allows us to study computational hardness results as well. We discuss here a simple
example.

Property 10 A similarity functionK satisfies theunique best cut property for the clustering problem
(S, l) if r = 2 and

∑
x∈C1,x′∈C2

K(x, x′) <
∑

x∈A,x′∈B

K(x, x′) for all partitions (A,B) 6= (C1, C2) of S.

Clearly, by design the clustering complexity of Property 10is 1. However, we have the following compu-
tational hardness result.
Theorem 4.8.1 List-clustering under the unique best cut property is NP-hard. That is, there existsǫ > 0
such that given a datasetS and a similarity functionK satisfying the unique best cut property, it is NP-
hard to produce a polynomial-length list of clusterings such that at least one isǫ-close to the ground
truth.

Proof: It is known that the MAX-CUT problem on cubic graphs is APX-hard [12] (i.e. it is hard to
approximate within a constant factorα < 1).

We create a family((S, l),K) of instances for our clustering property as follows. LetG = (V,E)
be an instance of the MAX-CUT problem on cubic graphs,|V | = n. For each vertexi ∈ V in the
graph we associate a pointxi ∈ S; for each edge(i, j) ∈ E we defineK(xi, xj) = −1, and we define
K(xi, xj) = 0 for each(i, j) /∈ E. Let SV ′ denote the set{xi : i ∈ V ′}. Clearly for any given cut
(V1, V2) in G = (V,E), the value of the cut is exactly

F (SV1 , SV2) =
∑

x∈SV1
,x′∈SV2

−K(x, x′).

Let us now add tiny perturbations to theK values so that there is a unique partition(C1, C2) =
(SV ∗

1
, SV ∗

2
) minimizing the objective functionF , and this partition corresponds to some maxcut(V ∗

1 , V ∗
2 )
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of G (e.g., we can do this so that this partition corresponds to the lexicographically first such cut). By
design,K now satisfies the unique best cut property for the clusteringproblemS with target clustering
(C1, C2).

Defineǫ such that any clustering which isǫ-close to the correct clustering(C1, C2) must be at least
α-close in terms of the max-cut objective. E.g.,ǫ < 1−α

4 suffices because the graphG is cubic. Now,
suppose a polynomial time algorithm produced a polynomial-sized list of clusterings with the guarantee
that at least one clustering in the list has error at mostǫ in terms of its accuracy with respect to(C1, C2).
In this case, we could then just evaluate the cut value for allthe clusterings in the list and pick the best
one. Since at least one clustering is at leastǫ-close to(C1, C2) by assumption, we are guaranteed that at
least one is withinα of the optimum cut value.

Note that we can get a similar results for any clustering objectiveF that (a) is NP-hard to approximate
within a constant factor, and (b) has the smoothness property that it gives approximately the same value
to any two clusterings that are almost the same.

4.8.2 Other interesting properties

An interesting relaxation of the average attraction property is to ask that there exists a cluster so that most
of the points are noticeably more similar on average to otherpoints in their own cluster than to points
in all the other clusters, and that once we take out the pointsin that cluster the property becomes true
recursively5. Formally:

Property 11 A similarity functionK satisfies theγ-weak average attractionproperty for the clustering
problem(S, l) if there exists clusterCr such that all examplesx ∈ Cr satisfy:

K(x,C(x)) ≥ K(x, S \ Cr) + γ,

and moreover the same holds recursively on the setS \ Cr.

We can then adapt Algorithm 2 to get the following result:

Theorem 4.8.2 Let K be a similarity function satisfyingγ-weak average attraction for the clustering

problem(S, l). Using Algorithm 2 withs(ǫ, γ, k) = 4
γ2 ln

(
8k
ǫδ

)
andN(ǫ, γ, k) =

(
2k
ǫ

) 4k

γ2 ln
(

8k
ǫδ

)
ln(1

δ ) we

can produce a list of at mostk
O
(

k

γ2 ln
(

1
ǫ

)
ln
(

k
ǫδ

))
clusterings such that with probability1− δ at least one

of them isǫ-close to the ground-truth.

Strong attraction An interesting property that falls in between the weak stability property and the aver-
age attraction property is the following:
Property 12 The similarity functionK satisfies theγ-strong attraction property for the clustering prob-
lem(S, l) if for all clustersCr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr we have

K(A,Cr \A) > K(A,Cr′) + γ.

We can interpret the strong attraction property as saying that for any two clustersCr andCr′ in the
ground truth, for any subsetA ⊂ Cr, the subsetA is more attracted to the rest of its own cluster than to
Cr′ . It is easy to see that we cannot cluster in the tree model, andmoreover we can show an lower bound
on the sample complexity which is exponential. Specifically:

Theorem 4.8.3 For ǫ ≤ γ/4, theγ-strong attraction property has(ǫ, 2) clustering complexity as large as
2Ω(1/γ).

5Thanks to Sanjoy Dasgupta for pointing out that this property is satisfied on real datasets, such as the MINST dataset.
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Proof: ConsiderN = 1
γ blobs of equal probability mass. Let’s consider a special matching of these blobs

{(R1, L1), (R2, L2), . . . , (RN/2, LN/2)} and let’s defineK(x, x′) = 0 if x ∈ Ri andx′ ∈ Li for some
i andK(x, x′) = 1 otherwise. Then each partition of these blobs intotwo pieces of equal size that fully
”respects” our matching (in the sense that for alli Ri, Li are on two different parts) satisfies Property 12
with a gapγ′ = 2γ. The desired result then follows from the fact that the number of such partitions (which

split the set of blobs into two pieces of equal “size” and fully respect our matching) is2
1
2γ

−1.

It would be interesting to see if one could develop algorithms especially designed for this property
that provides better guarantees than Algorithm 2.

4.8.3 Verification

A natural question is how hard is it (computationally) to determine if a proposed clustering of a given
datasetS satisfies a given property or not. It is important to note, however, that we can always in poly-
nomial time compute the distance between two clusterings (via a weighted matching algorithm). This
then ensures that the user is able to compare in polynomial time the target/built-in clustering with any
proposed clustering. So, even if it is computationally difficulty to determine if a proposed clustering of
a given datasetS satisfies a certain property or not, the property is still reasonable to consider. Note that
computing the distance between two the target clustering and any other clustering is the analogue of com-
puting the empirical error rate of a given hypothesis in the PAC setting [205]; furthermore, there are many
learning problems in the PAC model where the consistency problem is NP-hard (e.g.3-Term DNF), even
though the corresponding classes are learnable.

4.8.4 Examples

In all the examples below we consider symmetric similarity functions.

Strict separation and Spectral partitioning Figure 4.2 shows that it is possible for a similarity function
to satisfy the strict separation property for a given clustering problem for which Theorem 4.3.2 gives a
good algorithm, but nonetheless to fool a straightforward spectral clustering approach.

Consider2k blobsB1, B2, . . . , Bk, B′
1, B

′
2, . . . , B

′
k of equal probability mass. Assume thatK(x, x′) =

1 if x ∈ Bi andx′ ∈ B′
i, andK(x, x′) = 1 if x, x′ ∈ Bi or x, x′ ∈ B′

i, for all i ∈ {1, . . . , k}. Assume also
K(x, x′) = 0.5 if x ∈ Bi andx′ ∈ Bj or x ∈ B′

i andx′ ∈ B′
j, for i 6= j; let K(x, x′) = 0 otherwise. See

Figure 4.2 (a). LetCi = Bi ∪B′
i, for all i ∈ {1, . . . , k}. It is easy to verify that the clusteringC1, . . . , Ck

(see Figure 4.2 (b)) is consistent with Property 4.2 (a possible value for the unknown threshold isc = 0.7).
However fork large enough the cut of min-conductance is the one shown in Figure 4.2 (c), namely the
cut that splits the graph into parts{B1, B2, . . . , Bk} and{B′

1, B
′
2, . . . , B

′
k}. A direct consequence of this

example is that applying a spectral clustering approach could lead to a hypothesis of high error.

Linkage-based algorithms and strong stability Figure 4.3 (a) gives an example of a similarity func-
tion that does not satisfy the strict separation property, but for large enoughm, w.h.p. will satisfy the
strong stability property. (This is because there are at most mk subsetsA of sizek, and each one has fail-
ure probability onlye−O(mk).) However, single-linkage usingKmax(C,C ′) would still work well here.
Figure 4.3 (b) extends this to an example where single-linkage usingKmax(C,C ′) fails. Figure 4.3 (c)
gives an example where strong stability is not satisfied and average linkage would fail too. However notice
that the average attraction property is satisfied and Algorithm 2 will succeed.
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Figure 4.2:Consider2k blobsB1, B2, . . . , Bk, B′

1, B
′

2, . . . , B
′

k of equal probability mass. Points inside the same
blob have similarity 1. Assume thatK(x, x′) = 1 if x ∈ Bi andx′ ∈ B′

i. Assume alsoK(x, x′) = 0.5 if x ∈ Bi and
x′ ∈ Bj or x ∈ B′

i andx′ ∈ B′

j , for i 6= j; let K(x, x′) = 0 otherwise. LetCi = Bi ∪B′

i, for all i ∈ {1, . . . , k}. It
is easy to verify that the clusteringC1, . . . , Ck is consistent with Property 1 (part (b)). However, fork large enough
the cut of min-conductance is the cut that splits the graph into parts{B1, B2, . . . , Bk} and{B′

1, B
′

2, . . . , B
′

k} (part
(c)).

4.9 Conclusions and Discussion

In this chapter we provide a generic framework for analyzingwhat properties of a similarity function are
sufficient to allow it to be useful for clustering, under two natural relaxations of the clustering objective.
We propose a measure of theclustering complexityof a given property that characterizes its information-
theoretic usefulness for clustering, and analyze this complexity for a broad class of properties, as well as
develop efficient algorithms that are able to take advantageof them.

Our work can be viewed both in terms of providing formal advice to thedesignerof a similarity
function for a given clustering task (such as clustering query search results) and in terms of advice about
whatalgorithmsto use given certain beliefs about the relation of the similarity function to the clustering
task. Our model also provides a better understanding of when(in terms of the relation between the
similarity measure and the ground-truth clustering) different hierarchical linkage-based algorithms will
fare better than others. Abstractly speaking, our notion ofa propertyparallels that of adata-dependent
concept class[207] (such as large-margin separators) in the context of classification.

Open questions:Broadly, one would like to analyze other natural propertiesof similarity functions, as
well as to further explore and formalize other models of interactive feedback. In terms of specific open
questions, for the average attraction property (Property 3) we have an algorithm that fork = 2 produces
a list of size approximately2O(1/γ2 ln 1/ǫ) and a lower bound on clustering complexity of2Ω(1/γ). One
natural open question is whether one can close that gap. A second open question is that for the strong
stability of large subsets property (Property 7), our algorithm produces hierarchy but has larger running
time substantially larger than that for the simpler stability properties. Can an algorithm with running time
polynomial ink and1/γ be developed? Can one prove stability properties for clustering based on spectral
methods, e.g., the hierarchical clustering algorithm given in [86]? More generally, it would be interesting
to determine whether these stability properties can be further weakened and still admit a hierarchical
clustering. Finally, in this work we have focused on formalizing clustering with non-interactive feedback.
It would be interesting to formalize clustering with other natural forms of feedback.
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Figure 4.3:Part (a): Consider two blobsB1, B2 with m points each. Assume thatK(x, x′) = 0.3 if x ∈ B1 and
x′ ∈ B2, K(x, x′) is random in{0, 1} if x, x′ ∈ Bi for all i. ClusteringC1, C2 does not satisfy Property 1, but
for large enoughm, w.h.p. will satisfy Property 5. Part (b): Consider four blobsB1, B2, B3, B4 of m points each.
AssumeK(x, x′) = 1 if x, x′ ∈ Bi, for all i, K(x, x′) = 0.85 if x ∈ B1 andx′ ∈ B2, K(x, x′) = 0.85 if x ∈ B3

andx′ ∈ B4, K(x, x′) = 0 if x ∈ B1 andx′ ∈ B4, K(x, x′) = 0 if x ∈ B2 andx′ ∈ B3. Now K(x, x′) = 0.5 for
all pointsx ∈ B1 andx′ ∈ B3, except for two special pointsx1 ∈ B1 andx3 ∈ B3 for which K(x1, x3) = 0.9.
Similarly K(x, x′) = 0.5 for all pointsx ∈ B2 andx′ ∈ B4, except for two special pointsx2 ∈ B2 andx4 ∈ B4

for which K(x2, x4) = 0.9. For large enoughm, clusteringC1, C2 satisfies Property 5. Part (c): Consider two
blobsB1, B2 of m points each, with similarities within a blob all equal to0.7, and similarities between blobs chosen
uniformly at random from{0, 1}.

4.10 Other Proofs

Algorithm 6 Sampling Based Algorithm, List Model

Input: Data setS, similarity functionK, parametersγ, ǫ > 0, k ∈ Z
+; d1(ǫ, γ, k, δ), d2(ǫ, γ, k, δ).

• SetL = ∅.
• Pick a setU = {x1, . . . , xd1} of d1 random examples fromS, whered1 = d1(ǫ, γ, k, δ). UseU to

define the mappingρU : X → Rd1 , ρU (x) = (K(x, x1),K(x, x2), . . . ,K(x, xd1)).

• Pick a setŨ of d2 = d2(ǫ, γ, k, δ) random examples fromS and consider the induced setρU (Ũ).

• Consider all the(k + 1)d2 possible labellings of the setρU (Ũ) where thek + 1st label is used to
throw out points in theν fraction that do not satisfy the property. For each labelling use the Winnow
algorithm [165, 215] to learn a multiclass linear separatorh and add the clustering induced byh to
L.

• Output the listL.

Theorem 4.4.4 LetK be a similarity function satisfying the(ν, γ)-average weighted attraction property

for the clustering problem(S, l). Using Algorithm 6 with parametersd1 = O
(

1
ǫ

(
1
γ2 + 1

)
ln
(

1
δ

))
and

d2 = O
(

1
ǫ

(
1
γ2 ln d1 + ln 1

δ

) )
we can produce a list of at mostk

Õ
(

k

ǫγ2

)
clusterings such that with proba-

bility 1− δ at least one of them isǫ + ν-close to the ground-truth.
Proof:
For simplicity we describe the casek = 2. The generalization to largerk follows the standard multi-

class to binary reduction [207].
For convenience let us assume that the labels of the two clusters are{−1,+1} and without loss of

generality assume that each of the two clusters has at least an ǫ probability mass. LetU be a random
sample fromS of d1 = 1

ǫ

(
(4/γ)2 + 1

)
ln(4/δ) points. We show first that with probability at least1− δ,
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the mappingρU : X → Rd1 defined as

ρU (x) = (K(x, x1),K(x, x2), . . . ,K(x, xd1))

has the property that the induced distributionρU (S) in Rd1 has a separator of error at mostδ (of the1− ν
fraction of the distribution satisfying the property) atL1 margin at leastγ/4.

First notice thatd1 is large enough so that with high probability our sample contains at leastd =
(4/γ)2 ln(4/δ) points in each cluster. LetU+ be the subset ofU consisting of the firstd points of true
label +1, and letU− be the subset ofU consisting of the firstd points of true label−1. Consider the
linear separatorβ in theρU space defined asβi = l(xi)w(xi), for xi ∈ U− ∪ U+ andβi = 0 otherwise.
We show that, with probability at least(1 − δ), β has error at mostδ at L1 marginγ/4. Consider some
fixed pointx ∈ S. We begin by showing that for any suchx,

Pr
U

(
l(x)β · ρU (x) ≥ d

γ

4

)
≥ 1− δ2.

To do so, first notice thatd is large enough so that with high probability, at least1− δ2, we have both:

|Ex′∈U+ [w(x′)K(x, x′)]−Ex′∼S [w(x′)K(x, x′)|l(x′) = 1]| ≤ γ

4

and
|Ex′∈U− [w(x′)K(x, x′)]−Ex′∼S[w(x′)K(x, x′)|l(x′) = −1]| ≤ γ

4
.

Let’s consider now the case whenl(x) = 1. In this case we have

l(x)β · ρU (x) = d



1

d

∑

xi∈U+

w(xi)K(x, xi)−
1

d

∑

xi∈U−

w(xi)K(x, xi)



 ,

and so combining these facts we have that with probability atleast(1− δ2) the following holds:

l(x)β · ρU (x) ≥ d(Ex′∼S[w(x′)K(x, x′)|l(x′) = 1]− γ/4−Ex′∼S [w(x′)K(x, x′)|l(x′) = −1]− γ/4).

This then implies thatl(x)β·ρU (x) ≥ dγ/2. Finally, sincew(x′) ∈ [−1, 1] for all x′, and sinceK(x, x′) ∈
[−1, 1] for all pairsx, x′, we have that||β||1 ≤ d and||ρU (x)||∞ ≤ 1, which implies

Pr
U

(
l(x)

β · ρU (x)

||β||1||ρU (x)||∞
≥ γ

4

)
≥ 1− δ2.

The same analysis applies for the case thatl(x) = −1.
Lastly, since the above holds for anyx, it is also true for randomx ∈ S, which implies by Markov’s

inequality that with probability at least1 − δ, the vectorβ has error at mostδ at L1 marginγ/4 over
ρU(S), where examples haveL∞ norm at most 1.

So, we have proved that ifK is a similarity function satisfying the(0, γ)-average weighted attraction
property for the clustering problem(S, l), then with high probability there exists a low-error (at most δ)
large-margin (at leastγ4 ) separator in the transformed space under mappingρU . Thus, all we need now to
cluster well is to draw a new fresh sampleŨ , guess their labels (and which to throw out), map them into
the transformed space usingρU , and then apply a good algorithm for learning linear separators in the new
space that (if our guesses were correct) produces a hypothesis of error at mostǫ with probability at least
1− δ. Thus we now simply need to calculate the appropriate value of d2.
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The appropriate value ofd2 can be determined as follows. Remember that the vectorβ has error at
mostδ at L1 marginγ/4 over ρU (S), where the mappingρU produces examples ofL∞ norm at most
1. This implies that the Mistake bound of the Winnow algorithm on new labeled data (restricted to the
1 − δ good fraction) isO

(
1
γ2 ln d1

)
. Settingδ to be sufficiently small such that with high probability no

bad points appear in the sample, and using standard mistake bound to PAC conversions [166], this then

implies that a sample size of sized2 = O
(

1
ǫ

(
1
γ2 ln d1 + ln 1

δ

) )
is sufficient.
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Chapter 5

Active Learning

In this chapter we return to the supervised classification setting and present some of our results onActive
Learning. As mentioned in Chapter 1, in the active learning model [87,96], the learning algorithm is
allowed to draw random unlabeled examples from the underlying distribution and ask for the labels of
any of these examples. The hope is that a good classifier can belearned with significantly fewer labels by
actively directing the queries to informative examples.

As in passive supervised learning, but unlike in semi-supervised learning (which we discussed in
Chapter 2), the only prior belief about the learning problemhere is that the target function (or a good
approximation of it) belongs to a given concept class. For some concept classes such as thresholds on
the line, one can achieve an exponential improvement over the usual sample complexity of supervised
learning, under no additional assumptions about the learning problem [87, 96]. In general, the speedups
achievable in active learning depend on the match between the data distribution and the hypothesis class,
and therefore on the target hypothesis in the class. The mostnoteworthy non-trivial example of improve-
ment is the case of homogeneous (i.e., through the origin) linear separators, when the data is linearly
separable and distributed uniformly over the unit sphere [96, 99, 113]. There are also simple examples
where active learning does not help at all, even in the realizable case [96]. (We refer here to the traditional
sample complexity analysis in the active learning setting.) Note that in the active learning model the goal
is to reduce the dependence on1/ǫ from linear or quadratic to logarithmic, and that this is somewhat
orthogonal to the goals considered in Chapter 2 where the focus was on reducing the complexity of the
class of functions.

In our work, we provide several new theoretical results for Active Learning. First, we prove for
the first time, the feasibility of agnostic active learning.Specifically we propose and analyze the first
active learning algorithm that finds anǫ-optimal hypothesis in any hypothesis class, when the underlying
distribution has arbitrary forms of noise. We also analyze margin based active learning of linear separators.
We discuss these in Sections 5.1 and 5.2 below, and as mentioned in Section 1.3, these results are based
on work appearing in [31, 34, 36]. Finally, in recent work [35, 42], we consider a twist on the usual active
learning model; in particular, we show that in an asymptoticmodel for Active Learning where one bounds
the number of queries the algorithm makes before it finds a good function (i.e. one of arbitrarily small
error rate), but not the number of queries before itknowsit has found a good function, one can obtain
significantly better bounds on the number of label queries required to learn than in the traditional active
learning models. See section 5.3.
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5.1 Agnostic Active Learning

In this section, we provide and analyze the first active learning algorithm that finds anǫ-optimal hypothe-
sis in any hypothesis class, when the underlying distribution has arbitrary forms of noise. The algorithm,
A2 (for AgnosticActive), relies only upon the assumption that it has access toa stream of unlabeled ex-
amples drawni.i.d. from a fixed distribution. We show thatA2 achieves an exponential improvement
(i.e., requires onlyO

(
ln 1

ǫ

)
samples to find anǫ-optimal classifier) over the usual sample complexity of

supervised learning, for several settings considered before in the realizable case. These include learn-
ing threshold classifiers and learning homogeneous linear separators with respect to an input distribution
which is uniform over the unit sphere.

5.1.1 Introduction

Most of the previous work on active learning has focused on the realizable case. In fact, many of the
existing active learning strategies arenoise seekingon natural learning problems, because the process
of actively finding an optimal separation between one class and another often involves label queries for
examples close to the decision boundary, and such examples often have a large conditional noise rate (e.g.,
due to a mismatch between the hypothesis class and the data distribution). Thus the most informative
examples are also the ones that are typically the most noise-prone.

Consider an active learning algorithm which searches for the optimal threshold on an interval using
binary search. This example is often used to demonstrate thepotential of active learning in the noise-free
case when there is a perfect threshold separating the classes [87]. Binary search needsO(ln 1

ǫ ) labeled
examples to learn a threshold with error less thanǫ, while learning passively requiresO

(
1
ǫ

)
labels. A

fundamental drawback of this algorithm is that a small amount of adversarial noise can force the algorithm
to behave badly. Is this extreme brittleness to small amounts of noise essential? Can an exponential
decrease in sample complexity be achieved? Can assumptionsabout the mechanism producing noise be
avoided? These are the questions addressed here.

Previous Work on Active Learning There has been substantial work on active learning under additional
assumptions. For example, the Query by Committee analysis [113] assumes realizability (i.e., existence
of a perfect classifier in a known set), and a correct Bayesianprior on the set of hypotheses. Dasgupta [96]
has identified sufficient conditions (which are also necessary against an adversarially chosen distribution)
for active learning given only the additional realizability assumption. There are several other papers that
assume only realizability [95, 99]. If there exists a perfect hypotheses in the concept class, then any infor-
mative querying strategy can direct the learning process without the need to worry about the distribution
it induces—any inconsistent hypothesis can be eliminated based on asinglequery, regardless of which
distribution this query comes from. In the agnostic case, however, a hypothesis that performs badly on
the query distribution may well be the optimal hypothesis with respect to the input distribution. This is
the main challenge in agnostic active learning that is not present in the non-agnostic case. Burnashev and
Zigangirov [76] allow noise, but require a correct Bayesianprior on threshold functions. Some papers
require specific noise models such as a constant noise rate everywhere [80] or Tsybakov noise condi-
tions [34, 79]. (In fact, in section 5.2 we discuss active learning of linear separators under a certain type
of noise related to the Tsybakov noise conditions [34, 79].)

Themembership-querysetting [16, 17, 75, 139] is similar to active learning considered here, except
that no unlabeled data is given. Instead, the learning algorithm is allowed to query examples of its own
choice. This is problematic in several applications because natural oracles, such as hired humans, have
difficulty labeling synthetic examples [47]. Ulam’s Problem (quoted in [91]), where the goal is find a
distinguished element in a set by asking subset membership queries, is also related. The quantity of

110



interest is the smallest number of such queries required to find the element, given a bound on the number
of queries that can be answered incorrectly. But both types of results do not apply here since an active
learning strategy can only buy labels of the examples it observes. For example, a membership query
algorithm can be used to quickly hone on a separating hyperplane in a high-dimensional space. An active
learning algorithm can not do so when the data distribution does not support queries close to the decision
boundary.1

Our Contributions We present here the firstagnosticactive learning algorithm,A2. The only neces-
sary assumption is that the algorithm has access to a stream of examples drawni.i.d. from some fixed
distribution. No additional assumptions are made about themechanism producing noise (e.g., class/target
misfit, fundamental randomization, adversarial situations). The main contribution of our work is to prove
the feasibility of agnostic active learning.

Two comments are in order:
1. We define thenoise rateof a hypothesis classC with respect to a fixed distributionD as the min-

imum error rate of any hypothesis inC on D (see section 2 for a formal definition). Note that for
the special case of so calledlabel noise(where a coin of constant bias is used to determine whether
any particular example is mislabeled with respect to the best hypothesis) these definitions coincide.

2. We regard unlabeled data as being of minimal cost so as to focus exclusively on the question of
whether or not agnostic active learning is possible at all. Substantial follow-up to the original
publication of our work [31] has successfully optimized unlabeled data usage to be on the same
order as passive learning [100].2

A2 is provably correct (for any0 < ǫ < 1/2 and0 < δ < 1/2, it outputs anǫ-optimal hypothesis with
probability at least1 − δ) and it is never harmful (it never requires significantly more labeled examples
than batch learning).A2 provides exponential sample complexity reductions in several settings previously
analyzed without noise or with known noise conditions. Thisincludes learning threshold functions with
small noise with respect toǫ and hypothesis classes consisting of homogeneous (throughthe origin) linear
separators with the data distributed uniformly over the unit sphere inRd. The last example has been the
most encouraging theoretical result so far in the realizable case [99].

TheA2 analysis achieves an almost contradictory property: for some sets of classifiers, anǫ-optimal
classifier can be output with fewer labeled examples than areneeded to estimate the error rate of the
chosen classifier with precisionǫ from random examples only.

Lower Bounds It is important to keep in mind that the speedups achievable with active learning depend
on the match between the distribution over example-label pairs and the hypothesis class, and therefore on
the target hypothesis in the class. Thus one should expect the results to be distribution-dependent. There
are simple examples where active learning does not help at all in the model analyzed in this section, even
if there is no noise [96]. These lower bounds essentially result from an “aliasing” effect and they are
unavoidable in the setting we analyze in this section (wherewe bound the number of queries an algorithm
makes before itcan prove it has found a good function).3

1Note also that much of the work on using membership queries [16, 17, 75, 139] has been focused on problems where the it
was not possible to get a polynomial time learning algorithmin the passive learning setting (in a PAC sense) with the hopethat
the membership queries will allow learning in polynomial time. In contrast, much of the work in the Active Learning literature
has been focused on reducing the sample complexity.

2One can show we might end up using a factor of1/ǫ more unlabeled examples than the number of labeled examplesone
would normally need in a passive learning setting.

3In recent work [35, 42], we have shown that in an asymptotic model for Active Learning where one bounds the number of
queries the algorithm makes before it finds a good function (i.e. one of arbitrarily small error rate), but not the number of queries
before it can prove or it knows it has found a good function, one can obtain significantly better bounds on the number of label
queries required to learn. See Section 5.3.
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In the noisy situation, the target function itself can be very simple (e.g., a threshold function), but
if the error rate is very close to1/2 in a sizeable interval near the threshold, then no active learning
procedure can significantly outperform passive learning. In particular, in the pure agnostic setting one
cannothope to achieve speedups when the noise rateν is large, due to a lower bound ofΩ(ν2

ǫ2
) on the

sample complexity of any active learner [146]. However, under specific noise models (such as a constant
noise rate everywhere [80] or Tsybakov noise conditions [34, 79]) and for specific classes, one can still
show significant improvement over supervised learning.

Structure of this section Preliminaries and notation are covered in Section 5.1.2.A2 is presented in
Section 5.1.3; Section 5.1.3 also proves thatA2 is correct and that it is never harmful (i.e., it never requires
significantly more samples than batch learning). Thresholdfunctions such asft(x) = sign(x − t) and
homogeneous linear separators under the uniform distribution over the unit sphere are analyzed in Sec-
tion 5.1.4. Conclusions, a discussion of subsequent work, and open questions are covered in Section 5.1.6.

