New Theoretical Frameworks for Machine Learning

Maria-Florina Balcan

CMU-CS-08-153
September 15th, 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:

Avrim Blum, Chair
Manuel Blum
Yishay Mansour
Tom Mitchell
Santosh Vempala

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright© 2008Maria-Florina Balcan

This research was sponsored by the National Science Feondaider grant numbers 11S-0121678, 11S-0312814, CCH4032,
CCR-0122581, the U.S. Army Research Office under grant nuibAAD-190213089, Google, and the IBM Ph.D. Fellowship.
The views and conclusions contained in this document aetbbthe author and should not be interpreted as repregehtn
official policies, either expressed or implied, of any spwirgy institution, the U.S. government or any other entity



Keywords: Data Dependent Concept Spaces, Clustering, Value of Ueldliata, Semi-supervised
Learning, Active Learning, Co-training, Similarity-baskeearning, Kernels, Margins, Low-Dimensional
Mappings, Sample Complexity, Mechanism and Auction DesdRpnmdom Sampling Mechanisms, Profit
Maximization.



In memoria tatalui meu. Vei ramane vesnic in suflet, inimaasid}






Abstract

Machine Learning, a natural outgrowth at the intersectio@amputer Science and Statistics, has evolved
into a broad, highly successful, and extremely dynamiciplise. Over the past twenty years, machine
learning methods have been applied in an ever increasimg r@rareas from natural language processing
to speech recognition to computer vision to computatioi@bhy, just to name a few. Moreover, many of
these areas have recently faced an explosion of data, amdtés bse this data a number of powerful new
learning approaches have been explored. However, theageaeht of theoretical foundations for these
methods has been severely lacking. In this thesis, we devedmretical foundations and new algorithms
for several important emerging learning paradigms of $icaniit practical importance, including Semi-
Supervised Learning, Active Learning, and Learning withriés and more general similarity functions.
In addition, the novel insights we develop here allow us s akvisit the classic problem of Clustering
which has not been satisfactorily captured by existing risod@nally, in this dissertation we present new
applications of techniques from Machine Learning to Altoriic Game Theory, which has been a major
area of research at the intersection of Computer Scienc&emmomics.

One of the major current research directions in machinaiegiis incorporating unlabeled data together
with labeled data in the learning process, also known as -Sepérvised Learning. This has become a
very important area mainly due to the availability of largacaints of unlabeled data in many modern
applications. However, while many different semi-supsedi learning methods have been developed, the
underlying assumptions of these methods are very distmttlzeir effectiveness cannot be explained by
standard theoretical models. In this thesis we introducanageneral model for semi-supervised learning,
that can be used to reason about the many different app®#aken over the past decade in the Machine
Learning community. Within this model we analyze in a unifieay when and why unlabeled data can
help in the semi-supervised learning setting; we also dgvalgorithms with provably better guarantees
than those developed so far.

Another major current direction in machine learning is mpavating interaction in the learning process.
The most extensively used and studied technique in thissgbig Active Learning where the algorithm

can interactively ask for the labels of unlabeled exampfassamwn choosing. In this dissertation, we

prove for the first time, the feasibility of active learningthe presence of arbitrary forms of noise. We
also provide theoretical justification for margin-basegoathms, which have proven quite successful in
practical applications.

In the context of Kernel methods (another flourishing areanathine learning research), we strictly
generalize and simplify the existing theory which whiletguelegant has been disconnected from practice.
In particular, we show how Random Projection techniqueshbeansed to convert a given kernel function
into an explicit, distribution dependent set of feature$jol can then be fed into more general (not
necessarily kernelizable) learning algorithms. In additithis work shows how such methods can be
extended to more general pairwise similarity functions alsd gives a formal theory that matches the
standard intuition that a good kernel function is one theg as a good measure of similarity. Our approach
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brings a new perspective as well as a much simpler explan&diothe effectiveness of kernel methods,
which can help in the design of good kernel functions for nearriing problems.

Building on the techniques and insights we develop for akéhlearning problems, we also propose a
new approach for analyzing the Clustering problem. Cliggeis a central task in gaining knowledge
from data and it has been studied in many fields over many dscaélithough a plethora of clustering
algorithms have been developed, the question of what mathbdst suited to a given type of data or
what conditions are needed to produce highly accurateisoiitemains poorly understood. In our work
we develop the first general framework for analyzing acguiEcclustering algorithms without making
probabilistic assumptions about the data, in which we catia@sy and formally address the question of
how much information about data objects and what propedtig¢keir structure are needed to be able to
cluster accurately.

This dissertation also brings forward new connections betwMachine Learning and Algorithmic Game
Theory. The explosive growth of the Internet has generateii@easing need for game-theoretic algo-
rithms designed for solving problems involving multiplesags each with their own interests in mind. In
this thesis we develop fundamental new tools for the desigich “incentive compatible mechanisms”.
In particular, we present the first general framework foursag mechanism design problems to standard
algorithmic questions for a wide range of revenue maxinopaproblems. Our reduction is inspired by
methods and techniques in learning theory; however, froeamling perspective, these settings present
several unique challenges: the loss function is discoatiatand asymmetric, and the range of bidders’
valuations may be large.
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Chapter 1

Introduction

Machine learning studies automatic methods for learningdke accurate predictions or useful decisions
based on past observations and experience, and it has becbiglely successful discipline with appli-
cations in many different areas such as natural languageegsmg, speech recognition, and computer
vision. Moreover, the theoretical foundations of tradifib machine learning approaches, in particular
passive supervised Iearnﬂ)ghave played a crucial role in the development of powerfubust, and ver-
satile machine learning techniques, which are nowadaysnedy used in a wide range of commercial
systems.

Over the past twenty years, the types of applications of inadkearning have grown more and more
varied ranging from computational biology to astronomydbatic surgery. Moreover, many of the (new
and old) application areas have faced a huge increase irotheg of available data of various kinds. In
order to better use all the available data a number of poleéw learning approaches have been pro-
posed. These approaches have been intensely explored nmaitiéne learning community, with many
heuristics and specific algorithms, as well as various ssfaeexperimental results reported. Unfortu-
nately, however, the standard theoretical models do nducaghe key issues involved in these learning
techniques, and it has become clear that for developingstpteersatile, and general algorithms in these
settings a general fundamental understanding is neces$sahys thesis we develop such theoretical foun-
dations as well as new and general algorithms for these émgemgachine learning paradigms, including
Semi-Supervised, Active, and Similarity-based Learningaddition, the novel insights we develop here
allow us to also revisit the classic problem of Clusteringalithas not been satisfactorily captured by
existing models. This dissertation also brings forward wewnections between Machine Learning and
Algorithmic Game Theory, an emerging area at the intergeaf Computer Science and Economics.

In addition to providing significant help to machine leampractitioners, our work advances the state
of the art of machine learning theory and also helps to setygortant problems in Algorithmic Game
Theory, via a fresh set of ideas and techniques.

We provide a high level presentation of our work in Secfidh While in Sectio 1]2 we give a more
detailed overview of the main contributions of this thesieach of the main directions. In Section]1.3
we summarize the main results and describe the structuteedhesis, as well as provide bibliographic
information.

These include the development of the classic PAC learnindeinoy Valiant @B] and of the Statistical Learning Theory
framework by Vapnikl[207], the design and analysis of vasiboosting algorithms [188, 189], and the design and arsabyfsi
Support Vector MachineEhESQ].



1.1 General Overview

We start by describing at a high level the learning paradigresanalyze and the new models and algo-
rithms we introduce in this thesis. In Section 111.2 we dbscat a high level the new connections we
introduce between Machine Learning and Algorithmic Gameori

1.1.1 New Frameworks and Algorithms for Machine Learning

Machine learning techniques are nowadays routinely usedrimmercial systems for speech recognition,
computer vision, and spam detection. To date, the primagrétical advances in machine learning have
been forpassive supervisdeéarning problem@ﬂ, where a target function (a clacsiion rule) is esti-
mated usindabeled examplesnly. For example, in spam detection an automatic classdibel emails

as “spam” or “not spam” would be trained using a sample of iptesyemails labeled by a human user.
The goal here is then to get as high accuracy as possible asiliitje labeled data as possible. For most
modern practical problems however, there is often usefditiadal information available in the form of
cheap and plentifulinlabeleddata: e.g, unlabeled emails for the spam detection problem. As a eonse
guence, there has recently been substantial practicaksiten using this unlabeled data together with
labeled data for learning, since any useful informatiort teduces the amount of labeled data needed
can be a significant benefit. A variety of algorithms for dothig have been developed, and many suc-
cessful experimental results have been reported. Somesé tigorithms simply use raw unlabeled data
in addition to labeled data, while othargeract with the human labeler and adaptively identify specific
informative unlabeled examples to be labeled.

In parallel with this work, as the types of applications ofaiiae learning have grown more and
more diverse, the issue of howrepresentata to the learning algorithm has become increasinglyiatuc
Typically, this representation is done using featuresef@mple, for spam detection one might represent
an email message by features indicating the presence onabsé various keywords in the message.
However, in many cases the problem of identifying high-ijydkatures can in itself be quite difficult.
This has led to the development of a powerful technique knaskernel methodsKernel methods allow
the user to specify a particular kind of pairwise functiotwaEen data objects, known as a kernel function,
which is used by the algorithm instead of explicit featur&a.example of a typical kernel for document
classification would be the number of content-words shamembmmon between two documents. Many
well-understood and well-optimized algorithms such as S\@sin be used with kernels, allowing for their
application to complex types of dafa.

Overall, incorporating unlabeled data in the learning pss¢ adding interaction capabilities to the
learning algorithm, and using kernels and similarity fumes, are all areas that have been extensively
explored in the machine learning community over the pastyfears. However, their theory has been
lacking in a number of substantial ways. For example, thassdeen significant disagreement over when
unlabeled data or interaction can help, and how to reconcdthematical and intuitive views of kernel
functions. In this thesis we develop new and fundamentalr#ieal understanding for these new learning
approaches, as well as new robust learning algorithms witng sample-size and accuracy guarantees.
In particular, we develop new models and algorithms for sempervised learning and active learning,
both of which are not captured by standard models. We alspli§inand generalize the existing theory
for learning with Kernel functions, which while quite elegais disconnected from the practical intuition
that a good kernel for the problem at hand should be one thetsas reasonable measure of similarity

2In particular, a kernel is a special kind of pairwise funatithat allows these algorithms to find complicated nonlinear
decision boundaries, even though the algorithms themselegs the problem as linear.
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in that domain. Finally, we also revisit the classic problefClustering (or unsupervised learning) that
has not been satisfactorily captured by existing models.

In the following, we describe the main learning approachesanalyze in this thesis. At a high level,
these techniques differ in how they represent the data ¢atufes or using a measure of similarity), what
type of data they use (labeled and/or unlabeled), in the \way interact with data (does the learning
algorithm get to choose specific examples to be labeled ¢r not

Incorporating Unlabeled Data and Interaction in the Learning Process A tremendously popular set-
ting for incorporating unlabeled data in the learning pesces passiv&emi-Supervised Learnirﬂa, @]
where, in addition to a set of labeled examples from the uyider data distribution, the learning algo-
rithm can also use a (usually much larger) setioiibeledexamples from the same distribution. Several
different semi-supervised learning algorithms have beseldped and numerous successful experimen-
tal results have been reported. However the underlyingh@sisons of these methods are quite different.
For instance, some that assume data lies in clusters, ahstsne some kind of self-consistency in the
classification rule, and a major obstacle to progress hasthetit has been unclear whether any general
principles underlie all these approaches. In particuleir teffectiveness cannot be explained by standard
learning models (the PAC model or the Statistical Learnihgadry framework). In this thesis, we develop
a comprehensive theoretical framework that provides aaghifiay for thinking about semi-supervised
learning; this model can be used to reason about many of thifeeent approaches taken over the past
decade in the machine learning commuﬁil@ur model allows us to address key issues such as “Under
what conditions will unlabeled data help and by how much?t &iow much data should | expect to
need in order to perform well?”, and to develop algorithm#hvgrovably better guarantees than those
developed so far.

A second setting for incorporating unlabeled data in thenieg process that has been increasingly
popular in the past few years Active Learning[@,@,@]. Here the learning algorithm is even more
powerful in that the algorithm can interactively ask for tabels of unlabeled examples of its own choos-
ing. The hope is that a good classifier can be learned with &xgear labels byactively directing the
gueries tdnformativeexamples. For this paradigm, we present several new thearegsults. In particu-
lar, we prove for the first time, the feasibility of active feag in the presence of arbitrary forms of noise.
Tolerance to noise had been a major sticking point of prevamttive learning methods because these al-
gorithms tend to hone in on very specific regions of the daé@eand so can be easily misled by small
amounts of misclassified data. This lack of noise tolerarmsetieen a major barrier to their applicability.
In this thesis we describe a new active learning procedatevtbrks in the presence of arbitrary forms of
noise. Our procedure relies only upon the assumption tinaples are drawn i.i.d. from some underlying
distribution and it makes no assumptions about the meadmgmisducing the noisee(g, class/target mis-
fit, fundamental randomization, etc.). We also presentrétemal justification for margin-based algorithms
which have proven quite successful in practical applicegje.g, in text cIassificationS].

Similarity-based Learning: Kernel methodsiave become especially popular and constituted a flourish-
ing area of research in recent years, both because they gresaful in practice for dealing with many
different kinds of data, and because they have a solid thieakréoundation. These methods use labeled
examples and they interact with the data via a pairwise fondnown as a kernel that additionally sat-
isfies certain mathematical properties. For these methodsstablished theory does exist in terms of
viewing kernels as implicit mappings, but does not matchpitaetical intuition that a good kernel for

a given problem is one that forms a natural notion of sinifair that domain. This gap between the-
ory and intuition has in turn limited the ability to use thedhny as a guide for designing useful kernels

% This work was invited to appear in a recent book about SerpeBised Learnindﬂ4] and it can be used to explain when
and why unlabeled data can help in many of the specific methiods in the other chapters of the book.
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for new application domains. In our work, we develop moreiiite and more operational explanations
for desired properties of good kernel functions; in patdguwe provide theoretical justification for the
common intuition that a good kernel function is one that ast& good measure of similarity. Moreover,
this theory is strictly more general, applying to broaderdisi of similarity functions that may not satisfy
the mathematical conditions needed for kernel functiond,iavolves more tangible quantities than those
used by the traditional analysis.

Clustering via Similarity Functions: Finally, we also present a new perspective on the cla3sister-

ing problem. The new applications of machine learning to arael as computational biology and gene
discovery have also brought to the forefront more classimiag techniques such as Clustering. In this
setting, the learning algorithm does not use labeled deadl, diut instead it can use a similarity measure
between pairs of objects and the goal is to uncover some wikinidden structure of the data. Such
problems are ubiquitous in science and as a consequenteritiggeceived substantial attention in many
different fields for many years. Although a plethora of chuistg algorithms have been developed, the
guestion of what method is best suited to a given type of dathat conditions are needed to produce
highly accurate solutions remains poorly understood. tiejgheory has been very brittle, either making
strong assumptions about the uniformity of clusters or efgamizing distance-based objective functions
only secondarily related to the true goals. In this thesigrepose a new, much more general and robust
approach to analyzing the problem of clustering. We comdiuie goal of approximately recovering an
unknown target clustering using a similarity function (oweighted graph), given only the assumption
of certain natural properties that the similarity or weidimction satisfies with respect to the desired
clustering. Building on our models for learning with sinmitgt functions in the context of supervised clas-
sification, we provide the first general framework for analgzclustering accuracy without probabilistic
assumptions. In this model we directly address the fundéahgunestion of what kind of information a
clustering algorithm needs in order to produce a highly eateuclustering of the data, and we analyze
both information theoretic and algorithmic aspects.

General Technical Theme: In addition to providing help to practitioners, our work@ladvances the
state of the art of machine learning theory. In particulara &echnical level, a common characteristic
of many of the models we introduce to study these learningdigms €.g, semi-supervised learning
or learning and clustering via similarity functions) is thee ofdata dependent concept spacesich
we expect to be a major line of research in the next years irhmadearning. The variety of results
we present in these models relies on a very diverse set ghitssand techniques from Algorithms and
Complexity, Empirical Processes and Statistics, Optitionaas well as Geometry and Embeddings.

1.1.2 Connections between Machine Learning and Algorithna Game Theory

Constructing algorithms for a highly distributed mediunstsas the Internet requires careful consideration
of the objectives of the various parties in the system. Theldpment of such algorithms, known as
Mechanism Desigrhas therefore become an increasingly important part afrifgnic research and of
computer science (more generally) in recent years. Meshadesign can be thought of as a distinct form
of algorithm design, where a central entity must perform eaomputation €.g, resource allocation
or decision making) under the constraint that the agentplgimg the inputs have their own interest in
the outcome of the computation. As a result, it is desirabéd the employed procedure be incentive
compatible, meaning that it should be in each agent’s béstest to report truthfully, or to otherwise act
in a well-behaved manner. Typical examples of such mechen@e auctions of products.(, software
packages) or pricing of shared resources( network links) where the central entity would use inputs

4



(bids) from the agents in order to allocate goods in a wayritatimizes its revenue.

Unfortunately, the requirement that such algorithms beritige compatible (aligned with the incen-
tives of the parties involved) can make this problem subistinmore complex. In this thesis we show a
novel application of machine learning techniquesauttomatekey aspects of mechanism design, substan-
tially simplifying the design of sucincentive-compatiblenechanisms. In particular, we use techniques
from machine learning to providegeneric reductiorfrom the incentive-compatible mechanism design
guestion to more standard algorithmic questions, for a wateéety of revenue-maximization problems,
in an unlimited supply setting. In doing so, we formally askl the problem of market analysis, as well
as develop pricing algorithms with improved guarantees pvevious methods. It is worth noting that
our results are very general, as opposed to most of the piework on incentive compatible mechanism
design for revenue maximization which has been focused pnrestricted setting @76@.@, one
item for sale and/or single parameter agents) and “harftedraor the specific problem at hand.

1.2 Main Contributions

A more detailed overview of this thesis follows below.

1.2.1 Incorporating Unlabeled Data and Interaction in the Learning Process

As mentioned earlier, machine learning has traditionatigused on problems of learning a task from
labeled examples only. However, for many contemporarytigacproblems such as classifying web
pages or detecting spam, there is often additional infaonavailable; in particular, for many of these
settings unlabeled data is often much cheaper and mordfplehtn labeled data. As a consequence,
there has recently been substantial interest in using elddlnata together with labeled data for learning
[@,@,ﬂ@l% since clearly, if usgfformation can be extracted from it that
reduces dependence on labeled examples, this can be acsighﬁénefit@ﬂq.

There are currently two main settings that have been carsider incorporating unlabeled data in
the learning process. For both of these, in addition to afdabeled examples drawn at random from the
underlying data distribution, it is assumed that the laagralgorithm can also use a (usually much larger)
set of unlabeled examples from the same distribution.

The first such setting is passi@mi-Supervised Learnirfgrhich we will refer to as SSLHZ]. What
makes unlabeled data so useful in the SSL context and what afdhe SSL methods exploit, is that for
a wide variety of learning problems, the natural regulesitdf the problem involve not only tHerm of
the function being learned by also how this functietatesto the distribution of data. For example, in
many problems one might expect the target function shoulthcaugh low density regions of the space,
a property used by the transductive SVM algorit141]. tmeo problems one might expect the target
to be self-consistent in some way, a property used by Coutigi[63]. Unlabeled data is then potentially
useful in this setting because, in principle, it allows onadduce search space from the whole set of
hypotheses, down to the setafriori reasonable ones with respect to the underlying distributio

The second setting, which has become increasingly poputartbe past few years, Active Learn-
ing [@@] Here, the learning algorithm has both the capsolii drawing random unlabeled examples
from the underlying distribution, and of asking for the Isbef any of these examples. The hope is that
a good classifier can be learned with significantly fewer labg activelydirecting the queries tmfor-
mativeexamples. As opposed to the SSL setting, and similarly wsidasupervised learning (PAC and
Statistical Learning Theory settings) the only prior bleibout the learning problem in active learning
is that the target function (or a good approximation of itobgs to a given concept class. Luckily, it
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turns out that for simple concept classes such as linearaeps on the line one can achieve expo-
nential improvement over passive supervised learning in the ldbatda sample complexity, under no
additional assumptions about the learning probl% , 96peneral, however, for more complicated
concept classes, the speed-ups achievable in activerilgatapend on the match between the distribution
over example-label pairs and the hypothesis class. Fuonthrer, there are simple examples where (in the
traditional models) active learning does not help at alt,aven in the realizable casl.a%].

In this thesis we study both Active Learning and Semi-Supget/Learning. For the semi-supervised
learning problem, we provide anified discriminative moddi.e., a PAC or Statistical Learning Theory
style model) that captures many of the ways unlabeled daypisally used, and provides a very general
framework for thinking about this issue. This model progideunified framework for analyzing when and
why unlabeled data can help, in which one can discuss botlplsacomplexity and algorithmic issues.
Our model can be viewed as an extension of the standard PA€Invaaere in addition to a concept class
C, one also proposes a compatibility function (an abstraot)pra type of compatibility that one believes
the target concept should have with the underlying distiglbuof data. For example, such a belief could
be that the target should cut through a low-density regiospafce, or that it should be self-consistent
in some way as in co-training. This belief is then explicitgpresented in the model. Unlabeled data
is then potentially helpful in this setting because it akoane to estimate compatibility over the space
of hypotheses, and to reduce the size of the search spacetleomhole set of hypothesé&s down to
those that, according to one’s assumptions, are a-priasorable with respect to the distribution. In the
agnostic case, or even in realizable case if the number efddlexamples is severely limited, we can
do (unlabeled)-data-dependent structural risk mininopato trade off labeled error and incompatibility.
After proposing the model, we analyze fundamental sampieptexity issues in this setting such as
“How much of each type of data one should expect to need inrdodiearn well?”, and “What are the
basic quantities that these numbers depend on?”. We praseaiety of sample-complexity bounds,
both in terms of uniform-convergence results—which applany algorithm that is able to find rules of
low error and high compatibility—as well ascover-based bounds that apply to a more restricted class
of algorithms but can be substantially tighter. For inseanee describe several natural cases in which
the latter types of bounds can apply even though with higtbadodity there still exist bad hypotheses
in the class consistent with the labeled and unlabeled ebesm-inally, we present several PAC-style
algorithmic results in this model. Our main algorithmicukgs a new algorithm for Co-Training with
linear separators that, if the distribution satisfies irhglence given the label, requires only a single
labeled example to learn to any desired error rad@d is computationally efficient.€., achieves PAC
guarantees). This substantially improves on the resul@jfwhich required enough labeled examples
to produce an initial weak hypothesis. and in the processeat@ gimplification to the noisy halfspace
learning algorithm oﬂES]. We describe these results inpZéh2.

For the active learning problem, we prove for the first tinne, ieasibility of agnostic active learning.
Specifically we propose and analyze the first active learalggrithm that finds am-optimal hypothesis
in any hypothesis class, when the underlying distributias arbitrary forms of noise. We also analyze
margin based active learning of linear separators. Finakydiscuss recent work in which we have shown
that in an asymptotic model for active learning where onendsuhe number of queries the algorithm
makes before it finds a good functione(, one of arbitrarily small error rate), but not the number of
gueries before iknowsit has found a good function, one can obtain significantitdsgbounds on the
number of label queries required to learn than in the trawiti active learning models. We discuss these
results in Chaptdrl 5.