5.1.2 Preliminaries

We consider a binary agnostic learning problem specified as follows. LetX be an instance space and
Y = {−1, 1} be the set of possible labels. LetC be the hypothesis class, a set of functions mapping
from X to Y . We assume there is a distributionD over instances inX, and that the instances are labeled
by a possibly randomized oracleO (i.e. the target function). The oracleO can be thought of as taking
an unlabeled examplex in, choosing a biased coin based onx, then flipping it to find the label−1 or 1.
We letP denote the induced distribution overX × Y . Theerror rate of a hypothesish with respect to a
distribution P̃ overX × Y is defined aserrP̃ (h) = Prx,y∼P̃ [h(x) 6= y]. The error rateerrP̃ (h) is not

generally known sincẽP is unknown, however the empirical version̂errP̃ (h) = Prx,y∼S[h(x) 6= y] =
1
S

∑
x,y∈S I(h(x) 6= y) is computable based upon an observed sample setS drawn fromP̃ .

Let ν = min
h∈C

(errD,O(h)) denote the minimum error rate of any hypothesis inC with respect to the

distribution(D,O) induced byD and the labeling oracleO. The goal is to find anǫ-optimal hypothesis,
i.e. a hypothesish ∈ C with errD,O(h) within ǫ of ν, whereǫ is some target error.

The algorithmA2 relies on a subroutine, which computes a lower bound LB(S, h, δ) and an upper
bound UB(S, h, δ) on the true error rateerr(h) of h by using a sampleS of examples drawni.i.d. from
P̃ . Each of these bounds must hold for allh simultaneously with probability at least1− δ. The subroutine
is formally defined below.

Definition 5.1.1 A subroutine for computing LB(S, h, δ) and UB(S, h, δ) is said to belegal if for all
distributionsP̃ overX × Y , for all 0 < δ < 1/2 andm ∈ N,

LB(S, h, δ) ≤ errP̃ (h) ≤ UB(S, h, δ)

holds for allh ∈ C simultaneously, with probability1− δ over the draw ofS according toP̃m.

Classic examples of such subroutines are the (distributionindependent) VC bound [206] and the
Occam Razor bound [69], or the newer data dependent generalization bounds such as those based on
Rademacher Complexities [73]. For concreteness, we could use the VC bound subroutine stated in Ap-
pendix A.1.1.

As we will see in the following section, a key point in the algorithm we present is that we will not
have to bring the range close toǫ (the desired target accuracy), but it will be enough to be constant width
on a series of carefully chosen distributions overX × Y .

112



5.1.3 TheA2 Agnostic Active Learner

At a high level,A2 can be viewed as a robust version of the selective sampling algorithm of [87]. Selective
sampling is a sequential process that keeps track of two spaces—the currentversion spaceCi, defined as
the set of hypotheses inC consistent with all labels revealed so far, and the currentregion of uncertainty
Ri, defined as the set of allx ∈ X, for which there exists a pair of hypotheses inCi that disagrees on
x. In roundi, the algorithm picks a random unlabeled example fromRi and queries it, eliminating all
hypotheses inCi inconsistent with the received label. The algorithm then eliminates thosex ∈ Ri on
which all surviving hypotheses agree, and recurses. This process fundamentally relies on the assumption
that there exists a consistent hypothesis inC. In the agnostic case, a hypothesis cannot be eliminated
based on its disagreement with a single example. Any algorithm must be more conservative in order to
avoid risking eliminating the best hypotheses in the class.

A formal specification ofA2 is given in Algorithm 7. LetCi be the set of hypotheses still under
consideration byA2 in roundi. If all hypotheses inCi agree on some region of the instance space, this
region can be safely eliminated. To help us keep track of progress in decreasing the region of uncertainty,
define DISAGREED(Ci) as the probability that there exists a pair of hypotheses inCi that disagrees on a
random example drawn fromD:

DISAGREED(Ci) = Pr
x∼D

[∃h1, h2 ∈ Ci : h1(x) 6= h2(x)].

Hence DISAGREED(Ci) is the volume of the current region of uncertainty with respect toD.
Clearly, the ability to sample from the unlabeled data distribution D implies that ability to compute

DISAGREED(Ci). To see this, note that:DISAGREED(Ci) = Ex∼DI(∃h1, h2 ∈ Ci : h1(x) 6= h2(x)) is
an expectation over unlabeled points drawn fromD. Consequently, Chernoff bounds on the empirical
expectation of a{0, 1} random variable imply that DISAGREED(Ci) can be estimated to any desired
precision with any desired confidence using an unlabeled dataset with size limiting to infinity.

Let Di be the distributionD restricted to the current region of uncertainty. Formally,Di = D(x |
∃h1, h2 ∈ Ci : h1(x) 6= h2(x)). In roundi, A2 samples a fresh set of examplesS from Di, O, and uses
it to compute upper and lower bounds for all hypotheses inCi. It then eliminates all hypotheses whose
lower bound is greater than the minimum upper bound.

SinceA2 doesn’t label examples on which the surviving hypotheses agree, an optimal hypothesis in
Ci with respect toDi remains an optimal hypothesis inCi+1 with respect toDi+1. Since each roundi cuts
DISAGREED(Ci) down by half, the number of rounds is bounded bylog 1

ǫ . Sections 5.1.4 gives examples
of distributions and hypothesis classes for whichA2 requires only a small number of labeled examples to
transition between rounds, yielding an exponential improvement in sample complexity.

When evaluating bounds during the course of Algorithm 7,A2 uses a schedule ofδ according to the
following rule: thekth bound evaluation has confidenceδk = δ

k(k+1) , for k ≥ 1. In Algorithm 7,k keeps
track of the number of bound computations andi of the number of rounds.

Note: It is important to note thatA2 does not need to knowν in advance. Similarly, it does not need to
knowD in advance.

Correctness

Theorem 5.1.1 (Correctness)For all C, for all (D,O), for all legal subroutines for computingUB and
LB, for all 0 < ǫ < 1/2 and0 < δ < 1/2, with probability1− δ, A2 returns anǫ-optimal hypothesis or
does not terminate.

Note 2 For most “reasonable” subroutines for computingUB andLB, A2 terminates with probability
at least1− δ. For more discussion and a proof of this fact see the Fall-back-Analysis Section.
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Algorithm 7 A2 (allowed error rateǫ, sampling oracle forD, labeling oracleO, hypothesis classC)

set i← 1, Di ← D, Ci ← C, Ci−1 ← C, Si−1 ← ∅, andk ← 1.

(1) while DISAGREED(Ci−1)

[
min

h∈Ci−1

UB(Si−1, h, µk)− min
h∈Ci−1

LB(Si−1, h, µk)

]
> ǫ

set Si ← ∅, C ′
i ← Ci, k ← k + 1

(2) while DISAGREED(C ′
i) ≥ 1

2 DISAGREED(Ci)

if DISAGREED(Ci) (min
h∈Ci

UB(Si, h, µk)− min
h∈Ci

LB(Si, h, µk)) ≤ ǫ

(∗) return h = argminh∈Ci
UB(Si, h, µk).

else S′
i = rejection sample2|Si|+ 1 samplesx from D satisfying

∃h1, h2 ∈ Ci : h1(x) 6= h2(x).

Si ← Si ∪ {(x,O(x)) : x ∈ S′
i}, k ← k + 1

(∗∗) C ′
i = {h ∈ Ci : LB(Si, h, µk, ) ≤ min

h′∈Ci

UB(Si, h
′, µk)}, k ← k + 1

end if

end while

Ci+1 ← C ′
i, Di+1 ← Di restricted to{x : ∃h1, h2 ∈ C ′

i : h1(x) 6= h2(x)}

i← i + 1

end while

return h = argminh∈Ci−1
UB(Si−1, h, µk).

Proof: The first claim is that all bound evaluations are valid simultaneously with probability at least
1− δ, and the second is that the procedure produces anǫ-optimal hypothesis upon termination.

To prove the first claim, notice that the samples on which eachbound is evaluated are drawni.i.d.
from some distribution overX × Y . This can be verified by noting that the distributionDi used in round
i is precisely that given by drawingx from the underlying distributionD conditioned on the disagreement
∃h1, h2 ∈ Ci : h1(x) 6= h2(x), and then labeling according to the oracleO.

Thek-th bound evaluation fails with probability at most δ
k(k+1) . By the union bound, the probability

that any bound fails is less then the sum of the probabilitiesof individual bound failures. This sum is
bounded by

∑∞
k=1

δ
k(k+1) = δ.

To prove the second claim, notice first that since every boundevaluation is correct, step(∗∗) never
eliminates a hypothesis that has minimum error rate with respect(D,O). Let us now introduce the fol-
lowing notation. For a hypothesish ∈ C andG ⊆ C define:

eD,G,O(h) = Pr
x,y∼D,O|∃h1,h2∈G:h1(x)6=h2(x)

[h(x) 6= y],
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fD,G,O(h) = Pr
x,y∼D,O|∀h1,h2∈G:h1(x)=h2(x)

[h(x) 6= y].

Notice thateD,G,O(h) is in facterrDG,O(h), whereDG is D conditioned on the disagreement∃h1, h2 ∈
G : h1(x) 6= h2(x). Moreover, given anyG ⊆ C, the error rate of every hypothesish decomposes into
two parts as follows:

errD,O(h) = eD,G,O(h) · DISAGREED(G) + fD,G,O(h) · (1− DISAGREED(G))

= errDG,O(h) · DISAGREED(G) + fD,G,O(h) · (1− DISAGREED(G)).

Notice that the only term that varies withh ∈ G in the above decomposition, iseD,G,O(h). Conse-
quently, finding anǫ-optimal hypothesis requires only boundingerrDG,O(h)·DISAGREED(G) to precision
ǫ. But this is exactly what the negation of the main while-loopguard does, and this is also the condition
used in the first step of the second while loop of the algorithm. In other words, upon terminationA2

satisfies
DISAGREED(Ci)(min

h∈Ci

UB(Si, h, δk)− min
h∈Ci

LB(Si, h, δk)) ≤ ǫ,

which proves the desired result.

Fall-back Analysis

This section shows thatA2 is never much worse than a standard batch, bound-based algorithm in terms
of the number of samples required in order to learn. (A standard example of a bound-based learning
algorithm is Empirical Risk Minimization (ERM) [207].)

The sample complexitym(ǫ, δ, C) required by a batch algorithm that uses a subroutine for computing
LB(S, h, δ) and UB(S, h, δ) is defined as the minimum number of samplesm such that for allS ∈ Xm,
|UB(S, h, δ)− LB(S, h, δ)| ≤ ǫ for all h ∈ C. For concreteness, this section uses the following bound on
m(ǫ, δ, C) stated as Theorem A.1.1 in Appendix A.1.1:

m(ǫ, δ, C) =
64

ǫ2

(
2VC ln

(
12

ǫ

)
+ ln

(
4

δ

))

HereVC is the VC-dimension ofC. Assume thatm(2ǫ, δ,H) ≤ m(ǫ,δ,H)
2 , and also that the functionm is

monotonically increasing in1/δ. These conditions are satisfied by many subroutines for computing UB
and LB, including those based on the VC-bound [206] and the Occam’s Razor bound [69].

Theorem 5.1.2 For all C, for all (D,O), for all UB and LB satisfying the assumption above, for all
0 < ǫ < 1/2 and0 < δ < 1/2, the algorithmA2 makes at most2m(ǫ, δ′,H) calls to the oracleO, where
δ′ = δ

N(ǫ,δ,C)(N(ǫ,δ,C)+1) andN(ǫ, δ, C) satisfiesN(ǫ, δ, C) ≥ ln 1
ǫ ln m(ǫ, δ

N(ǫ,δ,C)(N(ǫ,δ,C)+1) , C). Here

m(ǫ, δ,H) is the sample complexity of UB and LB.

Proof: Let δk = δ
k(k+1) be the confidence parameter used in thek-th application of the subroutine for

computing UB and LB. The proof works by finding an upper boundN(ǫ, δ, C) on the number of bound
evaluations throughout the life of the algorithm. This implies that the confidence parameterδk is always
greater thanδ′ = δ

N(ǫ,δ,C)(N(ǫ,δ,C)+1) .
Recall thatDi is the distribution overx used on theith iteration of the first while loop. Consideri = 1.

If condition 2 of Algorithm A2 is repeatedly satisfied then after labelingm(ǫ, δ′, C) examples fromD1

for all hypothesesh ∈ C1, ∣∣UB(S1, h, δ′)− LB(S1, h, δ′)
∣∣ ≤ ǫ

115



simultaneously. Note that in these conditionsA2 safely halts. Notice also that the number of bound
evaluations during this process is at mostlog2 m(ǫ, δ′, C).

On the other hand, if loop(2) ever completes andi increases, then it is enough, if you finish when
i = 2, to have uniformly for allh ∈ C2,

∣∣UB(S2, h, δ′)− LB(S2, h, δ′)
∣∣ ≤ 2ǫ .

(This follows from the exit conditions in the outer while-loop and the ‘if’ in Step 2 ofA2.) Uniformly
bounding the gap between upper and lower bounds over all hypothesesh ∈ C2 to within 2ǫ, requires
m(2ǫ, δ′, C) ≤ m(ǫ,δ′,C)

2 labeled examples fromD2 and the number of bound evaluations in roundi = 2
is at mostlog2 m(ǫ, δ′, C).

In general, in roundi it is enough to have uniformly for allh ∈ Ci,

∣∣UB(Si, h, δ′)− LB(Si, h, δ′)
∣∣ ≤ 2i−1ǫ,

and which requiresm(2i−1ǫ, δ′, C) ≤ m(ǫ,δ′,C)
2i−1 labeled examples fromDi. Also the number of bound

evaluations in roundi is at mostlog2 m(ǫ, δ′, C).
Since the number of rounds is bounded bylog2

1
ǫ , it follows that the maximum number of bound

evaluations throughout the life of the algorithm is at mostlog2
1
ǫ log2 m(ǫ, δ′, C). This implies that in

order to determine an upper boundN(ǫ, δ, C) only a solution to the inequality:

N(ǫ, δ, C) ≥ log2

1

ǫ
log2 m

(
ǫ,

δ

N(ǫ, δ, C)(N(ǫ, δ, C) + 1)
, C

)

is required.
Finally, adding up the number of calls to the label oracleO in all rounds yields at most2m(ǫ, δ′, C)

over the life of the algorithm.

Let VC denote the VC-dimension ofC, and letm(ǫ, δ, C) be the number of examples required by
the ERM algorithm. As stated in Theorem A.1.1 in Appendix A.1.1, a classic bound onm(ǫ, δ, C) is
m(ǫ, δ, C) = 64

ǫ2

(
2VC ln

(
12
ǫ

)
+ ln

(
4
δ

))
. Using Theorem 5.1.2, the following corollary holds.

Corollary 5.1.3 For all hypothesis classesC of VC-dimensionVC , for all distributions(D,O) overX ×
Y , for all 0 < ǫ < 1/2 and 0 < δ < 1/2, the algorithmA2 requires at most̃O

(
1
ǫ2 (VC ln 1

ǫ + ln 1
δ )
)

labeled examples the oracleO.

Proof: The form ofm(ǫ, δ,H) and Theorem 5.1.2 implies an upper bound onN = N(ǫ, δ,H). It is
enough to find the smallestN satisfying

N ≥ ln

(
1

ǫ

)
ln

(
64

ǫ2

(
2VC ln

(
12

ǫ

)
+ ln

(
4N2

δ

)))
.

Using the inequalityln a ≤ ab − ln b − 1 for all a, b > 0 and some simple algebraic manipulations, the
desired upper bound onN(ǫ, δ, C) holds. The result then follows from Theorem 5.1.2.

5.1.4 Active Learning Speedups

This section gives examples of exponential sample complexity improvements achieved byA2.
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Learning Threshold Functions

Linear threshold functions on the real line are the simplestand easiest to analyze class. It turns out that
even for this class, exponential reductions in sample complexity are not achievable when the noise rateν
is large [146]. We prove the following three results:

1. An exponential improvement in sample complexity when thenoise rate is small (Theorem 5.1.4).

2. A slower improvement when the noise rate is large (Theorem5.1.5).

3. An exponential improvement when the noise rate is large but due to constant label noise (Theo-
rem 5.1.6). This shows that for some forms of high noise exponential improvement remains possi-
ble.

All results in this subsection assume that subroutines LB and UB in A2 are based on the VC bound.

Theorem 5.1.4 Let C be the set of thresholds on an interval. For all distributions (D,O) whereD is a
continuous probability distribution function, for anyǫ < 1

2 and ǫ
16 ≥ ν, the algorithmA2 makes

O

(
ln

(
1

ǫ

)
ln

(
ln
(

1
ǫδ

)

δ

))

calls to the oracleO on examples drawni.i.d. from D, with probability1− δ.

Proof: Consider roundi ≥ 1 of the algorithm. Forh1, h2 ∈ Ci, let di(h1, h2) be the probability
that h1 and h2 predict differently on a random example drawn according to the distributionDi, i.e.,
di(h1, h2) = Prx∼Di

[h1(x) 6= h2(x)].
Let h∗ be any minimum error rate hypothesis inC. Note that for any hypothesish ∈ Ci, we have

errDi,O(h) ≥ di(h, h∗)−errDi,O(h∗) anderrDi,O(h∗) ≤ ν/Zi, whereZi = Prx∼D[x ∈ [loweri, upperi] ]
is a shorthand for DISAGREED(Ci) and[loweri, upperi] denotes the support ofDi. ThuserrDi,O(h∗) ≤
di(h, h∗)− ν/Zi.

We will show that at least a12 -fraction (measured with respect toDi) of thresholds inCi satisfy
di(h, h∗) ≥ 1

4 , and these thresholds are located at the ends of the interval[loweri, upperi]. Assume first
that bothdi(h

∗, loweri) ≥ 1
4 anddi(h

∗, upperi) ≥ 1
4 , then letli andui be the hypotheses to the left and

to the right ofh∗, respectively, that satisfydi(h
∗, li) = 1

4 anddi(h
∗, ui) = 1

4 . All h ∈ [loweri, li] ∪
[ui, upperi] satisfydi(h

∗, h) ≥ 1
4 and moreover

Pr
x∼Di

[x ∈ [loweri, li] ∪ [ui, upperi] ] ≥
1

2
.

Now suppose thatdi(h
∗, loweri) ≤ 1

4 . Let ui be the hypothesis to the right ofh∗ with di(h, upperi) = 1
2 .

Then allh ∈ [ui, upperi] satisfydi(h
∗, h) ≥ 1

4 and moreoverPrx∼Di
[x ∈ [ui, upperi] ] ≥ 1

2 . A similar
argument holds fordi(h

∗, upperi) ≤ 1
4 .

Using the VC bound, with probability1−δ′, if |Si| = O

(
ln 1

δ′
“

1
8
− ν

Zi

”2

)
, then for all hypothesesh ∈ Ci

simultaneously,|UB(Si, h, δ) − LB(Si, h, δ)| ≤ 1
8 − ν

Zi
holds. Note thatν/Zi is always upper bounded

by 1
16 .
Consider a hypothesish ∈ Ci with di(h, h∗) ≥ 1

4 . For any suchh,

errDi,O(h) ≥ di(h, h∗)− ν/Zi ≥
1

4
− ν

Zi
,

and so

LB(Si, h, δ) ≥ 1

4
− ν

Zi
− (

1

8
− ν

Zi
) =

1

8
.

117



On the other hand,errDi,O(h∗) ≤ ν
Zi

, and so

UB(Si, h
∗, δ) ≤ ν

Zi
+

1

8
− ν

Zi
=

1

8
.

ThusA2 eliminates allh ∈ Ci with di(h, h∗) ≥ 1
4 . But that means DISAGREED(C ′

i) ≤ 1
2DISAGREED(Ci),

thus terminating roundi.4

Each exit fromwhile loop (2) decreases DISAGREED(Ci) by at least a factor of2, implying that the
number of executions is bounded bylog 1

ǫ . The algorithm makesO
(
ln
(

1
δ′
)
ln
(

1
ǫ

))
calls to the oracle,

whereδ′ = δ
N(ǫ,δ,C)(N(ǫ,δ,C)+1) andN(ǫ, δ, C) is an upper bound on the number of bound evaluations

throughout the life of the algorithm.
The number of bound evaluations required in roundi isO

(
ln 1

δ′
)
, which implies thatN(ǫ, δ, C) should

satisfy

c ln

(
N(ǫ, δ, C)(N(ǫ, δ, C) + 1)

δ

)
ln

(
1

ǫ

)
≤ N(ǫ, δ, C),

for some constantc. Solving this inequality completes the proof.

Theorem 5.1.5 below asymptotically matches a lower bound ofKääriäinen [146]. Recall thatA2 does
not need to knowν in advance.

Theorem 5.1.5 Let C be the set of thresholds on an interval. Suppose thatǫ < 1
2 andν > 16ǫ. For all

D, with probability1− δ, the algorithmA2 requires at most̃O
(

ν2 ln 1
δ

ǫ2

)
labeled samples.

Proof: The proof is similar to the previous proof. Theorem 5.1.4 implies that loop (2) completes
Θ(log 1

ν ) times. At this point, the minimum error rate of the remaininghypotheses conditioned on dis-
agreement becomes sufficient so that the algorithm may only halt via the return step(∗). In this case,

DISAGREED(C) = Θ(ν) implying that the number of samples required isÕ
(

ν2 ln 1
δ

ǫ2

)
.

The final theorem is for the constant noise case where|Pry∼O|x[h∗(x) 6= y]− 1
2 | = ν for all x ∈ X.

The theorem is similar to earlier work [76], except that we achieve these improvements with a general
purpose active learning algorithm that does not use any prior over the hypothesis space or knowledge of
the noise rate, and is applicable to arbitrary hypothesis spaces.

Theorem 5.1.6 Let C be the set of thresholds on an interval. For all unlabeled data distributionsD, for
all labeled data distributionsO, for any constant label noiseν < 1/2 andǫ < 1

2 , the algorithmA2 makes

O

(
1

(1−2ν)2
ln
(

1
ǫ

)
ln

(
ln ( 1

ǫδ )
δ

))
calls to the oracleO on examples drawni.i.d. fromD, with probability

1− δ.

The proof is essentially the same as for Theorem 5.1.4, except that the constant label noise condi-
tion implies that the amount of noise in the remaining actively labeled subset stays bounded through the
recursions.

Proof: Consider roundi ≥ 1. Forh1, h2 ∈ Ci, let di(h1, h2) = Prx∼Di
[h1(x) 6= h2(x)]. Note that

for any hypothesish ∈ Ci, we haveerrDi,O(h) = di(h, h∗)(1− 2ν) + ν anderrDi,O(h∗) = ν, whereh∗

is a minimum error rate threshold.
As in the proof of Theorem 5.1.4, at least a1

2 -fraction (measured with respect toDi) of thresholds in
Ci satisfydi(h, h∗) ≥ 1

4 , and these thresholds are located at the ends of the support[loweri, upperi] of

4The assumption in the theorem statement can be weakened toν < ǫ

(8+∆)
√

d
for any constant∆ > 0.
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Di. The VC bound implies that for anyδ′ > 0 with probability1− δ′, if |Si| = O
(

ln(1/δ′)
(1−2ν)2

)
, then for all

hypothesesh ∈ Ci simultaneously,|UB(Si, h, δ) − LB(Si, h, δ)| < 1−2ν
8 .

Consider a hypothesish ∈ Ci with di(h, h∗) ≥ 1
4 . For any suchh, errDi,O(h) ≥ 1−2ν

4 + ν = 1
4 + ν

2 ,
and so LB(Si, h, δ) > 1

4 + ν
2 − 1

8 (1 − 2ν) = 1
8 + 3ν

4 . On the other hand,errDi,O(h∗) = ν, and so
UB(Si, h

∗, δ) < ν + (1
8 − ν

4 ) = 1
8 + 3ν

4 . ThusA2 eliminates allh ∈ Ci with di(h, h∗) ≥ 1
4 . But this

means that DISAGREED(C ′
i) ≤ 1

2DISAGREED(Ci), thus terminating roundi.
Finally notice thatA2 makesO

(
ln
(

1
δ′
)
ln
(

1
ǫ

))
calls to the oracle, whereδ′ = δ

N(ǫ,δ,C)(N(ǫ,δ,C)+1)

andN(ǫ, δ, C) is an upper bound on the number of bound evaluations throughout the life of the algorithm.
The number of bound evaluations required in roundi is O(ln(1/δ′)), which implies that the number of
bound evaluations throughout the life of the algorithmN(ǫ, δ, C) should satisfy

c ln

(
N(ǫ, δ, C)(N(ǫ, δ, C) + 1)

δ

)
ln

(
1

ǫ

)
≤ N(ǫ, δ, C),

for some constantc. Solving this inequality, completes the proof.

Linear Separators under the Uniform Distribution

A commonly analyzed case for which active learning is known to give exponential savings in the number
of labeled examples is when the data is drawn uniformly from the unit sphere inRd, and the labels
are consistent with a linear separator going through the origin. Note that even in this seemingly simple
scenario, there exists anΩ

(
1
ǫ

(
d + log 1

δ

))
lower bound on the PAC passive supervised learning sample

complexity [167]. We will show thatA2 provides exponential savings in this case even in the presence of
arbitrary forms of noise.

Let X = {x ∈ Rd : ‖x‖ = 1}, the unit sphere inRd. Assume thatD is uniform overX, and letC be
the class of linear separators through the origin. Anyh ∈ C is a homogeneous hyperplane represented by
a unit vectorw ∈ X with the classification ruleh(x) = sign(w ·x). The distance between two hypotheses
u andv in C with respect to a distributionD (i.e., the probability that they predict differently on a random
example drawn fromD) is given bydD(u, v) = arccos(u·v)

π . Finally, let θ(u, v) = arccos(u · v). Thus

dD(u, v) = θ(u,v)
π .

In this section we sill use a classic lemma about the uniform distribution. For a proof see, for exam-
ple, [34, 99].

Lemma 5.1.7 For any fixed unit vectorw and any0 < γ ≤ 1,

γ

4
≤ Pr

x

[
|w · x| ≤ γ√

d

]
≤ γ,

wherex is drawn uniformly from the unit sphere.

Theorem 5.1.8 LetX, C, andD be as defined above, and let LB and UB be the VC bound. Then for any
0 < ǫ < 1

2 , 0 < ν < ǫ
16

√
d
, andδ > 0, with probability1− δ, A2 requires

O

(
d

(
d ln d + ln

1

δ′

)
ln

1

ǫ

)

calls to the labeling oracle, whereδ′ = δ
N(ǫ,δ,C)(N(ǫ,δ,C)+1) and

N(ǫ, δ, C) = O

(
ln

1

ǫ

(
d2 ln d + d ln

d ln 1
ǫ

δ

))
.
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Proof: Let w∗ ∈ C be a hypothesis with the minimum error rateν. Denote the region of uncertainty
in round i by Ri. ThusPrx∼D[x ∈ Ri] = DISAGREED(Ci). Consider roundi of A2. We prove that
the round completes with high probability if a certain threshold on the number of labeled examples is
reached. The round may complete with a smaller number of examples, but this is fine because the metric
of progress DISAGREED(Ci) must halve in order to complete.

Theorem A.1.1 says that it suffices to query the oracle on a setS of O(d2 ln d + d ln 1
δ′ ) examples

from ith distributionDi to guarantee, with probability1− δ′, that for allw ∈ Ci,

|errDi,O(w)− êrrDi,O(w)| < 1

2

(
1

8
√

d
− ν

ri

)
,

whereri is a shorthand for DISAGREED(Ci). (By assumption,ν < ǫ
16

√
d

and the loop guard guarantees

that DISAGREED(Ci) ≥ ǫ. Thus the precision above is at least1
32

√
d
.)5 This implies that UB(S,w, δ′) −

errDi,O(w) < 1
8
√

d
− ν

ri
, and errDi,O(w) − LB(S,w, δ′) < 1

8
√

d
− ν

ri
. Consider anyw ∈ Ci with

dDi
(w,w∗) ≥ 1

4
√

d
. For any suchw, errDi,O(w) ≥ 1

4
√

d
− ν

ri
, and so

LB(S,w, δ′) >
1

4
√

d
− ν

ri
− 1

8
√

d
+

ν

ri
=

1

8
√

d
.