In addition to being helpful in the semi-supervised leagnamd active learning settings, unlabeled
data becomes useful in other settings as well, both in figriapervised learning models and, of course,
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in purely unsupervised learning.@, clustering). In this thesis we study the use of unlabeldd ohathe
context of learning with Kernels and more general simydiiinctions. We also analyze how to effectively
use unlabeled data for Clustering with non-interactivelfeek. We discuss these in turn below.

1.2.2 Similarity-based Learning

Kernel functionshave become an extremely popular tool in machine learniritly, an attractive theory
as well @2-@07 They are used in domaingimgnfrom Computer Vision| [13 34] to
Computational Biolo 0 Language and Text Procep ], with workshops,€.g. [E Q Eé])
books @E- i.?], and large portions of megorferences (see,g, ﬂj])) devoted to kernel
methods. In this theS|s, we strictly generalize and simyilie existing theory of Kernel Methods. Our
approach brings a new perspective as well as a much simpdaretion for the effectiveness of kernel
methods, which can help in the design of good kernel funstionnew learning problems.

At a high level, the “kernel trick” is a method for using a lareclassifier algorithm to solve a non-
linear problem by mapping the original non-linear obseoret into a higher-dimensional space, where the
linear classifier is subsequently used; this makes a lirlaasification in the new space equivalent to non-
linear classification in the original space. A kernel is action that takes in two data objects (which could
be images, DNA sequences, or pointgif) and outputs a number, with the property that the function is
symmetric and positive-semidefinite. That is, for any keddethere must exist an (implicit) mapping
such that for all inputs;, 2’ we haveK (z, 2') = ¢(z)-¢(2"). The kernel is then used inside a “kernelized”
learning algorithm such as SVM or kernel-perceptron as tigiwwhich the algorithm interacts with the
data. Typical kernel functions for structured data incltite polynomial kerneK (z, z') = (1 + x - 2/)¢
and the Gaussian kernél(z, 2’) = e~ !l*='I*/2” 'and a number of special-purpose kernels have been
developed for sequence data, image data, and other typasacdsi well @ dﬂi 97].

The theory behind kernel functions is based on the fact thatynstandard algorithms for learning
linear separators, such as SVMs and the Perceptron algoriéin be written so that the only way they
interact with their data is via computing dot-products oirgpaf examples. Thus, by replacing each
invocation ofx - 2’ with a kernel computatiork (z, z’), the algorithm behaves exactly as if we had
explicitly performed the mapping(x), even thoughy may be a mapping into a very high-dimensional
space (dimension? for the polynomial kernel) or even an infinite-dimensiongdee (as in the case of the
Gaussian kernel). Furthermore, these algorithms havecogerce rates that depend only on tin@rgin
of the best separator, and not on the dimension of the spaebiah the data re&deﬂl 95]. Thus,
kernel functions are often viewed as providing much of thegroof this implicit high-dimensional space,
without paying for it computationally (because thenapping is only implicit) or in terms of sample size
(if the data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few linoiadi First, when designing a kernel function
for some learning problem, the intuition typically empldyie that a good kernel would be one that serves
as a good similarity function for the given proble 91]. @ other hand, the above theory talks
about margins in an implicit and possibly very high-dimensil space. So, in this sense the theory is not
that helpful for providing intuition when selecting or dgising a kernel function. Second, it may be that
the most natural similarity function for a given problem t positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the fimt, to coerce it into a legal form. Finally, from
a complexity-theoretic perspective, it is somewhat usfatig for the explanation of the effectiveness of
some algorithm to depend on properties of an implicit highehsional mapping that one may not even
be able to calculate. In particular, the standard theorysittflush has a “something for nothing” feel to it
(all the power of the implicit high-dimensional space wilh@aving to pay for it) and perhaps there is a
more prosaic explanation of what it is that makes a kerndllifar a given learning problem. For these
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reasons, it would be helpful to have a theory that involvedentangible quantities.

In this thesis we provide a new theory that address thestatiions in two ways. First, we show how
Random Projection techniques can be used to convert a gareelkunction into an explicit, distribution
dependent, set of features, which can then be fed into mowergle(not necessarily kernelizable) learning
algorithms. Conceptually, this result suggests that adésipga good kernel function is much like designing
a good feature space. From a practical perspective it peevdth alternative to “kernelizing” a learning
algorithm: rather than modifying the algorithm to use késnene can instead construct a mapping into a
low-dimensional space using the kernel and the data digiin, and then run an un-kernelized algorithm
over examples drawn from the mapped distribution.

Second, we also show how such methods can be extended togemeealpairwise similarity func-
tions and also give a formal theory that matches the staridarition that a good kernel function is one
that acts as a good measure of similarity. In particular, efend a notion of what it means for a pairwise
function K (z, 2) to be a “good similarity function” for a given learning prebh that (a) does not require
the notion of an implicit space and allows for functions tai not positive semi-definite, (b) is provably
sufficient for learning, and (c) is broad, in sense that a d@rdel in the standard sense (large margin in
the implicit ¢-space) will also satisfy our definition of a good similaritynction, though with some loss
in the parameters. This framework provides the first rigerexplanation for why a kernel function that
is good in the large-margin sense can also formally be viesged good measure of similarity, thereby
giving formal justification to a common intuition about kets. We start by analyzing a first notion of a
good similarity function in Section 3.3 and analyze its tielaship with the usual notion of a good kernel
function. We then present a slightly different and broad®tam that we show provides an even better
kernels to similarity translation. Any large-margin kdrifienction is a good similarity function under
the new definition, and while we still incur some loss in theapaeters, this loss is much smaller than
under the prior definition, especially in terms of the findldked sample-complexity bounds. In particular,
when using a valid kernel function as a similarity functiansubstantial portion of the previous sample-
complexity bound can be transferred over to merely a needrii@beled examples. We also show our
new notion isstrictly more generathan the notion of a large margin kernel. We discuss thesétses
Section 3.4. In Chaptéd 6 we present other random projecésalts for the case wher€ is in fact a
valid kernel.

1.2.3 Clustering via Similarity Functions

Problems of clustering data from pairwise similarity infa@tion are ubiquitous in sciende @ @ @ 92,
@, 09]. A typical example task is totelua set of emails or documents according
to some criterion (say, by topic) by making use of a pairwisglarity measure among data objects. In
this context, a natural example of a similarity measure fmpuinent clustering might be to consider the
fraction of important words that two documents have in commo

While the study of clustering is centered around an inteljicompelling goal (and it has been a major
tool in many different fields), it has been difficult to reasabout it at a general level in part due to the
lack of a theoretical framework along the lines we have f@esuvised classification.

In this thesis we develop the first general discriminatieerfework for Clustering,e., a framework for
analyzing clustering accuracy without making strong philisic assumptions. In particular, we present
a theoretical approach to the clustering problem that thirecldresses the fundamental question of how
good the similarity measure must be in terms of its relatignto the desired ground-truth clusteriregd,
clustering by topic) in order to allow an algorithm to clusteell. Very strong properties and assumptions
are needed if the goal is to produce a single approximataiiect clustering; however, we show that if we
relax the objective and allow the algorithm to produce adrigrical clustering such that desired clustering
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is close to someruning of this tree (which a user could navigate), then we can devalgeneral theory
of natural properties that are sufficient for clusteringwaaious kinds of algorithms. Our framework is an
analogue of the PAC learning model for clustering, whererideiral object of study, rather than being a
concept class, is instead a property of the similarity imfation with respect to the desired ground-truth
clustering.

As indicated above, the main difficulty that appears whemghg the problem in this general way is
that if one defines success as outputtirgingle clusteringhat closely approximates the correct clustering,
then one needs to assume very strong conditions on the stynflanction. For example, if the function
provided by the domain expert is extremely good, &8y, y) > 1/2 for all pairsz andy that should be
in the same cluster, anlif (z,y) < 1/2 for all pairsz andy that should be in different clusters, then we
could just use it to recover the clusters in a trivial way. loer, if we just slightly weaken this condition
to simply require that all points are more similar to all pointg from their own cluster than to any points
y’ from any other clusters, then this is no longer sufficientrtiuely identify even a good approximation
to the correct answer. For instance, in the example in Fjdiethere are multiple clusterings consistent
with this property (one witH cluster, one with2 clusters, two with3 clusters, and one with clusters).
Even if one is told the correct clustering haslusters, there is no way for an algorithm to tell which of
the two (very different) possible solutions is correct. #&ctf results of Kleinber 3] can be viewed
as effectively ruling out a broad class of scale-invariamtpprties like this one as being sufficient for
producing the correct answer.

In our work we overcome this problem by considering two rateons of the clustering objective
that are natural for many clustering applications. The fg¢b allow the algorithm to produce a small
list of clusterings such that at least one of them has lowrBhe second is (as mentioned above) to
allow the clustering algorithm to producerae (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, ¥a@wple in Figuré 111 has a natural hierarchical
decomposition of this form. Both relaxed objectives makeseefor settings in which we imagine the
output being fed to a user who will then decide what she lileet.ld-or example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wetssure how specific you wanted to be, so
if any of these clusters are too broad, just click and | willitsip for you.” We then show that with
these relaxations, a number of interesting, natural lagrttieoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to elustell.

For concreteness, we summarize in the following our mainlt®s First, we consider a family of
stability-based properties, showing that a natural géizaten of the “stable marriage” property is suf-
ficient to produce a hierarchical clustering. (The propéstshat no two subsetd c C, A’ ¢ C’ of
clustersC' # C” in the correct clustering are both more similar on averageath other than to the rest of
their own clusters.) Moreover, a significantly weaker notid stability (which we call “stability of large
subsets”) is also sufficient to produce a hierarchical ehirsg, but requires a more involved algorithm. We
also show that a weaker “average-attraction” property ¢wis provably not enough to produce a single
correct hierarchical clustering) is sufficient to producarall list of clusterings, and give generalizations
to even weaker conditions that are related to the notion rgekmargin kernel functions. We develop
a notion of theclustering complexityf a given property (the minimum possible list length that te
guaranteed by any algorithm) and provide both upper andrltaends for the properties we consider.
This notion is analogous to notions of capacity in classiiﬁlmﬂﬂ,@ﬂ and it provides a formal
measure of the inherent usefulness of a given property. \& #iat properties implicitly assumed by
approximation algorithms for standard graph-based algéiinctions such as k-median or k-means can
be viewed as special cases of some of the properties coaedidbove.

43S0, this is similar in spirit to list-decoding in coding thigo
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Figure 1.1: Data lies in four region$, B, C, D (e.g, think of as documents on baseball, football, TCS,
and Al). Suppose thak'(z,y) = 1 if = andy belong to the same regiof (z,y) = 1/2if x € A and

y € Borifx € Candy € D, andK (z,y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in artyeotcluster, there are still multiple consistent
clusterings, including two consistesiclusterings (A U B, C, D) or (A, B, C'U D)). However, there is

a single hierarchical decomposition such that any comttistastering is a pruning of this tree.

We also show how our algorithms can be extended to the ingucésej.e., by using just a constant-
sized sample, as in property testing. While most of our @lgms extend in a natural way, for certain
properties their analysis requires more involved argumasing regularity-type results E 14].

More generally, our framework provides a formal way to amalwhat properties of a similarity func-
tion would be sufficient to produce low-error clusteringsyaell as what algorithms are suited for a given
property. For some of our properties we are able to show thawk algorithms succeeeé.g, variations
of bottom-up hierarchical linkage based algorithms). Hesvefor the most general onesg, the stability
of large subsets property, we need new algorithms that ded@bake advantage of them. In fact, the al-
gorithm we develop for the stability of the large subsetgprty combines learning-theoretic approaches
used in Chaptdr]3 (and described in Secfion 1.2.2) with tjekstyle methods. We describe these results
in Chaptef #1.

1.2.4 Connections between Machine Learning and Algorithnd Game Theory

In this thesis we also present explicit connections betviachine Learning Theory and certain contem-
porary problems in Economics, namely mechanism design acidg problems.

With the Internet developing as the single most importaaharfor resource sharing among parties
with diverse and selfish interests, traditional algorittiamd distributed systems need to be combined with
the understanding of game-theoretic and economic is@. [A fundamental research endeavor in this
new field is the design and analysis of auction mechanismgiridg algorithm 30].
In this thesis we show how machine learning methods can b inséne design of auctions and other
pricing mechanisms with guarantees on their performance.

In particular, we show how sample complexity techniquesfstatistical learning theory can be used
to reduce problems of incentive-compatible mechanismgdetsi standard algorithmic questions, for a
wide range of revenue-maximizing problems in an unlimitagpdy setting. In doing so, we obtain a
unified approach for considering a variety of profit maximgimechanism design problems, including
many that have been previously considered in the literat¥e show how techniques from machine
learning theory can be used both for analyzing and desigmimgnechanisms. We apply our reductions
to a diverse set of revenue maximizing pricing problemshsscthe problem of auctioning a digital good,
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the attribute auction problem, and the problem of item pgan unlimited supply combinatorial auctions.

In the following paragraphs, we give more details on thersgtte study in our work. Consider a seller
with multiple digital goods or services for sale, such as imsvsoftware, or network services, over which
buyers may have complicated preferences. In order to ssktitems through an incentive-compatible
auction mechanism, this mechanism should have the propiatyeach bidder is offered a set of prices
that do not depend on the value of her bid. The problem of degiga revenue-maximizing auction is
known in the economics literature as the optimal auctiorigtegroblem ]. The classical model for
optimal auction design assumes a Bayesian setting in whiglers’ valuations (types) are drawn from
some probability distribution that furthermore is knowrttie mechanism designer. For example, to sell a
single item of fixed marginal cost, one should set the prieétiaximizes the profit margin per sale times
the probability a random person would be willing to buy at {vdce. However, in complex or non-static
environments, these assumptions become unrealistic.ebethettings, machine learning can provide a
natural approach to the design of near-optimal mechanisitheut such strong assumptions or degree of
prior knowledge.

Specifically, notice that while a truthful auction mechamishould have the property that the prices
offered to some bidderdo not depend on the value of her bid, they can depend on therdsioid by other
bidders;j. From a machine learning perspective, this is very simadahinking of bidders as “examples”
and our objective being to use information from examplesi to produce a good prediction with respect
to examplei. Thus, without presuming a known distribution over bidd@rs even that bidders come
from any distribution at all) perhaps if the number of biddér sufficiently large, enough information
can be learned from some of them to perform well on the resthignthesis we formalize this idea and
show indeed that sample-complexity techniques from macl&arning theory{ﬂ?] can be adapted
to this setting to give quantitative bounds for this kind ppeoach. More generally, we show that sample
complexity analysis can be applied to convert incentiveyeatible mechanism design problems to more
standard algorithm-design questions, in a wide varietgeénue-maximizing auction settings.

Our reductions imply that for these problems, given an algaor for the non incentive-compatible
pricing problem, we can convert it into an algorithm for thedéntive-compatible mechanism design prob-
lem that is only a factor of1 4 ¢) worse, as long as the number of bidders is sufficiently lasgefanction
of an appropriate measure of complexity of the class of alwes pricing functions. We apply these results
to the problem of auctioning a digital good, to the attribaetion problem which includes a wide variety
of discriminatory pricing problems, and to the problem ehitpricing in unlimited-supply combinatorial
auctions.From a machine learning perspective, thesegeftiresent several challenges: in particular, the
loss functionis discontinuous, is asymmetric, and has a large range.

The high level idea of our most basic reduction is based omaétien of a random sampling auction.
For concreteness, let us imagine we are selling a colleciongoods or services of zero marginal cost
to us, ton bidders who may have complex preference functions oveethesis, and our objective is to
achieve revenue comparable to the best possible assigminertes to the various items we are selling.
So, technically speaking, we are in the setting of maxingizevenue in an unlimited supply combinatorial
auction. Then given a set of bids we perform the following operations. We first randomly i S
into two setsS; andSsy. We then consider the purely algorithmic problem of finding best set of prices
p for the set of bidsS; (which may be difficult but is purely algorithmic), and thesbset of price®s
for the set of bidsS;. We then usey, as offer prices for bidders i8s, giving each bidder the bundle
maximizing revealed valuation minus price, and pses offer prices for bidders if;. We then show
that even if bidders’ preferences are extremely complibatés mechanism will achieve revenue close to
that of the best fixed assignment of prices to items so long@asumber of bidders is sufficiently large
compared to the number of items for sale. For example, ifidildrs’ valuations on the grand bundle of
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all n items lie in the rangél, h], thenO(hn/e?) bidders are sufficient so that with high probability, we
come within a(1 + ¢) factor of the optimal fixed item pricing. Or, if we cannot selthe algorithmic
problem exactly (since many problems of this form are oftéhrd @7@@@0]), we lose only a
(1 + €) factor over whatever approximation our method for solvimg algorithmic problem gives us.

More generally, these methods apply to a wide variety ofipgiproblems, including those in which
bidders have both public and private information, and aise g formal framework in which one can
address other interesting design issues such as how fiimeedra market segmentation should be. This
framework provides a unified approach to considering a agéprofit maximizing mechanism design
problems including many that have been previously consitlén the literature. Furthermore, our re-
sults substantially generalize the previous work on randampling mechanisms by both broadening the
applicability of such mechanisms and by simplifying thelgsia.

Some of our techniques give suggestions for the design ohameems and others for their analysis.
In terms of design, these include the use of discretizatiqggraduce smaller function classes, and the use
of structural-risk minimization to choose an appropri&eel of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both sleeofibasic sample-complexity arguments, and
the notion of multiplicative covers for better bounding thee complexity of a given class of offers.

Finally, from a learning perspective, this mechanism-glesetting presents a number of technical
challenges when attempting to get good bounds: in partictila payoff function is discontinuous and
asymmetric, and the payoffs for different offers are noifeum. For example, we develop bounds based
on a different notion of covering number than typically ugethachine learning, in order to obtain results
that are more meaningful for this mechanism design settvegdescribe these results in Chajter 7.

1.3 Summary of the Main Results and Bibliographic Information

This thesis is organized as follows.

¢ In Chaptef’2 we present the first general discriminative mfmeSemi-Supervised Learning. In
this model we provide a variety of algorithmic and sample plaxity results and we also show
how it can be used to reason about many of the different sepersised learning approaches taken
over the past decade in the machine learning community. Mfitttis chapter is based on work that
appears in%S],@q. Other related work we have done onr@ioihg (which we briefly mention)
appears in|[29].

e In Chaptef_B we provide a theory of learning with general &irity functions (that is, functions
which are not necessarily legal kernels). This theory mplesiconditions on the suitability of a
similarity function for a given learning problem in terms mibre tangible and more operational
quantities than those used by the standard theory of keunetibns. In addition to being provably
more general than the standard theory, our framework pesville first rigorous explanation for
why a kernel function that is good in the large-margin serseatso formally be viewed as a good
measure of similarity, thereby giving formal justificatitma common intuition about kernels. In
this chapter we analyze both algorithmic and sample cortplessues, and this is mostly based on
work that appears in 6]|1139], anﬂ40].

¢ In Chaptef# we study Clustering and we present the first géframework for analyzing clustering
accuracy without probabilistic assumptions. Again, iis thapter we consider both algorithmic and
information theoretic aspects. This chapter is based ok et appears iml] anﬂ43].

e In Chapte’b we analyze Active Learning and present seveaah mesults. In Sectioh 5.1, we
provide a generic active learning algorithm that works e pinesence of arbitrary forms of noise.
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This section is focused mostly on sample complexity aspautisthe main contribution here is to
provide the first positive result showing that active leagn¢an provide a significant improvement
over passive learning even in the presence of arbitrarydasfmoise. In Section 5.2 we analyze
a natural margin-based active learning strategy for legrfinear separators (which queries points
near the hypothesized decision boundary). We provide alelgtanalysis (both sample complex-
ity and algorithmic) both in the realizable case and in a $igegoisy setting related to the Tsy-
bakov noise condition. We also discuss a recent model intwilvi can provide better bounds than
those obtained in the traditional active learning modelds Thapter is based on work that appears

in [31], [3€], [34], and[42].

¢ In Chaptefb we present additional results on learning wetimé&l functions, showing how Random
Projection techniques can be used to “demystify” kernetfioms. Specifically, we show that in the
presence of a large margin, a kernel can be efficiently céesrénto a mapping to a low dimensional
space; in particular, we present a computationally effigieacedure that, given black-box access
to the kernel and unlabeled data, generates a small numbeatafes that approximately preserve
both separability and margin. This is mainly based on wogk éppears in [32].

¢ In Chaptef¥ we show how model selection and sample compl@ahniques in machine learning
can be used to convert difficult mechanism design problemsoi@ standard algorithmic questions
for a wide range of pricing problems. We present a unified @ggr for considering a variety of
profit maximizing mechanism design problems, such as thaemoof auctioning a digital good, the
attribute auction problem (which includes many discrintomga pricing problems), and the problem
of item pricing in unlimited supply combinatorial auctionfhese results substantially generalize
the previous work on random sampling mechanisms by bothderoag the applicability of such
mechanismsd.g, to multi-parameter settings), and by simplifying and riefinthe analysis. This
chapter is mainly based on work that appeari_hh [30] and [Bd]iais focused on using machine
learning techniques for providing a generic reduction frib incentive-compatible mechanism
design question to more standard algorithmic questionthowt also attempting to address the
algorithmic questions as well. In other related work (whichcoherence and space limitations is
not included in this thesis) we have also considered vamdgrithmic problems that arise in this

context [L_217], lL_ZB], EB] andE8].

While we discuss both technical and conceptual connectietween the various learning protocols
and paradigms studied throughout the thesis, each chapterieo be read somewhat independently.
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Chapter 2

A Discriminative Framework for
Semi-Supervised Learning

There has recently been substantial intere&dami-Supervised Learnirg a paradigm for incorporating
unlabeled data in the learning process — since any usefuinrgtion that reduces the amount of labeled
data needed for learning can be a significant benefit. Setamtahiques have been developed for doing
this, along with experimental results on a variety of diferlearning problems. Unfortunately, the stan-
dard learning frameworks for reasoning about supervisaghieg do not capture the key aspects and the
assumptions underlying thesemisupervised learning methods.

In this chapter we describe an augmented version of the PA@ehuesigned for semi-supervised
learning, that can be used to reason about many of the diffapgproaches taken over the past decade in
the Machine Learning community. This model provides a udifiamework for analyzing when and why
unlabeled data can help in the semi-supervised learninigpgein which one can analyze both sample-
complexity and algorithmic issues. The model can be vievgedneextension of the standard PAC model
where, in addition to a concept clas one also proposes a compatibility notion: a type of contyjiyi
that one believes the target concept should have with therlymalg distribution of data. Unlabeled data
is then potentially helpful in this setting because it akbosne to estimate compatibility over the space of
hypotheses, and to reduce the size of the search space feonhtile set of hypothesé&s down to those
that, according to one’s assumptions, are a-priori redsenaith respect to the distribution. As we show,
many of the assumptions underlying existing semi-supedvisarning algorithms can be formulated in
this framework.

After proposing the model, we then analyze sample-comipléssues in this setting: that is, how
much of each type of data one should expect to need in ordeato Well, and what the key quantities are
that these numbers depend on. Our work is the first to adduessimportant questions in the context of
semi-supervised learning in a unified way. We also consluealgorithmic question of how to efficiently
optimize for natural classes and compatibility notiongj provide several algorithmic results including
an improved bound for Co-Training with linear separatoremwlihe distribution satisfies independence
given the label.

2.1 Introduction

As mentioned in Chaptél 1, given the easy availability obbeled data in many settings, there has been
growing interest in methods that try to use such data togetiid the (more expensive) labeled data
for learning. In particular, a number of semi-superviseariing techniques have been developed for
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doing this, along with experimental results on a variety ifflecent learning problems. These include
label propagation for word-sense disambiguat 214]traming for classifying web pageﬂGS] and
improving visual detectorsLL_lbl], transductive S\AhIMhHaEM L’L_]_d;] for text classification, graph-
based method$ [219], and others. The problem of learning fabeled and unlabeled data has been the
topic of several ICML Workshopﬂhmw] as well as a recemildo@] and survey articléﬁhS].

What makes unlabeled data so useful and what many of thebedsatxploit, is that for a wide variety
of learning problems, the natural regularities of the peabinvolve not only théorm of the function being
learned by also how this functiaelatesto the distribution of data. For example, in many problems on
might expect the target function should cut through low dgmegions of the space, a property used by
the transductive SVM algorithl]. In other problems amght expect the target to be self-consistent
in some way, a property used by Co-traini@ [63]. Unlabelathds potentially useful in these settings
because it then allows one to reduce the search space to &ishtisva-priori reasonable with respect to
the underlying distribution.

Unfortunately, however, the underlying assumptions of¢hsemi-supervised learning methods are
not captured well by standard theoretical models. The maéth @f this chapter is to proposeuaified the-
oretical frameworlfor semi-supervised learning, in which one can analyze vamehwhy unlabeled data
can help, and in which one can discuss both sample-complani algorithmic issues in a discriminative
(PAC-model style) framework.

One difficulty from a theoretical point of view is that standiaiscriminative learning models do not
allow one to specify relations that one believes the targetlsl have with the underlying distribution.
In particular, both in the PAC mod@moa and thdiStiaal Learning Theory framewor?]
there is purposefully a complete disconnect between the diatribution D and the target functiorf
being learned. The only prior belief is thatbelongs to some clags: even if the data distributiol is
known fully, any functionf € C is still possible. For instance, in the PAC model, it is petifenatural
(and common) to talk about the problem of learning a conclgsscsuch as DNF formul @10]
or an intersection of halfspac[@ 208] over thifoxm distribution; but clearly in this case
unlabeled data is useless — you can just generate it youFsmiflearning over an unknown distribution,
unlabeled data can help somewhat in the standard modelsigajlowing one to use distribution-specific
algorithms and sample-complexity bounds! [@ 145]), big thoes not seem to capture the power of
unlabeled data in practical semi-supervised learning ousth

In generativemodels, oneaneasily talk theoretically about the use of unlabeled data, E’E{B]
However, these results typically make strong assumptibat dssentially imply that there is only one
natural distinction to be made for a given (unlabeled) d&aidution. For instance, a typical generative
model would be that we assume positive examples are geddnatene Gaussian, and negative examples
are generated by another Gaussian. In this case, given enoigbeled data, we could in principle
recover the Gaussians and would need labeled data only testelhich Gaussian is the positive one and
which is the negative oﬂaHowever, this is too strong an assumption for most real-dveektings. Instead,
we would like our model to allow for a distribution over da&ad., documents we want to classify) where
there are a number of plausible distinctions we might wambade. In addition, we would like a general
framework that can be used to model many different uses abeted data.

2.1.1 Our Contribution

In this chapter, we present a discriminative (PAC-stylenesvork) that bridges between these positions
and can be used to help think about and analyze many of the urdgiseled data is typically used. This

1[@,@] do not assume Gaussians in particular, but they donas the distributions are distinguishable, which frons thi
perspective has the same issue.
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framework extends the PAC learning model in a way that allows to express not only the form of
target function one is considering, but also relationstips one hopes the target function and underlying
distribution will possess. We then analyze both sampleptexity issues—that is, how much of each
type of data one should expect to need in order to learn wellwedl as algorithmic results in this model.
We derive bounds for both the realizable (PAC) and agnostatigtical learning framework) settings.

Specifically, the idea of the proposed model is to augmenP#@ notion of aconcept classwhich
is a set of functions (such as linear separators or decisg@s);, with a notion o€ompatibility between
a function and the data distribution that we hope the tangettfon will satisfy. Rather than talking of
“learning a concept clasS,” we will talk of “learning a concept clas§’ under compatibility notiony.”
For example, suppose we believe there should exist a lowv-near separator, and that furthermore, if
the data happens to cluster, then this separator doesewttgiough the middle of any such clusters. Then
we would want a compatibility notion that penalizes funieidhat do, in fact, slice through clusters. In
this framework, the ability of unlabeled data to help defgeod two quantities: first, the extent to which
the target function indeed satisfies the given assumptanssecond, the extent to which the distribution
allows this assumption to rule out alternative hypothedes: instance, if the data does not cluster at
all (say the underlying distribution is uniform in a balljen all functions would equally satisfy this
compatibility notion and the assumption is not useful. FepBayesian perspective, one can think of this
as a PAC model for a setting in which one’s prior is not justrduactions, but also over how the function
and underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degfeompatibility be something that
can beestimated from a finite sampld@o do this, we will require that the compatibility notignin fact
be a function fromC' x X to [0, 1], where the compatibility of a hypothesiswith the data distribution
D is thenE,.p[x(h,z)]. Thatis, we require that the degreeinompatibility be a kind of unlabeled
loss function, and the incompatibility of a hypothesisvith a data distributionD is a quantity we can
think of as an “unlabeled error rate” that measures how @dpuinreasonable we believe some proposed
hypothesis to be. For instance, in the example above of agimatyle” compatibility, we could define
x(f,z) to be an increasing function of the distance:ab the separatof. In this case, the unlabeled error
rate,1 — x(f, D), is a measure of the probability mass close to the propogsataer. In co-training,
where each example has two “views” ¢ = (x1, x2)), the underlying belief is that the true targétcan
be decomposed into functionis;, c5) over each view such that for most examplég;x1) = c5(x2). In
this case, we can dEfln@(<f1, f2>, <l‘1,l’2>) =1if fl(l'l) = fg(l‘g), and 0 Iffl(l‘l) 75 fg(l‘g). Then the
compatibility of a hypothesisfi, f2) with an underlying distributiorD is Pr ;| ,.\~p[f1(71) = fa(z2)].
This framework allows us to analyze the ability of a finiteabdled sample to reduce our dependence
on labeled examples, as a function of (1) the compatibilityre target function (i.e., how correct we were
in our assumption) and (2) various measures of the “helpidhof the distribution. In particular, in our
model, we find that unlabeled data can help in several distiags.

e If the target function is highly compatible with and belongs t@’, then if we have enough unla-
beled data to estimate compatibility over AlE C, we can in principle reduce the size of the search
space fronC' down to just thosg € C' whose estimated compatibility is high. For instancd) iis
“helpful”, then the set of such functions will be much smatlean the entire sef'. In the agnostic
case we can do (unlabeled)-data-dependent structurainiisknization to trade off labeled error
and incompatibility.

e By providing an estimate oD, unlabeled data can allow us to use a more refined distributio
specific notion of “hypothesis space size” such as Anneal@ec¥itropy ], Rademacher com-
plexities @ﬁbmn or the size of the smallestover @1], rather than VC—dimensidﬂﬂSl].
In fact, for many natural notions of compatibility we find ththe sense in which unlabeled data
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reduces the “size” of the search space is best describedse tistribution-specific measures.

e Finally, if the distribution is especially helpful, we mawdi that not only does the set of compatible
f € C have a smalk-cover, but also the elements of the cover are far apart. dndhse, if we
assume the target function is fully compatible, we may be &bllearn from even fewer labeled
examples than th@(1/¢) needed just teerify a good hypothesis. For instance, as one application
of this, we show that under the assumption of independenandhe label, one can efficiently
perform Co-Training of linear separators from a single labhexample!

Our framework also allows us to address the issue of how muatibeleddata we should expect to
need. Roughly, the “VCdinfe?” form of standard sample complexity bounds now becomes adon the
number ofunlabeledexamples we need to uniformly estimate compatibilitiesweler, technically, the
set whose VC-dimension we now care about is@idiut rather a set defined by bathandy: that is, the
overall complexity depends both on the complexity bnd the complexity of the notion of compatibility
(see Sectionh 2.3.1). One consequence of our model is that thrget function and data distribution are
both well behaved with respect to the compatibility notithgn the sample-size bounds we get for labeled
data can substantially beat what one could hope to achieeegh pure labeled-data bounds, and we
illustrate this with a number of examples through the chapte

2.1.2 Summary of Main Results

The primary contributions of this chapter are the followingirst, as described above, we develop a
new discriminative (PAC-style) model for semi-supervidedrning, that can be used to analyze when
unlabeled data can help and howuchunlabeled data is needed in order to gain its benefits, asasell
the algorithmic problems involved. Second, we present abaurof sample-complexity bounds in this
framework, both in terms of uniform-convergence resultsaielv apply to any algorithm that is able to
find rules of low error and high compatibility—as well asover-based bounds that apply to a more
restricted class of algorithms but can be substantiallytéig For instance, we describe several natural
cases in whiche-cover-based bounds can apply even though with high prityatsiere still exist bad
hypotheses in the class consistent with the labeled andeield examples. Finally, we present several
PAC-style algorithmic results in this model. Our main algonic result is a new algorithm for Co-
Training with linear separators that, if the distributioatisfies independence given the label, requires
only a single labeled example to learn to any desired erttererand is computationally efficient (i.e.,
achieves PAC guarantees). This substantially improvesherrdsults of|E3] which required enough
labeled examples to produce an initial weak hypothesis,ratite process we get a simplification to the
noisy halfspace learning algorithm @65].

Our framework has helped analyze many of the existing sepegiwised learning methods used in
practice and has guided the development of new semi-sgeenearning algorithms and analyses. We
discuss this further in Section 2.6.1.

2.1.3 Structure of this Chapter

We begin by describing the general setting in which our tesybply as well as several examples to il-
lustrate our framework in Sectién 2.2. We then give resudth fior sample complexitgin principle, how
much data is needed to learn) agifficient algorithms In terms of sample-complexity, we start by dis-
cussing uniform convergence results in Sedtion 2.3.1. Roitg we begin with the case of finite hypoth-
esis spaces in Sectibn 2.8.1, and then discuss infinite Igpist spaces in Sectign 2J3.1. These results
give bounds on the number of examples needed for any leaahjuyithm that produces a compatible
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hypothesis of low empirical error. We also show how in theasgic case we can do (unlabeled)-data-
dependent structural risk minimization to trade off labederor and incompatibility in Sectidn 2.3.1. To
achieve tighter bounds, in Section 213.2 we give resultedas the notion of-cover size. These bounds
hold only for algorithms of a specific type (that first use tidabeled data to choose a small set of “repre-
sentative” hypotheses and then choose among the repriagesnitzased on the labeled data), but can yield
bounds substantially better than with uniform converggeag., we can learn even though there exist bad
h € C consistent with the labeled and unlabeled examples).

In Sectior Z.}, we give our algorithmic results. We begirhveitparticularly simple class and com-
patibility notion y for illustration, and then give our main algorithmic resfat Co-Training with linear
separators. In Sectidn 2.5 we discuss a transductive aoélogr model, connections with generative
models and other ways of using unlabeled data in machingeitegras well as the relationship between
our model and the Luckiness Framewdﬂl%] developed irctdmtext of supervised learning. Finally,
in Sectior 2.6 we discuss some implications of our model aadegmt our conclusions, as well a number
of open problems.

2.2 A Formal Framework

In this section we introduce general notation and termigywle use throughout the chapter, and describe
our model for semi-supervised learning. In particular, werfally define what we mean byretion of
compatibilityand we illustrate it through a number of examples includireggims and co-training.

We will focus on binary classification problems. We assuns thur data comes according to a
fixed unknown distributionD over an instance space, and is labeled by some unknown target function
c¢*: X — {0,1}. Alearning algorithm is given a sét;, of labeled examples drawn i.i.d. frof and
labeled byc* as well as a (usually larger) s8t; of unlabeled examples fro. The goal is to perform
some optimization over the sampl€s and Sy and to output a hypothesis that agrees with the target over
most of the distribution. In particular, the error rate ¢atzlled “0-1 loss”) of a given hypothesjsis
defined agrr(f) = errp(f) = Proop[f(x) # ¢*(x)]. For any two hypothesef, f2, the distance with
respect taD betweenf; and fs is defined asi(f1, f2) = dp(f1, f2) = Pra~p[fi(z) # fo(x)]. We will
useerr(f) to denote the empirical error rate ffon a given labeled sample (i.e., the fraction of mistakes
on the sample) ané(fl,fg) to denote the empirical distance betwegnand f, on a given unlabeled
sample (the fraction of the sample on which they disagreey.inthe standard PAC model,cancept
classor hypothesis spacis a set of functions over the instance space In the “realizable case”, we
make the assumption that the target is in a given dasshereas in the “agnostic case” we do not make
this assumption and instead aim to compete with the bestifuminl the given clasg’.

We now formally describe what we mean by a notion of compagibiA notion of compatibilityis a
mapping from a hypothesig and a distributionD to [0, 1] indicating how “compatible”f is with D. In
order for this to be estimable from a finite sample, we reqthe¢ compatibility be an expectation over
individual example. Specifically, we define:

Definition 2.2.1 Alegal notion of compatibility is a functiony : C' x X — [0, 1] where we (overloading
notation) definex(f, D) = E,p[x(f,x)]. Given a samplé, we definex(f,S) to be the empirical
average ofy over the sample.

20ne could imagine more general notions of compatibilityhviite property that they can be estimated from a finite sample
and all our results would go through in that case as well. Wisicler the special case where the compatibility is an eapieat
over individual examples for simplicity of notation, andchese most existing semi-supervised learning algorithsesl in
practice do satisfy it.

19



Note 1 One could also allow compatibility functions oveituples of examples, in which case our (un-
labeled) sample-complexity bounds would simply increasa factor ofk. For settings in whichD is
actually known in advance (e.g., transductive learning Sectiori 2.5]1) we can drop this requirement
entirely and allow any notion of compatibility( f, D) to be legal.

Definition 2.2.2 Given compatibility notiory, theincompatibility of f with D is 1 — x(f, D). We will
also call this itsunlabeled error rate, err,,;(f), wheny and D are clear from context. For a given
sampleS, we useerr,, (f) = 1 — x(f, S) to denote the empirical average ovgr

Finally, we need a notation for the set of functions whoseingatibility (or unlabeled error rate) is
at most some given value
Definition 2.2.3 Given valuer, we define&Cp (1) = {f € C : erryy(f) < 7}. S0, e.9.Cp (1) = C.
Similarly, for a sample5, we defineCs , (7) = {f € C : erryu(f) < 7}

We now give several examples to illustrate this framework:

Example 1. Suppose examples are pointsifiandC is the class of linear separators. A natural belief
in this setting is that data should be “well-separated”: oy should the target function separate the
positive and negative examples, but it should do so by soasorablenargin-~y. This is the assumption
used by Transductive SVM, also called Semi-Supervised SSN) [, @@] In this case, if we
are giveny up front, we could defing(f,x) = 1 if = is farther than distance from the hyperplane
defined byf, and x(f,z) = 0 otherwise. So, the incompatibility of with D is the probability mass
within distancey of the hyperplanegf - x = 0. Alternatively, if we do not want to commit to a specific
in advance, we could defing( f, z) to be a smooth function of the distancezofo the separator, as done
in [@]. Note that in contrast, defining compatibility of agothesis based on the largessuch thatD
has probability masexactly zerawithin distancey of the separator wouldot fit our model: it cannot be
written as an expectation over individual examples andeddgould not be a good definition since one
cannot distinguish “zero” from “exponentially close to @efrom a small sample of unlabeled data.

Example 2. In co-training @3], we assume examplegach contain two “views"z = (1, x2), and
our goal is to learn a pair of functiorig;, f2), one on each view. For instance, if our goal is to classify web
pages, we might use; to represent the words on the page itself apdo represent the words attached
to links pointingto this page from other pages. The hope underlying co-trairsribat the two parts of
the example are generally consistent, which then allowsldparithm to bootstrap from unlabeled data.
For examplejterative co-traininguses a small amount of labeled data to learn some initiafnmition
(e.g., if a link with the words “my advisor” points to a pageihthat page is probably a faculty member’s
home page). Then, when it finds an unlabeled example whersidaés confident (e.g., the link says “my
advisor”), it uses that to label the example for trainingroie other view. Inregularized co-training
one attempts to directly optimize a weighted combinatioaaafuracy on labeled data and agreement over
unlabeled data. These approaches have been used for g wdriearning problems, including named
entity classification|E8 , text classificatioh__[_iﬁﬁhtural language processir@%], large scale
document cIassificatiorhlBZ], and visual detect@[l@:s].mentioned in Sectidn 2.1, the assumptions
underlying this method fit naturally into our framework. larpcular, we can define the incompatibility of
some hypothesiéf;, fgﬁvéth distribution D asPr,, ,.,y~plfi(x1) # f2(x2)]. Similar notions are given
in subsequent work o 00] for other types of learningbems (e.g. regression) and for other loss
functions.

Example 3. In transductive graph-based methods, we are given a setaifelad examples connected
in a graphg, where the interpretation of an edge is that we believe tloeemdpoints of the edge should
have thesamelabel. Given a few labeled vertices, various graph-basethads then attempt to use
them to infer labels for the remaining points. If we are wijito view D as a distribution oveedges
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(a uniform distribution ifg is unweighted), then as in co-training we can define the impatihility of
some hypothesig as the probability mass of edges that are cuff bwhich then motivates various cut-
based algorithms. For instance, if we requfréo be boolean, then the mincut method [of [60] finds the
most-compatible hypothesis consistent with the labeldd;dawe allow f to be fractional and define
1—x(f, {w1,22)) = (f(z1) — f(z2))?, then the algorithm of [219] finds the most-compatible cstesit
hypothesis. If we do not wish to view as a distribution over edges, we could hdvydoe a distribution
oververticesand broaden Definitidn 2.2.1 to allow fgrto be a function ovepairs of examples. In fact, as
mentioned in NotEl1, since we have perfect knowledgP of this setting we can allow any compatibility
functionx(f, D) to be legal. We discuss more connections with graph-basétoaein Sectioh 2.51.

Example 4. As a special case of co-training, suppose examples are gfgirsints in R¢, C' is the
class of linear separators, and we believe the two pointac¢h @air should both be on tlsameside of
the target function. (So, this is a version of co-trainingendhwe requiref; = f».) The motivation is that
we want to use pairwise information as in Exampléut we also want to use the features of each data
point. For instance, in the word-sense disambiguationlprolstudied by4], the goal is to determine
which of several dictionary definitions is intended for sotaget word in a piece of text (e.qg., is “plant”
being used to indicate a tree or a factory?). The local comteund each word can be viewed as placing
itinto R?, but the edges correspond to a completely different typafofination: the belief that if a word
appears twice in the same document, it is probably beingindbd samesense both times. In this setting,
we could use the same compatibility function as in Exandplaut rather than having the concept cléss
be all possible functions, we restrictto just linear separators.

Example 5. In a related setting to co-training considered |Q_L[160],ne|ms are single points iX
but we have a pair of hypothesis spa¢€s, Co) (or more generally &-tuple (C1, ..., Cy)), and the goal
is to find a pair of hypothesed, f2) € C1 x Cs with low error over labeled data and that agree over the
distribution. For instance, if data is sufficiently “wekysarated”, one might expect there to exist both a
good linear separator and a good decision tree, and one Vileitd use this assumption to reduce the need
for labeled data. In this case one could define compatitofityf;, fo) with D asPr,.p[fi(z) = fa(z)],
or the similar notions given inﬂ93].

2.3 Sample Complexity Results

We now present several sample-complexity bounds that caletde=d in this framework, showing how
unlabeled data, together with a suitable compatibilityargtcan reduce the need for labeled examples. We
do not focus on giving the tightest possible bounds, bueat$ion the types of bounds and the quantities
on which they depend, in order to better understand whagibdsit the learningroblemone can hope to
leverage from with unlabeled data.

The high-level structure of all of these results is as folowirst, given enough unlabeled data (where
“enough” will be a function of some measure of the complegity” and possibly ofy as well), we can
uniformly estimate the true compatibilities of all funai®inC using their empirical compatibilities over
the sample. Then, by using this quantity to give a preferemdering over the functions i@, in the
realizable case we can reduag@™down to “the set of functions i’ whose compatibility is not much
larger than the true target function” in bounds for the nundféabeledexamples needed for learning. In
the agnostic case we can do (unlabeled)-data-dependaatuséd risk minimization to trade off labeled
error and incompatibility. The specific bounds differ imisrof the exact complexity measures used (and a
few other issues) and we provide examples illustrating warehhow certain complexity measures can be
significantly more powerful than others. Moreover, one cave fallback properties of these procedures
— the number of labeled examples required is never much vibesethe number of labeled examples
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required by a standard supervised learning algorithm. Kewd the assumptions happen to be right, one
can significantly benefit by using the unlabeled data.

2.3.1 Uniform Convergence Bounds

We begin with uniform convergence bounds (later in SedtighZ2we give tighter-cover bounds that
apply to algorithms of a particular form). For clarity, wegire with the case of finite hypothesis spaces
where we measure the “size” of a set of functions by just thabmer of functions in the set. We then
discuss several issues that arise when considering infiyjitethesis spaces, such as what is an appropriate
measure for the “size” of the set of compatible functionsl #e need to account for the complexity of the
compatibility notion itself. Note that in the standard PAGdel, one typically talks of either the realizable
case, where we assume that the target funetidmelongs toC, or the agnostic case where we allow any
target function-* ]. In our setting, we have the additional issueiofabelederror rate, and can either
make an a-priori assumption that the target function’s helked error is low, or else provide a bound in
which our sample size (or error rate) depends on whatevani&beled error happens to be. We begin in
Section$ 2.3]1 arld 2.3.1 with bounds for the the setting iichvive assume* € C, and then in Section
[2.3.1 we consider the agnostic case where we remove thimptisa.

Finite hypothesis spaces

We first give a bound for the “doubly realizable” case whereassume:* € C' anderr,;(c¢*) = 0.

Theorem 2.3.11f ¢* € C anderr,,;(c*) = 0, thenm,, unlabeled examples and, labeled examples are
sufficient to learn to erroe with probability 1 — §, where

| 2 1 2
my = - [ln|C| +1n —] and m; = [1H|CD,X(E)| +ln=

5 € 5
In particular, with probability at leastl — 4, all f € C with érr(f) = 0 and érr,,,;(f) = 0 have
err(f) <e.

Proof: The probability that a given hypothesfswith err,,;(f) > e haserr,,,(f) = 0 is at most

(1I—¢m < % for the given value oin,. Therefore, by the union bound, the number of unlabeled

examples is sufficient to ensure that with probability g only hypotheses i'p , (¢) haveerr,,;(f) =
0. The number of labeled examples then similarly ensuresiitlagprobability 1 — g none of those whose
true error is at least have an empirical error of 0, yielding the theorenli

Interpretation:  If the target function indeed is perfectly correct and cofilpp@, then Theorerh 2.3.1
gives sufficient conditions on the number of examples ne¢aletsure that an algorithm that optimizes
both quantities over the observed data will, in fact, achi@\WPAC guarantee. To emphasize this, we will
say that an algorithm efficientli?AC,,,,;-learns the pai(C, y) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of #m&.3.1. For a formal definition see
Definition[2.3.1 at the end of this section.