However, errDi,O(w∗) ≤ ν
ri

, and thus UB(S,w∗, δ′) < ν
ri

+ 1
8
√

d
− ν

ri
= 1

8
√

d
, soA2 eliminatesw in step

(∗∗).
Thus roundi eliminates all hypothesesw ∈ Ci with dDi

(w,w∗) ≥ 1
4
√

d
. Since all hypotheses inCi

agree on everyx 6∈ Ri,

dDi
(w,w∗) =

1

ri
dD(w,w∗) =

θ(w,w∗)
πri

.

Thus roundi eliminates all hypothesesw ∈ Ci with θ(w,w∗) ≥ πri

4
√

d
. But since2θ/π ≤ sin θ, for

θ ∈ (0, π
2 ], it certainly eliminates allw with sin θ(w,w∗) ≥ ri

2
√

d
.

Consider anyx ∈ Ri+1 and the value|w∗ ·x| = cos θ(w∗, x). There must exist a hypothesisw ∈ Ci+1

that disagrees withw∗ on x; otherwisex would not be inRi+1. But thencos θ(w∗, x) ≤ cos(π
2 −

θ(w,w∗)) = sin θ(w,w∗) < ri

2
√

d
, where the last inequality is due to the fact thatA2 eliminates all

w with sin θ(w,w∗) ≥ ri

2
√

d
. Thus anyx ∈ Ri+1 must satisfy|w∗ · x| < ri

2
√

d
. Using the fact that

Pr[A |B] = Pr[AB]
Pr[B] ≤

Pr[A]
Pr[B] for anyA andB,

Pr
x∼Di

[x ∈ Ri+1] ≤ Pr
x∼Di

[
|w · x| ≤ ri

2
√

d

]
≤

Prx∼D

[
|w · x| ≤ ri

2
√

d

]

Prx∼D[x ∈ Ri]
≤ ri

2ri
=

1

2
,

where the third inequality follows from Lemma 5.1.7. Thus DISAGREED(Ci+1) ≤ 1
2DISAGREED(Ci), as

desired.
In order to finish the argument, it suffices to notice that since every round cuts DISAGREED(Ci) at

least in half, the total number of rounds is upper bounded bylog 1
ǫ . Notice also that theA2 algorithm

makesO
(
d2 ln d + d ln 1

δ′
)
ln
(

1
ǫ

)
calls to the oracle, whereδ′ = δ

N(ǫ,δ,C)(N(ǫ,δ,C)+1) andN(ǫ, δ, C) is
an upper bound on the number of bound evaluations throughoutthe life of the algorithm. The number

5 The assumption in the theorem statement can be weakened toν < ǫ

(8+∆)
√

d
for any constant∆ > 0.
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of bound evaluations required in roundi is O
(
d2 ln d + d ln 1

δ′
)
. This implies that the number of bound

evaluations throughout the life of the algorithmN(ǫ, δ, C) should satisfy

c

(
d2 ln d + d ln

(
N(ǫ, δ, C)(N(ǫ, δ, C) + 1)

δ

))
ln

(
1

ǫ

)
≤ N(ǫ, δ, C),

for some constantc. Solving this inequality, completes the proof.

Note: For comparison, the query complexity of the Perceptron-based active learning algorithm of [99]
is O(d ln 1

ǫδ (ln
d
δ + ln ln 1

ǫ )), for the sameC, X, andD, but only for the realizable case whenν = 0.6

Similar bounds are obtained in [34] both in the realizable case and for a specific form of noise related to
the Tsybakov small noise condition. (We present these results in Section 5.2.) The cleanest and simplest
argument that exponential improvement is in principle possible in the realizable case for the sameC, X,
andD appears in [96]. Our work provides the first justification of why one can hope to achieve similarly
strong guarantees in the much harder agnostic case, when thenoise rate is sufficiently small with respect
to the desired error.

5.1.5 Subsequent Work

Following the initial publication ofA2, Hanneke has further analyzed theA2 algorithm [131], deriving a
general upper bound on the number of label requests made byA2. This bound is expressed in terms of
particular quantity called thedisagreement coefficient, which roughly quantifies how quickly the region
of disagreement can grow as a function of the radius of the version space. For concreteness this bound is
included below.

In addition, Dasgupta, Hsu, and Monteleoni [100] introduceand analyze a new agnostic active learning
algorithm. While similar toA2, this algorithm simplifies the maintenance of the region of uncertainty with
a reduction to supervised learning, keeping track of the version space implicitly via label constraints.

Subsequent Guarantees forA2

This section describes the disagreement coefficient [131] and the guarantees it provides for theA2 algo-
rithm. We begin with a few additional definitions, in the notation of Section 5.1.2.

Definition 5.1.2 Thedisagreement rate∆(V ) of a setV ⊆ C is defined as

∆(V ) = Pr
x∼D

[x ∈ DISAGREED(V )].

Definition 5.1.3 For h ∈ C, r > 0, let B(h, r) = {h′ ∈ C : d(h′, h) ≤ r} and define thedisagreement
rate at radiusr as

∆r = sup
h∈C

(∆(B(h, r))).

Thedisagreement coefficientis the infimum value ofθ > 0 such that∀r > ν + ǫ,

∆r ≤ θr.

We now present the main result of [131].

6Note also that it is not clear if the analysis in [99] is extendable to commonly used types of noise, e.g., Tsybakov noise.
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Theorem 5.1.9 If θ is the disagreement coefficient forC, then with probability at least1 − δ, given the
inputsǫ andδ, A2 outputs anǫ-optimal hypothesish. Moreover, the number of label requests made byA2

is at most:

Õ

(
θ2

(
ν2

ǫ2
+ 1

)(
VC ln

1

ǫ
+ ln

1

δ

)
ln

1

ǫ

)
,

whereVC ≥ 1 is the VC-dimension ofC.

As shown in [131] for the concept spaceC of thresholds on an interval the disagreement coefficientsθ =
2. Also X = {x ∈ Rd : ‖x‖ = 1} is the unit sphere inRd, D is uniform overX, and letC be the class
of linear separators through the origin, then the disagreement coefficientθ satisfies

1

4
min

{
π
√

d,
1

ν + ǫ

}
≤ θ ≤ min

{
π
√

d,
1

ν + ǫ

}
.

These clearly match the results in Section 5.1.4.

5.1.6 Conclusions

We present hereA2, the first active learning algorithm that finds anǫ-optimal hypothesis in any hypothesis
class, when the distribution has arbitrary forms of noise. The algorithm relies only upon the assumption
that the samples are drawni.i.d. from a fixed (unknown) distribution, and it does not need to know the
error rate of the best classifier in the class in advance. We analyzeA2 for several settings considered
before in the realizable case, showing thatA2 achieves an exponential improvement over the usual sample
complexity of supervised learning in these settings. We also provide a guarantee thatA2 never requires
substantially more labeled examples than passive learning.

A more general open question is what conditions are sufficient and necessary for active learning to
succeed in the agnostic case. What is the right quantity thatcan characterize the sample complexity of
agnostic active learning? As mentioned already, some progress in this direction has been recently made
in [131] and [100]; however, those results characterize non-aggressive agnostic active learning. Deriving
and analyzing the optimal agnostic active learning strategy is still an open question.

Much of the existing literature on active learning has been focused on binary classification; it would
be interesting to analyze active learning for other loss functions. The key ingredient allowing recursion in
the proof of correctness is a loss that is unvarying with respect to substantial variation over the hypothesis
space. Many losses such as squared error loss do not have thisproperty, so achieving substantial speedups,
if that is possible, requires new insights. For other losseswith this property (such as hinge loss or clipped
squared loss), generalizations ofA2 appear straightforward.

5.2 Margin Based Active Learning

A common feature of the selective sampling algorithm [87],A2, and others [100] is that they are all non-
aggressive in their choice of query points. Even points on which there is a small amount of uncertainty
are queried, rather than pursuing the maximally uncertain point. We show here that a more aggressive
strategies can generally lead to better bounds. Specifically, we analyze a margin based active learning
algorithm for learning linear separators and instantiate it for a few important cases, some of which have
been previously considered in the literature. The generic procedure we analyze is Algorithm 8. The key
contributions of this section are the following:
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1. We point out that in order to get a labeled data sample complexity which has a logarithmic depen-
dence on1/ǫ without increasing the dependence ond (i.e., a truly exponential improvement in the
labeled data sample complexity over the passive learning) we have to use a strategy which is more
aggressivethan a version space strategy (the one proposed by Cohen, Atlas and Ladner in [87] and
later analyzed in [31] – which we discussed in Section 5.1). We point out that this is true even
in the special case when the data instances are drawn uniformly from the the unit ball inRd, and
when the labels are consistent with a linear separator goingthrough the origin. Indeed, in order
to obtain a truly exponential improvement, and to be able to learn with onlyÕ

(
d log

(
1
ǫ

))
labeled

examples, we need, in each iteration, to sample our examplesfrom a subregion carefully chosen,
and not from the entire region of uncertainty, which would imply a labeled data sample complexity

of Õ
(
d

3
2 log

(
1
ǫ

))
. The fact that a truly exponential improvement is possible in this special setting

(through computationally efficient procedures) was provenbefore both in [99] and [113], but via
more complicated and more specific arguments (and which additionally are not easily generalizable
to deal with various types of noise).

2. We show that our algorithm and argument extend to the non-realizable case. A specific case we
analyze here is again the setting where the data instances are drawn uniformly from the the unit ball
in Rd, and a linear classifierw∗ is the Bayes classifier. We additionally assume that our datasatisfies
the popular Tsybakov small noise condition along the decision boundary [204]. We consider both
a simple version which leads toexponentialimprovement similar to the item 1 above, and a setting
where we get only a polynomial improvement in the sample complexity, and where this is provably
the best we can do [81]. Our analysis here for this specific cases improves significantly the work
presented in Section 5.1 and the previous related work in [81].

Definitions and Notation: In this section, we consider learning linear classifiers, soC is the class of
functions of the formh(x) = sign(w · x). As in section 5.1, we assume that the data points(x, y) are
drawn from an unknown underlying distributionP overX × Y and we focus on the binary classification
case (i.e.,Y = {−1, 1}). Our goal is to find a classifierf with small true error where whereerr(h) =
Prx,y∼P [h(x) 6= y]. We denote by d(h, g) the probability that the two classifiersh andg predict differently
on an example coming at random fromP . Furthermore, forα ∈ [0, 1] we denote by B(h, α) the set
{g | d(h, g) ≤ α}. As in section 5.1 we letD denotePX .

In this section we focus on analyzing margin based active learning algorithms, in particular variant
of Algorithm 8. Specific choices for the learning algorithmA, sample sizesmk, and cut-off valuesbk

depends on various assumptions we will make about the data, which we will investigate in details in
the following sections. We note that margin based active learning algorithms have been widely used in
practical applications (see e.g. [203]).

5.2.1 The Realizable Case under the Uniform Distribution

We assume here that the data instances are drawn uniformly from the the unit ball inRd, and that the
labels are consistent with a linear separatorw∗ going through the origin (that isP (w∗ · xy ≤ 0) = 0).
We assume that‖w∗‖2 = 1. As mentioned in Section 5.1 even in this seemingly simple looking scenario,
there exists anΩ

(
1
ǫ

(
d + log 1

δ

))
lower bound on the PAC learning sample complexity [167].

Before presenting our better bounds, we start by informallyshowing how it is possible to get a

Õ
(
d

3
2 log

(
1
ǫ

))
labeled sample complexity via a margin based active learning algorithm. (Note that the

analysis for theA2 algorithm in Section 5.1.4 already implies a bound ofÕ
(
d2 log

(
1
ǫ

))
, and as we in

fact argue below that analysis can be improved toÕ
(
d

3
2 log

(
1
ǫ

))
in the realizable case. We make this
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Algorithm 8 Margin-based Active Learning.

Input: unlabeled data setSU = {x1, x2, . . . , },
a learning algorithmA that learns a weight vector from labeled data,
a sequence of sample sizes0 < m̃1 < m̃2 < . . . < m̃s = m̃s+1,
a sequence of cut-off valuesbk > 0 (k = 1, . . . , s)

Output: classifierŵs

Label data pointsx1, . . . , xm̃1 using the oracle

iterate k = 1, . . . , s

useA to learn weight vector̂wk from the firstm̃k labeled samples.

for j = m̃k + 1, . . . , m̃k+1

if |ŵk · xj| > bk then let yj = sign(ŵk · xj)

elselabel data pointxj using the oracle

end iterate

clearer in the note after Theorem 5.2.1.) Let us consider Algorithm 8, whereA is a learning algorithm
for finding a linear classifier consistent with the training data. Assume that in each iterationk, A finds a
linear separator̂wk, ‖ŵk‖2 = 1 which is consistent with the first̃mk labeled examples. We want to ensure
that err(ŵk) ≤ 1

2k (with large probability), which (by standard VC bounds) requires a sample of size

m̃k = Õ
(
2kd
)
; note that this implies we need to add in each iteration aboutnk = m̃k+1− m̃k = Õ

(
2kd
)

new labeled examples. The desired result will follow if we can show that by choosing appropriatebk, we
only need to ask the oracle to labelmk = Õ(d3/2) out of thenk = Õ

(
2kd
)

data points and ensure that all
nk data points are correctly labeled (i.e. the examples labeled automatically are in fact correctly labeled).

Note that given our assumption about the data distribution the error rate of any given separatorw is
err(w) = θ(w,w∗)

π , whereθ(w,w∗) = arccos(w · w∗). Thereforeerr(ŵk) ≤ 2−k implies that‖ŵk −
w∗‖2 ≤ 2−kπ. This implies we cansafely label all the points with|ŵk · x| ≥ 2−kπ becausew∗ and
ŵk predict the same on those examples. The probability ofx such that|ŵk · x| ≤ 2−kπ is Õ(2−k

√
d)

because in high dimensions, the1-dimensional projection of uniform random variables in theunit ball is
approximately a Gaussian variable with variance1/d. Therefore if we letbk = 2−kπ in thek-th iteration,
and drawm̃k+1− m̃k = Õ

(
2kd
)

new examples to achieve an error rate of2−(k+1) for ŵk+1, the expected

number of human labels needed is at mostÕ(d
3
2 ). This essentially implies the desired result. For a high

probability statement, we can use Algorithm 9, which is a modification of Algorithm 8.
Note that we can apply our favorite algorithm for finding a consistent linear separator (e.g., SVM for

the realizable case, linear programming, etc.) at each iteration of Algorithm 9, and the overall procedure
is computationally efficient.

Theorem 5.2.1 There exists a constantC, such that for anyǫ, δ > 0, using Algorithm 9 with

bk =
π

2k−1
and mk = Cd

1
2

(
d ln d + ln

k

δ

)
,

after s = ⌈log2
1
ǫ ⌉ iterations, we can efficiently find a separator of error at most ǫ with probability1− δ.

Proof: The proof is essentially a more a rigorous version of the informal one given earlier. We prove
by induction onk that at thek’th iteration, with probability1− δ(1− 1/(k + 1)), we haveerr(ŵ) ≤ 2−k

for all ŵ consistent with data in the setW (k); in particular,err(ŵk) ≤ 2−k.
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Algorithm 9 Margin-based Active Learning (separable case).

Input : allowed error rateǫ, probability of failureδ, a sampling oracle forD, and a labeling oracle
a sequence of sample sizesmk > 0, k ∈ Z; a sequence of cut-off valuesbk > 0, k ∈ Z

Output: weight vectorŵs of error at mostǫ with probability1− δ

Drawm1 examples fromD, label them and put into a working setW (1).

iterate k = 1, . . . , s

find a hypothesiŝwk (‖ŵk‖2 = 1) consistent with all labeled examples inW (k).

let W (k + 1) = W (k).

until mk+1 additional data points are labeled, draw samplex from D

if |ŵk · x| ≥ bk then rejectx

elseask for label ofx, and put intoW (k + 1)

end iterate

For k = 1, according to Theorem A.2.1 in Appendix A.2, we only needm1 = O(d + ln(1/δ))
examples to obtain the desired result. In particular, we have err(ŵ1) ≤ 1/2 with probability 1 − δ/2.
Assume now the claim is true fork − 1. Then at thek-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.

Using the notationerr(w|S) = Prx((w · x)(w∗ · x) < 0|x ∈ S), for all ŵ we have:

err(ŵ) = err(ŵ|S1) Pr(S1) + err(ŵ|S2) Pr(S2).

Consider an arbitrarŷw consistent with the data inW (k−1). By induction hypothesis, we know that with
probability at least1−δ(1−1/k), bothŵk−1 andŵ have errors at most21−k (because both are consistent
with W (k−1)). As discussed earlier, this implies that‖ŵk−1−w∗‖2 ≤ 21−kπ and‖ŵ−w∗‖2 ≤ 21−kπ.
Therefore∀x ∈ S2, we have

(ŵk−1 · x)(ŵ · x) > 0 and (ŵk−1 · x)(w∗ · x) > .0

This implies thaterr(ŵ|S2) = 0. Now using the estimate provided in Lemma A.2.2 withγ1 = bk−1 and
γ2 = 0, we obtainPrx(S1) ≤ bk−1

√
4d/π. Therefore

err(ŵ) ≤ 22−k
√

4πd · err(ŵ|S1),

for all ŵ consistent withW (k − 1). Now, since we are labelingmk data points inS1 at iterationk − 1,
it follows from Theorem A.2.1 that we can findC s. t. with probability1 − δ/(k2 + k), for all ŵ
consistent with the data inW (k), err(ŵ|S1), the error ofŵ on S1, is no more than1/(4

√
4πd). That is,

err(ŵ) ≤ 2−k with probability at least1− δ((1 − 1/k) + 1/(k2 + k)) = 1− δ(1− 1/(k + 1)) for all ŵ
consistent withW (k), and in particularerr(ŵk) ≤ 2−k, as desired.

The choice of rejection region in Theorem 5.2.1 essentiallyfollows the “sampling from the region
of disagreement idea” idea introduced in [87] for the realizable case. As mentioned in Section 5.1, [87]
suggested that one should not sample from a region (S2 in the proof) in which all classifiers in the current
version space (in our case, classifiers consistent with the labeled examples inW (k)) predict the same
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label. In Section 5.1 and in [31] we have analyzed a more general version of the strategy proposed in [87]
that is correct in the much more difficult agnostic case and wehave provided theoretical analysis. Here we
have used a more a refined VC-bound for the realizable case, e.g., Theorem A.2.1, to get a better bound.
However, the strategy of choosingbk in Theorem 5.2.1 (thus the idea of [87]) is not optimal. This can be
seen from the proof, in which we showederr(ŵs|S2) = 0. If we enlargeS2 (using a smallerbk), we can
still ensure thaterr(ŵs|S2) is small; furthermore,Pr(S1) becomes smaller, which allows us to use fewer
labeled examples to achieve the same reduction in error. Therefore in order to show that we can achieve an
improvement fromÕ

(
d
ǫ

)
to Õ

(
d log

(
1
ǫ

))
as in [99], we need a moreaggressivestrategy. Specifically, at

roundk we set as margin parameterbk = Õ
(

log (k)

2k
√

d

)
, and in consequence use fewer examples to transition

between rounds. In order to prove correctness we need to refine the analysis as follows:

Theorem 5.2.2 There exists a constantC such that ford ≥ 4, and for anyǫ, δ > 0, ǫ < 1/4, using
Algorithm 9 with

mk = C
√

ln(1 + k)

(
d ln(1 + ln k) + ln

k

δ

)
and bk = 21−kπd−1/2

√
5 + ln(1 + k),

afters = ⌈log2
1
ǫ ⌉−2 iterations, we efficiently find a separator of error≤ ǫ with probability at least1−δ.

Proof: As in Theorem 5.2.1, we prove by induction onk that at thek’s iteration, fork ≤ s, with probability
at least1− δ(1− 1/(k + 1)), weerr(ŵ) ≤ 2−k−2 for all choices ofŵ consistent with data in the working
setW (k); in particularerr(ŵk) ≤ 2−k−2.

Fork = 1, according to Theorem A.2.1, we only needmk = O(d + ln(1/δ)) examples to obtain the
desired result; in particular, we haveerr(ŵ1) ≤ 2−k−2 with probability1 − δ/(k + 1). Assume now the
claim is true fork − 1 (k > 1). Then at thek-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1}

and
S2 = {x : |ŵk−1 · x| > bk−1}.

Consider an arbitrarŷw consistent with the data inW (k − 1). By induction hypothesis, we know that
with probability1− δ(1 − 1/k), bothŵk−1 andŵ have errors at most2−k−1, implying that

θ(ŵk−1, w
∗) ≤ 2−k−1π and θ(ŵ, w∗) ≤ 2−k−1π.

Thereforeθ(ŵ, ŵk−1) ≤ 2−kπ. Let β̃ = 2−kπ and usingcos β̃/ sin β̃ ≤ 1/β̃ andsin β̃ ≤ β̃ it is easy to
verify that the following inequality holds

bk−1 ≥ 2 sin β̃d−1/2

√

5 + ln

(
1 +

√
ln max(1, cos β̃/ sin β̃)

)
.

By Lemma A.2.5, we have both

Pr
x

[(ŵk−1 · x)(ŵ · x) < 0, x ∈ S2] ≤
sin β̃

e5 cos β̃
≤
√

2β̃

e5
and

Pr
x

[(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤
sin β̃

e5 cos β̃
≤
√

2β̃

e5
.
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Taking the sum, we obtain

Pr
x

[(ŵ · x)(w∗ · x) < 0, x ∈ S2] ≤
2
√

2β̃

e5
≤ 2−(k+3).

Using now Lemma A.2.2 we get that for all̂w consistent with the data inW (k − 1) we have:

err(ŵ) ≤ err(ŵ|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1

√
4d/π + 2−(k+3)

≤ 2−(k+2)
(
err(ŵ|S1)16

√
4π
√

5 + ln(1 + k) + 1/2
)

.

Since we are labellingmk points in S1 at iterationk − 1, we know from Theorem A.2.1 in Ap-
pendix A.2, that∃C s. t. with probability1− δ/(k + k2) we have

err(ŵk|S1)16
√

4π
√

5 + ln(1 + k) ≤ 0.5

for all ŵ consistent withW (k); so, with probability1−δ((1−1/k)+1/(k+k2)) = 1−δ(1−1/(k+1)),
we haveerr(ŵ) ≤ 2−k−2 for all ŵ consistent withW (k).

The bound in Theorem 5.2.2 is generally better than the one inTheorem 5.2.1 due to the improved
dependency ond in mk. However,mk depends on

√
ln k ln ln k, for k ≤ ⌈log2

1
ǫ ⌉ − 2. Therefore when

d ≪ ln k(ln ln k)2, Theorem 5.2.1 offers a better bound. Note that the strategyused in Theorem 5.2.2 is
more aggressive than the strategy used in the selective sampling algorithm of [31, 87]. Indeed, we do not
sample from the entire region of uncertainty – but we sample just from a subregion carefully chosen. This
helps us to get rid of the undesiredd1/2. Our analysis also holds with very small modifications when the
input distribution comes from a high dimensional Gaussian.

5.2.2 The Non-realizable Case under the Uniform Distribution

We show that a result similar to Theorem 5.2.2 can be obtainedeven for non-separable problems under a
specific type of noise although not necessarily in a computationally efficient manner. The non-realizable
(noisy) case for active learning in the context of classification was recently explored in [81] and as we
have seen in Section 5.1 in [31, 36] as well. We consider here amodel which is related to the simple one-
dimensional problem in [81], which assumes that the data satisfy the increasingly popular Tsybakov small
noise condition along the decision boundary[204]. We first consider a simple version which still leads to
exponential convergence similar to Theorem 5.2.2. Specifically, we still assume that the data instances are
drawn uniformly from the the unit ball inRd, and a linear classifierw∗ is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consider the following low noise condition: there exists
a known parameterβ > 0 such that:

Px(|P (y = 1|x)− P (y = −1|x)| ≥ 4β) = 1.

It is known that in the passive supervised learning setting this condition can lead to fast convergence
rates. As we will show in this section, the condition can alsobe used to quantify the effectiveness of
active-learning. The key point is that this assumption implies the stability condition required for active
learning:

β min

(
1,

4θ(w,w∗)
π

)1/(1−α)

≤ err(w)− err(w∗) (5.2.1)
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Algorithm 10 Margin-based Active Learning (non-separable case).

Input : allowed error rateǫ, probability of failureδ, a sampling oracle forD, and a labeling oracle
a sequence of sample sizesmk > 0, k ∈ Z; a sequence of cut-off valuesbk > 0, k ∈ Z

a sequence of hypothesis space radiirk > 0, k ∈ Z;
a sequence of precision valuesǫk > 0, k ∈ Z

Output: weight vectorŵs of excess error at mostǫ with probability1− δ

Pick randomŵ0: ‖ŵ0‖2 = 1.

Drawm1 examples fromD, label them and put into a working setW .

iterate k = 1, . . . , s

find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:
∑

(x,y)∈W I(ŵk · xy) ≤ minw∈B(ŵk−1,rk)

∑
(x,y)∈W I(w · xy) + mkǫk.

clear the working setW

until mk+1 additional data points are labeled, draw samplex from D

if |ŵk · x| ≥ bk then rejectx

elseask for label ofx, and put intoW

end iterate

with α = 0. We analyze here a more general setting withα ∈ [0, 1). As mentioned already, the one
dimensional setting was examined in [81]. We callerr(w)− err(w∗) theexcess errorof w. In this setting,
the Algorithm 9 needs to be slightly modified, as in Algorithm10.

Theorem 5.2.3 Letd ≥ 4. Assume there exists a weight vectorw∗ s. t. the stability condition5.2.1 holds.
Then there exists a constantC, s. t. for anyǫ, δ > 0, ǫ < β/8, using Algorithm 10 with

bk = 2−(1−α)kπd−1/2
√

5 + αk ln 2− ln β + ln(2 + k),

rk = 2−(1−α)k−2π for k > 1, r1 = π,

ǫk = 2−α(k−1)−4β/
√

5 + αk ln 2− ln β + ln(1 + k) and

mk = Cǫ−2
k

(
d + ln

k

δ

)
,

after s = ⌈log2(β/ǫ)⌉ iterations, we find a separator with excess error≤ ǫ with probability1− δ.

Proof: The proof is similar to that of Theorem 5.2.2. We prove by induction onk that afterk ≤ s
iterations,err(ŵk)− err(w∗) ≤ 2−kβ with probability1− δ(1− 1/(k + 1)).

Fork = 1, according to Theorem A.1.1, we only needmk = β−2O(d + ln(k/δ)) examples to obtain
ŵ1 with excess error2−kβ with probability1−δ/(k+1). Assume now the claim is true fork−1 (k ≥ 2).
Then at thek-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.

By induction hypothesis, we know that with probability at least1− δ(1− 1/k), ŵk−1 has excess errors at
most2−k+1β, implying θ(ŵk−1, w

∗) ≤ 2−(1−α)(k−1)π/4. By assumption,θ(ŵk−1, ŵk) ≤ 2−(1−α)k−2π.
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Let β̃ = 2−(1−α)k−2π and usingcos β̃/ sin β̃ ≤ 1/β̃ andsin β̃ ≤ β̃, it is easy to verify that the following
inequality holds:

bk−1 ≥ 2 sin β̃d−1/2

√

5 + αk ln 2− ln β + ln

(
1 +

√
ln(cos β̃/ sin β̃)

)
.

From Lemma A.2.5, we have both

Pr
x

[(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2] ≤
sin β̃

e5β−12αk cos β̃
≤
√

2β̃β

2αke5

and

Pr
x

[(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤
sin β̃

e5β−12αk cos β̃
≤
√

2β̃β

2αke5
.

Taking the sum, we obtain

Pr
x

[(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤
2
√

2β̃β

2αke5
≤ 2−(k+1)β.

Therefore we have (using Lemma A.2.2):

err(ŵk)− err(w∗) ≤ (err(ŵk|S1)− err(w∗|S1)) Pr(S1) + 2−(k+1)β

≤ (err(ŵk|S1)− err(w∗|S1))bk−1

√
4d/π + 2−(k+1)β

≤ 2−kβ
(
(err(ŵk|S1)− err(w∗|S1))

√
π/(4ǫk) + 1/2

)
.

From Theorem A.2.1, we know we can chooseC s. t. withmk samples, we obtain

err(ŵk|S1)− err(w∗|S1) ≤ 2ǫk/
√

π

with probability1− δ/(k + k2). Thereforeerr(ŵk) ≤ 2−kβ with probability1− δ((1 − 1/k) + 1/(k +
k2)) = 1− δ(1− 1/(k + 1)).

If α = 0, then we can achieve exponential convergence similar to Theorem 5.2.2, even fornoisy
problems. However, forα ∈ (0, 1), we have to label

∑
k mk = O(ǫ−2α ln(1/ǫ)(d + ln(s/δ)) examples

to an achieve error rate ofǫ. That is, we only get a polynomial improvement compared to the batch
learning case (with sample complexity betweenO(ǫ−2) andO(ǫ−1)). In general, onecannot improve
such polynomial behavior – see [81] for some simple one-dimensional examples.

Note: This bounds here improve significantly over the previous work in [31, 81]. [81] studies a similar
model to ours, but for the much simpler one dimensional case.The model studied in [31] and also consid-
ered in Section 5.1 is more general, it applies to the purely agnostic setting and also the algorithm itself
works generically for any concept space; however, for the specific case of learning linear separators the
bounds end up having a worse quadratic rather than linear dependence ond.

Note: Instead of rejectingx when|ŵk · x| ≥ bk, we can add them toW using the automatic labels from
ŵk. We can then remove the requirementŵk ∈ B(ŵk−1, rk) (thus removing the parametersrk). The
resulting procedure will have the same convergence behavior as Theorem 5.2.3 because the probability of
making error byŵk when|ŵk · x| ≥ bk is no more than2−(k+2)β.
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Other Results on Margin Based Active Learning In [34] we also give an analysis of our algorithm
for a case where we have a “good margin distribution”, and we show how active learning can dramatically
improve (the supervised learning) sample complexity in that setting as well; the bounds we obtain for
that do not dependon the dimensionalityd. We also provide a generic analysis of our main algorithm,
Algorithm 8.

5.2.3 Discussion

We have shown here that a more aggressive active learning strategies can generally lead to better bounds.
Note however that the analysis in this section (based on [34]) was specific to the realizable case, or done
for a special type of noise. It is an open question to design aggressive agnostic active learning algorithms.

While our algorithm is computationally efficient in the realizable case, it remains an open problem
to make it efficient in the general case. It is conceivable that for some special cases (e.g. the marginal
distribution over the instance space is uniform, as in section 5.2.2) one could use the recent results of
Kalai et. al. for agnostically learning halfspaces [147]. In fact, it would be interesting to derive precise
bounds (both in the realizable and the non-realizable cases) for the more general of class of log-concave
distributions.

5.3 Other Results in Active Learning

In recent work, we also show that in an asymptotic model for active learning where one bounds the number
of queries the algorithm makes before it finds a good function(i.e. one of arbitrarily small error rate), but
not the number of queries before itknowsit has found a good function, one can obtain significantly better
bounds on the number of label queries required to learn than in the traditional active learning models.
These results appear in [35, 42]. We summarize in the following some of the main results in these papers.
(Full details of the model and results can be found in [35, 42].)

At a high level, in [35, 42] we point out that traditional analyses [96] have studied the number of label
requests required before an algorithm can both produce anǫ-good classifier and prove that the classifier’s
error is no more thanǫ. These studies have turned up simple examples where this number is no smaller than
the number of random labeled examples required for passive learning. This is the case for learning certain
nonhomogeneouslinear separators and intervals on the real line, and generally seems to be a common
problem for many learning scenarios. As such, it has led someto conclude that active learning does not
help for most learning problems. In our work [35, 42] we dispel this misconception. Specifically, we
study the number of labels an algorithm needs to request before it can produce anǫ−good classifier, even
if there is no accessible confidence bound available to verify the quality of the classifier. With this type
of analysis, we prove that active learning can essentially always achieve asymptotically superior sample
complexity compared to passive learning when the VC dimension is finite. Furthermore, we find that for
most natural learning problems, including the negative examples given in the previous literature, active
learning can achieve exponential improvements over passive learning with respect to dependence onǫ.

Formally, in this work we consider the realizable setting inwhich it is assumed that there is a distri-
butionD over instances inX, and that the instances are labeled by a target functionh∗ in the classC; we
assume thatC has a finite VC dimension. We assume the existence of an infinite sequencex1, x2, . . . of ex-
amples sampled i.i.d. according toD. The learning algorithm may access any finite prefixx1, x2, . . . , xm

of the sequence. Essentially, this means we allow the algorithm access to an arbitrarily large, but finite,
sequence of random unlabeled examples. In active learning,the algorithm can select any examplexi, and
request the labelh∗(xi) that the target assigns to that example, observing the labels of all previous requests
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before selecting the next example to query. The goal is to finda hypothesish with small error with respect
to D, while simultaneously minimizing the number of label requests that the learning algorithm makes.

The following definitions present a subtle but significant distinction between two different notions of
sample complexity.

Definition 5.3.1 A functionS(ǫ, δ, h∗) is a verifiable sample complexityfor a pair (C,D) if there exists
an active learning algorithmA(t, δ) that outputsboth a classifierht,δ and a valuêǫt,δ ∈ R after making
at mostt label requests, such that for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for anyt ≥ 0,
PrD(err(ht,δ) ≤ ǫ̂t,δ) ≥ 1− δ and for anyt ≥ S(ǫ, δ, h∗),

PrD(err(ht,δ) ≤ ǫ̂t,δ ≤ ǫ) ≥ 1− δ.

Definition 5.3.2 A functionS(ǫ, δ, h∗) is a sample complexityfor a pair (C,D) if there exists an active
learning algorithmA(t, δ) that outputs a classifierht,δ after making at mostt label requests, such that for
any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for anyt ≥ S(ǫ, δ, h∗),

PrD(err(ht,δ) ≤ ǫ) ≥ 1− δ.

Both definitions allow the sample complexity to depend both on the target function and on the input
distribution. The only distinction is whether or not there is anaccessible guaranteeor confidence bound
on the error of the chosen hypothesis that is also at mostǫ. This confidence bound can only depend on
quantities accessible to the learning algorithm, such as the t requested labels.

Clearly, any verifiable sample complexity function is also asample complexity function, but we study
a variety of cases where the reverse is not true. We describe here conditions under which active learning
can achieve a sample complexity asymptotically superior topassive learning. The results are surprisingly
general, indicating that whenever the VC dimension is finite, essentiallyanypassive learning algorithm is
asymptoticallydominatedby an active learning algorithm onall targets.

Definition 5.3.3 A functionS(ǫ, δ, h∗) is a passive learningsample complexity for a pair(C,D) if there
exists an algorithmA(((x1, h

∗(x1)), (x2, h
∗(x2)), . . . , (xt, h

∗(xt))), δ) that outputs a classifierht,δ , such
that for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for anyt ≥ S(ǫ, δ, h∗),

PrD(err(ht,δ) ≤ ǫ) ≥ 1− δ.

Thus, a passive learning sample complexity corresponds to arestriction of an active learning sample
complexity to algorithms that specifically request the firstt labels in the sequence and ignore the rest. In
particular, it is known that for any finite VC dimension class, there is always anO (1/ǫ) passive learning
sample complexity [133]. Furthermore, this is often (though not always) tight, in the sense that for any
passive algorithm, there exist targets for which the corresponding passive learning sample complexity is
Ω (1/ǫ) [19].

The following theorem states that for any passive learning sample complexity, there exists an achiev-
able active learning sample complexity with a strictly slower asymptotic rate of growth.
Theorem 5.3.1 SupposeC has finite VC dimension, and letD be any distribution onX. For any passive
learning sample complexitySp(ǫ, δ, h) for (C,D), there exists an active learning algorithm achieving a
sample complexitySa(ǫ, δ, h) such that, for allδ ∈ (0, 1/4) and targetsh∗ ∈ C for whichSp(ǫ, δ, h

∗) =
ω(1),7

Sa(ǫ, δ, h
∗) = o (Sp(ǫ/4, δ, h

∗)) .

7Recall that we say a non-negative functionφ(ǫ) = o (1/ǫ) iff lim
ǫ→0

φ(ǫ)/(1/ǫ) = 0. Similarly,φ(ǫ) = ω(1) iff lim
ǫ→0

1/φ(ǫ) =

0. Here and below, theo(·), ω(·), Ω(·) andO(·) notation should be interpreted asǫ → 0 (from the+ direction), treating all other
parameters (e.g.,δ andh∗) as fixed constants.
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In particular, this implies the following simple corollary.
Corollary 5.3.2 For anyC with finite VC dimension, and any distributionD overX, there is an active
learning algorithm that achieves a sample complexityS(ǫ, δ, h∗) such that forδ ∈ (0, 1/4),

S(ǫ, δ, h∗) = o (1/ǫ)

for all targetsh∗ ∈ C.
Note the interesting contrast, not only to passive learning, but also to the known results on theverifiable

sample complexity of active learning. This theorem definitively states that theΩ (1/ǫ) lower bounds
common in the literature on verifiable samples complexity can neverarise in the analysis of the sample
complexity of finite VC dimension classes when the verifiability assumption is removed.
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Chapter 6

Kernels, Margins, and Random Projections

In this chapter we return to study learning with kernel functions. As discussed in Chapter 3, a kernel
is a function that takes in two data objects (which could be images, DNA sequences, or points inRn)
and outputs a number, with the property that the function is symmetric and positive-semidefinite. That
is, for any kernelK, there must exist an (implicit) mappingφ, such that for all inputsx, x′ we have
K(x, x′) = φ(x) · φ(x′). The kernel is then used inside a “kernelized” learning algorithm such as SVM
or kernel-perceptron as the way in which the algorithm interacts with the data. Furthermore even though
φ may be a mapping into a very high-dimensional space, these algorithms have convergence rates that
depend only on themargin γ of the best separator, and not on the dimension of theφ space [18, 195].
Thus, kernel functions are often viewed as providing much ofthe power of this implicit high-dimensional
space, without paying for it computationally (because theφ mapping is only implicit) or in terms of sample
size (if data is indeed well-separated in that space).

In this chapter, we point out that the Johnson-Lindenstrauss [97] lemma suggests that in the presence
of a large margin, a kernel function can also be viewed as a mapping to alow-dimensional space, one of
dimension onlyÕ(1/γ2). We then explore the question of whether one can efficiently produce such low-
dimensional mappings, using only black-box access to a kernel function. That is, given just a program
that computesK(x, y) on inputsx, y of our choosing, can we efficiently construct an explicit (small)
set of features that effectively capture the power of the implicit high-dimensional space? We answer
this question in the affirmative if our method is also allowedblack-box access to the underlying data
distribution (i.e., unlabeled examples). We also give a lower bound, showing that if we do not have access
to the distribution, then this is not possible for anarbitrary black-box kernel function.

Our positive result can be viewed as saying that designing a good kernel function is much like de-
signing a good feature space. Given a kernel, by running it ina black-box manner on randomunlabeled
examples, we canefficientlygenerate an explicit set of̃O(1/γ2) features, such that if the data was linearly
separable with marginγ under the kernel, then it is approximately separable in thisnew feature space.

6.1 Introduction

The starting point for this chapter is the observation that if a learning problem indeed has the large margin
property under some kernelK(x, y) = φ(x) · φ(y), then by the Johnson-Lindenstrauss lemma, aran-
dom linear projection of the “φ-space” down to alow dimensional space approximately preserves linear
separability [7, 22, 97, 144]. Specifically, suppose data comes from some underlying distributionD over
the input spaceX and is labeled by some target functionc. If D is such that the target function has
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marginγ in theφ-space,1 then a random linear projection of theφ-space down to a space of dimension

d = O
(

1
γ2 log 1

εδ

)
will, with probability at least1−δ, have a linear separator with error rate at mostε (see

Arriaga and Vempala [22] and also Theorem 6.4.2 in this chapter). This means that for any kernelK and
marginγ, we can, in principle, think ofK as mapping the input spaceX into anÕ(1/γ2)-dimensional
space, in essence serving as a method for representing the data in a new (and not too large) feature space.

The question we consider in this chapter is whether, given kernel K, we can in fact produce such
a mapping efficiently. The problem with the above observation is that it requires explicitly computing
the functionφ(x). In particular, the mapping ofX into Rd that results from applying the Johnson-
Lindenstrauss lemma is a functionF (x) = (r1 ·φ(x), . . . , rd ·φ(x)), wherer1, . . . , rd are random vectors
in theφ-space. Since for a given kernelK, the dimensionality of theφ-space might be quite large, this is
not efficient. Instead, what we would like is an efficient procedure that givenK(., .) as a black-box pro-
gram, produces a mapping with the desired properties and with running time that depends (polynomially)
only on1/γ and the time to compute the kernel functionK, with no dependence on the dimensionality of
theφ-space.

Our main result is a positive answer to this question, if our procedure for computing the mapping
is also given black-box access to the distributionD (i.e., unlabeled data). Specifically, given black-box
access to a kernel functionK(x, y), a margin valueγ, access to unlabeled examples from distributionD,
and parametersε andδ, we can in polynomial time construct a mappingF : X → Rd (i.e., to a set ofd

real-valued features) whered = O
(

1
γ2 log 1

εδ

)
with the following property. If the target concept indeed

has marginγ in theφ-space, then with probability1 − δ (over randomization in our choice of mapping
function), the induced distribution inRd is separable with error≤ ε. In fact, not only will the data in
Rd be separable, but it will be separable with marginΩ(γ). Note that the logarithmic dependence onε
implies that if the learning problem has a perfect separatorof marginγ in theφ-space, we can setε small
enough so that with high probability a setS of O(d log d) labeled examples would be perfectly separable
in the mapped space. This means we could apply an arbitrary zero-noise linear-separator learning algo-
rithm in the mapped space, such as a highly-optimized linear-programming package. However, while the
dimensiond has a logarithmic dependence on1/ε, the number of (unlabeled) examples we use to produce
our mapping isÕ(1/(γ2ε)).

To give a feel of what such a mapping might look like, suppose we are willing to use dimension
d = O(1

ε [ 1
γ2 + ln 1

δ ]) (so this is linear in1/ε rather than logarithmic) and we are not concerned with
preserving margins and only want approximate separability. Then we show the following simple proce-
dure suffices. Just draw a random sample ofd unlabeled pointsx1, . . . , xd from D and defineF (x) =
(K(x, x1), . . . ,K(x, xd)). That is, if we think ofK not so much as an implicit mapping into a high-
dimensional space but just as a similarity function over examples, what we are doing is drawingd “ref-
erence” points and then defining theith feature ofx to be its similarity with reference pointi. We show
(Corollary 6.3.2) that under the assumption that the targetfunction has marginγ in the φ space, with
high probability the data will be approximately separable under this mapping. Thus, this gives a partic-
ularly simple way of using the kernel and unlabeled data for feature generation, and in fact this was the
motivation for the work presented in Chapter 3.

Given the above results, a natural question is whether it might be possible to perform mappings of this
type without access to the underlying distribution. In Section 6.5 we show that this is in generalnot pos-
sible, given only black-box access (and polynomially-manyqueries) to anarbitrary kernelK. However,
it may well be possible for specific standard kernels such as the polynomial kernel or the gaussian kernel.

1That is, there exists a linear separator in theφ-space such that any example fromD is correctly classified by marginγ. See
Section 6.2 for formal definitions. In Section 6.4.1 we consider the more general case that only a1−α fraction of the distribution
D is separated by marginγ.
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Relation to Support Vector Machines and Margin Bounds: Given a setS of n training examples, the
kernel matrix defined overS can be viewed as placingS into ann-dimensional space, and the weight-
vector found by an SVM will lie in this space and maximize the margin with respect to the training data.
Our goal is to define a mapping over the entire distribution, with guarantees with respect to the distribution
itself. In addition, the construction of our mapping requires only unlabeled examples, and so could be
performed before seeing any labeled training data if unlabeled examples are freely available. There is,
however, a close relation to margin bounds [45, 195] for SVMs(see the remark after the statement of
Lemma 6.3.1 in Section 6.3), though the dimension of our output space is lower than that produced by
combining SVMs with standard margin bounds.

Our goals are to some extent related to those of Ben-David et al. [49, 51]. They show negative results
giving simple classes of learning problems for which one cannot construct a mapping to a low-dimensional
space under which all functions in the class are linearly separable. We restrict ourselves to situations where
we know that such mappings exist, but our goal is to produce them efficiently.

Interpretation: Kernel functions are often viewed as providing much of the power of an implicit high-
dimensional space without having to pay for it. Our results suggest that an alternative view of kernels is
as a (distribution-dependent) mapping into a low-dimensional space. In this view, designing a good kernel
function is much like designing a good feature space. Given akernel, by running it in a black-box manner
on random unlabeled examples, one can efficiently generate an explicit set ofÕ(1/γ2) features, such that
if the data was linearly separable with marginγ under the kernel, then it is approximately separable using
these new features.

Outline of this chapter: We begin with by giving our formal model and definitions in Section 6.2. We
then in Section 6.3 show that the simple mapping described earlier in this section preserves approximate
separability, and give a modification that approximately preserves both separability and margin. Both of
these map data into ad-dimensional space ford = O(1

ε [ 1
γ2 + ln 1

δ ]). In Section 6.4, we give an improved

mapping, that maps data to a space of dimension onlyO( 1
γ2 log 1

εδ ). This logarithmic dependence on1ε
means we can setε small enough as a function of the dimension and our input error parameter that we
can then plug in a generic zero-noise linear separator algorithm in the mapped space (assuming the target
function was perfectly separable with marginγ in theφ-space). In Section 6.5 we give a lower bound,
showing that for a black-box kernel, one must have access to the underlying distributionD if one wishes
to produce a good mapping into a low-dimensional space.

6.2 Notation and Definitions

We briefly introduce here the notation needed throughout thechapter. We assume that data is drawn from
some distributionD over an instance spaceX and labeled by some unknown target functionc : X →
{−1,+1}. We useP to denote the combined distribution over labeled examples.

A kernelK is a pairwise functionK(x, y) that can be viewed as a “legal” definition of inner product.
Specifically, there must exist a functionφ mappingX into a possibly high-dimensional Euclidean space
such thatK(x, y) = φ(x)·φ(y). We call the range ofφ the “φ-space”, and useφ(D) to denote the induced
distribution in theφ-space produced by choosing randomx from D and then applyingφ(x).

For simplicity we focus on the0 − 1 loss for most of this chapter. We say that for a setS of labeled
examples, a vectorw in theφ-space has marginγ if:

min
(x,l)∈S

[
l

w · φ(x)

||w|| ||φ(x)||

]
≥ γ.
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That is,w has marginγ if any labeled example inS is correctly classified by the linear separatorw·φ(x) ≥
0, and furthermore the cosine of the angle betweenw andφ(x) has magnitude at leastγ.2 If such a vector
w exists, then we say thatS is linearly separable with marginγ under the kernelK. For simplicity, we are
only considering separators that pass through the origin, though our results can be adapted to the general
case as well (see Section 6.4.1).

We can similarly talk in terms of the distributionP rather than a sampleS. We say that a vectorw in
theφ-space has marginγ with respect toP if:

Pr
(x,l)∼P

[
l

w · φ(x)

||w|| ||φ(x)|| < γ

]
= 0.

If such a vectorw exists, then we say thatP is linearly separable with marginγ underK (or just thatP
has marginγ in theφ-space). One can also weaken the notion of perfect separability. We say that a vector
w in theφ-space has errorα at marginγ if:

Pr
(x,l)∼P

[
l

w · φ(x)

||w|| ||φ(x)|| < γ

]
≤ α.

Our starting assumption in this chapter will be thatP is perfectly separable with marginγ underK,
but we can also weaken the assumption to the existence of a vector w with error α at marginγ, with a
corresponding weakening of the implications (see Section 6.4.1). Our goal is a mappingF : X → Rd

whered is not too large that approximately preserves separability, and, ideally, the margin. We useF (D)
to denote the induced distribution inRd produced by selecting points inX from D and then applyingF ,
and useF (P ) = F (D, c) to denote the induced distribution on labeled examples.

For a set of vectorsv1, v2, . . . , vk in Euclidean space, letspan(v1, . . . , vk) denote the set of vectorsv
that can be written as a linear combinationa1v1 + . . . + akvk. Also, for a vectorv and a subspaceY , let
proj(v, Y ) be the orthogonal projection ofv down toY . So, for instance,proj(v, span(v1, . . . , vk)) is the
orthogonal projection ofv down to the space spanned byv1, . . . , vk. We note that given a set of vectors
v1, . . . , vk and the ability to compute dot-products, this projection can be computed efficiently by solving
a set of linear equalities.

6.3 Two simple mappings

Our goal is a procedure that given black-box access to a kernel function K(., .), unlabeled examples from
distributionD, and a margin valueγ, produces a (probability distribution over) mappingsF : X → Rd

with the following property: if the target function indeed has marginγ in the φ-space, then with high
probability our mapping will approximately preserve linear separability. In this section, we analyze two
methods that both produce a space of dimensiond = O(1

ε [ 1
γ2 + ln 1

δ ]), whereε is our desired bound on
the error rate of the best separator in the mapped space. The second of these mappings in fact satisfies a
stronger condition that its output will be approximately separable at marginγ/2 (rather than just approx-
imately separable). This property will allow us to use this mapping as a first step in a better mapping in
Section 6.4.

The following lemma is key to our analysis.

Lemma 6.3.1 Consider any distribution over labeled examples in Euclidean space such that there exists
a vectorw with marginγ. Then if we draw

d ≥ 8

ε

[
1

γ2
+ ln

1

δ

]

2This is equivalent to the notion of margin in Chapter 3 since there we have assumed||φ(x)|| ≤ 1.
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examplesz1, . . . , zd i.i.d. from this distribution, with probability≥ 1 − δ, there exists a vectorw′ in
span(z1, . . . , zd) that has error at mostε at marginγ/2.

Before proving Lemma 6.3.1, we remark that a somewhat weakerbound ond can be derived from the
machinery of margin bounds. Margin bounds [45, 195] tell us that usingd = O(1

ε [ 1
γ2 log2( 1

γε) + log 1
δ ])

points, with probability1 − δ, anyseparator with margin≥ γ over the observed data has true error≤ ε.
Thus, the projection of the target functionw into the space spanned by the observed data will have true
error≤ ε as well. (Projectingw into this space maintains the value ofw · zi, while possibly shrinking the
vectorw, which can only increase the margin over the observed data.)The only technical issue is that we
want as a conclusion for the separator not only to have a low error rate over the distribution, but also to
have a large margin. However, this can be obtained from the double-sample argument used in [45, 195] by
using aγ/4-cover instead of aγ/2-cover. Margin bounds, however, are a bit of an overkill for our needs,
since we are only asking for an existential statement (theexistenceof w′) and not a universal statement
about all separators with large empirical margins. For thisreason we are able to get a better bound by a
direct argument from first principles.

Proof of Lemma 6.3.1:For any set of pointsS, let win(S) be the projection ofw to span(S), and let
wout(S) be the orthogonal portion ofw, so thatw = win(S)+ wout(S) andwin(S) ⊥ wout(S). Also, for
convenience, assumew and all examplesz are unit-length vectors (since we have defined margins in terms
of angles, we can do this without loss of generality). Now, let us make the following definitions. Say that
wout(S) is large if Prz(|wout(S) · z| > γ/2) ≥ ε, and otherwise say thatwout(S) is small. Notice that if
wout(S) is small, we are done, because

w · z = (win(S) · z) + (wout(S) · z),

which means thatwin(S) has the properties we want. That is, there is at most anε probability mass of
pointsz whose dot-product withw andwin(S) differ by more thanγ/2. So, we need only to consider
what happens whenwout(S) is large.

The crux of the proof now is that ifwout(S) is large, this means that a new random pointz has at least
anε chance of significantly improving the setS. Specifically, considerz such that|wout(S) · z| > γ/2.
Let zin(S) be the projection ofz to span(S), let zout(S) = z − zin(S) be the portion ofz orthogonal to
span(S), and letz′ = zout(S)/||zout(S)||. Now, forS′ = S ∪ {z}, we have

wout(S
′) = wout(S)− proj(wout(S), span(S′)) = wout(S)− (wout(S) · z′)z′,

where the last equality holds becausewout(S) is orthogonal tospan(S) and so its projection ontospan(S′)
is the same as its projection ontoz′. Finally, sincewout(S

′) is orthogonal toz′ we have

||wout(S
′)||2 = ||wout(S)||2 − |wout(S) · z′|2,

and since
|wout(S) · z′| ≥ |wout(S) · zout(S)| = |wout(S) · z|,

this implies by definition ofz that

||wout(S
′)||2 < ||wout(S)||2 − (γ/2)2.

So, we have a situation where so long aswout is large, each example has at least anε chance of
reducing||wout||2 by at leastγ2/4, and since||w||2 = ||wout(∅)||2 = 1, this can happen at most4/γ2

times. Chernoff bounds state that a coin of biasε flippedn = 8
ε

[
1
γ2 + ln 1

δ

]
times will with probability
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1− δ have at leastnε/2 ≥ 4/γ2 heads. Together, these imply that with probability at least1− δ, wout(S)

will be small for |S| ≥ 8
ε

[
1
γ2 + ln 1

δ

]
as desired.

Lemma 6.3.1 implies that ifP is linearly separable with marginγ underK, and we drawd = 8
ε [ 1

γ2 +

ln 1
δ ] random unlabeled examplesx1, . . . , xd from D, then with probability at least1−δ there is a separator

w′ in theφ-space with error rate at mostε that can be written as

w′ = α1φ(x1) + . . . + αdφ(xd).

Notice that sincew′·φ(x) = α1K(x, x1)+. . .+αdK(x, xd), an immediate implication is that if we simply
think of K(x, xi) as theith “feature” ofx — that is, if we defineF1(x) = (K(x, x1), . . . ,K(x, xd)) —
then with high probability the vector(α1, . . . , αd) is an approximate linear separator ofF1(P ). So, the
kernel and distribution together give us a particularly simple way of performing feature generation that
preserves (approximate) separability. Formally, we have the following.
Corollary 6.3.2 If P has marginγ in theφ-space, then with probability≥ 1− δ, if x1, . . . , xd are drawn

fromD for d = 8
ε

[
1
γ2 + ln 1

δ

]
, the mapping

F1(x) = (K(x, x1), . . . ,K(x, xd))

produces a distributionF1(P ) that is linearly separable with error at mostε.

The above mappingF1 may not preserve margins (within a constant factor) becausewe do not have
a good bound on the length of the vector(α1, . . . , αd) defining the separator in the new space, or the
length of the examplesF1(x). The key problem is that if many of theφ(xi) are very similar, then their
associated featuresK(x, xi) will be highly correlated. Instead, to preserve margin we want to choose an
orthonormal basis of the space spanned by theφ(xi): i.e., to do an orthogonal projection ofφ(x) into
this space. Specifically, letS = {x1, ..., xd} be a set of of8ε [ 1

γ2 + ln 1
δ ] unlabeled examples fromD.

We can then implement the desired orthogonal projection ofφ(x) as follows. RunK(x, y) for all pairs
x, y ∈ S, and letM(S) = (K(xi, xj))xi,xj∈S be the resulting kernel matrix. Now decomposeM(S)

into UT U , whereU is an upper-triangular matrix. Finally, define the mappingF2 : X → Rd to be
F2(x) = F1(x)U−1, whereF1 is the mapping of Corollary 6.3.2. This is equivalent to an orthogonal
projection ofφ(x) into span(φ(x1), . . . , φ(xd)). Technically, ifU is not full rank then we want to use the
(Moore-Penrose) pseudoinverse [52] ofU in place ofU−1.

We now claim that by Lemma 6.3.1, this mappingF2 maintains approximate separability at margin
γ/2.

Theorem 6.3.3 If P has marginγ in theφ-space, then with probability≥ 1− δ, the mappingF2 : X →
Rd for d ≥ 8

ε

[
1
γ2 + ln 1

δ

]
has the property thatF2(P ) is linearly separable with error at mostε at margin

γ/2.