We can think of Theorein 2.3.1 as bounding the number of ldbetamples we need as a function of
the “helpfulness” of the distributio® with respect to our notion of compatibility. That is, in owwntext,
a helpful distribution is one in whicl'p , (¢) is small, and so we do not need much labeled data to identify
a good function among them. We can get a similar bound in thatssn when the target function is not
fully compatible:
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Theorem 2.3.21f ¢* € C anderry,;(c¢*) = t, thenm,, unlabeled examples and, labeled examples are
sufficient to learn to erroe with probability 1 — ¢, for

My = 62_2 [1n|()| +1In %} and m; = % [ln|CD,X(t+ 2¢)| +In %} .

In particular, with probability at leasti — 4, the f € C' that optimizesr7,,,;(f) subject toerr(f) = 0
haserr(f) <e.

Alternatively, given the above number of unlabeled exasnplg for anynumber of labeled examples
my, with probability at leastl — 4, the f € C' that optimizes77,,,;(f) subject toerr(f) = 0 has

err(f) < mil {ln |Cp y(erryni(c’) + 2¢)| +In %} ) (2.1)
Proof: By Hoeffding boundsin,, is sufficiently large so that with probability at least- /2, all f € C
have|erryni(f) — errun(f)] < €. Thus,{f € C : erry,(f) < t+ e} C Cp(t + 2¢). For the first
implication, the given bound om; is sufficient so that with probability at least— ¢, all f € C with
err(f) = 0anderr ., (f) < t+ehaveerr(f) < ¢; furthermoregrr,,;(c*) < t+¢, so such a functiorf
exists. Therefore, with probability at ledst ¢, the f € C that optimizesr7,,,;( f) subject teerr(f) = 0
haserr(f) < e, as desired. For second implication, inequality(2.1)cioB immediately by solving for
the labeled estimation-error as a functiomof N

Interpretation: Theoreni 2.3]2 has several implications. Specifically:

1. If we can optimize the (empirical) unlabeled error ratbjsct to having zero empirical labeled
error, then to achieve low true error it suffices to draw a nendj labeled examples that depends
logarithmically on the number of functions @i whose unlabeled error rate is at mastgreater
than that of the targef".

2. Alternatively, forany given number of labeled examples;, we can provide a bound (given in
equatiori Z.11) on our error rate that again depends logaiGgily on the number of such functions,
i.e., with high probability the functiorf € C' that optimizeserr ., (f) subject toerr(f) = 0 has
err(f) < m% [In |Cpy (errum(c®) + 2€)| +1n 2].

3. If we have a desired maximum error ratand do not know the value @f-r,,;(c*) but have the
ability to draw additional labeled examples as needed, Wenan simply do a standard “doubling
trick” on m;. On each round, we check if the hypothegigound indeed has sufficiently low
empirical unlabeled error rate, and we spread tiggarameter across the different runs. See, e.g.,

Corollary[2.3.6 in Section 2.3.1.

Finally, before going to infinite hypothesis spaces, we giggmple Occam-style version of the above
bounds for this setting. Given a sampe let us definedescs(f) = In|Cs(érry,(f))|. That is,
descs(f) is the description length of (in “nats”) if we sort hypotheses by their empirical compaitiy
and output the index of in this ordering. Similarly, define-descp(f) = In|Cp y(erryn(f) +€)|. This
is an upper-bound on the description lengthfof we sort hypotheses by arapproximation to the their
true compatibility. Then we immediately get a bound as fefo

Corollary 2.3.3 For any setS of unlabeled data, givem; labeled examples, with probability at least
1—4,all f € C satisfyingerr(f) = 0 anddescs(f) < em; —In(1/6) haveerr(f) < e. Furthermore, if
|S| > %[In|C| + In ], then with probability at least — 4, all f € C satisfydescs(f) < e-descp(f).

Interpretation: The point of this bound is that an algorithm can use obseevabéantities (the “empirical
description length” of the hypothesis produced) to detearii it can be confident that its true error rate
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is low (l.e., if we can find a hypothesis widescs(f) < em; — In(1/6) anderr(f) = 0, we can be
confident that it has error rate at maekt Furthermore, if we have enough unlabeled data, the oalskerv
guantities will be no worse than if we were learning a sligitlss compatible function using an infinite-
size unlabeled sample.

Note that if we begin with a non-distribution-dependentesiay of hypotheses, inducing some de-
scription lengthdesc( f), and our compatibility assumptions turn out to be wrongniheould well be that
descp(c*) > desc(c*). In this case our use of unlabeled data would end up hurtitigerrahan helping.
However, notice that by merely interleaving the initial erithg and the ordering produced Kywe get a
new description lengtbesc,,..,(f) such that

descpew(f) < 1+ min(desc(f),descs(f)).

Thus, up to an additive constant, we can get the best of bd#riogs.

Also, if we have the ability to purchase additional labeledraples until the function produced is
sufficiently “short” compared to the amount of data, then w&e perform the usual stratification and be
confident whenever we find a consistent functfosuch thatdescs(f) < em; — ln(W), wherem,
is the number of labeled examples seen so far.

Efficient algorithms in our model Finally, we end this section with a definition describing goals for
efficient learning algorithms, based on the above sampladsu

Definition 2.3.1 Given a clas€’ and compatibility notiony, we say that an algorithm efficientBAC,,,,;-
learns the pair(C, x) if, for any distribution D, for any target functionc* € C with err,,;(¢*) =
0, for any givene > 0, § > 0, with probability at leastl — § it achieves error at most using
poly(log |C|,1/e,1/6) unlabeled examples analy (log |Cp (€)|,1/€,1/9) labeled examples, and with
time which ispoly(log |C|,1/¢€,1/6).

We say that an algorithm semi-agnosticalxC,,,,;-learns(C, x) if itis able to achieve this guarantee
foranyc* € C eveniferr,,(c*) # 0, using labeled examplesly(log |Cp  (erryni(c*)+e€)|,1/€,1/6).

Infinite hypothesis spaces

To reduce notation, we will assume in the rest of this chattet x (f,z) € {0,1} so thatx(f, D) =
Pr..p[x(f,z) = 1]. However, all our sample complexity results can be easitgreded to the general
case.

For infinite hypothesis spaces, the firstissue that arigésiisn order to achieve uniform convergence
of unlabelederror rates, the set whose complexity we care about i€'rmit rathery (C) = {xs : f € C}
wherex s : X — {0,1} andxs(z) = x(f, ). Forinstance, suppose examples are just points on the line,
andC = {fa(x) : fo(z) = 1iff < a}. In this case, VCdifC') = 1. However, we could imagine
a compatibility function such tha{(f,, ) depends on some complicated relationship between the real
numbersa and z. In this case, VCdirti(C)) is much larger, and indeed we would need many more
unlabeled examples to estimate compatibility over atl’of

A second issue is that we need an appropriate measure fositeg 6f the set of surviving functions.
VC-dimension tends not to be a good choice: for instancegitansider the case of Examglémargins),
then even if data is concentrated in two well-separatedd$ilahe set of compatible separators still has as
large a VC-dimension as the entire class even though thegllarery similar with respect t@ (see, e.g.,
Figure[Z2.1 after Theorem 2.3.5 below). Instead, it is bett@onsider distribution dependent complexity
measures such as annealed VC-entrgﬂ [104] or Rademacéragas@ﬁ?]. For this we introduce
some notation. Specifically, for arfy, we denote by’ [m, D] the expected number of splits of points
(drawn i.i.d.) fromD using concepts ir©’. Also, for a given (fixed)S C X, we will denote byS the
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uniform distribution overS, and byC[m, S| the expected number of splits of points from S using
concepts inC'. The following is the analog of Theordm 2.13.2 for the infiritese.

Theorem 2.3.41f ¢* € C anderry,;(c¢*) = t, thenm,, unlabeled examples and, labeled examples are
sufficient to learn to erroe with probability 1 — ¢, for
my = O <VCdzm x@) 1 1 2)

2 lng—i-ezlng

and

2 4
m == {ln <2CD7X(t + 26)[2ml,D]) +1In 5] ,
where recallCp . (t + 2¢)[2my, D] is the expected number of splits df;; points drawn fromD using
concepts irC' of unlabeled error rate< ¢ + 2¢. In particular, with probability at least — ¢, the f € C
that optimizegrr,,,; (f) subject toerr(f) = 0 haserr(f) <e.

Proof: Let S be the set ofn, unlabeled examples. By standard VC-dimension bounds, (&g.
TheorenT AT in Appendik’A.7l1) the number of unlabelednepies given is sufficient to ensure that
with probability at least — § we havel Pr,s[x(z) = 1] — Proplxs(z) = 1]| < eforall x; € x(O).
Sinceyf(x) = x(f,z), this implies that we havgerr,,;(f) — errun(f)] < eforall f € C. So, the set
of hypotheses witlarr,,,,;(f) < t + € is contained irCp , (¢ + 2e¢).

The bound on the number of labeled examples now follows tiyrélom known concentration results
using the expected number of partitions instead of the maixirm the standard VC-dimension bounds
(e.g., see Theorem A.1.2 in Appendix’/AJ1.1). This bound erssthat with probabilityl — g none of the
functionsf € Cp . (t + 2¢) with err(f) > € haveerr(f) = 0.

The above two arguments together imply that with probabllit- 6, all f € C with érr(f) = 0 and
erruni(f) <t + e haveerr(f) < ¢, and furthermore* haseri,,;(¢*) < ¢t + e. This in turn implies that
with probability at least — 4, the f € C that optimizeserr,,,,;(f) subject toerr(f) = 0 haserr(f) < e
as desired. N

We can also give a bound where we specify the number of laleglachples as a function of thumla-
beled samplethis is useful because we can imagine our learning algarjirforming some calculations
over the unlabeled data and then deciding how many labeku@es to purchase.

Theorem 2.3.5If ¢* € C anderr,,,;(c*) = t, then an unlabeled sampkeof size

; (max[VCdzm(C);VCdZm(X(C))] mls Ll 2)
€ € ¢ 0

is sufficient so that if we labeh; examples drawn uniformly at random fro$y where
4 — 4
m > - [ln(2057x(t +¢€)[2my, S]) + In 5}

then with probability at least — ¢, the f € C that optimizeserr,,,;(f) subject toerr(f) = 0 has
err(f) <e.

Proof: Standard VC-bounds (in the same form as for Thedreml|2.3@yithat the number dabeled
examplesn;, is sufficient to guarantee the conclusion of the theorem Wwith( f)” replaced by errg(f)”
(the error with respect t§) and “¢” replaced with ‘¢/2”. The number ofunlabeledexamples is enough
to ensure that, with probability 1 — % forall f € C, lerr(f) — errg(f)| < €/2. Combining these two
statements yields the theoreml
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Note that if we assumerr,,,;(c¢*) = 0, then we can use the s€t ,(0) instead ofCs , (¢ + €) in the
formula giving the number of labeled examples in ThedrenBR?.3

Note: Notice that for the setting of Examplein the worst case (over distributior$) this will essentially
recover the standard margin sample-complexity bound$itontimber of labeled examples. In particular,
Cs,,(0) contains only those separators that slitith margin> ~, and therefores = |Cs,, (0)[2m, S|

is no greater than the maximum number of ways of splitéing points with margiry. However, if the
distribution is helpful, then the bounds can be much betémabse there may be many fewer ways of
splitting S with margin~y. For instance, in the case of two well-separated “blobs5thiated in Figure 211,

if S'is large enough, we would have just 4.

Figure 2.1: Linear separators with a margin-based notiotoaipatibility. If the distribution is uniform
over two well-separated “blobs” and the unlabeled$et sufficiently large, the sef's , (0) contains only
four different partitions of5, shown in the figure ag;, f-, f3, and f,. Therefore, Theorefn 2.3.5 implies
that we only need(1/¢) labeled examples to learn well.

Theoreni 2.3J5 immediately implies the following stratifietsion, which applies to the case in which
one repeatedly draws labeled examples until that numbeiffisient to justify the most-compatible hy-
pothesis found.

Corollary 2.3.6 An unlabeled samplg of size
0 (maX[VCdzm(C);VCdzm(X(C))] lnl n % In g)
€ € € 1)
is sufficient so that with probability 1 — 6 we have that simultaneously for evéry> 0 the following is
true: if we labelm,; examples drawn uniformly at random froth where

Ak + 1)(k+2)]

0
then all f € C withérr(f) = 0anderr ., (f) < (k+ 1)e haveerr(f) <e.

Interpretation: This corollary is an analog of Theordm 2J3.3 and it justifiestratification based on
the estimated unlabeled error rates. That is, beginning wi= 0, one draws the specified number
of examples and checks to see if a sufficiently compatibleothgsis can be found. If so, one halts with
success, and if not, one incremehtand tries again. Sinde < % we clearly have a fallback property: the
number of labeled examples required is never much worsetltlganumber of labeled examples required
by a standard supervised learning algorithm.

If one does not have the ability to draw additional labeledrnegles, then we can fix; and instead
stratify over estimation error as in [46]. We discuss thigHer in our agnostic bounds in Section 213.1
below.

my > % [ln (2Csx ((k + 1)e) [2mg, S]) +1n
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The agnostic case

The bounds given so far have been based on the assumptiothehtsrget function belongs t© (so
that we can assume there will exjste C with érr(f) = 0). One can also derive analogous results for
the agnostic (unrealizable) case, where we do not make skatgtion. We first present one immediate
bound of this form, and then show how we can use it in orderadetroff labeled and unlabeled error
in a near-optimal way. We also discuss the relation of this tmmon “regularization” technique used
in semi-supervised learning. As we will see, the differanicetween these two point to certain potential
pitfalls in the standard regularization approach.

Theorem 2.3.7 Let f; = argmin s [err(f)|erryn(f) < t]. Then an unlabeled sampteof size

0 <max[VCdzm(C);VCdzm(x(C))] logl N iz log g)
€ € € 0

and a labeled sample of size

8 4
my > = {log (2CD7X(t + 26)[2ml,D]> + log 5]
is sufficient so that with probabilityy 1 — 0, the f € C that optimizegrr(f) subject toerr,,,;(f) < t+e
haserr(f) < err(ff) + e+ /log(4/6)/(2m;) < err(f;) + 2e.

Proof: The given unlabeled sample size implies that with probigbili — 6/2, all f € C have
lerrun(f) — erruni(f)| < €, which also implies thaérr,.,;(f;) < t + e. The labeled sample size,
using standard VC bounds (e.g, Theofem A.1.3 in the AppdAdiX?) imply that with probability at least
1—0/4,all f € Cp,y(t+ 2¢) have|err(f) —err(f)| < e. Finally, by Hoeffding bounds, with probability
at leastl — 6/4 we have

err(ff) < err(f7) + \/log(4/8)/ (2my).

Therefore, with probability at leasgt— J, the f € C that optimizeserr( f) subject toerr ., (f) <t + €
has

err(f) <err(f) +e<err(ff) +e <err(ff) + e+ /log(4/0)/(2m) < err(ff) + 2,
as desired. 1

Interpretation: Given a valueg, Theoreni 2.3]7 bounds the number of labeled examples néedeHieve
error at most larger than that of the best functigfif of unlabeled error rate at mostAlternatively, one
can also state Theordm 2.3.7 in the form more commonly ussthiistical learning theory: giveany
number of labeled examples; and givent > 0, Theoreni2.3]7 implies that with high probability, the
function f that optimizeserr(f) subject taerr,,,;(f) < t + € satisfies

log(4/9)

err(f) <err(f) +e <err(ff) +e+ -

where

€ = \/ 77% log (SCD,X(t + 2¢)[2my, D] /5).

Note that as usual, there is an inherent tradeoff here betiheequality of the comparison functiofy,
which improves a$ increases, and the estimation eregrwhich gets worse asincreases. Ideally, one
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would like to achieve a bound ofiin,[err(f;) + €] + /log(4/6)/(2my); i.e., as if the optimal value of
t were known in advance. We can perform nearly as well as thiaddy (1) performing a stratification
overt (so that the bound holds simultaneously for all valueg)@nd (2) using an estimate of ¢; that
we can calculate from the unlabeled sample and thereforéinube optimization. In particular, letting
fe = argminpcolerr(f) : errym(f') < t], we will output f = argmin , [er7(fi) + &].

Specifically, given a sef of unlabeled examples and, labeled examples, let

N N 24
= (S, my) = \/ 22 g (800, 1),

where we defin€s , (t)[my, S] to be the number of different partitions of the firaf points in.S using
functions inCyg , (), i.e., using functions of empirical unlabeled error at mogie assumes| > m).
Then we have the following theorem.

Theorem 2.3.8 Let f; = argmin g e lerr(f')|erryu(f’) < t]and defing(f’) = é, fort’ = erryu(f’).
Then, giverm, labeled examples, with probability at ledst- ¢, the function

f = argminp[err(f) + é(f')]

satisfies the guarantee that

log(8/4

ern(f) < minferr(f7) + &(f7)) + 5y ELD
!

Proof: First we argue that with probability at lealst- 6/2, for all /' € C we have

err(f') < () + é() + 4y B,

l
In particular, defineCy = Cs,(0) and inductively fork > 0 defineCj, = Cs,(tx) for ¢ such that
Ck[my, S| = 8Ck_1|my, S]. (If necessary, arbitrarily order the functions with enwat unlabeled error
exactlyt, and choose a prefix such that the size condition holds.) Alsonay assume without loss of
generality thatCy[m;, S] > 1. Then, using bounds ofm72] (see also Appendix A), we have it
probability at least — /282, all f’ € C}, \ Cy_; satisfy:

err(f') < err(f')+ \/T% log(Cymy, S]) + 4\/% log(2k+3 /5)

1 1
< )+ tog(Culma, 81) + 4y log(2) 4y log(s/9)
< err( \/—log Ck[my, S \/—log 8k) +4\/—log 8/9)

< )+ 22 tog(Culme, 1) +4 L 10g(s/9)
< @r(f)+e(f) +4 millog(s/a).

Now, let f* = argmin . [err(f{")+€(f;)]. By Hoeffding bounds, with probability at least-5/2 we have
err(f*) < err(f*)4++/log(2/8)/(2m;). Also, by construction we haver(f)+é(f) < err(f*)+e(f*).
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Therefore with probability at leagt— 6 we have:

err(f) < err(f)+é(f) log(8/0) /m
< err(f*) + é(f*) + 4/ 1og(8/0) /my
< err(f7) + €(f7) + 5+/1og(8/6) /my

as desired. B

The above result bounds the error of the functfoproduced in terms of the quantiéyf*) which de-
pends on thempiricalunlabeled error rate gf*. If our unlabeled sampl§ is sufficiently large to estimate
all unlabeled error rates tte, then with high probability we haverr(f;) <t + ¢, soé(f;") < é.4., and
moreovelCs , (t+¢€) C Cp ,(t+2¢). So, our error term( ;) is at mos % log (8Cp y (t + 2€)[my, S]).
Recall that our ideal error term for the case thatwas given to the algorithm in advance, factoring out the

dependence of, was \/m% log (Svax(t + 2¢)[2my, D]). [Iﬂ] show that for any clas§', the quantity

log(C[m, S]) is tightly concentrated aboiig(C[m, D]) (see also TheoremA.1.6 in the Appendix’Al1.2),
so up to multiplicative constants, these two bounds are alitse.

Interpretation and use of unlabeled error rate as a regularzer: The above theorem suggests to op-
timize the sum of the empirical labeled error rate and ammedion-error bound based on the unlabeled
error rate. A common related approach used in practice irhinadearning (e.g.@3]) is to just di-
rectly optimize the sum of the two kinds of error: i.e., to fingsmin ;[er7(f) + érrun(f)]. However,
this is not generically justified in our framework, because labeled and unlabeled error rates are really
of different “types”. In particular, depending on the coptelass and notion of compatibility, a small
change in unlabeled error rate could substantially chahgesize of the compatible sgétFor example,
suppose all functions i@’ have unlabeled error rate 0.6, except for two: functfgrhas unlabeled er-
ror rate O and labeled error ratg2, and functionf, 5 has unlabeled error rate5 and labeled error
rate 1/10. Suppose also that' is sufficiently large that with high probability it contairseme func-
tions f that drastically overfit, givingrr(f) = 0 even though their true error is close 1@2. In this
case, we would like our algorithm to pick oy 5 (since its labeled error rate is fairly low, and we
cannot trust the functions of unlabeled error 0.6). Howeegen if we use a regularization parame-
ter \, there is no way to makgy 5 = argmin[err(f) + Aerry(f)]: in particular, one cannot have
1/1040.5A < min[1/240X,0+0.6)]. So, in this case, this approach will not have the desiredeh

Note: One could further derive tighter bounds, both in terms oéladd and unlabeled examples, that are
based on other distribution dependent complexity measurésising stronger concentration results (see

e.g. [78)).

2.3.2 e-Cover-based Bounds

The results in the previous section are uniform convergdrmends: they provide guarantees fory
algorithm that optimizes over the observed data. In thisi@®cwe consider stronger bounds based on
e-covers that apply to algorithms that behave in a specific: wlagy first use the unlabeled examples to
choose a “representative” set of compatible hypothesesthem use the labeled sample to choose among
these. Bounds based efcovers exist in the classical PAC setting, but in our framwthese bounds
and algorithms of this type are especially natural, and thenlds are often much lower than what can be
achieved via uniform convergence. For simplicity, we liesmurselves in this section to the realizable

30n the other hand, for certain compatibility notions andarmzertain natural assumptions, one can use unlabeledrateor
directly, e.g., see e.glﬂOO].
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case. However one can combine ideas in Se€fion]2.3.1 widls itethis section in order to derive bounds
in the agnostic case as well. We first present our genericdsoum Sectiorh 2.3]2 we discuss natural
settings in which they can be especially useful, and in thesti@n[2.3.2 we present even tighter bounds
for co-training.

Recall that a sef’. C 2% is ane-cover forC with respect taD if for every f € C there is af’ € C.
which ise-close tof. That is,Pr,.p(f(z) # f'(z)) <e.

We start with a theorem that relies on knowing a good uppenthaun the unlabeled error rate of the
target functiorerr,,,,;(c*).

Theorem 2.3.9 Assume=* € C and letp be the size of a minimuecover forCp . (erryni(c*) + 2e).
Then usingn,, unlabeled examples and; labeled examples for

— (maX[VC’dim(C’),VC’dim(X(C))]

1 1 2 1
5 log—+—2log—> andml:0<—ln]—9>,
€ € € €

0 o

we can with probabilityl — § identify a hypothesig € C with err(f) < 6Ge.

Proof: Lett = erry,(c*). Now, given the unlabeled sampt®;, defineC’ C C as follows: for
every labeling ofSy; that is consistent with somgin C, choose a hypothesis @ for which err,,,;(f) is
smallest among all the hypotheses corresponding to thelihgb Next, we obtair’, by eliminating from
(' those hypotheses with the property thaérr,.,;(f) > ¢ + . We then apply a greedy procedure@n
to obtainG. = {¢g1,--- , gs}, as follows:

Initialize C! = C, andi = 1.

1. Letg; = argmin 77y, (f).
feci

2. Using the unlabeled sampfg;, determineCi*! by deleting fromC? those hypotheseg with the
property thatl(g;, f) < 3e.

3. If 0! = () then sets = i and stop; else, increaséy 1 and goto 1.

We now show that with high probability;. is a5e-cover ofCp , (t) with respect taD and has size
at mostp. First, our bound onn,, is sufficient to ensure that with probability 1 — % we have (a)
ld(f,g) —d(f,g)| < eforall f,g € Cand (b)|erium(f) — erru(f)| < eforall f € C. Let us assume
in the remainder that this (a) and (b) are indeed satisfietk, K& implies that any two functions iff that
agree onSy have distance at most and therefore”’ is ane-cover of C. Using (b), this in turn implies
that C. is ane-cover forCp ,(t). By construction,G, is a3e-cover of C. with respect to distribution
Sy, and thus (using (a))r. is a4e-cover of C. with respect taD, which implies that, is a5e-cover of
Cp,x(t) with respect taD.