Proof: The theorem follows directly from Lemma 6.3.1 and the fact that F2 is an orthogonal projec-

tion. Specifically, sinceφ(D) is separable at marginγ, Lemma 6.3.1 implies that ford ≥ 8
ε

[
1
γ2 + ln 1

δ

]
,

with probability at least1−δ, there exists a vectorw′ that can be written asw′ = α1φ(x1)+ ...+αdφ(xd),
that has error at mostε at marginγ/2 with respect toφ(P ), i.e.,

Pr
(x,l)∼P

[
l(w′ · φ(x))

||w′|| ||φ(x)|| <
γ

2

]
≤ ε.

Now considerw = α1F2(x1) + . . . + αdF2(xd). SinceF2 is an orthogonal projection and theφ(xi) are
clearly already in the space spanned by theφ(xi), w can be viewed as the same asw′ but just written in
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a different basis. In particular, we have||w|| = ||w′||, andw′ · φ(x) = w · F2(x) for all x ∈ X. Since
||F2(x)|| ≤ ||φ(x)|| for everyx ∈ X, we get thatw has error at mostε at marginγ/2 with respect to
F2(P ), i.e.,

Pr
(x,l)∼P

[
l(w · F2(x))

||w|| ||F2(x)|| <
γ

2

]
≤ ε.

Therefore, for our choice ofd, with probability at least1 − δ (over randomization in our choice ofF2),
there exists a vectorw ∈ Rd that has error at mostε at marginγ/2 with respect toF2(P ).

Notice that the running time to computeF2(x) is polynomial in1/γ, 1/ε, 1/δ and the time to compute
the kernel functionK.

6.4 An improved mapping

We now describe an improved mapping, in which the dimensiond has only a logarithmic, rather than
linear, dependence on1/ε. The idea is to perform a two-stage process, composing the mapping from
the previous section with a random linear projection from the range of that mapping down to the desired
space. Thus, this mapping can be thought of as combining two types of random projection: a projection
based on points chosen at random fromD, and a projection based on choosing points uniformly at random
in the intermediate space.

We begin by stating a result from [7, 22, 97, 138, 144] that we will use. HereN(0, 1) is the standard
Normal distribution with mean0 and variance1 andU(−1, 1) is the distribution that has probability1/2
on−1 and probability1/2 on1. Here we present the specific form given in [22].

Theorem 6.4.1 (Neuronal RP [22])Letu, v ∈ Rn. Letu′ = 1√
k
uA andv′ = 1√

k
vA whereA is an× k

random matrix whose entries are chosen independently from either N(0, 1) or U(−1, 1). Then,

Pr
A

[
(1− ε)||u− v||2 ≤ ||u′ − v′||2 ≤ (1 + ε)||u − v||2

]
≥ 1− 2e−(ε2−ε3)k

4 .

Let F2 : X → Rd2 be the mapping from Section 6.3 usingε/2 andδ/2 as its error and confidence
parameters respectively. Let̂F : Rd2 → Rd3 be a random projection as in Theorem 6.4.1. Specifically,
we pickA to be a randomd2 × d3 matrix whose entries are chosen i.i.d.N(0, 1) or U(−1, 1). We then
setF̂ (x) = 1√

d3
xA. We finally consider our overall mappingF3 : X → Rd3 to beF3(x) = F̂ (F2(x)).

We now claim that ford2 = O(1
ε [ 1

γ2 + ln 1
δ ]) andd3 = O( 1

γ2 log( 1
εδ )), with high probability, this

mapping has the desired properties. The basic argument is that the initial mappingF2 maintains approxi-
mate separability at marginγ/2 by Lemma 6.3.1, and then the second mapping approximately preserves
this property by Theorem 6.4.1.

Theorem 6.4.2 If P has marginγ in the φ-space, then with probability at least1 − δ, the mapping

F3 = F̂ ◦ F2 : X → Rd3 , for valuesd2 = O
(

1
ε

[
1
γ2 + ln 1

δ

])
and d3 = O

(
1
γ2 log( 1

εδ )
)

, has the

property thatF3(P ) is linearly separable with error at mostε at marginγ/4.

Proof:
By Lemma 6.3.1, with probability at least1− δ/2 there exists a separatorw in the intermediate space

Rd2 with error at mostε/2 at marginγ/2. Let us assume this in fact occurs. Now, consider some point
x ∈ Rd2. Theorem 6.4.1 implies that a choice ofd3 = O( 1

γ2 log( 1
εδ )) is sufficient so that under the random

projectionF̂ , with probability at least1− εδ/4, the squared-lengths ofw, x, andw − x are all preserved
up to multiplicative factors of1 ± γ/16. This then implies that the cosine of the angle betweenw andx
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(i.e., the margin ofx with respect tow) is preserved up to an additive factor of±γ/4. Specifically, using

x̂ = x
||x|| andŵ = w

||w|| , which implies F̂ (w)·F̂ (x)

||F̂ (w)|| ||F̂ (x)|| = F̂ (ŵ)·F̂ (x̂)

||F̂ (ŵ)|| ||F̂ (x̂)|| , we have:

F̂ (ŵ) · F̂ (x̂)

||F̂ (ŵ)|| ||F̂ (x̂)||
=

1
2(||F̂ (ŵ)||2 + ||F̂ (x̂)||2 − ||F̂ (ŵ)− F̂ (x̂)||2)

||F̂ (ŵ)|| ||F̂ (x̂)||
∈ [ŵ · x̂− γ/4, ŵ · x̂ + γ/4].

In other words, we have shown the following:

For allx, Pr
A

[∣∣∣∣∣
w · x
||w|| ||x|| −

F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

]
≤ εδ/4.

Since the above is true for allx, it is clearly true for randomx from F2(D). So,

Pr
x∼F2(D),A

[∣∣∣∣∣
w · x
||w|| ||x|| −

F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

]
≤ εδ/4,

which implies that:

Pr
A

[
Pr

x∼F2(D)

(∣∣∣∣∣
w · x
||w|| ||x|| −

F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

)
≥ ε/2

]
≤ δ/2.

Sincew has error at mostε/2 at marginγ/2, this then implies that the probability that̂F (w) has error
more thanε overF̂ (F2(D)) at marginγ/4 is at mostδ/2. Combining this with theδ/2 failure probability
of F2 completes the proof.

As before, the running time to compute our mappings is polynomial in 1/γ, 1/ε, 1/δ and the time to
compute the kernel functionK.

Since the dimensiond3 of the mapping in Theorem 6.4.2 is only logarithmic in1/ε, this means we can
setε to be small enough so that with high probability, a sample of size O(d3 log d3) would be perfectly
separable. This means we could useany noise-free linear-separator learning algorithm inRd3 to learn
the target concept. However, this requires usingd2 = Õ(1/γ4) (i.e., Õ(1/γ4) unlabeled examples to
construct the mapping).
Corollary 6.4.3 Givenε′, δ, γ < 1, if P has marginγ in theφ-space, theñO( 1

ε′γ4 ) unlabeled examples

are sufficient so that with probability1 − δ, mappingF3 : X → Rd3 has the property thatF3(P ) is
linearly separable with erroro(ε′/(d3 log d3)), whered3 = O( 1

γ2 log 1
ε′γδ ).

Proof: Just plug in the desired error rate into the bounds of Theorem6.4.2.

6.4.1 A few extensions

So far, we have assumed that the distributionP is perfectly separable with marginγ in the φ-space.
Suppose, however, thatP is only separable with errorα at marginγ. That is, there exists a vectorw in
the φ-space that correctly classifies a1 − α probability mass of examples by margin at leastγ, but the
remainingα probability mass may be either within the margin or incorrectly classified. In that case, we
can apply all the previous results to the1 − α portion of the distribution that is correctly separated by
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marginγ, and the remainingα probability mass of examples may or may not behave as desired. Thus all
preceding results (Lemma 6.3.1, Corollary 6.3.2, Theorem 6.3.3, and Theorem 6.4.2) still hold, but with
ε replaced by(1− α)ε + α in the error rate of the resulting mapping.

Another extension is to the case that the target separator does not pass through the origin: that is, it is
of the formw · φ(x) ≥ β for some valueβ. If φ is normalized, so that||φ(x)|| = 1 for all x ∈ X, then
all results carry over directly. In particular, all our results follow from arguments showing that the cosine
of the angle betweenw andφ(x) changes by at mostε due to the reduction in dimension. Ifφ(x) is not
normalized, then all results carry over withγ replaced byγ/R, whereR is an upper bound on||φ(x)||, as
is done with standard margin bounds [45, 112, 195].

6.5 On the necessity of access toD

Our algorithms construct mappingsF : X → Rd using black-box access to the kernel functionK(x, y)
together with unlabeled examples from the input distribution D. It is natural to ask whether it might
be possible to remove the need for access toD. In particular, notice that the mapping resulting from
the Johnson-Lindenstrauss lemma has nothing to do with the input distribution: if we have access to the
φ-space, then no matter what the distribution is, a random projection down toRd will approximately
preserve the existence of a large-margin separator with high probability.3 So perhaps such a mapping
F can be produced by just computingK on some polynomial number of cleverly-chosen (or uniform
random) points inX. (Let us assumeX is a “nice” space such as the unit ball or{0, 1}n that can be
randomly sampled.) In this section, we show this is not possible in general for an arbitrary black-box
kernel. This leaves open, however, the case of specific natural kernels.

One way to view the result of this section is as follows. If we define a feature space based on uniform
binary (Rademacher) or gaussian-random points in theφ-space, then we know this will work by the
Johnson-Lindenstrauss lemma. If we define features based onpoints inφ(X) (the image ofX underφ)
chosen according toφ(D), then this will work by Corollary 6.3.2. However, if we definefeatures based on
points inφ(X) chosen according to some method that does not depend onD, then there will exist kernels
for which this does not work.

In particular, we demonstrate the necessity of access toD as follows. ConsiderX = {0, 1}n, let X ′

be a random subset of2n/2 elements ofX, and letD be the uniform distribution onX ′. For a given target
function c, we will define a specialφ-function φc such thatc is a large margin separator in theφ-space
under distributionD, but that only the points inX ′ behave nicely, and points not inX ′ provide no useful
information. Specifically, considerφc : X → R2 defined as:

φc(x) =






(1, 0) if x 6∈ X ′

(−1/2,
√

3/2) if x ∈ X ′ andc(x) = 1

(−1/2,−
√

3/2) if x ∈ X ′ andc(x) = −1

See figure 6.5.1. This then induces the kernel:

Kc(x, y) =

{
1 if x, y 6∈ X ′ or [x, y ∈ X ′ andc(x) = c(y)]
−1/2 otherwise

Notice that the distributionP = (D, c) over labeled examples has marginγ =
√

3/2 in theφ-space.

3To be clear about the order of quantification, the statement is that for any distribution, a random projection will work with
high probability. However, for any given projection, theremay exist bad distributions. So, even if we could define a mapping of
the sort desired, we might still expect the algorithm to be randomized.
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x in X’

x in X’
c(x)=−1

c(x)=1

x not in X’

Figure 6.5.1: Functionφc used in lower bound.

Theorem 6.5.1 Suppose an algorithm makes polynomially many calls to a black-box kernel function over
input space{0, 1}n and produces a mappingF : X → Rd whered is polynomial inn. Then for random
X ′ and randomc in the above construction, with high probabilityF (P ) will not even be weakly-separable
(even thoughP has marginγ =

√
3/2 in theφ-space).

Proof: Consider any algorithm with black-box access toK attempting to create a mappingF : X → Rd.
SinceX ′ is a random exponentially-small fraction ofX, with high probability all calls made toK when
constructing the functionF are on inputs not inX ′. Let us assume this indeed is the case. This implies
that (a) all calls made toK when constructing the functionF return the value 1, and (b) at “runtime” when
x chosen fromD (i.e., whenF is used to map training data), even though the functionF (x) may itself
call K(x, y) for different previously-seen pointsy, these will all giveK(x, y) = −1/2. In particular, this
means thatF (x) is independent of the target functionc. Finally, sinceX ′ has size2n/2 andd is only
polynomial inn, we have by simply counting the number of possible partitions of F (X ′) by halfspaces
that with high probabilityF (P ) will not even be weakly separable for a random functionc over X ′.
Specifically, for any given halfspace, the probability overchoice ofc that it has error less than1/2 − ǫ
is exponentially small in|X ′| (by Hoeffding bounds), which is doubly-exponentially small in n, whereas
there are “only”2O(dn) possible partitions by halfspaces.

Notice that the kernel in the above argument is positive semidefinite. If we wish to have a positive
definite kernel, we can simply change “1” to “ 1 − α” and “−1/2” to “−1

2 (1 − α)” in the definition of
K(x, y), except fory = x in which case we keepK(x, y) = 1. This corresponds to a functionφ in which
rather that mapping points exactly intoR2, we map intoR2+2n

giving each example a
√

α-component in
its own dimension, and we scale the first two components by

√
1− α to keepφc(x) a unit vector. The

margin now becomes
√

3
2 (1−α). Since the modifications provide no real change (an algorithm with access

to the original kernel can simulate this one), the above arguments apply to this kernel as well.
One might complain that the kernels used in the above argument are not efficiently computable. How-

ever, this can be rectified (assuming the existence of one-way functions) by definingX ′ to be a crypto-
graphically pseudorandom subset ofX andc to be a pseudorandom function [126]. In this case, except
for the very last step, the above argument still holds for polynomial-time algorithms. The only issue,
which arises in the last step, is that we do not know any polynomial-time algorithm to test ifF (P ) is
weakly-separable inRd (which would distinguishc from a truly-random function and provide the needed
contradiction). Thus, we would need to change the conclusion of the theorem to be that “F (P ) is not even
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weakly-learnableby a polynomial time algorithm”.
Of course, these kernels are extremely unnatural, each withits own hidden target function built in.

It seems quite conceivable that positive results independent of the distributionD can be achieved for
standard, natural kernels.

6.6 Conclusions and Discussion

We show how given black-box access to a kernel functionK and a distributionD (i.e., unlabeled exam-
ples) we can useK andD together toefficientlyconstruct a new low-dimensional feature space in which
to place the data that approximately preserves the desired properties of the kernel. Our procedure uses
two types of “random” mappings. The first is a mapping based onrandom examples drawn fromD that
is used to construct the intermediate space, and the second is a mapping based on Rademacher/binary (or
Gaussian) random vectors in the intermediate space as in theJohnson-Lindenstrauss lemma.

Our analysis suggests that designing a good kernel functionis much like designing a good feature
space. It also provides an alternative to “kernelizing” a learning algorithm: rather than modifying the
algorithm to use kernels, one can instead construct a mapping into a low-dimensional space using the
kernel and the data distribution, and then run an un-kernelized algorithm over examples drawn from the
mapped distribution.

Our main concrete open question is whether, for natural standard kernel functions, one can produce
mappingsF : X → Rd in an oblivious manner, without using examples from the datadistribution. The
Johnson-Lindenstrauss lemma tells us that such mappings exist, but the goal is to produce them without
explicitly computing theφ-function. Barring that, perhaps one can at least reduce theunlabeled sample-
complexity of our approach.

On the practical side, it would be interesting to explore thealternatives that these (or other) mappings
provide to widely used algorithms such as SVM, or Kernel Perceptron.
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Chapter 7

Mechanism Design, Machine Learning,
and Pricing Problems

In this chapter we make an explicit connection between machine learning and mechanism design. In
particular, we show how Sample Complexity techniques in Statistical Learning Theory can be used to
reduce problems of incentive-compatible mechanism designto standard algorithmic questions, for a wide
range of revenue-maximizing problems in an unlimited (or unrestricted) supply setting.

7.1 Introduction, Problem Formulation

In recent years there has been substantial work on problems of algorithmic mechanism design. These
problems typically take a form similar to classic algorithmdesign or approximation-algorithm questions,
except that the inputs are each given byselfish agentswho have their own interest in the outcome of the
computation. As a result it is desirable that the mechanisms(the algorithms and protocol) beincentive
compatible— meaning that it is in each agent’s best interest to report its true value — so that agents do
not try to game the system. This requirement can greatly complicate the design problem.

In this work we consider the design of mechanisms for one of the most fundamental economic objec-
tives: profit maximization. Agents participating in such a mechanism may choose to falsely report their
preferences if it might benefit them. What we show, however, is that so long as the number of agents is
sufficiently large as a function of a measure of the complexity of the mechanism design problem, we can
apply sample-complexity techniques from learning theory to reduce this problem to standard algorithmic
questions in a broad class of settings. It is useful to think of the techniques we develop in the context of
designing an auction to sell some goods or services, though they also apply in more general scenarios.

In a seminal paper Myerson [173] derives the optimal auctionfor selling a single item given that
the bidders’ true valuations for the item come from some known prior distribution. Following a trend
in the recent computer science literature on optimal auction design, we consider theprior-free setting in
which there is no underlying distribution on valuations andwe wish to perform well for any (sufficiently
large) set of bidders. In absence of a known prior distribution we will use machine learning techniques
to estimate properties of the bidders’ valuations. We consider theunlimited supplysetting in which this
problem is conceptually simpler because there are no infeasible allocations; though, it is often possible
to obtain results for limited supply or with cost functions on the outcome via reduction to the unlimited
supply case [9, 107, 125]. Research in optimal prior-free auction design is important for optimal auction
design because it directly links inaccurate distributional knowledge typical of small markets with loss in
performance.
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Implicit in mechanism design problems is the fact that the selfish agents that will be participating in the
mechanism haveprivate informationthat is known only to them. Often this private information issimply
the agent’s valuation over the possible outcomes the mechanism could produce. For example, when selling
a single item (with the standard assumption that an agent only cares if they get the item or not and not
whether another agent gets it) this valuation is simply how much they are willing to pay for the item. There
may also bepublic informationassociated with each agent. This information is assumed to be available
to the mechanism. Such information is present in structuredoptimization problems such as theknapsack
auction problem[9] and multicast auction problem[107] and is the natural way to generalize optimal
auction design for independent but non-identically distributed prior distributions (which are considered by
Myerson [173]) to the prior-free setting. There are many standard economic settings where such public
information is available, e.g., in the college tuition mechanism, in-state or out-of-state residential status is
public; for acquiring a loan, a consumer’s credit report is public information; for automobile insurance,
driving records, credit reports, and the make and color of the vehicle are public information.

A fundamental building block of an incentive compatible mechanism is anoffer. For full generality an
offer can be viewed as an incentive compatible mechanism forone agent. As an example, if we are selling
multiple units of a single item, an offer could be atake-it-or-leave-itprice per unit. A rational agent would
accept such an offer if it is lower than the agent’s valuationfor the item and reject if it is greater. Notice
that if all agents are given the same take-it-or-leave-it price then the outcome isnon-discriminatoryand
the same price is paid by all winners. Prior-free auctions based on this type of non-discriminatory pricing
have been considered previously (see, e.g., [125]).

One of the main motivations of this work is to explorediscriminatory pricing in optimal auction
design. There are two standard means to achieve discriminatory pricing. The first, is to discriminate based
on the public information of the consumer. Naturally, loansare more costly for individuals with poor
credit scores, car insurance is more expensive for drivers with points on their driving record, and college
tuition at state run universities is cheaper for students that are in-state residents. In this setting a reasonable
offer might be a mapping from the public information of the agents to a take-it-or-leave-it price. We refer
to these types of offers aspricing functions. The second standard means for discriminatory pricing is to
introduce similar products of different qualities and price them differently. Consumers who cannot afford
the expensive high-quality version may still purchase an inexpensive low-quality version. This practice
is common, for example, in software sales, electronics sales, and airline ticket sales. An offer for the
multiple good setting could be a take-it-or-leave it price for each good. An agent would then be free to
select the good (or bundle of goods) with the (total) price that they most prefer. We refer to these types of
offers asitem pricings.

Notice that allowing offers in the form of pricing functionsand item pricings, as described above,
provides richness to both algorithmic and mechanism designquestions. This richness; however, is not
without cost. Our performance bounds are parameterized by asuitable notion of thecomplexityof the
class of allowable offers. It is natural that this kind of complexity should affect the ability of a mechanism
to optimize. It is easier to approximate the optimal offer from a simple classes of offers, such as take-
it-or-leave-it prices for a single item, than it is for a morecomplex class of offers, such as take-it-or-
leave-it prices for multiple items. Our prior-free analysis makes the relationship between a mechanism’s
performance and the complexity of allowed offers precise.

We phrase our auction problem generically as: given some class of reasonable offers, can we construct
an incentive-compatible auction that obtains profit close to the profit obtained by the optimal offer from
this class? The auctions we discuss are generalizations of the random sampling auction of Goldberg et
al. [122]. These auctions make use of a (non-incentive-compatible) algorithm for computing a best (or
approximately best) offer from a given class for any set of consumers. Thus, we can view this construction
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as reducing the optimal mechanism design problem to the optimal algorithm design problem.
The idea of the reduction is as follows. LetA be an algorithm (exact or approximate) for the purely

algorithmic problem of finding the optimal offer in some class G for any given set of consumersS with
known valuations. Our auction, which does not know the valuations a priori, asks the agents to report
their valuations (as bids), splits agents randomly into twosetsS1 andS2, runs the algorithmA separately
on each set (perhaps adding an additional penalty term to theobjective to penalize solutions that are too
“complex” according to some measure), and then applies the offer found forS1 to S2 and the offer found
on S2 to S1. The incentive compatibility of this auction allows us to assume that the agents will indeed
report their true valuations. Sample-complexity techniques adapted from machine learning theory can
then give a guarantee on the quality of the results if the market size is sufficiently large compared to a
measure of complexity of the class of possible solutions. From an economics perspective, this can be
viewed as replacing the Bayesian assumption that bidders come from a known prior distribution (e.g., as
in Myerson’s work [173]) with the use of learning, over a random subsetS1 of an arbitrary set of bidders
S, to get enough information to apply toS2 (and vice versa).

It is easy to see that as the size of the market grows, the law oflarge numbers indicates that the above
approach is asymptotically optimal. This is not surprisingas conventional economic wisdom suggests that
even the approach of market analysis followed by the Bayesian optimal mechanism would incur negligibly
small loss compared to the Bayesian optimal mechanism whichwas endowed with foreknowledge of the
distribution. In contrast, the main contribution of this work is to give a mechanism with upper bounds on
the convergence rate, i.e., the relationship between the size of the market, the approximation factor, and
the complexity of the class of reasonable offers.

Our contributions: We present a general framework for reducing problems of incentive-compatible
mechanism design to standard algorithmic questions, for a broad class of revenue-maximizing pricing
problems. To obtain our bounds we use and extend sample-complexity techniques from machine learn-
ing theory (see [18, 70, 151, 207]) and to design our mechanisms we employ machine learning methods
such asstructural risk minimization. In general we show that an algorithm (orβ-approximation) can be
converted into a(1 + ǫ)-approximation (orβ(1 + ǫ)-approximation) for the optimal mechanism design
problem when the market size is at leastO(βǫ−2) times a reasonable notion of the complexity of the class
of offers considered. Our formulas relating the size of the market to the approximation factor give upper
bounds on the performance loss due to unknown market conditions and we view these as bounds on the
convergence rateof our mechanism. From a learning perspective, the mechanism-design setting presents
a number of technical challenges when attempting to get goodbounds: in particular, the payoff function
is discontinuous and asymmetric, and the payoffs for different offers are non-uniform. For example, in
Section 7.3.3 we develop bounds based on a different notion of covering numberthan typically used in
machine learning, in order to obtain results that are more meaningful for our setting.

We instantiate our framework for a variety of problems, someof which have been previously consid-
ered in the literature, including:

Digital Good Auction Problem: The digital good auction problemconsiders the sale of an unlimited
number of units of an item to indistinguishable consumers, and has been considered by Goldberg et
al. [122] and a number of subsequent papers. As argued in [122] the only reasonable offers for this
setting are take-it-or-leave-it prices.

The analysis techniques developed in our work give asimpleproof that the random sampling auction
(related to that of [122]) obtains a(1 − ǫ) fraction of the optimal offer as long as the market size is
at leastO( h

ǫ2
log 1

ǫ ) (whereh is an upper bound on the valuation of any agent).

Attribute Auction Problem: Theattribute auction problemis an abstraction of the problem using dis-
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criminatory prices based on public information (a.k.a.,attributes) of the agents. A seller can often
increase its profit by using discriminatory pricing: for example, the motion picture industry uses
region encodings so that they can charge different prices for DVDs sold in different markets. Fur-
ther, in many generalizations of the digital good auction problem, the agents are distinguishable via
public information so the techniques exposed in the study ofattribute auctions are fundamental to
the study of profit maximization in general settings.

Here a reasonable class of offers to consider are mappings from the agents’ attributes to take-it-
or-leave-it prices. As such, we refer to these offers aspricing functions. For example, for one-
dimensional attributes, a natural class of pricing functions might be piece-wise constant functions
with k prices, as studied in [61]. In our work we give ageneral treatment that can be applied
to arbitrary classes of pricing functions. For example, if attributes are multi-dimensional, pricing
functions might involve partitioning agents into markets defined by coordinate values or by some
natural clustering, and then offering a constant price or a price that is some other simple function of
the attributes within each market. Our bounds give a(1 + ǫ)-approximation when the market size
is large in comparison toǫ−2 scaled by a suitable notion of the complexity of the class of offers.

Combinatorial Auction Problem: We also consider the goal of profit maximization in an unlimited-
supply combinatorial auction. This generalizes the digital good auction and exemplifies the problem
of discriminatory pricing through the sale of multiple products. The setting here is the following. We
havem different items, each in unlimited supply (like a supermarket), and bidders have valuations
oversubsetsof items. Our goal is to achieve revenue nearly as large as thebest revenue that uses
take-it-or-leave-it prices for each item individually, i.e., the bestitem-pricing.

For arbitrary item pricings we show that our reduction has a convergence rate of̃Ω
(

hm2

ǫ2

)
no

matter how complicated those bidders’ valuations are (where theΩ̃ hides terms logarithmic inn, the
number of agents;m, the number of items; andh, the highest valuation). If instead the specification
of the problem constrains the item prices to be integral (e.g., in pennies) or the consumers to beunit-
demand(desiring only one of several items) orsingle-minded(desiring only a particular bundle of
items) then our bound improves tõΩ

(
hm
ǫ2

)
. This improves on the bounds given by [120] for the

unit-demand case by roughly a factor ofm.

A special case of this setting is the problem of auctioning the right to traverse paths in a network.
When the network is a tree and each user wants to reach the root(like drivers commuting into
a city or a multicast tree in the Internet), Guruswami et al. [130] give an exact algorithm for the
algorithmic problem to which our reduction applies as notedabove.

Related Work: Several papers [61, 66] have applied machine learning techniques to mechanism design in
the context of maximizing revenue in online auctions. The online setting is more difficult than the “batch”
setting we consider, but the flip-side is that as a result, that work only applies to quite simple mechanism
design settings where the classG of allowable offers has small size and can be easily listed. Also, in
a similar spirit to the goals of our work, Awerbuch et al. [23]give reductions from online mechanism
design to online optimization for a broad class of revenue maximization problems. Their work compares
performance to the sum of bidders’ valuations, a quite demanding measure. As a result, however, their
approximation factors are necessarily logarithmic ratherthan(1 + ǫ) as in our results.

Structure of this chapter: The structure of the chapter is as follows. We describe the general setting in
which our results apply in Section 7.2 and give our generic reduction and bounds Section 7.3. We then
apply our techniques to the digital good auction problem (Section 7.4), attribute auction problems (Sec-
tion 7.5), the problem of item-pricing in combinatorial auctions (Section 7.6). We present our conclusions
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in Section 7.7.

7.2 Model, Notation, and Definitions

7.2.1 Abstract Model

We assume a setS = {1, . . . , n} of agents. At the heart of our approach to mechanism design isthe
idea that the interaction between a mechanism and an agent results from the combination of an agent’s
preferencewith anoffer made by the mechanism. The precise notion of what preferences and offersare
will depend on the setting and is defined in Section 7.2.2. However, fixing the preference of agenti and
an offerg we letg(i) represent the payment made to the mechanism when agenti’s preference is applied
to the offerg. Essentially, we are letting the structure of an agent’s preference and the structure of the
offer be represented solely byg(i). We extend our notation to allowg(S) to be the total profit when
offering g to all agents inS, and we assume thatg(S) =

∑
i∈S g(i). This effectively corresponds to an

unlimited-supply assumption in the auction setting.

In our setting we have a classG of allowable offers. Our problem will be to find offers inG to make to
the agents to maximize our profit. For this abstract setting we propose an algorithmic optimization problem
and a mechanism design problem, the difference being that inthe former we constrain the algorithm to
make the same offer to all agents, and in the latter the mechanism is constrained by lack of prior knowledge
of the agents’ true preferences and must beincentive compatible.

Given thetrue preferences ofS and a class of offersG, the algorithmic optimization problemis to
find theg ∈ G with maximum profit, i.e.,optG(S) = argmaxg∈G g(S). Let OPTG(S) = maxg∈G g(S)
be this maximum profit. This computational problem is interesting in its own right, especially when the
structure of agent preferences and the allowable offers results in a concise formula forg(i) for all g ∈ G
and alli ∈ S. All of the techniques we develop assume that such an algorithm (or an approximation to it)
exists, and some require existence of an algorithm that optimizes over the profit of an offer minus some
penalty term that is related to the complexity of the offer, i.e.,maxg∈G

[
g(S)− peng(S)

]
.

We now define an abstract mechanism-design-like problem that is modelled after the standard charac-
terization of single-round sealed-bid direct-revelationincentive-compatible mechanisms (see below). For
the class of offersG, each agent has a payoff profile which lists the payment they would make for each
possible offer, i.e.,[g(i)]g∈G for agenti (notice that this represents all of the relevant information in agent
i’s preference). Our abstract mechanism chooses an offergi for each agenti in a way that is independent
of that agent’s payoff profile, but can be a function of the agent’s identity and the payoff profiles of other
agents. That is, for some functionf , gi = f(i, [g(j)]g∈G,j 6=i). The mechanism then selects the outcome
for agenti determined by their preference andgi, which nets a profit ofgi(i). The total profit of such
a mechanism is

∑
i gi(i). We define an abstract deterministic mechanism to be completely specified by

such a functionf and an abstract randomized mechanism is a randomization over abstract deterministic
mechanisms. The main design problem considered in our work is to come up with a mechanism (e.g., an
f or randomization over functionsf ) to maximize our (expected) profit.

Our approach is through a reduction from the mechanism design problem to the algorithm design
problem that is applicable at this level of generality (bothdesign and analysis), though tighter analysis is
possible when we expose more structure in the agent preferences and class of offers (as described next).
Our bounds make use of a parameterh which upper bounds on the value ofg(i) for all i ∈ S andg ∈ G;
that is, no individual agent can influence the total profit by more thanh. The auctions we describe that
make use of the technique of structural risk minimization will need to knowh in advance.

149



7.2.2 Offers, Preferences, and Incentives

To describe how the framework above allows us to consider a large class of mechanism design problems,
we formally discuss the details of offers, agent preferences, and the constraints imposed by incentive
compatibility. To do this we develop some notation; however, the main results in our work will be given
using the general framework above.

Formally, amarketconsists of a set ofn agents,S, and a space of possible outcomes,O. We consider
unlimited supplyallocation problems whereOi is set of possible outcomes (allocations) to agenti and
O = O1 × · · · × On (i.e., all possible combinations of allocations are feasible). Except where noted, we
assume there is no cost to the mechanism for producing any outcome.

As is standard in the mechanism design literature [179], an agenti’s preference is fully specified by
its private type, which we denotevi. We assumeno externalities, which means thatvi can be viewed as a
preference ordering,�vi

, over (outcome, payment) pairs inOi ×R. That is, each agent cares only about
what outcome it receives and pays, and not about what other agents get. Abid, bi, is a reporting of one’s
type, i.e., it is also a preference ordering over (outcome, payment) pairs, and we say a bidder is bidding
truthfully if the preference ordering underbi matches that given by its true type,vi.

A deterministic mechanism isincentive compatibleif for all agentsi and all actions of the other
agents, bidding truthfully is at least as good as bidding non-truthfully. If oi(bi,b−i) andpi(bi,b−i) are
the outcome and payment when agenti bidsbi and the other agents bidb−i, then incentive compatibility
requires for allvi, bi, andb−i,

(oi(vi,b−i), pi(vi,b−i)) �vi
(oi(bi,b−i), pi(bi,b−i)).

A randomized mechanism is incentive compatible if it is a randomization over deterministic incentive
compatible mechanisms.

An offer, as described abstractly in the preceding section,need not beanonymous. This allows the
freedom to charge different agents different prices for thesame outcome. In particular, for a fixed offer
g, the payment to two agents,g(i) andg(i′), may be different even ifbi = bi′ . We consider a structured
approach to this sort of discriminatory pricing by associating to each agenti some publicly observable
attribute valuepubi. An offer then is a mapping from a bidder’s public information to a collection of
(outcome, payment) pairs which the agent’s preference ranks. We interpret making an offer to an agent
as choosing the outcome and payment that they most prefer according to their reported preference. For
an incentive compatible mechanism, where we can assume thatvi = bi, g(i) is the payment component
of this (outcome, payment) pair. Clearly, the mechanism that always makes every agent a fixed offer is
by definition incentive-compatible. In fact the following more general result, which motivates the above
definition of an abstract mechanism, is easy to show:

Fact 7.2.1 A mechanism isincentive compatibleif the choice of which offer to make to any agent does not
depend on the agent’s reported preference.

Because all our mechanisms are incentive compatible, the established notation ofg(i) as the profit of
offer g on agenti will be sufficient for most discussions and we will omit explicit reference tovi andbi

where possible.

7.2.3 Quasi-linear Preferences

We will apply our general framework and analysis to a number of special cases where the agents’ pref-
erences are to maximize theirquasi-linear utility. This is the most studied case in mechanism design
literature. The type,vi, of a quasi-linear utility maximizing agenti specifies itsvaluation for each out-
come. We denote the valuation of agenti for outcomeoi ∈ Oi as vi(oi). This agent’sutility is the
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difference between its valuation and the price it is required to pay. I.e., for outcomeoi and paymentpi,
agenti’s utility is ui = vi(oi)− pi. An agent prefers the outcome and payment that maximizes itsutility.
I.e.,vi(oi)− pi ≥ vi(o

′
i)− p′i if and only if (oi, pi) �vi

(o′i, p
′
i).

For the quasi-linear case, the incentive compatibility constraints imply for allvi, bi, andb−i that,

vi(oi(vi,b−i))− pi(vi,b−i) ≥ vi(oi(bi,b−i))− pi(bi,b−i).

Notice that in the quasi-linear setting our constraint thatg(i) ≤ h would be implied by the condition
thatvi(oi) ≤ h for all oi ∈ Oi.

7.2.4 Examples

The following examples illustrate the relationship between the outcome of the mechanism, offers, valua-
tions, and attributes. (The first three examples are quasi-linear, the fourth is not.)

Digital Good Auction: The digital good auction models an auction of a single item inunlimited supply
to indistinguishable bidders. Here the set of possible outcomes for bidderi is Oi = {0, 1} where
oi = 1 represents bidderi receiving a copy of the good andoi = 0 otherwise. We normalize their
valuation functionvi(0) = 0 and use a simple shorthand notation ofvi = vi(1) as the bidders
privately known valuation for receiving the good. As described in the introduction, in this setting
the bidders have no public information. Here, a natural class of offers,G, is the class of all take-it-
or-leave-it prices. For bidderi with valuationvi and offergp = “take the good for $p, or leave it”
the profit is

gp(i) =

{
p if p ≤ vi

0 otherwise.

We consider the digital good auction problem in detail in Section 7.4.

Attribute Auctions: This is the same as the digital good setting except now each bidderi is associated
a public attribute,pubi ∈ X , whereX is theattribute space. We viewX as an abstract space, but
one can envision it asRd, for example. LetP be a class of pricing functions fromX toR+, such
as all linear functions, or all functions that partitionX into k markets in some natural way (say,
based on distance tok cluster centers) and offer a different price in each. LetG be the class of
take-it-or-leave-it offers induced byP. That is, ifp ∈ P is a pricing function, then the offergp ∈ G
induced byp is: “for bidderi, take the good for $p(pubi), or leave it”. The profit to the mechanism
from bidderi with valuationvi and public informationpubi is

gp(i) =

{
p(pubi) if p(pubi) ≤ vi,

0 otherwise.

We will give analyses for several interesting classes of pricing functions in Section 7.5.

Combinatorial Auctions: Here we have a setJ of m distinct items, each in unlimited supply. Each
consumer has a private valuationvi(J

′) for each bundleJ ′ ⊆ J of items, which measures how much
receiving bundleJ ′ would be worth to the consumeri (again we normalize such thatvi(∅) = 0). For
simplicity, we assume bidders are indistinguishable, i.e., there is no public information. A natural
class of offersG (studied in [130]) is the class of functions that assign a separate price to each item,
such that the price of a bundle is just the sum of the prices of the items in it (called item pricing).
For price vectorp = (p1, . . . , pm) let the offergp = “for bundleJ ′, pay

∑
j∈J ′ pj”. The profit for
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bidderi on offergp is

gp(i) =
∑{

pj : j ∈ argmaxJ ′⊂J

[
vi(J

′)−
∑

j′∈J ′ pj′

]}
.

(If the bundleJ ′ maximizing the bidder’s utility is not unique, we define the mechanism to select
the utility-maximizing bundle of greatest profit.) We discuss combinatorial auctions in Section 7.6.

Marginal Cost Auctions with Budgets: To illustrate an interesting model with agents in a non-quasi-
linear setting consider the case each bidderi’s preference is given tuple(Bi, vi) whereBi is their
budget andvi is their value-per-unit received. Possible allocations for bidderi,Oi, are non-negative
real numbers corresponding to the number of units they receive. Assuming their total payment is
less than their budget, bidderi’s utility is simply vioi minus their payment; a bidder’s utility when
payments exceed their budget is negative infinity.

We assume that the seller has a fixed marginal costc for producing a unit of the good. Consider the
class of offersG with gp = “pay $p per unit received”. A bidderi faced with offergp with p < vi

will maximize their utility by buying enough units to exactly exhaust their budget. The payoff to
the auctioneer for this bidderi is thereforBi lessc times the number of units the bidder demands.
I.e.,

gp(i) =

{
Bi − cBi/p if p ≤ vi,

0 otherwise.

This model is quite similar to one considered by Borgs et al. [71]. Though we do not explicitly
analyze this setting, it is simple to apply our generic analysis to get reasonable bounds.

7.3 Generic Reductions

We are interested in reducing incentive-compatible mechanism design to the (non-incentive-compatible)
algorithmic optimization problem. Our reductions will be based on random sampling. LetA be an algo-
rithm (exact or approximate) for the algorithmic optimization problem overG. The simplest mechanism
that we consider, which we call RSO(G,A) (Random Sampling Optimal offer), is the following generaliza-
tion of the random sampling digital-goods auction from [122]:

0. Bidders commit to their preferences by submitting their bids.

1. Randomly split the bidders into two groupsS1 andS2 by flipping a fair coin for each bidder to
determine its group.

2. RunA to determine the best (or approximately best) offerg1 ∈ G overS1, and similarly the best
(or approximately best)g2 ∈ G overS2.

3. Finally, applyg1 to all bidders inS2 andg2 to all bidders inS1 using their reported bids.

We will also consider various more refined versions of RSO(G,A) that discretizeG or perform some type of
structural risk minimization(in which case we will need to assumeA can optimize over the modifications
made toG).

Note 1: One might think that the “leave-one-out” mechanism, where the offer made to a given bidderi
is the best offer for all other bidders, i.e.,optG(S \ {i}), would be a better mechanism than the random
sampling mechanism above. However, as pointed out in [122, 125], such a mechanism (and indeed,
any symmetric deterministic mechanism) has poor worst-case revenue. Furthermore, even if bidders’
valuations are independently drawn from some distribution, the leave-one-out revenue can be much less
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stable than RSO(G,A) in that it may have a non-negligable probability of achieving revenue that is far from
optimal, whereas such an event is exponentially small for RSO(G,A).

1

Note 2: The reader will notice that in converting an algorithm for finding the best offer inG into an
incentive-compatible mechanism, we produce a mechanism whose outcome is not simply that of a single
offer applied to all consumers. For example, even in the simplest case of auctioning a digital good to
indistinguishable bidders, we compare our performance to the best take-it-or-leave-it price, and yet the
auction itself does not in fact offer each bidder the same price (all bidders inS1 get the same price, and
all bidders inS2 get the same price, but those two prices may be different). Infact, Goldberg and Hartline
[121] show that this sort of behavior is necessary: it is not possible for an incentive-compatible auction to
approximately maximize profit and offer all the bidders the same price.

7.3.1 Generic Analyses

The following theorem shows that the random sampling auction incurs only a small loss in performance
if the profit of the optimal offer is large in comparison to thelogarithm of the number of offers we are
choosing from. Later sections of this chapter will focus on techniques for bounding the effective size (or
complexity) ofG that can yield even stronger guarantees.

Theorem 7.3.1 Given the offer classG and aβ-approximation algorithmA for optimizing overG, then
with probability at least1− δ the profit of RSO(G,A) is at least(1− ǫ)OPTG/β as long as

OPTG ≥ β 18h
ǫ2

ln
(

2|G|
δ

)
.

Notice that this bound holds for allǫ and δ simultaniously as these are not parameters of the mecha-
nism. In particular, this bound and those given by the two immediate corollaries, below, show how the
approximation factor improves as a function of market size.

Corollary 7.3.2 Given the offer classG and aβ-approximation algorithmA for optimizing overG, then
with probability at least1 − δ, the profit of RSO(G,A) is at least(1 − ǫ)OPTG/β, whenOPTG ≥ n and
the number of biddersn satisfies

n ≥ 18hβ
ǫ2

ln
(

2|G|
δ

)
.

Corollary 7.3.3 Given the offer classG and aβ-approximation algorithmA for optimizing overG then
with probability at least1− δ, the profit of RSO(G,A) is at least

(1− ǫ)OPTG/β − 18hβ
ǫ2 ln

(
2|G|
δ

)
.

If bidders’ valuations are in the interval[1, h] and the take-it-or-leave-it offer of $1 is inG, then the
conditionOPTG ≥ n is trivially satisfied and Corollary 7.3.2 can be interpreted as giving a bound on the
convergence rateof the random sampling auction. Corollary 7.3.3 is a useful form of our bound when
considering structural risk minimization and it also matches the form of bounds given in prior work (e.g.,
[61]).

For example, in the digital good auction with the class of offersGǫ consisting of all take-it-or-leave-it
offers in the interval[1, h] discretized to powers of1 + ǫ, we haveOPTGǫ ≥ n (since each bidder’s

1For example, say we are selling just one item and the distribution over valuations is 50% probability of valuation1 and 50%
probability of valuation2. If we haven bidders, then there is a nontrivial chance (about1/

√
n) that there will be the exact same

number of each type (n/2 bidders with valuation1 andn/2 bidders with valuation2), and the mechanism will make the wrong
decision on everybody. The RSO(G,A) mechanism on the other hand has only an exponentially small probability of doing this
poorly.
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valuation is at least 1),β = 1 (since the algorithmic problem is easy), and|Gǫ| = ⌈log1+ǫ h⌉. So,
Corollary 7.3.2 states thatO( h

ǫ2
log log1+ǫ h) bidders are sufficient to perform nearly as well as optimal

(we derive better bounds for this problem in Section 7.4).
In general we will give our bounds in a similar form as Theorem7.3.1, knowing that bounds of

the form of Corollary 7.3.2 and 7.3.3 can be easily derived. The only exceptions are the structural risk
minimization results which we give in the same form as Corollary 7.3.3.

In the remainder of this section we prove Theorem 7.3.1. We start with a lemma that is key to our
analysis.

Lemma 7.3.4 GivenS, an offerg satisfying0 ≤ g(i) ≤ h for all i ∈ S, and a profit levelp, if we
randomly partitionS into S1 and S2, then the probability that|g(S1) − g(S2)| ≥ ǫmax [g(S), p] is at

most2e

»

− ǫ2p
2h

–

.

Proof: Let Y1, . . . , Yn be i.i.d. random variables that define the partition ofS into S1 andS2: that is,Yi

is 1 with probability 1
2 andYi is 2 with probability 1

2 . Let t(Y1, ..., Yn) =
∑

i:Yi=1 g(i). So, as a random

variable,g(S1) = t(Y1, ..., Yn) and clearlyE[t(Y1, ..., Yn)] = g(S)
2 . Assume first thatg(S) ≥ p. From the

McDiarmid concentration inequality (see Theorem A.3.1 in Appendix A.3), by plugging inci = g(i), we
get:

Pr

{∣∣∣∣g(S1)−
g(S)

2

∣∣∣∣ ≥
ǫ

2
g(S)

}
≤ 2e

− 1
2
ǫ2g(S)2/

n
P

i=1
g(i)2

.

Since
n∑

i=1

g(i)2 ≤ max
i
{g(i)}

n∑

i=1

g(i) ≤ hg(S),

we obtain:

Pr

{∣∣∣∣g(S1)−
g(S)

2

∣∣∣∣ ≥
ǫ

2
g(S)

}
≤ 2e

−
»

ǫ2g(S)
2h

–

.

Moreover, sinceg(S1) + g(S2) = g(S) andg(S) ≥ p, we obtain:

Pr{|g(S1)− g(S2)| ≥ ǫg(S)} ≤ 2e−ǫ2p/(2h),

as desired. Consider now the case thatg(S) < p. Again, using the McDiarmid inequality we have

Pr{|g(S1)− g(S2)| ≥ ǫp} ≤ 2e
− 1

2
ǫ2p2/

n
P

i=1
g(i)2

.

Since
∑n

i=1 g(i)2 ≤ hg(S) ≤ ph we obtain again that

Pr{|g(S1)− g(S2)| ≥ ǫp} ≤ 2e

»

− ǫ2p
2h

–

,

which gives us the desired bound.

It is worth noting that using tail inequalities that depend on the maximum range of the random vari-
ables rather than the sum of their squares in the proof of Lemma 7.3.4 would increase theh to anh2 in the
exponent. Note also that ifg(i) = g′(i) for all i ∈ S then they are equivalent from the point of view of the
auction; we will use|G| to denote the number ofdifferentsuch offers inG.2 Lemma 7.3.4 implies that:

2Notice that in our generic reduction,|G| only appears in the analysis and we do not actually have to know whether two offers
are equivalent with respect toS when running the auction.
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Corollary 7.3.5 For a random partition ofS into S1 andS2, with probability at least1 − δ, all offersg

in G such thatg(S) ≥ 2h
ǫ2

ln
(

2|G|
δ

)
satisfy|g(S1)− g(S2)| ≤ ǫg(S).

Proof: Follows from Lemma 7.3.4 by plugging inp = 2h
ǫ2 ln

(
2|G|
δ

)
and then using the union bound over

all g ∈ G.

We complete this section with the proof of the main theorem.
Proof of Theorem 7.3.1:Let g1 be the offer inG produced byA overS1 andg2 be the offer inG produced
by A over S2. Let gOPT be the optimal offer inG over S; so gOPT(S) = OPTG . Since the optimal
offer overS1 is at least as good asgOPT onS1 (and likewise forS2), the fact thatA is aβ-approximation
implies thatg1(S1) ≥ gOPT(S1)

β andg2(S2) ≥ gOPT(S2)
β .

Let p = 18h
ǫ2

ln
(

2|G|
δ

)
. Using Lemma 7.3.4 (applying the union bound over allg ∈ G), we have

that with probability1 − δ, everyg ∈ G satisfies|g(S1) − g(S2)| ≤ ǫ
3 max [g(S), p]. In particular,

g1(S2) ≥ g1(S1)− ǫ
3 max[g1(S), p], andg2(S1) ≥ g2(S2)− ǫ

3 max[g2(S), p].
Since the theorem assumes thatOPTG ≥ βp, summing the above two inequalities and performing a

case analysis3 we get that the profit of RSO(G,A), namely the sumg1(S2)+g2(S1), is at least(1−ǫ)OPTG
β .

More specifically, assume first thatg1(S) ≥ p andg2(S) ≥ p. This implies that

g1(S2) ≥ g1(S1)−
ǫ

3
g1(S) and g2(S1) ≥ g2(S2)−

ǫ

3
g2(S),

and therefore

(1 +
ǫ

3
)g1(S2) ≥ (1− ǫ

3
)g1(S1) and (1 +

ǫ

3
)g2(S1) ≥ (1− ǫ

3
)g2(S2).

So, the profit of RSO(G,A) in this case is at least

1− ǫ
3

1 + ǫ
3

(g1(S1) + g2(S2)) ≥
1− ǫ

3

1 + ǫ
3

OPTG
β

≥ (1− ǫ)
OPTG

β
.

If both g1(S) < p andg2(S) < p, theng1(S2) ≥ g1(S1) − ǫ
3p andg2(S1) ≥ g2(S2) − ǫ

3p, and so the

profit of RSO(G,A) in this case is at leastOPTG
β − 2ǫ

3 p which is at least(1 − ǫ)OPTG
β by our assumption

thatOPTG ≥ βp.
Finally, assume without loss of generality thatg1(S) ≥ p andg2(S) < p. This implies that

g1(S2) ≥ g1(S1)−
ǫ

3
g1(S) and g2(S1) ≥ g2(S2)−

ǫ

3
p.

The former inequality implies that(1 + ǫ
3)g1(S2) ≥ (1 − ǫ

3)g1(S1), and sog1(S2) ≥
(
1− 2ǫ

3

)
g1(S1),

and the latter inequality implies thatg2(S1) ≥ g2(S2)− ǫ
3

OPTG
β . Together we have that

g1(S2) + g2(S1) ≥
(

1− 2ǫ

3

)
gOPT(S1)

β
+

gOPT(S2)

β
− ǫ

3

OPTG
β

≥ (1− ǫ)
OPTG

β
,

as desired.

3Note that ifβ = 1, then the conclusion follows easily. The case analysis is only need to deal with the caseβ > 1.
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7.3.2 Structural Risk Minimization

In many natural cases,G consists of offers at different “levels of complexity”k. In the case of attribute
auctions, for instance,G could be an offer class induced by pricing functions that partition bidders into
k markets and offer a constant price in each market, for different values ofk. The largerk is the more
complex the offer is. One natural approach to such a setting is to performstructural risk minimization
(SRM): that is, to assign a penalty term to offers based on their complexity and then to run a version
of RSO(G,A) in whichA optimizes profit minus penalty. Specifically, letḠ be a series of offers classes
G1,G2, . . ., and letpen be a penalty function defined over these classes. We then define the procedure
RSO-SRM(Ḡ,pen) as follows:

1. Randomly partition the bidders into two sets,S1 andS2, by flipping fair coin for each bidder.

2. Computeg1 to maximizemaxk maxg∈Gk
[g(S1)− pen(Gk)] and similarly computeg2 from S2.

3. Use the offerg1 for bidders inS2 and the offerg2 for bidders inS1.

We can now derive a guarantee for the RSO-SRM(Ḡ,pen) mechanism as follows:

Theorem 7.3.6 Assuming that we have an algorithm for solving the optimization problem required by
RSO-SRM(Ḡ,pen), then for any given value ofn, ǫ, andδ, with probability at least1 − δ, the revenue of

RSO-SRM(Ḡ,pen) for pen(Gk) = 8hk

ǫ2
ln
(

8k2|Gk|
δ

)
is at least

max
k

([(1− ǫ)OPTk −2pen(Gk)]),

wherehk is the maximum payoff fromGk andOPTk = OPTGk
.

Proof: Using Corollary 7.3.5 and a union bound over the valuesδk = δ/(4k2), we obtain that with proba-
bility at least1−δ, simultaneously for allk and for all offersg in Gk such thatg(S) ≥ 8hk

ǫ2
ln(8k2|Gk|/δ) =

pen(Gk), we have|g(S1)− g(S2)| ≤ ǫ
2g(S). Letk∗ be the optimal index, namely letk∗ be the index such

that
(1− ǫ)OPTk∗ −2pen(Gk∗) = max

k
((1− ǫ)OPTk−2pen(Gk)),

and letki be the index of the best offer (according to our criterion) overSi, for i = 1, 2. By our assumption
thatg1 andg2 were chosen by an optimal algorithm, we have

gi(Si)− pen(Gki
) ≥ gOPTk∗ (Si)− pen(Gk∗), for i = 1, 2.

We will argue next thatg1(S2) ≥ 1− ǫ
2

1+ ǫ
2

(
gOPTk∗ (S1)− pen(Gk∗)

)
. First, if g1(S1) < pen(Gk1), then

the conclusion is clear since we have

0 > g1(S1)− pen(Gk1) ≥ gOPTk∗ (S1)− pen(Gk∗).

If g1(S1) ≥ pen(Gk1), then as argued above we have|g1(S1)− g1(S2)| ≤ ǫ
2g1(S) and so

g1(S2) ≥
1− ǫ

2

1 + ǫ
2

g1(S1) ≥
1− ǫ

2

1 + ǫ
2

(
gOPTk∗ (S1)− pen(Gk∗)

)
.

Similarly, we can prove that we haveg2(S1) ≥ 1− ǫ
2

1+ ǫ
2

(
gOPTk∗ (S2)− pen(Gk∗)

)
. All these together imply

that the profit of the mechanism RSO-SRM(Ḡ,pen), namelyg1(S2) + g2(S1), is at least

1− ǫ
2

1 + ǫ
2

(
gOPTk∗ (S)− 2pen(Gk∗)

)
≥ ((1− ǫ)OPTk∗ −2pen(Gk∗)) ,

as desired.
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7.3.3 Improving the Bounds

The results above say, in essence, that if we have enough bidders so that the optimal profit is large com-
pared to h

ǫ2
log(|G|), then our mechanism will perform nearly as well as the best offer in G. In these

bounds, one should think oflog(|G|) as a measure of the complexity of the offer classG; for instance,
it can be thought of as the number of bits needed to describe a typical offer in that class. However, in
many cases one can achieve a better bound by adapting techniques developed for analyzing generaliza-
tion performance in machine learning theory. In this section, we discuss a number of such methods that
can produce better bounds. These include bothanalysistechniques (such as using appropriate forms of
covering numbers), where we do not change the mechanism but instead provide a stronger guarantee, and
designtechniques (likediscretizing), where we modify the mechanism to produce a better bound.

Discretizing

Notation: Given a class of offersG, defineGα to be the set of offers induced by rounding all prices down
to the nearest power of(1 + α).

In many cases, we can greatly reduce|G| without much affectingOPTG by performing some type of
discretization. For instance, for auctioning a digital good, there are infinitely many offers induced by all
take-it-or-leave-it prices but onlylog1+α h ≈ 1

α ln h offers induced by the discretized prices at powers of
1 + α. Also, since rounding down the optimal price to the nearest power of 1 + α can reduce revenue
for this auction by at most a factor of1 + α, the optimal offer in the discretized class must be close, in
terms of total profit, to the optimal offer in the original class. More generally, if we can find a smaller
offer classG′ such thatOPTG′ is guaranteed to be close toOPTG, then we can instruct our algorithm
A to optimize overG′ instead ofG to get better bounds. We consider the discretizationGα in our refined
analysis of the digital good auction problem (Section 7.4) and in our consideration of attribute auctions
(Section 7.5). Further, in Section 7.6 we discuss an interesting alternative discretization for item-pricing
in combinatorial auctions.

Counting Possible Outputs

Suppose we can argue that our algorithmA, run on a subset ofS, will only ever output offers from a
restricted setGA ⊆ G. For example, for the problem of auctioning a digital good, if A picks the offer
based on the optimal take-it-or-leave-it price over its input then this price must be one of the bids, so
|GA| ≤ n. Then, we can simply replace|G| with |GA| (or |GA|+ 1 if the optimal offer is not inGA) in all
the above arguments. Formally we can say that:

Observation 7.3.7 If algorithmA, run on any subset ofS, only output offers from a restricted setGA ⊆ G,
then all the bounds in Sections 7.3.1 and 7.3.2 hold with|G| replaced by|GA|+ 1.