We now argue that/. has size at mogt Fix some optimat¢-cover{ fi,..., f,} of Cp \ (erry(c*)+
2¢). Consider functiory; and suppose that; is covered byf,;). Then the set of functions deleted in
step (2) of the procedure include those functignsatisfyingd(g;, f) < 2e which by triangle inequality
includes those satisfying( f,(;), f) < €. Therefore, the set of functions deleted include thosereavby
fo@) and sofor allj > i, o(j) # o(i); in particular,o is 1-1. This implies tha&. has size at most.

Finally, to learnc* we simply output the functiorf € G, of lowest empirical error over the labeled
sample. By Chernoff bounds, the number of labeled examplesaugh to ensure that with probability
>1- g the empirical optimum hypothesis @, has true error at mosk. This implies that overall, with
probability > 1 — 4, we find a hypothesis of error at ma@st BN

Note that Theorerh 2.3.9 relies on knowing a good upper bounes,,,;(¢*). If we do not have
such an upper bound, then one can perform a stratification 8edtiong 2.3]1 arld 2.3.1. For example,
if we have a desired maximum error rat@nd we do not know a good upper bound éor,,,;(c*) but
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we have the ability to draw additional labeled examples asled, then we can simply run the procedure
in Theoren{ 2.3]9 for various value pf testing on each round to see if the hypothesi®und indeed
has zero empirical labeled error rate. One can showrthat O (1 1n 2) labeled examples are sufficient
in total for all the “validation” step@. If the number of labeled examples; is fixed, then one can also
perform a stratification over the target ereor

Some illustrative examples

To illustrate the power of-cover bounds, we now present two examples where these daliosv for
learning from significantly fewer labeled examples thandsgible using uniform convergence.

Graph-based learning: Consider the setting of graph-based algorithms (e.qg., Bi@B). In particular,
the input is a graplg where each node is an example ands the class of all boolean functions over the
nodes ofg. Let us define the incompatibility of a hypothesis to be ttaetion of edges ig cut by it.
Suppose now that the gragttonsists of two cliques of /2 vertices, connected together by’ /4 edges.
Suppose the target functiaifi labels one of the cliques as positive and one as negativhgdarget func-
tion indeed has unlabeled error rate less thaNow, given any seb;, of m; < en/4 labeled examples,
there is always a highly-compatible hypothesis consistétiit Sy, that just separates the positive points
in Sy, from the entire rest of the graph: the number of edges cutbgitit mostim; < en?/4. However,
such a hypothesis has true error nedrlg since it has less tham /4 positive examples. So, we do not
yet have uniform convergence over the space of highly calvipatypotheses, since this hypothesis has
zero empirical error but high true error. Indeed, this tilates an overfitting problem that can occur with
a direct minimum-cut approach to Iearni@[, @143]. edther hand, the set of functions of unla-
beled error rate less tharhas a smalk-cover: in particularany partition ofg that cuts less tham? /4
edges must be-close to (a) the all-positive function, (b) the all-negatfunction, (c) the target function
c*, or (d) the complement of the target functibr- ¢*. So,e-cover bounds act as if the concept class had
only 4 functions and so by Theorem 2.B.9 we need Gm(y% log %) labeled examples to learn WII(In
fact, since the functions in the cover are all far from eadtentwe really need onlg) (log %) examples.
This issue is explored further in Theorém 2.3.11).

Simple co-training: For another case wheeecover bounds can beat uniform-convergence bounds, imag-
ine examples arpairs of points in{0,1}%, C is the class of linear separators, and compatibility isrdete
mined by whether both points are on the same side of the depéra., the case of Examplg. Now
suppose for simplicity that the target function just splite hypercube on the first coordinate, and the
distribution is uniform over pairs having the same first cliwate (so the target is fully compatible). We
then have the following.

Theorem 2.3.10 Given polyd) unlabeled exampleS; and % log d labeled exampleSy,, with high prob-

ability there will exist functions of true errot/2 — 2-3V4 that are consistent witly;, and compatible
with S

Proof: Let V' be the set of all variables (not including) that (a) appear irevery positive example
of St and (b) appear imo negative example of. In other words, these are variables such that

4Specifically, note that as we increas@ur current estimate for the unlabeled error rate of thgetefunction), the associated
p (which is an integer) increases in discrete jumpspz, . . .. We can then simply spread th&‘parameter across the different
runs, in particular rui would used/i(i + 1). Sincep; > 1, this implies thatn; = O (% In %) labeled examples are sufficient
for all the “validation” steps.

SEffectively, e-cover bounds allow one to rule out a hypothesis that, saysgparates the positive points9p from the rest
of the graph by noting that this hypothesis is very closeHwéspect taD) to the all-negative hypothesis, atitht hypothesis

has a high labeled-error rate.
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the functionf(z) = z; correctly classifies all examples §y,. Over the draw of5;, each variable has a
(1/2)?19cl = 1/+/d chance of belonging t&, so the expected size bfis (d— 1) /v/d and so by Chernoff
bounds, with high probability” has size at Ieasg\/ﬁ. Now, consider the hypothesis corresponding to
the conjunction of all variables ilr. This correctly classifies the examplesdp, and with probability

at leastl — 2\SU]2‘|V‘ it classifieseveryother example irb;; negative because each exampl&inhas
only a1/2!Vl chance of satisfying every variable ¥a Since|Sy;| = poly(d), this means that with high
probability this conjunction is compatible witsy; and consistent witly 7, even though its true error is at
leastl/2 — 272Vl g

So, given only a seby of poly(d) unlabeled examples and a s&t of %logd labeled examples
we would not want to use a uniform convergence based algoriimce we do not yet have uniform
convergence. In contrast, the cover-size of the set of inmetcompatible withsy; is constant, se-cover
based bounds again allow learning from just o@l&% log %) labeled examples (Theordm 2]3.9). In fact

as we show in Theorem 2.3]11 we only nefetﬁlog; %) labeled examples in this case.

Learning from even fewer labeled examples

In some cases, unlabeled data can allow us to learn from ever fabeled examples than given by The-
orem[2.3.D. In particular, consider a co-training settirigere the target* is fully compatibleand D sat-
isfies the property that the two views andzx, are conditionally independent given the lab&l(z1, z2)).

As shown by@], one can boost any weak hypothesis from efdabdata in this setting (assuming one
has enough labeled data to produce a weak hypothesis). eRedample complexity results are given
in [@]. In fact, we can use the notion efcovers to show that we can learn from just a single labeled
example. Specifically, for any concept claségsandC,, we have:

Theorem 2.3.11Assume thatrr(c*) = erry,(c*) = 0 and D satisfies independence given the label.
Then for anyr < ¢/4, usingm,, unlabeled examples and, labeled examples we can find a hypothesis
that with probabilityl — ¢ has error at most, for

my, = O (% [(VCdim(Cl) + VCdim(Cy)) ln% +1In ;]) and m; = O <logi 1) .

Proof: We will assume for simplicity the setting of Exam@ewherec* = ¢j = ¢; and alsoD; =
D, = D (the general case is handled similarly, but just requiresemotation).

We start by characterizing the hypotheses with low unlabeeor rate. Recall thay(f, D) =
Pr, 2o)~nlf(21) = f(z2)], and for concreteness assutheredicts usinge; if f(z1) # f(r2). Con-
sider f € C with erry,,(f) < 7 and let's defing_ = Pr__p [c*(z) = 0], pr = Pr,_p[c*(7) = 1] and
fori,j € {0,1} definep;; = Pr, 5 [f(7) = i,c"(x) = j]. We clearly haveerr (f) = pio + po1- From
errunt(f) = Pr(z, wo)~p [f (1) # f (22)] < 7, using the independence given the labelbfwe get

2 2
P10P00 n P01P11 <7
p1o +Poo  Poi+ P11

In particular, the fact tha% < 7 implies that we cannot have bothy > 7 andpy, > 7, and the

fact that% < 7 implies that we cannot have both; > 7 andp;; > 7. Therefore, any hypothesis
f with err,,,;(f) < 7 falls in one of the following categories:
1. fis“close toc*”: p1g < 7 andpg; < 7; soerr(f) < 27.

2. fis“close toc*”: poo < 7 andpy; < 7; s0err(f) > 1 —27.
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3. f “almost always predicts negative”: fpiy < 7 andpy; < 7; soPr[f(x) =0] > 1 — 27.

4. f “almost always predicts positive”: fgriyy < 7 andpg; < 7; soPr[f(z) = 0] < 27.

Let f1 be the constant positive function arfiglbe the constant negative function. Now note that our
bound onm,, is sufficient to ensure that with probability 1 — g we have (a]d(f, g9)—d(f,g)] <7
forall f,g € C and (b) allf € C with érr,,,,(f) = 0 satisfyerr,,;(f) < 7. Let us assume in the
remainder that this (a) and (b) are indeed satisfied. By cwigus analysis, there are at most four kinds
of hypotheses consistent with unlabeled data: those ofpbsg those close to its complement, those
close tofy, and those close tf,. Furthermore¢*, c*, fo, and f; are compatible with the unlabeled data.

So, algorithmically, we first check to see if there exists pdifiesisg € C with érr,,;(g) = 0 such
that cZ(fl,g) > 37 and cZ(fO,g) > 3r. If such a hypothesig exists, then it must satisfy either case (1)
or (2) above. Therefore, we know that one{gf g} is 27-close toc*. If not, we must have, < 47 or
p— < 47, in which case we know that one §fy, f1} is 47-close toc*. So, either way we have a set of two
functions, opposite to each other, one of which is at léastlose toc*. We finally useO(log 1 %) labeled
examples to pick one of these to output, namely the one witksbempirical labeled error. Lemia2.3.12
below then implies that with probability — ¢ the function we output has error at mdst<e. N

Lemma 2.3.12 Considerr < 1. LetC; = {f, f} be a subset of’ containing two opposite hypotheses
with the property that one of thenvisclose toc*. Then,m; > 6 log(l) (%) labeled examples are sufficient

so that with probability> 1 — ¢, the concept irC- that isT-close toc* in fact has lower empirical error.

Proof: We need to show that ify, > 6log: (3), then

15

> () (- ) <6

Sincer < 1 we have:

mp
[

[

|5

M) pOmi=k) (1 )R < T k) 175 UCAW AR
<k:>7_ (1-71)"< (k:)T Tl3 l§)<k>7—z

1

and soS < (y/7-2)™ . Forr < £ andm; > 6:()? E‘{g = 6log 1) (1) it's easy to see thdt,/7 - 2)™" <
082 \ 7 T

0, which implies the desired resultll

In particular, by reducing- to poly(d) in Theorem 2.3.71, we can reduce the number of labeled
examples needed; to one Note however that we will need polynomially more unlabetedmples.

In fact, the result in Theoren 2.3]11 can be extended to the teatD™ and D~ merely satisfy
constant expansion rather than full independence givelabies, see@g].

Note: Theoreni2.3.11 illustrates that if data is especially welidved with respect to the compatibility
notion, then our bounds on labeled data can be extremely. do&@kctio 2,412, we show for the case of
linear separators and independence given the label, wehsagfficientalgorithms, achieving the bounds
in Theoren{ 2.3.71 in terms of labeled examples by a polynbtimee algorithm. Note, however, that

both these bounds rely heavily on the assumption that tigetté fully compatible. If the assumption is
more of a “hope” than a belief, then one would need an additisample ofl /¢ labeled examples just to

validate the hypothesis produced.
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2.4 Algorithmic Results

In this section we give several examplesefficientalgorithms in our model that are able to learn using
sample sizes comparable to those described in Séciibn at8.that our focus is on achieving a low-error
hypothesis (also called minimizing 0-1 loss). Another camnrpractice in machine learning (both in the
context of supervised and semi-supervised learning) issiead try to minimize a surrogate convex loss
that is easier to optimiz&bS]. While this does simplify tmmputational problem, it does not in general
solve the true goal of achieving low error.

2.4.1 Asimple case

We give here a simple example to illustrate the bounds ini@e@3.1, and for which we can give a
polynomial-time algorithm that takes advantage of themt the instance spac& = {0,1}¢, and for
x € X, letvars(x) be the set of variables set tdn the feature vectar. Let C be the class of monotone
disjunctions (e.g.x1 V z3 V xg), and for f € C, let vars(f) be the set of variables disjoined ky
Now, suppose we say an examplés compatible with functionf if either vars(x) C vars(f) or else
vars(z) Nvars(f) = ¢. This is a very strong notion of “margin”: it says, in esseribat every variable
is either a positive indicator or a negative indicator, anderample should contain both positive and
negative indicators.

Given this setup, we can give a simghC,,,;-learning algorithm for this paifC, x): that is, an
algorithm with sample size bounds that are polynomial (dhis case, matching) those in Theorlem 2.3.1.
Specifically, we can prove the following:

Theorem 2.4.1 The class' of monotone disjunctions RAC,,,,;-learnable under the compatibility notion
defined above.

Proof: We begin by using our unlabeled data to construct a grapii wertices (one per variable),
putting an edge between two verticeand j if there is any example: in our unlabeled sample with
i,j € vars(xz). We now use our labeled data to label the components. If tigettdunction is fully
compatible, then no component will get multiple labels Gfree component does get multiple labels, we
halt with failure). Finally, we produce the hypothegisuch thatvars(f) is the union of the positively-
labeled components. This is fully compatible with the ueled data and has zero error on the labeled
data, so by Theorem 2.3.1, if the sizes of the data sets ameaasig the bounds, with high probability the
hypothesis produced will have error at mest B

Notice that if we want to view the algorithm as “purchasingbéled data, then we can simply ex-
amine the graph, count the number of connected compokeatsd then request[k In 2 + In 2] labeled
examples. (Here&* = |Cs,(0)|.) By the proof of Theorei 2.3.1, with high probabil2j < |Cp ()],

S0 we are purchasing no more than the number of labeled egarnmpthe theorem statement.

Also, it is interesting to see the difference between a ‘tland “non-helpful” distribution for this
problem. An especiallyyon-helpful distribution would be the uniform distribution ewvall examplese
with |vars(x)| = 1, in which there arel components. In this case, unlabeled data does not help anhelll
one still need$(d) labeled examples (or, eveén (<) if the distribution is non-uniform as in the lower
bounds of 6]). On the other hand, a helpful distributisrone such that with high probability the
number of components is small, such as the case of featupesudpg independently given the label.

2.4.2 Co-training with linear separators

We now consider the case of co-training where the hypotluésssC is the class of linear separators. For
simplicity we focus first on the case of Exampglethe target function is a linear separatorifi and each
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example is goair of points, both of which are assumed to be on the same sideedfeparator (i.e., an
example is a line-segment that does not cross the targetgigpe). We then show how our results can
be extended to the more general setting.

As in the previous example, a natural approach is to try teesible “consistency” problem: given a set
of labeled and unlabeled data, our goal is to find a separa&biig consistent with the labeled examples
and compatible with the unlabeled ones (i.e., it gets theléabdata correct and doesn’t cut too many
edges). Unfortunately, this consistency problem is NRkhgiven a graphg embedded inR? with two
distinguished points andt, it is NP-hard to find the linear separator wihon one side and on the
other that cuts the minimum number of edgesen if the minimum is zef@]. For this reason, we will
make an additional assumption, that the two points in an el@@re each drawmdependently given
the label That is, there is a single distributioR over R%, and with some probability.,, two points
are drawn i.i.d. fromD_ (D restricted to the positive side of the target function) arithwrobability
1 — p., the two are drawn i.i.d fronD_ (D restricted to the negative side of the target function).eNot
that our sample complexity results in Section 2.3.2 extendeaker assumptions such as distributional
expansion introduced by [29], but we need true independéarcaur algorithmic results]E3] also give
positive algorithmic results for co-training when (a) thtviews of an example are drawn independently
given the label (which we are assuming now), (b) the undaglyunction is learnable via Statistical
Query algorithm$ (which is true for linear separatorE[GS]), and (c) we haveugin labeled data to
produce a weakly-useful hypothesis (defined below) on orieeofriews to begin with. We give here an
improvement over that result by showing how we can run therétgnm in @] with onlya singlelabeled
example, thus obtaining an efficient algorithm in our models worth noticing that in the process, we
also somewhat simplify the results E[GS] on efficientlyrld@ag linear separators with noise without a
margin assumption.

For the analysis below, we need the following definition.waakly-usefupredictor is a functionf
such that for somg that is at least inverse polynomial in the input size we have:

Pr[f(x) = 1|c*(z) = 1] > Pr[f(z) = 1|c"(z) = 0] + . (2.2)

It is equivalent to the usual notion of a “weak hypothe@when the target function is balanced,
but requires the hypothesis give more information when #nget function is unbalanceﬂ63]. Also,
we will assume for convenience that the target separat@epatrough the origin, and let us denote the
separator by* - x = 0.

We now describe an efficient algorithm to learn to any desaedr ratee in this setting from just
a single labeled example. For clarity, we first describe gorghm whose running time depends poly-
nomially on both the dimensio# and1/~, where~ is a softmargin of separation between positive and
negative examples. Formally, in this case we assume theastt$ome non-negligible probability mass of
examplest satisfy% > «; i.e., they have distance at leasto the separating hyperplane ¢* = 0
after normalization. This is a common type of assumption athine learning (in fact, often one makes
the much stronger assumption tingiarly all probability mass is on examplessatisfying this condition).
We then show how one can replace the dependendgpwith instead a polynomial dependence on the
number of bits of precision in the data, using the Outlier Removal Lemmalof [65] [105]

Theorem 2.4.2 Assume that at least am probability mass of exampleshave margin% > ~ with
respect to the target separatot. There is a polynomial-time algorithm (polynomialdnl/~, 1/a, 1/e,
and1/0) to learn alinear separator under the above assumptiomsnfa polynomial number of unlabeled

examples and a single labeled example.

®For a detailed description of the Statistical Query model] andl].
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Algorithm 1 Co-training with Linear Separators. The Soft Margin Case.

Input: ¢, 9, T a setSy, of m; labeled examples drawn i.i.d frol?, a setSy of m, unlabeled
examples drawn i.i.d fronb.

Output: Hypothesis of low error.

Let 1, be the all-positive function. Lét,, be the all-negative function. Let= €/6, ¢; = 7/4.
Q) Fori=1,...,Tdo
- Choose a random halfspag¢egoing through the origin.

- Feedf;, Sy and error parameterg and confidence parametéf6 into the bootstrapping
procedure 0@3] to produck;.

() Leth beargminhi{e?\runl(hi)w(h, hy) > 37, d(h, hy) > 37}.
If érruni(hi) > 3eq, then leth = hy,.
(3) UsesSy, to output eitherh or h: output the hypothesis with lowest empirical error on thie%se

Proof: Let ¢ andé be the desired accuracy and confidence parametersl’ ket) (% log (%)) My =

poly(1/v,1/a,1/€,1/4,d), andm; = 1. We run Algorithn1 with the inputs, §, T Sy, Sy, andm; = 1.
LetT =¢/6, €1 = 7/4.

In order to prove the desired result, we start with a few facts

We first note that our bound an,, is sufficient to ensure that with probability 1 — g we have (a)

ld(f,9) —d(f,g)| < rforall f,g € C and (b) allf € C have|érry,(f) — erru(f)] < 1.

We now argue that if at least am probability mass of examples have margin% > ~ with
respect to the target separatdy then arandomhalfspace has at leastpaly(«, ) probability of being
a weakly-useful predictor. (Note th65] uses the Peroepalgorithm to get weak learning; here, we
need something simpler since we need to save our labeledx&morthe very end.) Specifically, consider
a pointz of marginv, > ~. By definition, the margin is the cosine of the angle betweemd¢*, and
therefore the angle betweenandc* is 7/2 — cos™!(v,) < /2 — 7. Now, imagine that we dray at

random subject tg' - ¢* > 0 (half of the f’s will have this property) and defing(x) = sign(f - ). Then,
Pr(f(z) # (@)lf - 2 0) < (w/2 =y)/m =1/2 =/

Moreover, ifz doesnothave marginy then at the very least we have s (f(x) # c*(x)|f-c* > 0) < 1/2.
Now define distributionD* = 1D, + $D_; that is D* is the distributionD but balanced t&0%
positive and50% negative. With respect t* at least anv/2 probability mass of the examples have

margin at least, and therefore:

Ejlerrp(f)f - " > 0] < 1/2 = (a/2)(v/7).

Sinceerr(f) is abounded quantity, by Markov inequality this means thkgast arf2(«y) probability
mass of functiong must satisfyerrp« (f) < %— 22 which in turn implies that they must be useful weakly
predictors with respect t® as defined in Equation (2.2) with= 1.

The second part of the argument is as follows. Note that ip($teof our algorithm we repeat the
following process fofT iterations: pick a randonf;, and plug it into the bootstrapping theorem @[63]

(which, given a distribution over unlabeled pajsg, =), will use f; (] ) as a noisy label of}, feeding the
result into a Statistical Query algorithm). Siri€e= O (% log (%)) using the above observation about
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random halfspaces being weak predictors, we obtain thathigh probability at least— /6, at least one
of the random hypothesi§ was a weakly-useful predictor; and sineg, = poly(1/v,1/a,1/e,1/5,d)
we also have the associated hypothésisutput by the bootstrapping procedure |of [63] will with prob
ability at leastl — §/6 satisfyerr(h;) < €. This implies that with high probability at least— 24/3,
at least one of the hypothesis we find in Stepl has true labeled error at mast For the rest of the
hypotheses we find in Stdp we have no guarantees.

We now observe the following. First of all, any functighwith small err(f) must have small
erryn (f); in particular,

erraun(f) = Pr(f(e1) # f(22)) < 2err(f).

This implies that with high probability at least— 26/3, at least one of the hypothesiswe find in Step
1 has true unlabeled error at mast;, and therefore empirical unlabeled error at mdst Secondly,
because of the assumption of independence given the labgthosvn in Theorern 2.3.111, with high prob-
ability the only functions with unlabeled error at mostare function2r-close toc*, 27-close to—c*,
27-close to the “all positive” function, dzr-close to the “all negative” function.

In Step(2) we first examine all the hypotheses produced in Stepnd we pick the hypothesis
with the smallest empirical unlabeled error rate subjedteing empirically at leasir-far from the “all-
positive” or “all-negative” functions. If the the empiricarror rate of this hypothesis is at most3e; we
know that its true unlabeled error rate is at mést < r, which further implies that eithgr or —h is 27
close toc*. However, if the empirical unlabeled error ratefois greater thaie;, then we know that the
target must bdr-close to the all-positive or all-negative function so wagly chooseh = “all positive”
(this is true since the unlabeled sample was large enougrhaspitf, g9)—d(f,g9)] <71).

So, we have argued that with probability at least 24/3 eitherh or —h is 47-close toc*. We can

now just useD (log(%) (%)) labeled examples to determine which case is which (Lemma2).3This

quantity is at most and our error rate is at mosif we setr < ¢/4 andr sufficiently small compared to
0. This completes the proof.l

The above algorithm assumes one can efficiently pick a rangioitdength vector inR?, but the
argument easily goes through even if we do this to @n{jog 1/) bits of precision.
We now extend the result to the case that we make no margimassun.

Theorem 2.4.3 There is a polynomial-time algorithm (iy b, 1/¢, and1/6, whered is the dimension of
the space andis the number of bits per example) to learn a linear separataier the above assumptions,
from a polynomial number of unlabeled examples and a sirajdeléd example. Thus, we efficiently
PAC,,,;-learn the class of linear separators over-2°,...,2% — 1,2} under the agreement notion of
compatibility if the distributionD satisfies independence given the label.