Using Covering Numbers

The main idea of these arguments is the following. SupposeG has the property that there exists a much
smaller classG′ such that everyg ∈ G is “close” to someg′ ∈ G′, with respect to the given set of bidders
S. Then one can show that if all offers inG′ perform similarly onS1 as they do onS2, then this will
be true for all offers inG as well. These kind of arguments are quite often used in machine learning
(see for instance [18, 73, 104, 207]), but the main challengeis to define the right notion of “close” for
our mechanism design setting to get good and meaningful bounds. Specifically, we will considerL1

multiplicativeγ-covers which we define as follows:
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Definition 7.3.1 G′ is anL1 multiplicativeγ-cover ofG with respect toS if for everyg ∈ G there exists
g′ ∈ G′ such that ∑

i∈S

|g(i) − g′(i)| ≤ γg(S).

In the following we present bounds based onL1 multiplicative γ-covers. We start by proving the
following structural lemma characterizing theseL1 covers.

Lemma 7.3.8 If
∑
i∈S

|g(i) − g′(i)| ≤ γg(S) and |g′(S1)− g′(S2)| ≤ ǫ′ max [g′(S), p] then we have

|g(S1)− g(S2)| ≤ ǫ′ max[g′(S), p] + γg(S).

This further implies that

|g(S1)− g(S2)| ≤
(
γ + ǫ′(1 + γ)

)
max[g(S), p].

Proof: We will first prove thatg(S1) ≥ g(S2)− ǫ′ max[g′(S), p]− γg(S). Note that this clearly implies

g(S1) ≥ g(S2)−
(
γ + ǫ′(1 + γ)

)
max[g(S), p],

since the first assumption in the lemma implies that|g(S) − g′(S)| ≤ γg(S) . Let us define

~∆g1g2(S) =
∑

i∈S

max(g1(i)− g2(i), 0)

and consider
∆gg′(S) = ~∆gg′(S) + ~∆g′g(S) =

∑

i∈S

|g(i) − g′(i)|.

Clearly, for anyS′ ⊆ S we have~∆gg′(S) ≥ ~∆gg′(S
′) and likewise∆gg′(S) ≥ ∆gg′(S

′). Also, for
any subsetS′ ⊆ S we haveg(S′) − g′(S′) ≤ ~∆gg′(S) and g′(S′) − g(S′) ≤ ~∆g′g(S). Now, from
g′(S1) ≥ g′(S2)− ǫ′ max[g′(S), p] we obtain that

g(S1) + ~∆g′g(S) ≥ g′(S2)− ǫ′ max[g′(S), p] ≥ g(S2)− ~∆gg′(S)− ǫ′ max[g′(S), p].

Therefore we have
g(S1) ≥ g(S2)−∆gg′(S)− ǫ′ max[g′(S), p],

which implies
g(S1) ≥ g(S2)− ǫ′ max[g′(S), p]− γg(S),

as desired. Using the same argument withS1 replaced byS2 yields the theorem.

Using Lemma 7.3.8, we can now get the following bound:

Theorem 7.3.9 Given the offer classG and aβ-approximation algorithmA for optimizing overG, then
with probability at least1− δ, the profit of RSO(G,A) is at least(1− ǫ)OPTG/β so long as

OPTG ≥ β 72h
ǫ2

ln
(

2|G′|
δ

)
,

for someL1 multiplicative ǫ
12 -coverG′ of G with respect toS.
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Proof: Let p = 72h
ǫ2 ln

(
2|G′|

δ

)
. By Lemma 7.3.4, applying the union bound, we have that with probability

1−δ, everyg′ ∈ G′ satisfies|g′(S1)−g′(S2)| ≤ ǫ
6 max [g′(S), p]. Using Lemma 7.3.8, withǫ′ set toǫ

6 and
γ set to ǫ

12 , we obtain that with probability1−δ, everyg ∈ G satisfies|g(S1)−g(S2)| ≤ ǫ
3 max [g(S), p].

Finally, proceeding as in the proof of Theorem 7.3.1 we obtain the desired result.

Notice that Theorem 7.3.9 implies that:

Corollary 7.3.10 Given the offer classG and aβ-approximation algorithmA for optimizing overG, then
with probability at least1− δ, the profit of RSO(G,A) is at least(1 − ǫ)OPTG/β, so long asOPTG ≥ n
and the number of bidders satisfies

n ≥ 72hβ
ǫ2

ln
(

2|G′|
δ

)

for someL1 multiplicative ǫ
12 -coverG′ of G with respect toS.

We will demonstrate the utility ofL1 multiplicative covers in Section 7.4 by showing the existence
of L1 covers of sizeo(n) for the digital good auction. It is worth noting that a straightforward appli-
cation of analogousǫ-cover results in learning theory [18] (which would requirean additive, rather than
multiplicative gap ofǫ for every bidder) would add an extra factor ofh into our sample-size bounds.

7.4 The Digital Good Auction

We now consider applying the results in Section 7.3 to the problem of auctioning a digital good to indis-
tinguishable bidders. In this section we defineG to be the natural class of offers induced by the set of all
take-it-or-leave-it prices (see for instance [125]). Clearly in this case, it is trivial to solve the underlying
optimization problem optimally: given a set of bidders, just output the offer induced by the constant price
that maximizes the price times the number of bidders with bids at least as high as the price. Also, it is
easy to see that this price will be one of the bid values. Thus,applying Theorem 7.3.7 with the bound on
|GA| = n, we get an approximately optimal auction with convergence rateO(h log n).

We can obtain better results usingL1 multiplicative-cover arguments and Theorem 7.3.9 as follows.
Let b1, . . . , bn be the bids of then bidders sorted from highest to lowest. DefineG′ as the offer class
induced by{bi : i =

⌊
(1 + γ)j

⌋
for somej ∈ Z} ∪ {(1 + γ)i : i ∈ {1, . . . , log1+γ h}}. Consider

g ∈ G and find theg′ ∈ G′ that offers the largest price less than the offer price ofg. Notice first that
all the winners inS on g also win ing′. Second, the offer price ofg′ is within a factor of1 + γ of the
offer price ofg. Third, g′ has at most a factor of1 + γ more winners thang. The first two facts above
imply that ~∆gg′(S) ≤ γg(S). The third fact implies that~∆g′g(S) ≤ γg(S). Thus,∆gg′ ≤ 2γg(S) and
therefore,G′ is a2γ-cover ofG (see the proof of Lemma 7.3.8 for definitions of∆gg′ and ~∆gg′). Since
|G′| is O(log hn), the additive loss of RSO(G,A) is O(h log log nh).4

We can also apply the discretization technique by definingGα to be the set of offers induced by the
set of all constant-price functions whose pricev ∈ [1, h] is a power of(1 + α) andα = ǫ

2 . Clearly, if we
can get revenue at least(1 − ǫ

2) times the optimal in this class, we will be within(1 − ǫ) of the optimal
fixed price overall. For example, Corollary 7.3.2 (A can trivially find the best offer inG′ by simply trying
all of them) shows that with probability1 − δ we get at least1 − ǫ times the revenue of the optimal
take-it-or-leave-it offer so long as the number of biddersn is at least72h

ǫ2
ln(4 lnh

ǫδ ) = O(h log log h).

4It is interesting to contrast these results with that of [122] which showed that RSO over the set of constant-price functions is
near6-competitive with the promise thatn ≫ h.
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7.4.1 Data Dependent Bounds

We can use the high level idea of our structural risk minimization reduction in order to get a betterdata
dependentbound for the digital good auction. In particular, we can replace the “h” term in the additive
loss with the actual sale price used by the optimal take-it-or-leave-it offer (in fact, even better, the lowest
sales price needed to generate near-optimal revenue), yielding a much better bound when most of the
profit to be made is from the low bids. The idea is that rather than penalizing the “complexity” of the offer
in the usual sense, we instead penalize the use of higher prices.

Let qi = (1 + α)i and offergi be the take-it-or-leave-it price ofqi. DefineḠ = {g1}, {g2}, . . . and

consider the auction RSO-SRM̄G,pen
with pen({gi}) specified from Section 7.3.2 to be8qi

ǫ2 ln
(

8i2

δ

)
. The

following is an a corollary of of Theorem 7.3.6.

Corollary 7.4.1 For any given value ofn, ǫ, andδ, with probability1−δ, the revenue of RSO-SRM(Ḡ,pen)

is at leastmaxi [(1− ǫ)gi(S)− 2pen({gi})], wherepen({gi}) = 8qi

ǫ2
ln
(

8i2

δ

)
.

In other words, if the optimal take-it-or-leave-it offer has a sale price ofp, then RSO-SRM(Ḡ,pen) has
convergence rate bounded byO(p log log h) instead ofO(h log log h) as provided by our generic analysis
of RSO(G,A).

7.4.2 A Special Purpose Analysis for the Digital Good Auction

In this section we present a refined data independent analysis for the digital good auction. Specifically, we
can show for an optimal algorithmA, that:

Theorem 7.4.2 For δ < 1
2 , with probability1− δ, RSO(Gα,A) obtains profit at least

OPTGα −8
√

hOPTGα log
(

1
αδ

)
.

Corollary 7.4.3 For δ < 1
2 andα = ǫ

2 , so long asOPTGα ≥ (16
ǫ )2h log

(
2
ǫδ

)
, then with probability at

least1− δ, the profit of RSO(Gα,A) is at least(1− ǫ)OPTG .

The above corollary improves over our basic discretizationresults using Theorem 7.3.1 by anO(log log h)
factor in the convergence rate.

To prove Theorem 7.4.2, let us introduce some notation. For the offergv induced by the take-it-or-
leave-it offer of pricev, let nv denote the number of winners (bidders whose value is at leastv), and let
rv = v · nv denote the profit ofgv onS. Denote bŷrv the observed profit ofgv onS1 (and sôrv = v · n̂v,
wheren̂v is the number of winners inS1 for gv). So, we haveE[r̂v] = rv

2 . We now begin with the
following lemma.

Lemma 7.4.4 Let ǫ < 1 andδ < 1
2 . With probability at least1 − δ we have that, for everygv ∈ Gα the

observed profit onS1 satisfies:

∣∣∣r̂v −
rv

2

∣∣∣ ≤ max

(
h log

(
1
αδ

)

ǫ
, ǫrv

)
.

Proof: First for a given pricev let an,v be |n̂v − nv

2 |. To prove our lemma we will use the consequence
of Chernoff bound we present in Appendix A.3, Theorem A.3.2.For anyv and j ≥ 1 we consider

n′ =
(1+α)j log ( 1

αδ )
ǫ2

, and so we get

Pr

{
an,v ≥ ǫmax

(
nv,

(1 + α)j log
(

1
αδ

)

ǫ2

)}
≤ 2e−2(1+α)j log ( 1

αδ ).

160



This further implies that we havean,v ≥ ǫmax

(
nv,

(1+α)j log ( 1
αδ )

ǫ2

)
with probability at most2(αδ)2(1+α)j

.

Therefore forv = h
(1+α)j we have

Pr

{∣∣∣r̂v −
rv

2

∣∣∣ ≥ max

(
h log

(
1
αδ

)

ǫ
, ǫrv

)}
≤ 2(αδ)2(1+α)j

,

and so the probability that there exists agv ∈ Gα such that
∣∣r̂v − rv

2

∣∣ ≥ max
(

h
ǫ , ǫrv

)
is at most

2
∑

j(αδ)2(1+α)j ≤ 2
∑

j′
1
α (αδ)2·2

j′ ≤ δ. This implies that with high probability, at least1 − δ, we
have that simultaneously, for everygv ∈ Gα the observed revenue onS1 satisfies:

∣∣∣r̂v −
rv

2

∣∣∣ ≤ max

(
h log

(
1
αδ

)

ǫ
, ǫrv

)
,

as desired.

Proof of Theorem 7.4.2:Assume now that it is the case that for everygv ∈ Gα we have

∣∣∣r̂v −
rv

2

∣∣∣ ≤ max

(
H

ǫ
, ǫrv

)
,

whereH = h log
(

1
αδ

)
. Let v∗ be the optimal price level among prices inGα, and letṽ∗ be the price that

looks best onS1. Obviously, our gain onS2 is rṽ∗ − r̂ṽ∗ . We have

r̂v∗ ≥
r∗v
2
− H

ǫ
− ǫrv∗ = rv∗

1− 2ǫ

2
− H

ǫ
,

r̂ṽ∗ ≥ r̂v∗ , and r̂ṽ∗ ≤
rṽ∗

2
+

H

ǫ
+ ǫrṽ∗ ≤

rṽ∗

2
+

H

ǫ
+ ǫrv∗ ,

and thereforerṽ∗ − r̂ṽ∗ ≥ r̂ṽ∗ − H
ǫ − ǫrv∗ , which finally implies that

rṽ∗ − r̂ṽ∗ ≥ rv∗

(
1

2
− 2ǫ

)
− 2

H

ǫ
.

This implies that with probability at least1− δ
2 our gain onS2 is at leastrv∗

(
1
2 − 2ǫ

)
−2H

ǫ , and similarly
our gain onS1 is at leastrv∗

(
1
2 − 2ǫ

)
− 2H

ǫ . Therefore, with probability1− δ, our revenue is

OPTGα(1− 4ǫ)− 4
h log

(
1
αδ

)

ǫ
.

Optimizing the bound we setǫ =

√
h log ( 1

αδ )
OPTGα

and get a revenue of

OPTGα − 8

√

h OPTGα log

(
1

αδ

)
,

which completes the proof.
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7.5 Attribute Auctions

We now consider applying our general bounds (Section 7.3) toattribute auctions. For attribute auctions an
offer is a function from the publicly observable attribute of an agent to a take-it-or-leave-it price. As such,
we identify such an offer with itspricing function. We begin by instantiating the results in Section 7.3
for market pricing auctions, in which we consider pricing functions that partition the attribute space into
market segments and offer a fixed price in each. We show how onecan use standard combinatorial
dimensions in learning theory, e.g. the Vapnik-Chervonenkis (VC) dimension [18, 70, 104, 151, 207], in
order to bound the complexity of these classes of offers. We then give an analysis for very general offer
classes induced by general pricing functions over the attribute space that uses the notion of covers defined
in Section 7.3.3.

7.5.1 Market Pricing

For attribute auctions, one natural class of pricing functions are those that segment bidders intomarkets
in some simple way and then offer a single sale price in each market segment. For example, suppose we
definePk to be the set of functions that choosek biddersb1, . . . , bk; use these as cluster centers to partition
S into k markets based on distance to the nearest center in attributespace; and then offer a single price in
each market. In that case, if we discretize prices to powers of (1+ ǫ), then clearly the number of functions
in the offer classGk induced by the pricing classPk, is at mostnk(log1+ǫ h)k, so Corollary 7.3.2 implies
that so long asn ≥ 18h

ǫ2

[
ln
(

2
δ

)
+ k ln n + k ln

(
log1+ǫ h

)]
and assuming we can solve the optimization

problem, then with probability at least1− δ, we can get profit at least(1− ǫ)OPTGk
.

We can also consider more general ways of defining markets. Let C be any class of subsets ofX ,
which we will call feasible markets. For k a positive integer, we considerFk+1(C) to be the set of all
pricing functions of the following form: pickk disjoint subsetsX1,...,Xk ⊆ X from C, andk + 1 prices
p0,...,pk discretized to powers of1 + ǫ. Assign pricepi to bidders inXi, and pricep0 to bidders not in
any ofX1,...,Xk. For example, ifX = Rd a naturalC might be the set of axis-parallel rectangles inRd.
The specific case ofd = 1 was studied in [61]. One can envision more complex partitions, using the
membership of a bidder inXi as a basic predicate, and constructing any function over it (e.g., a decision
list).

We can apply the results in Section 7.3 by using the machineryof VC-dimension to count the number
of distinct such functions over any given set of biddersS. In particular, letD = VCdim(C) be the VC-
dimension ofC and assumeD < ∞. DefineC[S] to be the number of distinct subsets ofS induced by

C. Then, from Sauer’s LemmaC[S] ≤
(

en
D

)D
, and therefore the number of different pricing functions in

Fk(C) overS is at most
(
log1+ǫ h

)k ( en
D

)kD
. Thus applying Corollary 7.3.2 here we get:

Corollary 7.5.1 Given aβ-approximation algorithmA for optimizing over the offer classGk induced by
the class of pricing functionsFk(C), then so long asOPTGk

≥ n and the number of biddersn satisfies

n ≥ 18hβ

ǫ2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ
ln h

)
+ kD ln

(ne

D

)]
,

then with probability at least1− δ, the profit of RSOGk,A is at least(1− ǫ)
OPTGk

β .

The above lemma has “n” on both sides of the inequality. Simple algebra yields:

Corollary 7.5.2 Given aβ-approximation algorithmA for optimizing over the offer classGk induced by
the class of pricing functionsFk(C), then so long asOPTGk

≥ n and the number of biddersn satisfies

n ≥ 36hβ

ǫ2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ
ln h

)
+ kD ln

(
36khβ

ǫ2

)]
,
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then with probability at least1− δ, the profit of RSOGk,A is at least(1− ǫ)
OPTGk

β .

Proof: Sinceln a ≤ ab − ln b − 1 for all a, b > 0, we obtain: 18kDhβ
ǫ2 ln n ≤ n

2 + 18kDhβ
ǫ2 ln

(
36kDhβ

eǫ2

)
.

Therefore, it suffices to have:

n ≥ n

2
+

18hβ

ǫ2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ
ln h

)
+ kD ln

(
36khβ

ǫ2

)]
,

so

n ≥ 36hβ

ǫ2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ
ln h

)
+ kD ln

(
36khβ

ǫ2

)]

suffices.

For certain classesC we can get better bounds. In the following, denote byCk the concept class
of unions of at mostk sets fromC, and letL be ⌈log1+ǫ h⌉. If C is the class of intervals on the line,
then the VC-dimension ofCk is 2k, and so the number of different pricing functions inFk(C) over S

is at mostLk
(

en
2k

)2k
; also, if C is the class of all axis parallel rectangles ind dimensions, then the VC-

dimension ofCk is O(kd) [108]. In these cases we can remove thelog k term in our bounds, which is nice
because it means we can interpret our results (e.g., Corollary 7.5.2) as chargingOPT a penalty for each
market it creates. However, we do not know how to remove thislog k term in general, since in general the
VC-dimension ofCk can be as large as2Dk log(2Dk) (see [58, 103]).

Corollary 7.5.2 gives a guarantee in the revenue of RSOGk,A so long as we have enough bidders. In
the following, fork ≥ 0 let OPTk = OPTGk

. We can also use Corollaries 7.3.5 and 7.5.2 to show a
bound that holds for alln, but with an additive loss term.

Theorem 7.5.3 For any given value ofn, k, ǫ, and δ, with probability at least1 − δ, the revenue of
RSOGk,A is

1
β [(1− ǫ)OPTk −h · rF (k,D, h, ǫ, δ)] ,

whererF (k,D, h, ǫ, δ) = O
(

kD
ǫ2

ln
(

kDh
ǫδ

))
.

Proof: For simplicity, we show the proof forβ = 1, the general case is similar. We prove the bound with

the “(1 − ǫ)” term replaced by the termmin
(

(1−ǫ′)2

1+ǫ′ , 1− 2ǫ′
)

, which then implies our desired result by

simply usingǫ′ = ǫ
3 . If

n ≥ 36h

ǫ′2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ′
ln h

)
+ kD ln

(
36kh

ǫ′2

)]
,

then the desired statement follows directly from Corollary7.5.2. Otherwise, consider first the case when
we have

OPTk ≥
4h

ǫ′2(1− ǫ′)

[
ln

(
2

δ

)
+ k ln

(
1

ǫ′
ln h

)
+ kD ln

(ne

D

)]
.

Let gi be the optimal offer inGk overSi, for i = 1, 2, and letgOPT be the optimal offer inGk overS (and
sogi(Si) ≥ gOPT(Si)). From Corollary 7.3.5, we have

gOPT(Si) ≥
2h

ǫ′2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ′
ln h

)
+ kD ln

(ne

D

)]
for i = 1, 2.

So,

gi(Si) ≥
2h

ǫ′2

[
ln

(
2

δ

)
+ k ln

(
1

ǫ′
ln h

)
+ kD ln

(ne

D

)]
.
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Using again Corollary 7.3.5, we obtaingi(Sj) ≥ 1−ǫ′

1+ǫ′ gi(Si) for j 6= i, which then implies the desired
result. To complete the proof notice that if both

OPTk ≤
4h

ǫ′2(1− ǫ′)

[
ln

(
2

δ

)
+ k ln

(
1

ǫ′
ln h

)
+ kD ln

(ne

D

)]

and

n ≤ 4h

ǫ′2

[
ln

(
2

δ

)
+ k ln

(
2

ǫ′
ln h

)
+ kD ln

(
4kh

ǫ′2

)]
,

then we easily get the desired statement.

Finally, as in Theorem 7.3.6 we can extend our results to use structural risk minimization, where we
want the algorithm to optimize overk, by viewing the additive loss term,h · rF (·), as a penalty function.

Theorem 7.5.4 Let Ḡ be the sequenceG1,G2, . . . ,Gn of offer classes induced by the sequence of classes
of pricing functionsF1(C), F2(C), . . . , Fn(C). Then for any value ofn, ǫ and δ with probability 1 − δ
the revenue of RSO-SRMḠ,pen

is

max
k

((1− ǫ)OPTk−h · rF (k,D, h, ǫ, δ)),

wherepen(Fk(C)) = h
2 · rF (k,D, h, ǫ, δ) = O

(
kD
ǫ2

ln
(

kDh
ǫδ

))
.

To illustrate the tightness of Theorem 7.5.3, notice that even for the special case of pricing using
interval functions (the case ofd = 1 studied in [61]), the following lower bound holds.

Theorem 7.5.5 Let X = R and letCk be the class ofk intervals overX . Then there is no incentive
compatible mechanism whose expected revenue is at least3

4 OPTk −o(kh).

That is, an additive loss linear inkh is necessary in order to achieve a multiplicative ratio of atleast3/4.
Proof: Considerkh

2 bidders with distinct attributes (for instance, say bidderi has attributei), each of
whom independently has a1h probability of having valuationh and a1− 1

h probability of having valuation
1. Then, any incentive-compatible mechanism has expected profit at mostkh

2 because for any given bidder
and any given proposed price, the expected profit (over randomization in the bidder’s valuation) is at most
1. However, there is at least a50% chance we will have at leastk2 bidders of valuationh, and in that
caseOPTk can givek

2 − 1 of those bidders a price ofh and the rest a price of 1 for an expected profit
of
(

k
2 − 1

)
h +

(
kh
2 − k

2 + 1
)
1 = kh − h − k

2 + 1. On the other hand even if that does not occur, we
always haveOPTk ≥ kh

2 . So, the expected profit ofOPTk is at least3kh
4 − h

2 − k
4 . Thus, the profit of the

incentive-compatible mechanism is at most3
4 OPTk −kh

16 + o(kh).

We note that a similar lower bound holds for most base classes. Also for the case of intervals on the
line, both our auction and the auction in [61] match this lower bound up to constant factors.

7.5.2 General Pricing Functions over the Attribute Space

In this section we generalize the results in Section 7.5.1 intwo ways: we consider general classes of
pricing functions (not just piecewise-constant functionsdefined over markets), and we remove the need to
discretize by instead using the covering arguments discussed in Section 7.3.3. This allows us to consider
offers based on linear or quadratic functions of the attributes, or perhaps functions that divide the attribute
space into markets and use pricing functions are linear in the attributes (rather than constant) in each
market. The key point of this section is that we can bound the size of theL1 multiplicative cover in an
attribute auction in terms of natural quantities.
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Assume in the following thatX ⊆ Rd, let P be a fixed class of pricing functions over the attribute
spaceX and letG be the induced class of offers. LetPd be the class of decision surfaces (inRd+1)
induced byP: that is, to eachq ∈ P we associate the set of all(x, v) ∈ X × [1, h] such thatq(x) ≤ v.
Also, let us denote byD the VC-dimension of classPd. We can then show that:

Theorem 7.5.6 Given the offer classG and aβ-approximation algorithmA for optimizing overG, then
so long asOPTG ≥ n and the number of biddersn satisfies

n ≥ 154hβ

ǫ2

[
ln

(
2

δ

)
+ D ln

(
154hβ

ǫ2

(
12

ǫ
ln h + 1

))]
,

then with probability at least1− δ, the profit of RSO(G,A) is at least(1− ǫ)OPTG
β .

The key to the proof is to exhibit anL1 multiplicative cover ofG whose size is exponential inD only, and
then to apply Corollary 7.3.10.
Proof: Let α = ǫ

12 . For each bidder(x, v) we conceptually introduceO( 1
α ln h) “phantom bidders”

having the same attribute valuex and bid values1, (1 + α), (1 + α)2, · · · , h. Let S∗ be the setS together
with the set of all phantom bidders; letn∗ = |S∗|. Let Split be the set of possible splittings ofS∗ with
surfaces fromPd. We clearly have|Split| ≤ Pd[S

∗]. For each elements ∈ Split consider a representative
function inG that induces splittings in terms of its winning bidders, and letSplitG be the set of these
representative functions. LetG′ be the offer class induced by the pricing classSplitG . Notice thatG′ is
actually anL1 multiplicativeα-cover forG with respect to S, since for every offer inG there is a offer in
G′ that extracts nearly the same profit from every bidder; i.e.,for every offer ing ∈ G, there existsg′ ∈ G′
such that for every(x, v) ∈ S, we have both

g′((x, v)) ≤ (1 + α)g((x, v)) and g((x, v)) ≤ (1 + α)g′((x, v)).

From Sauer’s lemma we know|SplitG | ≤
(

n∗e
D

)D
, and applying Corollary 7.3.10, we finally get the

desired statement by using simple algebra as in Corollary 7.5.2.

The above theorem is the analog of Corollary 7.3.2. Using it and Theorem 7.3.9, it is easy to derive a
bound that holds for alln (i.e., the analog of Theorem 7.5.3). One can further easily extend these results
to get bounds for the corresponding SRM auction (as done in Theorem 7.5.4).

7.5.3 Algorithms for Optimal Pricing Functions

There has been relatively little work on the algorithmic question of computing optimal pricing functions in
general attribute spaces. However, for single-dimentional attributes and piece-wise constant pricing func-
tions [61] discusses an optimal polynomial time dynamic program. For single-dimentional attributes and
monotone pricing functions, [9] gives a polynomial time dynamic program. The problem of computing the
optimal of linear pricing function overm-dimentional attributes generalizes the problem of item-pricing
(m distinct items) for single-minded combinatorial consumers (see Section 7.6.4) that has been shown to
be hard to approximate to better than alogδ(m) factor for someδ > 0 [102].

7.6 Combinatorial Auctions

Combinatorial auctions have received much attention in recent years because of the difficulty of merging
the algorithmic issue of computing an optimal outcome with the game-theoretic issue of incentive com-
patibility. To date, the focus primarily has been on the problem of optimizing social welfare: partitioning
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a limited supply of items among bidders to maximize the sum oftheir valuations. We consider instead the
goal of profit maximization for the seller in the case that theitems for sale are available in unlimited sup-
ply.5 We consider the general version of the combinatorial auction problem as well as the special cases of
unit-demandbidders (each bidder desires only singleton bundles) andsingle-mindedbidders (each bidder
has a single desired bundle).

It is interesting to restrict our attention to the case of item-pricing, where the auctioneer intuitively is
attempting to set a price for each of the distinct items and bidders then choose their favorite bundle given
these prices. Item-pricing is without loss of generality for the unit-demand case, and general bundle-
pricing can be realized with an auction withm′ = 2m “items”, one for each of possible bundle of the
original m items.6

First notice that if the set of allowable item pricings are constrained to be integral,GZ, then clearly
there are at most|GZ| = (h + 1)m possible item pricings. By Corollary 7.3.2 we get thatÕ

(
hm
ǫ2

)
bidders

are sufficient to achieve profit close toOPTGZ
. Generally it is possible to do much better if non-integral

item-pricings are allowed, i.e.,OPTG(S) ≫ OPTGZ
(S). In these settings we can still get good bounds

following the guidelines established in Section 7.3.3, by either considering an offer classG′ induced
by discretization (see Section 7.6.1), or from counting possible outcomes inGA (see Section 7.6.2). A
summary of our results is given in Table 7.6.

Table 7.1: Size of offer classes for combinatorial auctions.
general unit-demand single-minded

|G′| O(logm
1+ǫ2

nm
ǫ ) O(logm

1+ǫ2
n
ǫ ) O(logm

1+ǫ
nm
ǫ )

|GA| nm22m2 nm(m + 1)2m (n + m)m

We can apply Theorem 7.3.1 and Corollary 7.3.2 to the sizes ofthe offer classes in Table 7.6 to get
bounds on the profit of random sampling auctions for combinatorial item pricing. In particular, using

Corollary 7.3.2 we get that̃O
(

hm2

ǫ2

)
bidders are sufficient to achieve revenue close to the optimum item-

pricing in the general case, and̃O
(

hm
ǫ2

)
bidders are sufficient for the unit-demand case. Also, by using

Theorem 7.3.1 instead of Corollary 7.3.2 we can replace the condition on the number of bidders with a
condition onOPTG, which gives a factor ofm improvement on the bound given by [120].

As before we leth = maxg∈G,i∈S g(i). In particular, this implies thatOPTG ≥ h which will be
important later in this section.

7.6.1 Bounds via Discretization

As shown in Section 7.3.3, we can obtain good bounds if we are willing to optimize over a setG′ of
offers induced by a small set of discretized prices satisfying thatOPTG′ is close toOPTG. Prior to
this work, [132] shows how to construct discretized classesG′ with OPTG′ ≥ 1

1+ǫ OPTG and size
O(mm logm

1+ǫ
n
ǫ ) for the unit-demand case and sizeO(logm

1+ǫ
nm
ǫ ) for the single-minded case. Nisan [180]

gives the basic argument necessary to generalize these results to obtain the result in Theorem 7.6.1 which
applies to combinatorial auctions in general. We note in passing that Theorem 7.6.1 allows for general-
ization and improvement of the computational results of [132]. The discretization results we obtain are

5Other work focusing on profit maximization in combinatorialauctions include Goldberg and Hartline [120], Hartline and
Koltun [132], Guruswami et al. [130], Likhodedov and Sandholm [163], and Balcan et al. [38].

6We make the assumption that all desired bundles contain at most one of each item. This assumption can be easily relaxed
and our results apply given any bound on the number of copies of each item that are desired by any one consumer. Of course,
this reduction produces an exponential blowup in the numberof items.
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summarized in the first row of Table 7.6.
Let p = (p1, . . . , pm) be an item-pricing of them items. Letgp correspond to the offering pricingp.

The following is the main result of this section.

Theorem 7.6.1 Let k be the size of the maximum desired bundle. Letp′ be the optimal discretized price
vector that uses item prices equal to0 or powers of(1 + ǫ) in the range

[
hǫ
nk , h

]
and letp∗ be the optimal

price vector. Then we have:

gp′(S) ≥ (1− 2
√

ǫ)gp∗(S).

Proof: Let δ =
√

ǫ. For the optimal price vectorp∗ with item j priced atp∗j (i.e., gp∗(S) = OPTG),

consider a price vectorp with pj in [(1 − δ)p∗j , (1 − δ + δ2)p∗j ] if p∗j ≥ hδ2

nk and0 otherwise, where
pj = (1 + ǫ)k for some integerk (note that such a price vector always exists). We show now that
gp(S) ≥ (1− 2

√
ǫ)gp∗(S), which clearly implies the desired result.

Let J be a multi-set of items and Profit(J) =
∑

j∈J p∗j be the payment necessary to purchase bundle
J under pricingp∗. DefineRj = p∗j − pj. Thus we have:

(δ − δ2)p∗j ≤ Rj ≤ max{δp∗j , δ2h
nk } ≤ δp∗j + δ2h

nk .

This implies that for any multisetJ with |J | ≤ k, we have the following upper and lower bounds:

∑

j∈J

Rj ≥ (δ − δ2)Profit(J) , (7.6.1)

∑

j∈J ′

Rj ≤ δProfit(J ′) + hδ2

n . (7.6.2)

Let J∗
i andJi be the bundles that bidderi prefers under pricingp∗ andp, respectively. Consider

bidderi who switches from bundleJ∗
i to bundleJi when the item prices are decreased fromp∗ to p. This

implies that:

∑

j∈J∗
i

Rj ≤
∑

j∈Ji

Rj .

Combining this with equations (7.6.1) and (7.6.2) and canceling a common factor ofδ we see that:

(1− δ)Profit(J∗
i ) ≤ Profit(Ji) + hδ

n .

Summing over all biddersi, we see that the total profit under our new pricingp is at least(1 −
δ)OPTG −hδ. SinceOPTG ≥ h, we finally obtain that the profit underp is at least(1− 2δ)OPTG .

Note that we can now apply Theorem 7.6.1 by lettingG′ be the offer class induced by the class of
item prices equal to0 or powers of(1 + ǫ) in the range

[
hǫ
nk , h

]
(wherek bounds the maximum size of a

bundle). Using Theorem 7.3.1 we obtain the following guarantee:

Corollary 7.6.2 Given aβ-approximation algorithmA optimizing overG′, then with probability at least
1− δ, the profit of RSOG′,A is at least(1− 3ǫ)OPTG/β so long as

OPTG′ ≥ 18hβ
ǫ2

(
m ln(log1+ǫ2 nk) + ln

(
2
δ

))
.
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7.6.2 Bounds via Counting

We now show how to use the technique of counting possible outcomes (See Section 7.3.3) to get a bound
on the performance of the random sampling auction with an algorithmA for item-pricing. This approach
calls for bounding|GA|, the number of different pricing schemes RSO(G,A) can possibly output. Our
results for this approach are summarized in the second row ofTable 7.6.

Recall that bidderi’s utility for a bundleJ given pricingp is ui(J,p) = vi(J) −∑j∈J pj . We now
make the following claim about the regions of the space of possible pricings,Rm

+ , in which bidderi’s
most desired bundle is fixed.

Claim 1 LetPi(J) = {p | ∀J ′, ui(J,p) ≥ ui(J
′,p)}. The setPi(J,p) is a polytope.

Proof: This follows immediately from the observation that the region Pi(J) is convex and the only way
to pack convex regions into space is if they are polytopes.

To show thatPi(J) is convex, suppose the allocation to a particular bidder forp andp′ are the same,
J . Then for any other bundleJ ′ we have:

vi(J)−
∑

j∈J

pj ≥ vi(J
′)−

∑

j∈J ′

pj

and
vi(J)−

∑

j∈J

p′j ≥ vi(J
′)−

∑

j∈J ′

p′j.

If we now consider any price vectorαp + (1− α)p′, for α ∈ [0, 1], these imply:

vi(J)−
∑

j∈J

(αpj + (1− α)p′j) ≥ vi(J
′)−

∑

j∈J ′

(αpj + (1− α)p′j).

This clearly implies that this agent prefers allocationJ on any convex combination ofp andp′. Hence
the region of prices for which the agent prefers bundleJ is convex.

The above claim shows that we can divide the space of pricingsinto polytopes based on an agent’s most
desirable bundle. Consider fixing an outcome, i.e., the bundles J1, . . . , Jn, obtained by agents1, . . . , n,
respectively. This outcome occurs for pricings in the intersection

⋂
i∈S Pi(Ji).

Definition 7.6.1 For a set of agentsS, let VertsS denote the set of vertices of the polytopes that partition
the space of prices by the allocation produced. I.e.,VertsS = {p such thatp is a vertex of the polytope
containing

⋂
i∈S′ Pi(Ji) for somei ∈ S′ ⊂ S and bundlesJi}.

Claim 2 For S′ ⊆ S we haveVertsS′ ⊆ VertsS .

Proof: Follows immediately from the definition ofVertsS and basic properties of polytopes.

Now we consider optimal pricings. Note that when fixing an allocationJ1, . . . , Jn we are looking
for an optimal price point within the polytope that gives this allocation. Our objective function for this
optimization is linear. Letnj be the number of copies of itemj allocated by the allocation. The seller’s
payoff for pricesp = (p1, . . . , pm) is

∑
j pjnj. Thus, all optimal pricings of this allocation lie on facets

of the polytope and in particular there is an optimal pricingthat is at a vertex of the polytope. Over the
space of all possible allocations, all optimal pricings areon facets of the allocation defining polytopes and
there exists an optimal pricing that is at a vertex of one of the polytopes.

Lemma 7.6.3 Given an algorithmA that always outputs a vertex of the polytope thenGA ⊆ VertsS .
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Proof: This follows from the fact that RSO(G,A) runsA on a subsetS′ of S which hasVertsS′ ⊆ VertsS .
Amust pick a price vector fromVertsS′ . By Claim 2 this price vector must also be inVertsS . This gives
the lemma.

We now discuss getting a bound onVertsS for n agents,m distinct items, and various types of pref-
erences.

Theorem 7.6.4 We have the following upper bounds on|VertsS |:
1. (n + m)m for single-minded preferences.
2. nm(m + 1)2m for unit-demand preferences.
3. nm22m2

for arbitrary preferences.

Proof: We consider how many possible bundles,M , an agent might obtain as a function of the pricing.
An agent with single-minded preferences will always obtainone ofMs = 2 bundles: either their desired
bundle or nothing (the empty bundle). An agent with unit-demand preferences receives one of them items
or nothing for a total ofMu = m + 1 possible bundles. An agent with general preferences receives one
of theMg = 2m possible bundles.7

We now bound the number of hyperplanes necessary to partition the pricing space intoM convex
regions (e.g., that specify which bundle the agent receives). For convex regions, each pair of regions can
meet in at most one hyperplane. Thus, the total number of hyperplanes necessary to partition the pricing
space into regions is at most

(M
2

)
. Of course we wish to restrict our pricings to be non-negative, so we

must addm additional hyperplanes atpj = 0 for all j.
For alln agents, we simply intersect the regions of all agents. This does not add any new hyperplanes.

Furthermore, we only need to count them hyperplanes that restrict to non-negative pricings once. Thus,
the total number of hyperplanes necessary for specifying the regions of allocation forn agents withM
convex regions each, isK = n

(M
2

)
+ m. Thus,Ks = n + m, Ku ≤ n

(m+1
2

)
+ m ≤ n(m + 1)2, and

Kg ≤ n
(
2m

2

)
+ m ≤ n22m (for m ≥ 2).

Of course,K hyperplanes inm dimensional space intersect in at most
(
K
m

)
≤ Km vertices. Not all

of these intersections are vertices of polytopes defining our allocation, stillKm is an upper bound on the
size ofVertsS . Plugging this in gives us the desired bounds of(n + m)m, nm(m + 1)2m, andnm22m2

respectively for single-minded, unit-demand, and generalpreferences.

We note that are above arguments apply to approximation algorithms that always output a price corre-
sponding to the vertex of a polytope as well. Though we do not consider this direction here, it is entirely
possible that it is not computationally difficult to post-process the solution of an algorithm that is not a
vertex of a polytope to get a solution that is on a vertex of a polytope.8 This would further motivate the
analysis above. If for some reason, restricting to algorithms that return vertices is undesirable, it is possible
to use cover arguments on the set of vertices we obtain when weadd additional hyperplanes corresponding
to the discretization of the preceding section.

7.6.3 Combinatorial Auctions: Lower Bounds

We show in the following an interesting lower bound for combinatorial auctions.9 Notice that our upper
bounds and this lower bound are quite close.

7Here we make the assumption that desired bundles are simple sets. If they are actually multi-sets with bounded multiplicity
k, then the agent could receive one of at mostMg = (k + 1)m bundles.

8Notice that this is not immediate because of the complexity of representing an agent’s combinatorial valuation.
9This proof follows the standard approach for lower bounds for revenue maximizing auctions that was first given by Goldberg

et al. in [124].
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Theorem 7.6.5 Fix m andh. There exists a probability distribution on unit-demand single-minded agents
such that the expected revenue of any incentive compatible mechanism is at mostmh

2 whereas the expected
revenue ofOPT is at least0.7mh.
Thus, this theorem states that in order to achieve a close multiplicative ratio with respect toOPT, one
must have additive lossΩ(mh).

Proof: Consider the following probability distribution over valuations of agents preferences. Assume
we haven = mh

2 agents in total, andh2 agents desire itemj only, j ∈ {1, · · ·m}.10 Each of these agents
has valuationh with probability 1

h and valuation1 with probability1− 1
h .

Notice now any incentive-compatible mechanism has expected profit at mostn. To see this, note that
for each bidder, any proposed price has expected profit (overthe randomization in the selection of his
valuation) of at most1. Moreover, the expected profit ofOPTG is at leastn + mh

8 . For each itemj, there
is a1 − (1 − 1

h)h/2 ≈ 0.4 probability that some bidder has valuationh. For those items,OPTG gets at
least a profit ofh. For the rest,OPTG gets a profit ofh2 . So, overall,OPTG gets an expected profit of at
least0.4mh + 0.6m(h/2) = 0.7h. All these together imply the desired result.

7.6.4 Algorithms for Item-pricing

Given standard complexity assumptions, most item-pricingproblems are not polynomial time solvable,
even for simple special cases. We review these results here.We focus our attention to the unlimited
supply special case, though some of the work we mention also considers limited supply item-pricing.
Algorithmic pricing problems in this form were first posed byGuruswami et al. [130] though item-pricing
for unit-demand consumers with several alternative payment rules (i.e., rules that do not represent quasi-
linear utility maximization) were independently considered by Aggarwal et al. [10].

For consumers with single-minded preferences, [130] givesa simpleO(log mn) approximation algo-
rithm. Demaine et al. [102] show the problem to be hard to approximate to better than alogδ(m) factor for
someδ > 0. Both Briest and Krysta [74] and Grigoriev et al. [127] proved that optimal pricing is weakly
NP-hard for the special case known as “the highway problem” where there is a linear order on the items
and all desired bundles are for sets of consecutive items (actually this hardness result follows for the more
specific case where the desired bundles for any two agents,Si andSi′ , satisfy one of:Si ⊆ Si′ , Si′ ⊆ Si,
or Si ∪ Si′ = ∅). In the case when the cardinality of the desired bundles arebounded byk, Briest and
Krysta [74] give anO(k2) approximation algorithm. In our work [26] we have improved this, by giving a
simpler and betterO(k) approximation. Finally, when the number of distinct items for sale,m, is constant,
Hartline and Koltun [132] show that it is possible to improveon the trivialO(nm) algorithm by giving
a near-linear time approximation scheme. Their approximation algorithm is actually an exact algorithm
for the problem of optimizing over a discretized set of item pricesG′ which is directly applicable to our
auction RSO(G′,A), discussed above.

For consumers with unit-demand preferences, [130] (and [10] essentially) give a trivial logarithmic
approximation algorithm and show that the optimization problem is APX-hard (meaning that standard
complexity assumptions imply that there does not exist a polynomial time approximation scheme (PTAS)
for the problem). Again, Hartline and Koltun [132] show how to improve on the trivialO(nm) algo-
rithm in the case where the number of distinct items for sale,m, is constant. They give a near-linear time
approximation scheme that is based on considering a discretized set of item prices; however, the discretiza-
tion of Nisan [180] that we discussed above gives a significant improvement on their algorithm and also
generalizes it to be applicable to the problem of item-pricing for consumers with general combinatorial
preferences.

10Notice that these preferences are both unit-demand and single-minded.
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7.7 Conclusions and Discussion

In this work we have made an explicit connection between machine learning and mechanism design. In
doing so, we obtain aunifiedapproach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature.

Some of our techniques give suggestions for thedesignof mechanisms and others for theiranalysis.
In terms of design, these include the use of discretization to produce smaller function classes, and the use
of structural-risk-minimization to choose an appropriatelevel of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and
the notion of multiplicative covers for better bounding thetrue complexity of a given class of offers.

Our results substantially generalize the previous work on random sampling mechanisms by both
broadening the applicability of such mechanisms and by simplifying the analysis. Our bounds on ran-
dom sampling auctions for digital goods not only show how theauction profit approaches the optimal
profit, but also weaken the required assumptions of [122] by aconstant factor. Similarly, for random sam-
pling auctions for multiple digital goods, our unified analysis gives a bound that weakens the assumptions
of [120] by a factor of more thanm, the number of distinct items. This multiple digital good auction prob-
lem is a special case of the a more general unlimited supply combinatorial auction problem for which we
obtain the first positive worst-case results by showing thatit is possible to approximate the optimal profit
with an incentive-compatible mechanism. Furthermore, unlike the case for combinatorial auctions for
social welfare maximization, our incentive-compatible mechanisms can be easily based on approximation
algorithms instead of exact ones.

We have also explored the attribute auction problem that wasproposed in [61] for 1-dimensional
attributes in a much more general setting: the attribute values can be multi-dimensional and the target
pricing functions considered can be arbitrarily complex. We bound the performance of random sampling
auctions as a function of the complexity of the target pricing functions.

Our random sampling auctions assume the existence of exact or approximate pricing algorithms. So-
lutions to these pricing problem have been proposed for several of our settings. In particular, optimal
item-pricings for combinatorial auctions in the single-minded and unit-demand special cases have been
considered in [26, 74, 130, 132]. On the other hand for attribute auctions, many of the clustering and
market-segmenting pricing algorithms have yet to be considered at all.
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Appendix A

Additional Proof and Known Results

A.1 Appendix for Chapter 2

A.1.1 Standard Results

We state in the following a few known generalization bounds and concentration results used in our proofs. We start
with a classic result from [104].

Theorem A.1.1 Suppose thatC is a set of functions fromX to {−1, 1} with finite VC-dimensionD ≥ 1. LetD be
an arbitrary, but fixed probability distribution overX × {−1, 1}. For anyǫ, δ > 0, if we draw a sample fromD of
size

m(ǫ, δ, D) =
64

ǫ2

(
2D ln

(
12

ǫ

)
+ ln

(
4

δ

))
,

then with probability at least1− δ, we have
∣∣∣err(h)− L̂(h)

∣∣∣ ≤ ǫ for all f ∈ C.

We present now another classic results from [104].

Theorem A.1.2 Suppose thatC is a set of functions fromX to {−1, 1} with finite VC-dimensionD ≥ 1. LetD be
an arbitrary, but fixed probability distribution overX × {−1, 1}. Then

Pr
S

[
sup

f∈C,L̂(f)=0

∣∣∣err(f)− L̂(f)
∣∣∣ ≥ ǫ

]
≤ 2C[2m, D]e−mǫ/2.

So, for anyǫ, δ > 0, if we draw a sample fromD of size

m ≥ 2

ǫ

(
2 ln (C[2m, D]) + ln

(
2

δ

))
,

then with probability at least1− δ, we have that all functions witĥL(f) = 0 satisfyerr(f) ≤ ǫ.

We present now another classic results from [104].

Theorem A.1.3 Suppose thatC is a set of functions fromX to {−1, 1} with finite VC-dimensionD ≥ 1. LetD be
an arbitrary, but fixed probability distribution overX × {−1, 1}. Then

Pr
S

[
sup
f∈C

∣∣∣err(f)− L̂(f)
∣∣∣ ≥ ǫ

]
≤ 8C[2m, D]e−mǫ2/8.

So, for anyǫ, δ > 0, if we draw fromD a sample satisfying

m ≥ 8

ǫ2

(
ln (C[m, D]) + ln

(
8

δ

))
,

then with probability at least1− δ all functionsf satisfy
∣∣∣err(f)− L̂(f)

∣∣∣ ≥ ǫ.
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We now state a result from [72].

Theorem A.1.4 Suppose thatC is a set of functions fromX to {−1, 1}. LetD be an arbitrary, but fixed probability
distribution overX ×{−1, 1}. Then for any targetf ∈ C and for any i.i.d. sample ofS of sizem from D, letfm be
the function that minimizes the empirical error overS. Then for anyδ > 0, the probability that

err(fm) ≤ L̂(fm) +

√
6 ln C[S]

m
+ 4

√
ln(2/δ)

m

is greater than1− δ.

Note that in fact the above statement is true even if in the right handside we useC[S′] instead ofC[S] whereS′

is another i.i.d sample of sizem drawn fromD.

Theorem A.1.5 For any class of functions we have:

Pr
S

[log2(C[S]) ≥ E[log2(C[S])] + α] ≤ exp

[
− α2

2E[log2(C[S])] + 2α/3

]
. (A.1.1)

Also,

E[log2 C[S]] ≤ log2 E[C[S]] ≤ 1

ln 2
E[log2 C[S]]. (A.1.2)

A.1.2 Additional Proofs

Theorem A.1.6 For any class of functions we have:

Pr
S

[log2(C[S]) ≥ 2 logE[C[S]] + α] ≤ e−2α. (A.1.3)

Proof: Inequality (A.1.1) implies that:

Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α] ≤ exp

[
− (α + E[log2(C[S])])2

2E[log2(C[S])] + 2(E[log2(C[S])] + α)/3

]
.

Since (α+a)2

2a+2(a+α)/3 ≥ α
2 for anya ≥ 0 we get

Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α] ≤ e−α/2.

Combining this together with the following fact (implied byInequality (A.1.2))

Pr
S

[log2(C[S]) ≥ 2 logE[C[S]] + α] ≤ Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α],

we get the desired result.

A.2 Appendix for Chapter 5

Theorem A.2.1 Let C be a set of functions fromX to {−1, 1} with finite VC-dimensionD ≥ 1. Let P be an
arbitrary, but fixed probability distribution overX × {−1, 1}. For anyǫ, δ > 0, if we draw a sample fromP of size
N(ǫ, δ) = 1

ǫ

(
4D log

(
1
ǫ

)
+ 2 log

(
2
δ

))
, then with probability1 − δ, all hypotheses with error≥ ǫ are inconsistent

with the data.
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A.2.1 Probability estimation in high dimensional ball

Considerx = [x1, . . . , xd] ∼ Px uniformly distributed on unit ball inRd. Let A be an arbitrary set inR2; we are
interested in estimating the probabilityPrx((x1, x2) ∈ A). Let Vd be the volume ofd-dimensional ball; we know

Vd = πd/2/Γ(1 + d/2),

whereΓ is the Gamma-function. In particularVd−2/Vd = d/(2π). It follows that

Pr
x

((x1, x2) ∈ A) =
Vd−2

Vd

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2

=
d

2π

∫

(x1,x2)∈A

(1− x2
1 − x2

2)
(d−2)/2dx1dx2 ≤

d

2π

∫

(x1,x2)∈A

e−(d−2)(x2

1
+x2

2
)/2dx1dx2,

where we use the inequality(1− z) ≤ e−z.

Lemma A.2.2 Let d ≥ 2 and letx = [x1, . . . , xd] be uniformly distributed in thed-dimensional unit ball. Given
γ1 ∈ [0, 1], γ2 ∈ [0, 1], we have

Pr
x

((x1, x2) ∈ [0, γ1]× [γ2, 1]) ≤ γ1

√
d

2
√

π
e−(d−2)γ2

2
/2.

Proof: Let A = [0, γ1]× [γ2, 1]. We have

Pr
x

((x1, x2) ∈ A) ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2

1
+x2

2
)/2dx1dx2 ≤

γ1d

2π

∫

x2∈[γ2,1]

e−(d−2)x2

2
/2dx2

≤ γ1d

2π
e−(d−2)γ2

2
/2

∫

x∈[0,1−γ2)

e−(d−2)x2/2dx ≤ γ1d

2π
e−(d−2)γ2

2
/2 min

[
1− γ2,

√
π

2(d− 2)

]
.

Note that whend ≥ 2, min(1,
√

π/(2(d− 2))) ≤
√

π/d.

Lemma A.2.3 Assumex = [x1, . . . , xd] is uniformly distributed in thed-dimensional unit ball. Givenγ1 ∈ [0, 1],
we have

Pr
x

(x1 ≥ γ1) ≤
1

2
e−dγ2

1
/2.

Proof: Let A = [γ1, 1]× [−1, 1]. Using a polar coordinate transform, we have:

Pr
x

((x1, x2) ∈ A) =
d

2π

∫

(x1,x2)∈A

(1− x2
1 − x2

2)
d−2

2 dx1dx2

=
d

2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]

(1− r2)
d−2

2 rdrdθ =
1

2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]

dθd(1 − r2)
d
2

≤ 1

2π

∫

(r,θ)∈[γ1,1]×[−π/2,π/2]

dθd(1 − r2)
d
2 = 0.5(1− γ2

1)
d
2 .

Using inequality(1 − z) ≤ e−z, we obtain the desired bound.

Lemma A.2.4 Let d ≥ 4 and letx = [x1, . . . , xd] be uniformly distributed in thed-dimensional unit ball. Given
γ, β > 0, we have:

Pr
x

(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β

2
(1 +

√
− ln min(1, β))e−dγ2/(4β2).
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Proof: Let α = β
√
−2d−1 ln min(1, β), we have

Pr
x

(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ Pr
x

(x1 ≤ −α, x1 + βx2 ≥ γ) + Pr
x

(x1 ∈ [−α, 0], x1 + βx2 ≥ γ)

≤ Pr
x

(x1 ≤ −α, x2 ≥ (α + γ)/β) + Pr
x

(x1 ∈ [−α, 0], x2 ≥ γ/β)

≤ 1

2
Pr
x

(x2 ≥ (α + γ)/β) + Pr
x

(x1 ∈ [0, α], x2 ≥ γ/β)

≤ 1

4
e−d(α+γ)2/(2β2) +

α
√

d

2
√

π
e−dγ2/(4β2) ≤

≤
[

1

4
e
−

dα2

2β2 +
α
√

d

2
√

π

]
e
−

dγ2

4β2 =

[
min(1, β)

4
+

β
√
−2 lnmin(1, β)

2
√

π

]
e
−

dγ2

4β2 .

Lemma A.2.5 Let u and v be two unit vectors inRd, and assume thatθ(u, v) ≤ β̃ < π/2. Let d ≥ 4 and let
x = [x1, . . . , xd] be uniformly distributed in thed-dimensional unit ball. ConsiderC > 0 arbitrary, let

γ =
2 sin β̃√

d

√

lnC + ln

(
1 +

√
ln max(1, cos β̃/ sin β̃)

)
.

Then

Pr
x

[(u · x)(w · x) < 0, |w · x| ≥ γ] ≤ sin β̃

C cos β̃
.

Proof: We rewrite the desired probability as

2 Pr
x

[w · x ≥ γ, u · x < 0] .

W.l.g., letu = (1, 0, 0, ..., 0) andw = (cos(θ), sin(θ), 0, 0, ..., 0). Forx = [x1, x2, ..., xd] we haveu · x = x1 and
w · x = cos(θ)x1 + sin(θ)x2. Using this representation and Lemma A.2.4, we obtain

Pr
x

[w · x ≥ γ, u · x < 0] = Pr
x

[cos(θ)x1 + sin(θ)x2 ≥ γ, x1 < 0]

≤ Pr
x

[
x1 +

sin(β̃)

cos(β̃)
x2 ≥

γ

cos(β̃)
, x1 < 0

]

≤ sin β̃

2 cos β̃



1 +

√

ln max(1,
cos β̃

sin β̃



 e
−

dγ2

4 sin2 β̃

=
sin β̃

2 cos β̃
C−1,

as desired.

A.3 Appendix for Chapter 7

A.3.1 Concentration Inequalities

Here is the McDiarmid inequality (see [104]) we use in our proofs:
Theorem A.3.1 Let Y1, ..., Yn be independent random variables taking values in some setA, and assume that
t : An → R satisfies:

sup
y1,...,yn∈A,yi∈A

|t(y1, ..., yn)− t(y1, ..., yi−1, yi, yi+1, yn)| ≤ ci,
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for all i, 1 ≤ i ≤ n. Then for allγ > 0 we have:

Pr {|t(Y1, ..., Yn)−E[t(Y1, ..., Yn)]| ≥ γ} ≤ 2e
−2γ2/

n
P

i=1

c2

i

Here is also a consequence of the Chernoff bound that we used in Lemma 7.4.4.
Theorem A.3.2 Let X1, ..., Xn be independent Poisson trials such that, for1 ≤ i ≤ n, Pr [Xi = 1] = 1

2 and let
X =

∑n
i=1 Xi. Then anyn′ we have:

Pr
{∣∣∣X − n

2

∣∣∣ ≥ ǫ max{n, n′}
}
≤ 2e−2n′ǫ2
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