Proof. We begin by drawing a large unlabeled sam§gléof size polynomial ind andb). We then
compute a linear transformatidh that when applied t& has the property that for any hyperplamne
x = 0, at least al /poly(d, b) fraction of T'(S) has margin at least/poly(d,b). We can do this via the
Outlier Removal Lemma of__[¢5] aanS]. Specifically, thetl@n Removal Lemma states that given
a set of pointsS, one can algorithmically remove a&hfraction of S and ensure that for the remaining
setS’, for any vectorw, max,cg (w - )2 < poly(d, b, 1/ )Eyes [(w - x)?], whereb is the number
of bits needed to describe the input points. Given such &'setne can then use its eigenvectors to
compute a standard linear transformation (also describd6]) 7 : R — R?, whered’ < d is the
dimension of the subspace spanned®ysuch that in the transformed space, for all unit-lengthwe
haveE, cr(s)[(w - 2)*] = 1. In particular, since the maximum éf - z)? is bounded, this implies that
for any vectorw € R?, at least arv fraction of pointsz € T(S’) have margin at least for some
a > 1/poly(b,d,1/¢).
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Now, choose:’ = ¢/4, and letD’ be the distributionD restricted to the space spanned $ly By
VC-dimension bounds,S| = O(d/a) is sufficient so that with high probability, (d)’ has probability
mass at least — ¢/2, and (b) the vecto?’(¢*) has at least an/2 probability mass of/’(D’) at margin
> «. Thus, the linear transformatidfi converts the distributiorD’ into one satisfying the conditions
needed for Theorem 2.4.2, and any hypothesis produced mith<e ¢/2 on D’ will have error at most
on D. So, we simply applyf” to D’ and run the algorithm for Theordm 2.14.2 to produce a lowrdimear
separator. B

Note: We can easily extend our algorithm to the standard co-trgisetting (where ] can be different
from c3) as follows: we repeat the procedure in a symmetric fashaan, then just try all combinations
of pairs of functions returned to find one of small unlabeladrerate, not close to “all positive”, or “all

negative”. Finally we usé) <log(l) (%)) labeled examples to produce a low error hypothesis (and here
we use only one part of the exarenple and only one of the funetiothe pair).

2.5 Related Models

In this section we discuss a transductive analog of our madehe connections with generative models
and other ways of using unlabeled data in Machine Learnimgjtlae relationship between our model and
the luckiness framework O@S].

2.5.1 A Transductive Analog of our Model

In transductivelearning, one is given a fixed s8tof examples, of which some small random subset is
labeled, and the goal is to predict well on the restofr hat is, we know which examples we will be tested
on up front, and in a sense this a case of learning from a knéstritaition (the uniform distribution over
S). We can also talk about a transductive analog of our indectiodel, that incorporates many of the
transductive learning methods that have been developeaatdar to make use of unlabeled examples, we
will again express the relationship we hope the target fandtas with the data through a compatibility
notion y. However, since in this case the compatibility of a givendtipsis is completely determined
by S (which is known), we will not need to require that compatipibe an expectation over unlabeled
examples. From the sample complexity point of view we onhg@out how much labeled data we need,
and algorithmically we need to find a highly compatible hysis with low error on the labeled data.

Rather than presenting general theorems, we instead foctieanodeling question, and show how
a number of existing transductive graph-based learningriéifigns can be modeled in our framework. In
these methods one usually assumes that there is weightgld gydeefined ovelS, which is given a-priori
and encodes the prior knowledge. In the following we dengtélbthe weighted adjacency matrix gf
and byCs the set of all binary functions ovet.

Minimum cut Suppose forf € C's we define the incompatibility of to be the weight of the cut ig
determined byf. This is the implicit notion of compatibility considered [@], and algorithmically
the goal is to find the most compatible hypothesis that isscbmn the labeled data, which can be
solved efficiently using network flow. From a sample-compieyoint of view, the number of
labeled examples we need is proportional to the VC-dimensidhe class of hypotheses that are
at least as compatible as the target function. This is knane (§) [@Eﬁ/] wheret is the
number of edges cut by and ) is the size of the global minimum cut in the graph. Also not th
the Randomized Mincut algorithm (considered by [68]), whig an extension of the basic mincut
approach, can be viewed as motivated by a PAC-Bayes samplglexity analysis of the problem.
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Normalized Cut For f € Cg definesize(f) to be the weight of the cut ig determined byf, and let
neg(f) andpos(f) be the number of points i§ on which f predicts negative and positive, re-
spectively. For the normalized cut setting @43] we cafingethe incompatibility off € Cg
to be ne;’zepos This is the penalty function used in [143], and again, dthorically the goal
would be to fmof a highly compatible hypothesis that is cdroecthe labeled data. Unfortunately,
the corresponding optimization problem is in this case isHdRl. Still, several approximate solu-
tions have been considered, leading to different semirsigesl learning algorithms. For instance,
Joachlms@B] considers a spectral relaxation that leatfet*SGT algorithm”; another relaxation
based on semidefinite programming is considered in [57].

Harmonic Function We can also model the algorithms |ntroduce219] as ¥ailolf we considerf
to be a probabilistic prediction function defined o¥grthen we can define the incompatibility 6f
to be

> wi (F0) = F()) = 7L,

where L is the un-normalized Laplacian gf Similarly we can model the algorithm introduced
by Zhao et al. -7] by using an incompatibility gfgiven by f7'£f where£ is the normalized
Laplacian ofg. More generally, all the Graph Kernel methods can be vieweslr framework if
we consider that the incompatibility gfis given by||f||x = fT K f whereK is a kernel derived
from the graph (see for mstan@ZO])

2.5.2 Connections to Generative Models

Itis also interesting to consider how generative modelsbesiit into our model. As mentioned in Section
[2.1, a typical assumption in a generative setting is fhat a mixture with the probability density function
p(z|0) = po - po(xz|0o) + p1 - p1(xz|01) (see for instance_[77, [78, 185]). In other words, the labeled
examples are generated according to the following mectmaradabely € {0,1} is drawn according to
the distribution of classe$pg, p1} and then a corresponding random feature vector is drawrr@iogo

to the class-conditional density,. The assumption typically used is that the mixture is ideiiie.
Identifiability ensures that the Bayes optimal decisiondeofz : pg - po(x|6p) = p1 - p1(x]61)} can

be deduced ip(x|6) is known, and therefore one can construct an estimate of élye€Bborder by using
p(x|d) instead ofp(x|#). Essentially once the decision border is estimated, a $atlled sample suffices
to learn (with high confidence and small error) the appropridass labels associated with the two disjoint
regions generated by the estimate of the Bayes decisiorbdrd see how we can incorporate this setting
in our model, consider for illustration the setting MBﬂjere they assume that = pi, and that the
class conditional densities aledimensional Gaussians with unit covariance and unknowanwectors

6; ¢ R?. The algorithm used is the following: the unknown parametatord = (6, 6;) is estimated
from unlabeled data using a maximum likelihood estimatis; dietermines a hypothesis which is a linear
separator that passes through the p(ﬁetJr él) /2 and is orthogonal to the vectér — 6y finally each

of the two decision regions separated by the hyperplanééddd according to the majority of the labeled
examples in the region. Given this setting, a natural natf@ompatibility we can consider is the expected
log-likelihood function (where the expectation is takertharespect to the unknown distribution specified
by ). Specifically, we can identify a legal hypothegiswith the set of parametei® = (6, 6:) that
determine it, and then we can definéf;, D) = E,cplog(p(z|6))]. [‘Eﬁ show that if the unlabeled
sample is large enough, then all hypotheses specified byneteest which are close enough t will
have the property that their empirical compatibilitiesIvoé close enough to their true compatibilities.
This then implies (together with other observations abaugsian mixtures) that the maximum likelihood
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estimate will be close enough o up to permutations. (This actually motivatess a good compatibility
function in our model.)

More generally, we can deal with other parametric familisiangithe same compatibility notion; how-
ever, we will need to impose constraints on the distributiallowed in order to ensure that the compati-
bility is actually well defined (the expected log-likelirsbis bounded).

As mentioned in Section 2.1, this kind of generative sett;geally at the extreme of our model.
The assumption that the distribution that generates theeiddtuly a mixture implies that if we knew the
distribution, then there are only two possible concepts(bfid this makes the unlabeled data extremely
useful).

2.5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection betweer approach and the luckiness frame-
work ,]. In both cases, the idea is to define an ordeasfrhypotheses that depends on the data,
in the hope that we will be “lucky” and find that the target ftion appears early in the ordering. There
are two main differences, however. The first is that the lueks framework (because it was designed for
supervised learning only) uses labeled data both for estimaompatibility and for learning: this is a
more difficult task, and as a result our bounds on labeled ciatabe significantly better. For instance,
in Example4 described in Sectidn 2.2, for any non-degenerate distnibus dataset og pairs can with
probability 1 be completely shattered by fully-compatible hypotheseghe luckiness framework does
not help. In contrast, with a larger (unlabeled) sample,carepotentially reduce the space of compatible
functions quite significantly, and learn fromid) or evenO(1) labeled examples depending on the distri-
bution — see Sectidn 2.3.2 and Secfiod 2.4. Secondly, thkinkgs framework talks about compatibility
between a hypothesis andsample whereas we define compatibility with respect to a distrdsut This
allows us to talk about the amount of unlabeled data needestitmate true compatibility. There are also
a number of differences at the technical level of the defindi

2.5.4 Relationship to Other Ways of Using Unlabeled Data fokLearning

It is well known that when learning under an unknown disttidm, unlabeled data might help some-
what even in the standard discriminative models by allovong to use both distribution-specific algo-
rithms ], ], ] and/or tighter data dependent gtomplexity boundﬂ?]. However in
all these methods one chooses a class of functions or a prorfunctionsbeforeperforming the infer-
ence. This does not capture the power of unlabeled data iy ofdhe practical semi-supervised learning
methods, where typically one has some idea about whatsteuct the data tells about the target function,
and where the choice of prior can be made more precise aéggstne unlabeled da@é_&.__i @186].
Our focus in this chapter has been to provide a unified disedtive framework for reasoning about use-
fulness of unlabeled data in such settings in which one catya@ both sample complexity and algorith-
mic results.

Another learning setting where unlabeled data is usefulvamidh has been increasingly popular for
the past few years iBctive Learninq@,@l,@@gﬂ:%]. Here, the learning algorithm has lboe
capability of drawing random unlabeled examples from theeulying distribution and that of asking for
the labels ofany of these examples, and the hope is that a good classifier dearned with significantly
fewer labels byactively directing the queries tinformative examples. Note though that as opposed
to the Semi-supervised learning setting, and similarlyhe ¢lassical supervised learning settings (PAC
and Statistical Learning Theory settings) the only prididieabout the learning problem in the Active
Learning setting is that the target function (or a good agipmation of it) belongs to a given concept
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class. Luckily, it turns out that for simple concept classesh as linear separators on the line one can
achieve amxponentialmprovement (over the usual supervised learning settinti}e labeled data sample
complexity, under no additional assumptions about thenlagrproblem ﬁﬂl@ In general, however,
for more complicated concept classes, the speed-ups abléew the active learning setting depend on
the match between the distribution over example-labelspand the hypothesis class, and therefore on
the target hypothesis in the class. We discuss all thedeefuats well as our contribution on the topic in
Chaptefb.

Finally, in this thesis, we present in the context of leagnivith kernels and more general similarity
functions one other interesting use of unlabeled data indhming process. While the approach of
using unlabeled data in that context does have a similarrfiavthe approach in this chapter, the final
guarantees and learning procedures are somewhat diffeoentthose presented here. In that case the
hypothesis space has an infinite capacity before perfortfiegnference. In the training process, in a
first stage, we first use unlabeled in order to extract a muailenset of functions with the property that
with high probability the target is well approximated by dhe functions in the smaller class. In a second
stage we then use labeled examples to learn well. We préssim more details Chaptel 3 in Sect[on]3.5.

2.6 Conclusions

Given the easy availability of unlabeled data in many sg#tithere has been growing interest in meth-
ods that try to use such data together with the (more expeEnkibeled data for learning. Nonetheless,
there has been substantial disagreement and no clear sossamout when unlabeled data helps and by
how much. In our work, we have provided a PAC-style model @missupervised learning that captures
many of the ways unlabeled data is typically used, and pesval very general framework for thinking
about this issue. The high level implication of our analysithat unlabeled data is useful if (a) we have
a good notion of compatibility so that the target functiodeed has a low unlabeled error rate, (b) the
distribution D is helpfulin the sense that not too many other hypotheses also have unlabeled error
rate, and (c) we have enouginlabeleddata to estimate unlabeled error rates well. We then malsethe
statements precise through a series of sample-compl@styts, giving bounds as well as identifying the
key quantities of interest. In addition, we give severakedfit algorithms for learning in this framework.
One consequence of our model is that if the target functiahdata distribution are both well behaved
with respect to the compatibility notion, then the samgke-$ounds we get can substantially beat what
one could hope to achieve using labeled data alone, and vedlhesirated this with a number of examples
throughout the chapter.

2.6.1 Subsequent Work

Following the initial publication of this work, several &ars have used our framework for reasoning
about semi-supervised learning, as well as for developingalgorithms and analyses of semi-supervised
learning. For examplmﬂdﬁ__i%] use it in the contexagreement-based multi-view learning for
either classification with specific convex loss functiong)(ehinge loss) or for regression. Sridharan and
Kakade [LZ_Qb] use our framework in order to provide a genaralysis multi-view learning for a variety
of loss functions and learning tasks (classification andession) along with characterizations of suitable
notions of compatibility functions. Parts of this work app@s a book chapter iﬂSS] and as stated in the

"For this simple concept class one can achieve a pure ex;iahimprovementlE?] in the realizable case, while in the
agnostic case the improvement depends upon the nois@le [3
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introduction of that book, our framework can be used to olbaunds for a number of the semi-supervised
learning methods used in the other chapters.

2.6.2 Discussion

Our work brings up a number of open questions, both specitihagh-level. One broad category of such
guestions is for what natural classésand compatibility notiong can one provide an efficient algorithm
thatPAC,,,,;-learns the paifC, x): i.e., an algorithm whose running time and sample sizesaympmial

in the bounds of Theorem 2.3.1? For example, a natural queesfithis form is: can one generalize the
algorithm of Sectiof 2.411 to allow for irrelevant variablbat are neither positive nor negative indicators?
That is, suppose we define a “two-sided disjunctiértd be a pair of disjunctionéh, h_) whereh is
compatible withD iff for all examplesz, h,(z) = —h_(x) (and let us definé(xz) = hy(x)). Can we
efficiently learn the class of two-sided disjunctions unithés notion of compatibility?

Alternatively, as a different generalization of the prablanalyzed in Sectidn 2.4.1, suppose that again
every variable is either a positive or negative indicatat, e relax the “margin” condition. In particular,
suppose we require that every exampleither contain at least 60% of the positive indicators and at
most 40% of the negative indicators (for positive examptesjice versa (for negative examples). Can
this class be learned efficiently with bounds comparablédse from Theorerih 2.3.1? Along somewhat
different lines, can one generalize the algorithm givenGorTraining with linear separators, to assume
some condition weaker than independence given the labék wiaintaining computational efficiency?
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Chapter 3

A General Theory of Learning with
Similarity Functions

3.1 Learning with Kernel Functions. Introduction

Kernel functions have become an extremely popular tool ichime learning, with an attractive theory
as well [1,/135] 142, 191, 104, 207]. A kernel is a functiont tiades in two data objects (which could
be images, DNA sequences, or pointsfifi) and outputs a number, with the property that the function
is symmetric and positive-semidefinite. That is, for anynk¢i<, there must exist an (implicit) mapping
¢, such that for all inputse, 2’ we haveK (z,2’) = (¢(z),#(2’)). The kernel is then used inside a
“kernelized” learning algorithm such as SVM or kernel-ggatron in place of direct access to the data.
Typical kernel functions for structured data include thgypomial kernelK (z, z') = (14 z-2')? and the
Gaussian kernek (z, ) = e~ ll2=='I*/2* 'and a number of special-purpose kernels have been dedelope
for sequence data, image data, and other types of data a,7].

The theory behind kernel functions is based on the fact tratynstandard algorithms for learning
linear separators, such as SVMIQZO?] and the Perce@j fldorithm, can be written so that the only
way they interact with their data is via computing dot-produon pairs of examples. Thus, by replacing
each invocation ofz, 2') with a kernel computatiod (x, z’), the algorithm behaves exactly as if we had
explicitly performed the mapping(z), even thoughy may be a mapping into a very high-dimensional
space. Furthermore, these algorithms have learning geasthat depend only on thearginof the best
separator, and not on the dimension of the space in whicfeﬂlaerelsideiIiS]. Thus, kernel functions
are often viewed as providing much of the power of this iniphiggh-dimensional space, without paying
for it either computationally (because thanapping is only implicit) or in terms of sample size (if daga i
indeed well-separated in that space).

While the above theory is quite elegant, it has a few linotagi When designing a kernel function
for some learning problem, the intuition employed typigalbes not involve implicit high-dimensional
spaces but rather that a good kernel would be one that se\veega@d measure of similarity for the given
problem ]. So, in this sense the theory is not alwaysfhkip providing intuition when selecting or
designing a kernel function for a particular learning peshl Additionally, it may be that the most natural
similarity function for a given problem is not positive-skeierﬁnitﬂ and it could require substantial work,
possibly reducing the quality of the function, to coercaibia “legal” form. Finally, it is a bit unsatisfying
for the explanation of the effectiveness of some algoritbndépend on properties of an implicit high-

1This is very common in the context of Computational Biologiiere the most natural measures of alignment between
sequences are not legal kernels. For more examples seerff&di
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dimensional mapping that one may not even be able to cadculat particular, the standard theory at
first blush has a “something for nothing” feel to it (all thewsr of the implicit high-dimensional space
without having to pay for it) and perhaps there is a more pcosgplanation of what it is that makes a
kernel useful for a given learning problem. For these ressiirwould be helpful to have a theory that
was in terms of more tangible quantities.

In this chapter, we develop a theory of learning with siniijafunctions that addresses a number of
these issues. In particular, we define a notion of what it méana pairwise functiork(z, z') to be a
“good similarity function” for a given learning problem th@) does not require the notion of an implicit
space and allows for functions that are not positive serfinite, (b) we can show is sufficient to be used
for learning, and (c¥trictly generalizes the standard theory in that a good kernel inghal sense (large
margin in the implicitp-space) will also satisfy our definition of a good similaritynction. In this way,
we provide the first theory that describes the effectiverméssgiven kernel (or more general similarity
function) in terms of natural similarity-based properties

More generally, our framework provides a formal way to aralproperties of a similarity function
that make it sufficient for learning, as well as what algarithare suited for a given property. Note that
while our work is motivated by extending the standard largergin notion of a good kernel function,
we expect one can use this framework to analyze other, netseadly comparable, properties that are
sufficient for learning as well. In fact, recent work alongghb lines is given i 2].

Structure of this chapter: We start with background and notation in Secfiod 3.2. We tiesgnt a first
notion of a good similarity function in Sectign 3.3 and amalyts relationship with the usual notion of a
good kernel function. (These results appeaﬂvh [26] @dl?.]sectiorﬂ{lﬁl we present a slightly different
and broader notion that we show provides even better ketmsimilarity translation; in Sectidn 3.4.3 we
give a separation result, showing that this new notiostiigtly more generathan the notion of a large
margin kernel. (These results appeam [40])

3.2 Background and Notation

We consider a learning problem specified as follows. We arengaccess to labeled examplesy)
drawn from some distributio® over X x {—1,1}, whereX is an abstract instance space. The objec-
tive of a learning algorithm is to produce a classificationdiong : X — {—1,1} whose error rate
Pr )~prlg(z) # y] is low. We will consider learning algorithms that only acedise pointsr through a
pairwise similarity functionk (z, ') mapping pairs of points to numbers in the range, 1]. Specifically,

Definition 3.2.1 A similarity functionover X is any pairwise functiork : X x X — [—1,1]. We say
that K is a symmetric similarity function K (z,2") = K (2, z) for all =, 2"

A similarity function K is a valid (or legal) kernel function if it is positive-seneithite, i.e. there
exists a functionp from the instance spack into some (implicit) Hilbert %-space” such that

K(w,2') = (6(x), (a")).

See, e.g., Smolaand SchblkdﬂQO] for a discussion oditions for a mapping being a kernel function.
Throughout this chapter, and without loss of generalitywileonly consider kernels such thaf (x, z) <
1forall x € X. Any kernel K’ can be converted into this form by, for instance, defining

f((ac,a:/) = K(ac,x/)/\/K(x,a:)K(ac’,a:’).
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We say thatX is (e, v)-kernel goodor a given learning probler® if there exists a vectas in the ¢-space
that has erroe at marginy; for simplicity we consider only separators through theiori Specificallﬂ

Definition 3.2.2 K is (¢, v)-kernel goodif there exists a vectas, ||5|| < 1 such that

WP i@, 8 2 21 —c

We say thatX is y-kernel goodf it is (e, y)-kernel goodor € = 0; i.e., it has zero error at margin

Given a kernel that i$e, v)-kernel-good for some learning probleR) a predictor with error rate at
MOste + eacc can be learned (with high probability) from a sampl@ OK((e + €aco)/ (V2€2)) examples
(drawn independently from the source distribution) by mmizing the number of marginy violations
on the samplelEO]. However, minimizing the number of margolations on the sample is a difficult
optimization problemﬂﬂl}. Instead, it is common to miike the so-calledhinge lossrelative to a
margin.
Definition 3.2.3 We say thaf< is (¢, v)-kernel goodn hinge-lossf there exists a vectas,
that

Bl < 1such

E(ey~plll = (B, 6(x))/7]+] <€,

where[l — z]; = max(1 — z,0) is the hinge loss.

Given a kernel that ige, v)-kernel-good in hinge-loss, a predictor with error rate asta + eacc can
be efficiently learned (with high probability) from a sampteO (1/(v%€2.c)) examples by minimizing
the average hinge loss relative to margion the sample [44].

We end this section by noting that a general similarity fiorctight not be a legal (valid) kernel. To
illustrate this we provide a few examples in the following.

Examples of similarity functions which are not legal kernelfunctions. As a simple example, let
us consider a document classification task and let us asswf@&ve a similarity function< such that
two documents have similarity if they have either an author in common or a keyword in comnania,
similarity 0 otherwise. Then we could have three document®, andC', such that< (A, B) = 1 because
A and B have an author in commot (B, C) = 1 becauseB andC have a keyword in common, but
K(A,C) = 0 becaused and C' have neither an author nor a keyword in common (&4, A) =
K(B,B) = K(C,C) = 1). On the other hand, a kernel requires that(ifl) and¢(B) are of unit length
and(¢p(A),»(B)) = 1, theng(A) = ¢(B), so this could not happen K was a valid kernel.

Similarity functions that are not legal kernels are commirthie context of computational biol-
ogy ]; standard examples include various measuresgsfraént between sequences such as BLAST
scores for protein sequences or for DNA. Finally, one otlaural example of a similarity function that
might not be a legal kernel (and which might not be even symio)és the following: consider a trans-
ductive setting (where we have all the points we want to dlass advance) and assume we have a
base distance functiof(z, 2’). Let us defineK (z, 2’) as the percentile rank af in distance tar (i.e.,
K(z,2') = Pr[d(z,2") < d(x,2")]; then clearlyK might not be a legal kernel since in fact it might not
even be a symmetric similarity function.

Of course, one could modify such a function to be positive idefimite, e.g., by blowing up the
diagonal or by using other related methods suggested irtdnature ], but none of these methods
have a formal guarantee on the final generalization bourditfese methods might significantly decrease
the “dynamic range” of< and yield a very small margin).

2 Note that we are distinguishing between what is needed fémaasity function to be a valid or legal kernel function

(symmetric and positive semidefinite) and what is needee agwodkernel function for a learning problem (large margin).
*The O(-) notations hide logarithmic factors in the arguments, arttiérfailure probability.
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3.3 Learning with More General Similarity Functions: A Firs t Attempt

Our goal is to describe “goodness” properties that are sefffidor a similarity function to allow one to
learn well that ideally are intuitive and subsume the uswdion of good kernel function. Note that as
with the theory of kernel functionO], “goodness” is lwitspect to a given learning problef) and
notwith respect to a class of target functions as in the PAC freonle [@ ].

We start by presenting here the notion of good similaritycfioms introduced irlﬂG] and further ana-
lyzed in @] and9], which throughout the chapter we tad Balcan - Blum’06 definition. We begin
with a definition (Definition 3.3]1) that is especially irtiue and allows for learning via a very simple
algorithm, but is not broad enough to include all kernel tioxts that induce large-margin separators. We
then broaden this notion to the main definition[26] (Deiom [3.3.5) that requires a more involved
algorithm to learn, but is now able to capture all functioatisdying the usual notion of a good kernel
function. Specifically, we show that K is a similarity function satisfying Definition 3.3.5 then en
can algorithmically perform a simplexplicit transformation of the data under which there is a low-error
large-margin separator. We also consider variations and#iinition (e.g., Definitioh 3.3].6) that produce
better guarantees on the quality of the final hypothesis wbearbined with existing learning algorithms.

A similarity function K satisfying the Balcan - Blum’06 definition, but that is notspive semi-
definite, is not necessarily guaranteed to work well wherd ueectly in standard learning algorithms
such as SVM or the Perceptron algoriﬁmlnstead, what we show is that such a similarity function
can be employed in the following two-stage algorithm. Firstrepresent that data by performing what
might be called an “empirical similarity map”: selecting @set of data points as landmarks, and then
representing each data point using the similarities togtasdmarks. Then, use standard methods to find
a large-margin linear separator in the new space. One fyopithis approach is that it allows for the use
of a broader class of learning algorithms since one doesea®at the algorithm used in the second step to
be “kernalizable”. In fact, the work in this chapter is matied by work on a re-representation method that
algorithmically transforms a kernel-based learning peoblwith a valid positive-semidefinite kernel) to
an explicit low-dimensional learning probIeEtSZ]. (We geat this Chaptérd 6.)

Deterministic Labels: For simplicity in presentation, for most of this section wél wonsider only
learning problems where the lahgls a deterministic function af. For such learning problems, we can
usey(x) to denote the label of point, and we will user ~ P as shorthand fofz, y(x)) ~ P. We will
return to learning problems where the labahay be a probabilistic function of in Sectio{ 3.3.5.

3.3.1 Sufficient Conditions for Learning with Similarity Fu nctions

We now provide a series of sufficient conditions for a sinitiyafiunction to be useful for learning, leading
to the notions given in Definitioris 3.3.5 and 313.6.

3.3.2 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similarfunction” that is intuitive and yields
an immediate learning algorithm, but which is not broad goto capture all good kernel functions.
Nonetheless, it provides a convenient starting point. Teinition says that{ is a good similarity
function for a learning problen® if most examples: (at least a — e probability mass) are on average at
leasty more similar to random example$ of the samelabel than they are to random examplé®f the
opposite label. Formally,

“However, as we will see in Sectidn 3.B.5, if the functisnpositive semi-definite and if it is good in the Balcan -
Blum’06 senselﬁﬂg], or in the Balcan - Blum - Srebro’08 smeﬁd)], then we can show it is good as a kernel as well.
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Definition 3.3.1 K is a strongly (¢,~y)-good similarity function for a learning problemP if at least a
1 — e probability mass of examplessatisfy:

Eyp[K(2,2')ly(z) = y(2')] = Bowp[K(z,2)|y(z) # y(@')] + . (3.1

For example, suppose all positive examples have similatitgast0.2 with each other, and all negative
examples have similarity at lea&® with each other, but positive and negative examples haviesities
distributed uniformly at random ifi-1,1]. Then, this would satisfy Definition 3.3.1 for = 0.2 and
e = 0. Note that with high probability this would not be positi\xemidefinitdﬂ

Definition[3:3.1 captures an intuitive notion of what one htigrant in a similarity function. In ad-
dition, if a similarity function K satisfies Definitiod_3.3l1 then it suggests a simple, natieaning
algorithm: draw a sufficiently large sétt of positive examples and sét~ of negative examples, and
then output the prediction rule that classifies a new examlg positive if it is on average more similar
to points inS™ than to points inS—, and negative otherwise. Formally:
Theorem 3.3.11f K is strongly(e, v)-good, then a ses* of (16/+2)1n(2/§) positive examples and a
setS™ of (16/v%)In(2/§) negative examples are sufficient so that with probabiity — §, the above
algorithm produces a classifier with error at mast- 9.

Proof: Let Good be the set of: satisfying

Eypp[K (2,2 )ly(x) = y(2")] > Bpop[K(z,2)|y(z) # y(2)] + 7.

So, by assumptionPr,.p[z € Good] > 1 —e. Now, fixz € Good. SinceK (x,z’) € [-1,1], by
Hoeffding bounds we have that over the random draw of the kaf1p

Pr (!Exles+ [K(z,2")] — Egop[K(z,2")|y(z") = 1H > y/2) < 9215 W? /16

and similarly forS—. By our choice of S™| and|S~|, each of these probabilities is at mé&sy2.

So, for any given: € Good, there is at most & probability of error over the draw o8+ andS—.
Since this is true for any € Good, it implies that theexpectecerror of this procedure, over € Good,
is at most2, which by Markov’s inequality implies that there is at most probability that the error rate
overGood is more thary. Adding in thee probability mass of points not i@ood yields the theorem. B

Before going to our main notion note that Definition 313.1uiegs that almost all of the points (at
least al — e fraction) be on average more similar to random points of #meeslabel than to random points
of the other label. A weaker notion would be simply to requivat two random points of the same label
be on average more similar than two random points of diffeli@rels. For instance, one could consider
the following generalization of Definitidn 3.3.1:

Definition 3.3.2 K is aweakly v-good similarity function for a learning problemp if:

EpopK(z,2)[y(x) = y(@')] = Epanp[K(2,2)|y(z) # ya)] + 7. (3.2)

While Definition[3.3.2 still captures a natural intuitivetiom of what one might want in a similarity
function, it is not powerful enough to impktronglearning unless is quite large. For example, suppose
the instance space B’ and that the similarity measufé we are considering is just the product of the first
coordinates (i.e., dot-product but ignoring the seconddioate). Assume the distribution is half positive

5In particular, if the domain is large enough, then with higbkmbility there would exist negative exampleand positive
examplesB, C such thatK (A, B) is close to 1 (so they are nearly identical as vectak§)A, C) is close to—1 (so they are
nearly opposite as vectors), and Y&t B, C') > 0.2 (their vectors form an acute angle).
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and half negative, and th&6% of the positive examples are at positioh 1) and25% are at position
(—=1,1), and75% of the negative examples are at positionl, —1) and 25% are at position(1, —1).
ThenK is a weaklyy-good similarity function fory = 1/2, but the best accuracy one can hope for using
K is 75% because that is the accuracy of the Bayes-optimal predieten only the first coordinate.

We can however show that for any> 0, Definition[3.3.2 is enough to imply weak Iearni@%]. In
particular, the following simple algorithm is sufficientweak learn. First, determine if the distribution is
noticeably skewed towards positive or negative exampfeso,iweak-learning is immediate (output all-
positive or all-negative respectively). Otherwise, drasufficiently large sef™ of positive examples and
setS~ of negative examples. Then, for eagftonsidery(z) = 3 [E e+ [K (z,2)] — Epeg-[K (2, 27)]].
Finally, to classifyz, use the following probabilistic prediction rule: clagsif as positive with probability
143 and as negative with probabili=1=. (Notice thaty(z) € [~1,1] and so our algorithm is well
defined.) We can then prove the following result:

Theorem 3.3.2 If K is a weaklyy-good similarity function, then with probability at leakt- 6, the above
algorithm using set$*, S~ of size% In (%) yields a classifier with error at mogt — k.

Proof: First, we assume the algorithm initially draws a sufficigiéirge sample such that if the distri-
bution is skewed with probability mass greater tHjm « on positives or negatives far = 5, then
with probability at least — ¢/2 the algorithm notices the bias and weak-learns immedidgaid if the
distribution is less skewed th%ﬂ: % with probability 1 — 6/2 it does not incorrectly halt in this step).
In the following, then, we may assume the distributiBns less thar(% + «)-skewed, and let us define
P’ to be P reweighted to have probability mass exactl{2 on positive and negative examples. Thus,
Definition[3.3.2 is satisfied foP’ with margin at leasty — 4a.

For eachr definey(z) asiE, [K(z,2')|y(z) = 1] — B, [K(z,2/)|y(2') = —1] and notice that
Definition[3.3.2 implies thaE,. p/ [y(z)vy(z)] > v/2 — 2. Consider now the probabilistic prediction
function ¢ defined agy(x) = 1 with probability 2% and g(x) = —1 with probability =2, we
clearly have that for a fixed,

y(@)(y(x) —~(x))
5 7

Pgr(g(w) #y(r)) =

which then implies thaPr,p 4(g(z) # y(z)) < 3 — v — . Now notice that in our algorithm we
do not usey(x) but an estimate of if(x), and so the last step of the proof is to argue that this is good
enough. To see this, notice first théis large enough so that for any fixedve have

- 0 ¥d
- > L < .
P (b —A@l > § - 20) < 35
This implies
- v 70
_ > 1 _ < 1z
P (P (W@ 5@l 2 -20)) < 2,
SO

~ g g
— > - > — ) <4/2.
1 (P (h@ - 3@ > T -2a) 2 &) <op2
This further implies that with probability at lealst-6/2 we haveE,,..pr [y(z)7(z)] > (1 — &) T 24 >
Z—Z. Finally using a reasoning similar to the one above (conogrthe probabilistic prediction function
based ony(x)), we obtain that with probability at least— 6/2 the error of the probabilistic classifier

based orfj(z) is at most; — 5% on P’, which implies the error oveP is at mostt — 2L +a = 3 — 2L
|
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Figure 3.1: Positives are split equally among upper-left apper-right. Negatives are all in the lower-
right. Fora = 30° (sovy = 1/2) a large fraction of the positive examples (namely H0& in the
upper-right) have a higher dot-product with negative eﬂem@—) than with a random positive example
(% <14 %(—%) = %). However, if we assign the positives in the upper-left a Wweif O, those in the
upper-right a weight of 1, and assign negatives a weigh%,dhen all examples have higher average
weightedsimilarity to those of the same label than to those of the sippdabel, by a gap o}

Returning to Definitioi 3.3]1, Theorelm 3.8.1 implies thakKifis a strongly(e,v)-good similarity
function for smalle and not-too-smally, then it can be used in a natural way for learning. However,
Definition[3.3.1 is not sufficient to capture all good kernehdtions. In particular, Figude_3.1 gives a
simple example irR? where the standard kern&l(z,2') = (z,2’) has a large margin separator (margin
of 1/2) and yet does not satisfy Definition 3.8.1, even{or 0 ande = 0.24.

Notice, however, that if in Figurle_3.1 we simply ignored thusitive examples in the upper-left when
choosingz’, and down-weighted the negative examples a bit, then wednAmeifine. This then motivates
the following intermediate notion of a similarity functiold being good under a weighting functian
over the input space that can downweight certain portiorikaifspace.

Definition 3.3.3 A similarity functionK together with a bounded weighting functianover X (specifi-
cally, w(z') € [0,1] for all 2’ € X) is astrongly (e, v)-good weighted similarity function for a learning
problemP if at least al — e probability mass of examplassatisfy:

Eyoplw(@) K (z,2')ly(z) = y(2')] > Epoplw(@)K(z,2')|y(z) #y@)]+~.  (3.3)

We can view Definitiori_3.313 intuitively as saying that weynéquire most examples be substantially
more similar on average t@presentativepoints of the same class than representativepoints of the
opposite class, where “representativeness” is a scdfe 1h given by the weighting functiom. A pair
(K, w) satisfying Definitiori 3.313 can be used in exactly the sameaga similarity functionk satisfying
Definition[3.3.1, with the exact same proof used in Thedrekiexcept now we view (y) K (z,z’) as
the bounded random variable we plug into Hoeffding bounds).

3.3.3 Main Balcan - Blum’06 Conditions
Unfortunately, Definitiori_3.3]3 requires the designer tastouct bothK” andw, rather than jusf. We
now weaken the requirement to ask only that suehexist in Definition[3.3.4 below:

Definition 3.3.4 (Main Balcan - Blum’06 Definition, BalancedVersion) A similarity functionk is an
(e,7)-good similarity function for a learning problemP if there existsa bounded weighting function
over X (w(z') € [0,1] for all 2/ € X) such that at least & — ¢ probability mass of examplessatisfy:

Eyplw(@)K(z,2')ly(z) = y(2')] > Epplw@)K(z,2')|y(z) #y(@)]+v.  (3.4)
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As mentioned above, the key difference is that whereas innibiefi [3.3.3 one needs the designer
to construct both the similarity functiok” and the weighting functionw, in Definition[3.3.4 we only
require that such a exist but it need not be known a-priori. That is, we ask only thar¢hexist a
large probability mass of “representative” points (a wéig scheme) satisfying Definitidn 3.3.3, but the
designer need not know in advance what that weighting scistimad be.

Definition[3.3.4 can also be stated as requiring that, fazadtl — ¢ of the examples, thelassification
margin

Evp[w(@)K(z,2')ly(z) = y(2')] — Epnp[w(@) K (z,2')|y(z) # y(a')]
= y(2)Eqrp [w(a )y (') K (z,2) /P(y(z'))]

be at leasty, where P(y(z’)) is the marginal probability undeP, i.e. the prior, of the label associated
with /. We will find it more convenient in the following to analyzestead a slight variant, dropping the
factor1/P(y(z")) from the classification margifiL(3.5)—see Definition 3.3.fi@ next Section. Any sim-
ilarity function satisfying Definitiof 3.3]5 also satisfiBgfinition[3.3.4 (by simply multiplyingo(z’) by
P(y(z'))). However, the learning algorithm using Definition 3]3.5lightly simpler, and the connection
to kernels is a bit more direct.

We are now ready to present the main sufficient conditiongfarring with similarity functions im6].
This is essentially a restatement of Definition 3.3.4, diogithe normalization by the label “priors” as
discussed at the end of the preceding Section.

(3.5)

Definition 3.3.5 (Main Balcan - Blum’06 Definition, Margin Violations) A similarity functionk is an
(e,7v)-good similarity function for a learning problemp if there existsa bounded weighting function
overX (w(z') € [0,1] for all 2/ € X) such that at least & — ¢ probability mass of examplessatisfy:

Eyply(@)y(@)w(@)K(z,2)] = 7. (3.6)

We would like to establish that the above condition is indeafficient for learning. l.e. that given an
(e,7v)-good similarity functionK for some learning problen®, and a sufficiently large labeled sample
drawn from P, one can obtain (with high probability) a predictor witharrate arbitrarily close te. To
do so, we will show how to use &g, v)-good similarity functionk’, and a samplé& drawn from P, in
order to construct (with high probability) an explicit mapg ¢° : X — R for all points inX (not only
points in the samplé), such that the mapped daia’® (), y(x)), wherex ~ P, is separated with error
close toe (and in fact also with large margin) in the low-dimensioriakhr spaceR? (Theoreni3.3]3
below). We thereby convert the learning problem into a steshghroblem of learning a linear separator,
and can use standard results on learnability of linear agparto establish learnability of our original
learning problem, and even provide learning guarantees.

What we are doing is actually showing how to use a good siityilamction K (that is not necessarily
a valid kernel) and a samplg drawn from P to construct a valid kernek®, given byks(w,x’) =
(¢%(x), ¢%(2')), that is kernel-good and can thus be used for learning (ItiBd8.3.5 we show that if
K is already a valid kernel, a transformation is not necesaa#y itself is kernel-good). We are therefore
leveraging here the established theory of linear, or ketaaftning in order to obtain learning guarantees
for similarity measures that are not valid kernels.

Interestingly, in Section 3.3.5 we also show that any ketimat is kernel-good is also a good similar-
ity function (though with some degradation of parametef$le suggested notion of “goodness” (Defini-
tion[3.3.%) thus encompasses the standard notion of kgowelness, and extends it also to non-positive-
definite similarity functions.

Theorem 3.3.3Let K be an(e,y)-good similarity function for a learning probler®?. For anyd > 0,
let S = {#1,%s,...,%4} be a sample of sizé = 8log(1/5)/+? drawn fromP. Consider the mapping
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#° : X — R? defined as followsy?,(z) = %z € {1,...,d}. With probability at leastl — &
over the random sampl§, the induced distributiony® (P) in R? has a separator of error at most+ &

at margin at leasty/2.

Proof: Letw : X — [0, 1] be the weighting function achieving (8.6) of Definition Bl3Consider the

linear separatof € R, given byg3; = %\%@) note that/|3|| < 1. We have, for any, y(z):

SRR

d
y(@)(B, 6% (@) = = Y y(@)y(@:)w(E:) K (z, &) (3.7
i=1

The right hand side of thé (3.7) is an empirical average b y(z)y(z')w(2')K (z,2") < 1, and so by
Hoeffding’s inequality, for anyt, and with probability at least — 6% over the choice of, we have:

2log(5l2)

; (3.8)

QU

d
Zy(iﬂ)y(lfi)w(fz')K($>fi) > Epop[y(2)y(a)w(z') K (z,2")] —
i=1

Since the above holds for amywith probability at least — 62 over the choice of, it also holds with
probability at least — 62 over the choice of andS. We can write this as:

Egpd [ Pr (violation)} < 6 (3.9)

where “violation” refers to violating (318). Applying Maok's inequality we get that with probability at
leastl — § over the choice of5, at mosts fraction of points violate[(3]8). Recalling Definition 33 at
most an additionat fraction of the points violatd (3.6). But for the remainiihg- ¢ — ¢ fraction of the

oa( L
points, for which both[(3]8) an@ (3.6) hold, we hayéz)(3, ¢S(x)> >y — 21 gd(62) = v/2, where to

get the last inequality we use= 81log(1/5)/v%. W

We can learn a predictor with error rate at mest eacc Using an(e,y)-good similarity functionk’
as follows. We first draw fromP a sampleS = {%1,%s,...,34} Of sized = (4/7)? In(4/deacc) and

construct the mapping® : X — R? defined as follows:¢°;(z) = %z c {1,...,d}. The
guarantee we have is that with probability at ledst § over the random sampl€, the induced dis-
tribution ¢°(P) in R?, has a separator of error at mest eac/2 at margin at least/2. So, to learn
well, we then draw a new, fresh sample, map it into the transfd space usin@s, and then learn

a linear separator in transformed space usifig the new space. The number of landmarks is domi-

nated by theD (€ + eacd)d/e2ee)) = O((e + €ace)/(v2e2c0)) sample complexity of the linear learning,
yielding the same order sample complexity as in the kerasédor achieving error at most+ eacc
O((€ + €ace)/ (V*€3c0)) -

Unfortunately, the above sample complexity refers to legrby finding a linear separator minimizing
the error over the training sample. This minimization peoblis NP-hardﬂS], and even NP-hard to
approximate@l]. In certain special cases, such as if theded distributiony®(P) happens to be log-
concave, efficient learning algorithms exlsl__[ll47]. Howrews discussed earlier, in the more typical case,
one minimizes thdinge-lossinstead of the number of errors. We therefore consider atsodification
of Definition [3.:3.5 that captures the notion of good similafunctions for the SVM and Perceptron
algorithms as follows:
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Definition 3.3.6 (Main Balcan - Blum’06 Definition, Hinge Loss) A similarity functionK is an (e, )-
good similarity function in hinge loss for a learning problemP if there exists a weighting function
w(z') € [0,1] for all 2/ € X such that

E. |[1 - y(@)g(@)/7)+ | < e (3.10)

whereg(z) = Eyply(2)w(a’) K (z,2")] is the similarity-based prediction made using), and recall
that[1 — z]; = max(0, 1 — z) is the hinge-loss.

In other words, we are asking: on average, by how much, irs wfit, would a random example fail
to satisfy the desired separation between the weighted similarity to examplessadwn label and the
weighted similarity to examples of the other label.

Similarly to Theoreni_3.3]3, we have:

Theorem 3.3.4 Let K be an(e, v)-good similarity function in hinge loss for a learning prebh P. For
anye; > 0and0 < § < ver/4let S = {¥1,7s,...,74} be a sample of sizé = 161og(1/5)/(e17)?
drawn fromP. With probability at least — ¢ over the random sampl8, the induced distributiors” ( P)
in R4, for ¢° as defined in Theorem 3.8.3, has a separator achieving Hggeat most + ¢; at margin
at leasty.

Proof: Letw : X — [0, 1] be the weighting function achieving an expected hinge I6s¢ moste at
margin+y, and denote(x) = E,p[y(2')w(z") K (z, 2")]. Definings as in Theorerh 3.3/3 and following
the same arguments we have that with probability at [easb over the choice o, at most) fraction of
the pointsz violate[3.8. We will only consider such samplgsFor those points that do not violafe (13.8)
we have:

og (&
[1—y(x)(B,6%()) /74 <[1 - y(w)g(w)/v]+%\/ mg%d(‘;) <[ —y(x)g(z)/7]+ +a/2 (3.11)

For points that do violaté (3.8), we will just bound the hingss by the maximum possible hinge-loss:
[1 = y(2)(8,6°(x))/7]+ < 1+ max[y(@)|IBllll6° (@)Il| /7 < 1+1/y <2/ (3.12)
Combining these two cases we can bound the expected hisgedlanarginy:

Eanr[[l — y()(B,6°(x))/7+] Exvp[[l — y(2)g(x)/9]+] + €1/2 + Pr(violation) - (2/v)
Eurp[[l —y(2)g(x)/7]+] +€1/2+ 20/~

Esnp[ll —y(x)g9(@)/7]4] + €1, (3.13)

INIA TN

where the last inequality follows from< e¢;v/4. R

We can learn a predictor with error rate at mest eacc Using an(e,y)-good similarity functionk’
as follows. We first draw fronP a sampleS = {i1, Z,...,Zq} Of sized = 161og(2/9)/(eaccy)? and
K(z,%;)

construct the mapping® : X — R? defined as followsy®, () = =5 i €{1,....d}. The guarantee

we have is that with probability at least- ¢ over the random samplg, the induced distributio® (P)

in R?, has a separator achieving hinge-loss at meskae/2 at marginy. So, to learn well, we can then
use an SVM solver in the®-space to obtain (with probability at leaist- 26) a predictor with error rate
€ + eaccusingO (1/(v%e2,)) examples, and time polynomial i/v,1/eacc andlog(1/9).
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3.3.4 Extensions

We present here a few extensions of our basic setting in@®g8iB.3. For simplicity, we only consider
the margin-violation version of our definitions, but all tlesults here can be easily extended to the hinge
loss case as well.

Combining Multiple Similarity Functions

Suppose that rather than having a single similarity fumctiee were instead givemfunctionsky, . .., K,,
and our hope is that some convex combination of them wilsBafefinition[3.3.5. Is this sufficient to
be able to learn well? (Note that a convex combination oflaiity functions is guaranteed to have range
[—1,1] and so be a legal similarity function.) The following genizaion of Theoreni 3.313 shows that
this is indeed the case, though the margin parameter dropsfdmtor of/n. This result can be viewed
as analogous to the idea of learning a kernel matrix studye ] except that rather than explicitly
learning the best convex combination, we are simply foldiveglearning process into the second stage of
the algorithm.

Theorem 3.3.5 Supposé(y, . .., K, are similarity functions such that some (unknown) convestina-
tion of them ig¢, v)-good. If one draws a s&t = {i1, 7, . .., 24} from P containingd = 8log(1/§)/+>

examples, then with probability at leasst- 5, the mappings® : X — R"? defined ag" (z) = f’j%’,

po () = (Ki(x,&1), ..., K1(2, %), . Kp(2,21), ..., Kn(2,yq))

has the property that the induced distributigrf (P) in R™ has a separator of error at most+ § at
margin at leasty/(2/n).

Proof: Let K = a; K1 +. ..+, K, be an(e, v)-good convex-combination of th;. By Theoreni3.3]3,

had we instead performed the mappigd:: X — R defined ag)® (z) = L\/(g),

then with probabilityl — §, the induced distributiods( P) in R% would have a separator of error at most
€+ ¢ at margln at leasf/2. Let {3 be the vector correspondmg to such a separator in that spame,
let us converti into a vector inR™ by replacing each coordmaﬁ; with then values(alﬂj, .. anﬁj)

Call the resulting vectoB. Notice that by design, for any we have<ﬂ ¢ (x )> —<6 qﬁs( )>

Furthermore||3|| < HﬁH < 1 (the worst case is when exactly one of theis equal to 1 and the rest are
0). Thus, the vectos under distributions® (P) has the similar properties as the vequundergzbs( )
so, using the proof of Theorem 3.B.3 we obtain that that tdedad distributiony®(P) in R"? has a
separator of error at mostt § at margin at leas/(2,/n). R

Note that the above argument actually shows something &bitger than Theorefn 3.3.5. In partic-
ular, if we define = (ayq, ..., a,) to be the mixture vector for the optiméal, then we can replace the
margin boundy/(2y/n) with v/(2||a||v/n). For example, ifx is the uniform mixture, then we just get
the bound in Theorein 3.3.3 of/2.

Also note that if we are in fact using dn -based learning algorithm then we could do much better —
for details on such an approach see Sedtion3.4.6.
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Multi-class Classification

We can naturally extend all our results to multi-class dfasdion. Assume for concreteness that there

arer possible labels, and denote the space of possible labels by{1,--- ,r}; thus, by amulti-class

learning problemwe mean a distributio®® over labeled examplds;, y(x)), wherez € X andy(z) € Y.
For this multi-class setting, Definitidn 3.8.4 seems mosina to extend. Specifically:

Definition 3.3.7 (main, multi-class) A similarity functionk is an (e, v)-good similarity function for a
multi-class learning problen® if there exists a bounded weighting functierover X (w(z’) € [0, 1] for
all 2/ € X) such that at least a — ¢ probability mass of examplessatisfy:

Euplw(@)K(z,2))ly(z) = y(2')] > Ey.plw(@)K(z,2")ly(z) =i+ foralli € Y,i# y(z)

We can then extend the argument in Thedrem B.3.3 and learg sisindard adaptations of linear-separator
algorithms to the multiclass case (e.g., @[111]).

3.3.5 Relationship Between Good Kernels and Good SimilagtMeasures

As discussed earlier, the similarity-based theory of le@ris more general than the traditional kernel-
based theory, since a good similarity function need not kmdid kernel. However, for a similarity function
K that is a valid kernel, it is interesting to understand thati@nship between the learning results guar-
anteed by the two theories. Similar learning guaranteessample complexity bounds can be obtained
if K is either an(e,~y)-good similarity function, or a valid kernel ar{d, v)-kernel-good. In fact, as we
saw in Sectio 3.313, the similarity-based guarantees laned by transforming (using a sample) the
problem of learning with affe, v)-good similarity function to learning with a kernel with essially the
same goodness parameters. This is made more explicit ill@y@.3.11.

In this section we study the relationship between a kern@dtfan being good in the similarity sense
of Definitions[3.3.b anf3.3.6 and good in the kernel sensesiWi& that a valid kernel function that is
good for one notion, is in fact good also for the other notidme qualitative notions of being “good”
are therefore equivalent for valid kernels, and so in thisseehe more general similarity-based notion
subsumes the familiar kernel-based notion.

However, as we will see, the similarity-based margin of avegrnel might be lower than the kernel-
based margin, yielding a possible increase in the samplelesity guarantees if a kernel is used as
a similarity measure. We also show that for a valid kerned, kbrnel-based margin is never smaller
than the similarity-based margin. We provide a tight boundtos possible deterioration of the margin
when switching to the similarity-based notion given by diéfins[3.3.5 and 3.3]6. (Note also that in the
following sectior 3.4 we provide an even better notion of adysimilarity function that provides a better
kernels to similarity translations.)

Specifically, we show that if a valid kernel function is goadthe similarity sense, it is also good in
the standard kernel sense, both for the margin violatioor €ate and for the hinge loss:

Theorem 3.3.6 (A kernel good as a similarity function is als@ood as a kernel) If K is a valid kernel
function, and ige, v)-good similarity for some learning problem, then it is algoy)-kernel-good for the
learning problem. IfK is (e, ~y)-good similarity in hinge loss, then it is alge, )-kernel-good in hinge
loss.

We also show the converse—If a kernel function is good in tmdl sense, it is also good in the
similarity sense, though with some degradation of the margi
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Theorem 3.3.7 (A good kernel is also a good similarity functin—Margin violations) If K is (g, y)-
kernel-good for some learning problem (with determiniklels), then it is alsdeg + €1, %(1 —€0)e1y?)-
good similarity for the learning problem, for ary > 0.

Note that in any useful situatiosy < %

guarantee holds also for the hinge loss:

and so the guaranteed margin is at |e?@t’y2. A similar

Theorem 3.3.8 (A good kernel is also a good similarity functin—Hinge loss) If K is (eg,v)-kernel-
good in hinge loss for learning problem (with determinigéibels), then it is alsdeg + €1, 2¢1v?2)-good
similarity in hinge loss for the learning problem, for aay > 0.

These results establish that treating a kernel as a sityilamction would still enable learning, al-
though with a somewhat increased sample complexity. As we dhe deterioration of the margin in the
above results, which yields an increase in the sample codityplguarantees, is unavoidable:

Theorem 3.3.9 (Tightness, Margin Violations) For any0 < v < \/g and any0 < €1 < % there exists

a learning problem and a kernel functidii, which is(0, v)-kernel-good for the learning problem, but
which is only(e;, 4e1v?)-good similarity. That is, it is note;, v')-good similarity for anyy’ > 4e;~2.

Theorem 3.3.10 (Tightness, Hinge Losslror any 0 < v < \/g and any0 < ¢ < % there exists

a learning problem and a kernel functidid, which is(0,vy)-kernel-good in hinge loss for the learning
problem, but which is onlye;, 32¢1+2)-good similarity in hinge loss.

To prove Theorerh 3.3.6 we will show, for any weight functian,explicit low-norm linear predictor
3 (in the implied Hilbert space), with equivalent behavioo drove Theoremis_3.3.7 ahd 313.8, we will
consider a kernel function that (s, v)-kernel-good and show that it is also good as a similarityfiom.
We will first treat goodness in hinge-loss and prove Thedrér@3which can be viewed as a more general
result. This will be done using the representation of thinogltSVM solution in terms of the dual optimal
solution. We then prove Theordm 3.13.7 in terms of the marigilation error rate, by using the hinge-loss
as a bound on the error rate. To prove Theoremsl3.3.B andiBv@elpresent an explicit learning problem
and kernel.

Transforming a Good Similarity Function to a Good Kernel

Before proving the above Theorems, we briefly return to thepimay of Theorend 3.313 and explicitly
present it as a mapping between a good similarity functiahaagood kernel:

Corollary 3.3.11 (A good similarity function can be transfamed to a good kernel) If K is an (e, v)-
good similarity function for some learning probleR) then for any0 < § < 1, given a sample of size
(8/92)log(1/5) drawn from P, we can construct, with probability at least— § over the draw ofS, a
valid kernel K* that is (e + 6, /2)-kernel good forP.

If K is a (¢,7)-good similarity function in hinge-loss for some learninglgem P, then for any
€1 > 0and0 < & < vep /4, given a sample of sizel6log(1/8)/(e17)? drawn fromP, we can construct,
with probability at leastl — ¢ over the draw of5, a valid kernelKS that is (e + €1, v)-kernel good forP.

Proof: Let K¥(z,2) = (¢%(z),¢°(2’)) where¢® is the transformation of Theoreris 313.3 &nd 3.3.4.
|

From this statement, it is clear that kernel-based learguayantees apply also to learning with a good
similarity function, essentially with the same parameters
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It is important to understand that the result of Corolla@.B1 is of a very different nature than the
results of Theorems 3.3.6=3.3110. The claim here is notalwmtod similarity functioris a good kernel
— it can't be if it is not positive semi-definite. But, given aad similarity function we can create a good
kernel. This transformation @istribution-dependent&nd can be calculated using a samgle

Proof of Theorem[3.3.6

Consider a similarity functiork that is a valid kernel, i.eK (x,2') = (¢(z), ¢(x’)) for some mapping
¢ of x to a Hilbert spacé{. For any input distribution and any valid weighting x) of the inputs (i.e.
0 < w(z) < 1), we will construct a linear predictat,, € H, with ||3,,|| < 1, such that similarity-based
predictions usinguv are the same as the linear predictions made Wjth

Define the following linear predictas,, € H:

Buw = By [y(a")w(a")g(a")].

The predictors,, has norm at most:

1Bull = [Ear [y(z")w(z")d(@)] || < max|y(@)w(z")d(a")]]

< max||¢(z)|] = max /K (2/,2") <1

where the second inequality follows from(z')|, |y(z')| < 1.
The predictions made hy,, are:

(Bu, ¢(z)) = (Ew[y(ahw(z)o(z)], ¢(x))
= Ex[y(@)w(@) (o), ¢())] = Ew[y(a)w(z") K (z,2")]

That is, usings,, is the same as using similarity-based prediction with In particular, if the margin
violation rate, as well as the hinge loss, with respect toraaygin-, is the same for predictions made
using eitherw or ,,. This is enough to establish Theorém 3.3.6x]1fis (¢, y)-good (perhaps for to the
hinge-loss), there exists some valid weightinghe yields margin violation error rate (resp. hinge loss)
at moste with respect to margin, and sog,, yields the same margin violation (resp. hinge loss) with
respect to the same margin, establishigs (e, v)-kernel-good (resp. for the hinge loss).

Proof of Theorem[3.3.8: Guarantee on the Hinge Loss

Recall that we are considering only learning problems whiggdabely is a deterministic function of.
For simplicity of presentation, we first consider finite dete distributions, where:

Pr(zi,yi) = pi (3.14)

fori=1...n,with)> ", p; =1andx; # z; fori # j.

Let K be any kernel function that i&g,v)-kernel good in hinge loss.Let be the implied feature
mapping and denoté; = ¢(z;). Consider the following weighted-SVM quadratic optimipatproblem
with regularization parameter':

minimize 2{16]° + €' pilt — yi(3, 00 (3.15)
i=1
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The dual of this problem, with dual variables, is:

.. 1
maximize Z a;— = Z yiyjoios K (xi, x5)
~ 24 (3.16)
subjectto 0 < a; < Cp;

There is no duality gap, and furthermore the primal optimgircan be expressed in terms of the dual
optimuma’™®: 5* = Y. afyip;.

Since K is (e, v)-kernel-good in hinge-loss, there exists a predi¢tgs|| = 1 with average-hinge
losse relative to marginy. The primal optimuns* of (3.18), being the optimum solution, then satisfies:

311+ C Sl it 0l < gl +C Sl w5t s

1 1 1
- W + CE [[ <;ﬂo7¢($)>]+} 272 +Cey (3.17)

Since both terms on the left hand side are non-negative, @atiem is bounded by the right hand side,
and in particular:

+ Ceo (3.18)

1
Czi:pi[l —yi(B, di)]+ < 2,2

Dividing by C we get a bound on the average hinge-loss of the predittarelative to a margin of one:

E[[1 —y(B", o(2))]+] < (3.19)

1
— 2Cy 202 *
We now use the fact that can be written ag* = >, a;y;¢; with 0 < of < Cp;. Using the weights

w; = w(z;) = o /(Cpi) <1 (3.20)
we have for every, y:
YEuy [w(a')y K (z,2')] = ysz-wm)yz-K(w,wi) (3.21)
= ysza yilK (z,2:)/(Cps)
= yZa yi{¢i d(2))/C = y(B°, ¢(x))/C
Multiplying by €' and using[{3119):
Eoy[[1— CyBay [w(a)y' K (2,2")] |1 ] = Exy[[1 - y(68", ¢(2)) ]+ ] < ﬁ +e (322

This holds for anyC', and describes the average hinge-loss relative to maygih To get an average
hinge-loss of( + ¢, we setC' = 1/(2¢;7?) and get:

Esy [ [1—yEy [w(m’)y/K(x, x/)] /(2e17%) ]+] <e€+e (3.23)

This establishes that is (g + €1, 2¢;7?)-good similarity in hinge-loss.
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Non-discrete distributions

The same arguments apply also in the general (not necgsdiadtete) case, except that this time, instead
of a fairly standard (weighted) SVM problem, we must dealhvat variational optimization problem,
where the optimization variable is a random variable (ationcfrom the sample space to the reals). We
will present the dualization in detail.

We consider the primal objective

minimize || + OB, 4[[1 ~ y(5, )] (3.24)

where the expectation is w.r.t. the distributiéh with ¢ = ¢(z) here and throughout the rest of this
section. We will rewrite this objective using explicit skadn the form of a random variablg which will
be a variational optimization variable:
minimize %||[3||2 + CE[g]
subject to Pr(1 — y(B,¢) — £ <0) =1 (3.25)
Pr(¢>0)=1

In the rest of this section all our constraints will impligibe required to hold with probability one. We
will now introduce the dual variational optimization vasia «, also a random variable over the same
sample space, and write the problem as a saddle problem:

min ¢ max, 7161° + CElE] + Efa(1 — y(5,¢) — &)

subjectto £ >0 a >0

(3.26)

Note that this choice of Lagrangian is a bit different tha@tiore standard Lagrangian leading[fo (8.16).
Convexity and the existence of a feasible point in the duakior allows us to change the order of max-
imization and minimization without changing the value of toroblem, even in the infinite case [136].

Rearranging terms we obtaining the equivalent problem:

max, ming,e 5/16% — (Elayd], 5) + EIE(C — )] + Ela]

subjectto £ >0, a>0

(3.27)

Similarly to the finite case, we see that the minimum of theimimation problem is obtained when
B = Elay¢] and that it is finite whem < C almost surely, yielding the dual:

1
imizeE __E 'K /
maximizeE[«| 5 [ayay (z,z )] (3.28)
subjectto 0 < a < C

where(z,y, o) and(z’, 3/, o) are two independent draws from the same distribution. Tinegboptimum
can be expressed 8% = E[a*y¢|, wherea* is the dual optimum. We can now apply the same arguments

as in [3.17)[(3.18) to g€t (3.119). Using the weight mapping
w(z) =Ela*|z] /C <1 (3.29)
we have for every, y:
YEu y [w(@ )y K (x,2)] = y(Ew y o [@'y2'],2)/C = y(B*, ¢(2))/C. (3.30)
From here we can already get(3.22) and setfing 1/(2¢1+%) we get[3:2B), which establishes Theorem
[3.3.8 for any learning problem (with deterministic labels)
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Proof of Theorem[3.3.7: Guarantee on Margin Violations

We will now turn to guarantees on similarity-goodness wikpect to the margin violation error-rate.
We base these on the results for goodness in hinge loss, tirtgnge loss as a bound on the margin
violation error-rate. In particular, a violation of margjri2 implies a hinge-loss at marginof at Ieast%.
Therefore, twice the average hinge-loss at matgis an upper bound on the margin violation error rate
at marginy/2.

The kernel-separable case, kg= 0, is simpler, and we consider it first. Having no margin viaas
implies zero hinge loss. And so if a kernglis (0, v)-kernel-good, it is als@0, v)-kernel-good in hinge
loss, and by Theorei 3.3.8 it 8, /2, 2(¢1 /2)7?)-good similarity in hinge loss. Now, for any > 0, by
bounding the margir%elfy2 error-rate by the;y? average hinge losss is (e, %eyyz)—good similarity,
establishing Theorefn 3.3.7 for the cage= 0.

We now return to the non-separable case, and consider al kKertteat is (¢, v)-kernel-good, with
some non-zero error-ratg. Since we cannot bound the hinge loss in terms of the maiiglations, we
will instead consider a modified distribution where the nrasgolations are removed.

Let 5* be the linear classifier achieving margin violation error-rate with respect to margini.e.
such thaPr(y(5*,z) > v) > 1—¢y. We will consider a distribution which is conditioned 95, z) >
~. We denote this event @x(z) (recall thaty is a deterministic function of). The kernelK is obviously
(0,~)-kernel-good, and so by the arguments above éd§p%ew2)-good similarity, on the conditional
distribution. Letw be the weight mapping achieving

Ezr/(yEx/7y/ [w(w')y/K(x,x’)\OK(w’)] < ’yl]OK(x)) < e, (3.31)

wherey; = 1172, and setw(z) = 0 whenok(z) does not hold. We have:

Pr(yEary [wa)y' K (z,2)] < (1 - e)m)
< Pr(notoK(x)) + Pr(0K(w) )Pr( yEuy [w(e)y' K (@.e)] < (1= o) | oK(a) )
= e+ l—eo)xP’g(y(l—eo)Ex/,yr [w(z")y' K (z,2")|ok(z)] < (1—€p)y1|0K())

— c0)Pr(yEur,y [w(a)y K (2,2') 0K(2)] < 1lok(a))

1 —ep)er <eg+ € (3.32)

(

= e+ (1
< e+ (
(

establishing thatk” is (eg + €1,71)-good similarity for the original (unconditioned) distution, thus
yielding Theoreni 3.3]7.

Tightness

We now turn to proving of Theorenis 3.8.9 dnd 3.8.10. This isedoy presenting a specific distribution
P and kernel in which the guarantees hold tightly.
Consider the standard Euclidean inner-product and alision on four labeled points i3, given

by:
n=ErV1I=292), m=1, plzé—e
va=(1,-7V1-292), =1 p=e
w3= (=11 VI=292), ys=—1, py=e
wﬁ‘:(_% = \/1_7272)7 Ys=—1, ps= %—6
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for some (smallp < v < \/g and (small) probability) < e < % The four points are all on the unit
sphere (i.e}|z;|| = 1 and soK (x;, ;) = (x;,x;) < 1), and are clearly separated By= (1,0,0) with a

margin ofy. The standard inner-product kernel is therefgrey)-kernel-good on this distribution.

Proof of Theorem[3.3.9: Tightness for Margin-Violations

We will show that when this kernel (the standard inner prodesnel in R?) is used as a similarity
function, the best margin that can be obtained on all fountgpi.e. on at least — ¢ probability mass of
examples, iSey?.

Consider the classification margin on paintwith weightsw (denotew; = w(z;)):

Efw(z)yK (22, 7)]
1

= (5 —9w(y* =7" 4+ (1-2%)) + ews(2y” + (1 = 29%))
—ews(~27 + (1= 27) = (5 — Jun(—* +7° + (1~ 29%))
= ((% —€)(wy; —wy) + €(we — w3)> (1 —29%) + 2¢(ws + w3)y? (3.33)

If the first term is positive, we can consider the symmetricudation

1

—E[w(z)yK (z3,2)] = — <(§ —€)(w1 — wy) + e(wy — w3)> (1 —29%) + 2¢(wo + w3)y?

in which the first term is negated. One of the above marging thasefore be at most
2¢(wo 4+ w3)y? < 4ey? (3.34)

This establishes Theordm 3.3.9.

Proof of Theorem[3.3.10: Tightness for the Hinge Loss

In the above example, suppose we would like to get an aveliage-toss relative to margisy, of at most
€1:
Eoy[[1—yEwy [w(@ )y K(z,2)]/nls] <a (3.35)

Following the arguments above, equatibn (B.34) can be wskdund the hinge-loss on at least one of the
pointsx, or x3, which, multiplied by the probability of the point, is a bound on the average hinge loss:

Evy[ 11— yEwy [w@ )y K(z,2)] /11 ] = e(1 —dey® /) (3.36)

and so to get an an average hinge-loss of at mose must have:

4ev?

1—¢€/e

7 < (3.37)

For any target hinge-loss, consider a distribution with = 2¢;, in which case we get that the maximum
margin attaining average hinge-lossis v; = 16¢;72, even though we can get a hinge loss of zero at
margin-~y using a kernel. This establishes Theofem 3]3.10.
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Note: One might object that the example used in Theorlems|3.3.8.80H13s a bit artificial, sincé& has
marginO(~?) in the similarity sense just because- 4y? < K (x;,z;) < 1. Normalizing K to [—1, 1]
we would obtain a similarity function that has margni1). However, this “problem” can be simply fixed
by adding the symmetric points on the lower semi-sphere:

(7, =V 1 =292), ys =1, p5=1—e
(Vo= =V1=29%), we=1, ps=c¢
7= (77 -V1-29%), yr=-1 pr=c¢
vy = (71— —VI-29), gs= 1 ps=g e

4
and by changing; = % —eandpy = % — e. The classification margins ary andxzs are now (compare

with (3.33)):

Elw(z)yK (z2,z)] = <(i —€)(w1 —wy — ws + wg) + €(wy — w3z — we + w7)> (1—27%)
+ 2e(wy + w3 + wg + w7)72
—Elw(x)yK (z3,2)] = — <(i —€)(w) —wg — ws + wg) + €(wy —ws — we + w7)> (1—29%)

+ 2¢e(wq + w3 + wg + w7)72

One of the above classification margins must therefore beoat 2a(ws + w3 + we + wr)y? < 8evy?.
And so, even though the similarity is “normalized”, and(s~)-kernel-good, it is only(e, 8¢y?)-good as

a similarity function. Proceeding as in the proof of Theof@®.10 establishes the modified example is
also only(e, 64ey2)-good in hinge loss.

Probabilistic Labels

So far, we have considered only learning problems whereatiedy) is a deterministic function of. Here,
we discuss the necessary modifications to extend our thésmyt@noisy learning problems, where the
same pointr might be associated with both positive and negative labélspositive probabilities.

Although the learning guarantees are valid also for noigynieg problems, a kernel that is kernel-
good for a noisy learning problem might not be good as a siityilunction for this learning problem. To
amend this, the definition of a good similarity function miistcorrected, allowing the weights to depend
not only on the point: but also on the labe}:
Definition 3.3.8 (Main, Margin Violations, Corrected for Noisy Problems) A similarity functionk is
an (e, v)-good similarity function for a learning problemp if there existsa bounded weighting function
wover X x {—1,+1} (w(a’,y’) € [0,1] for all 2/ € X,y € {—1,+1}) such that at least & — ¢
probability mass of examples y satisfy:

Em’,y’NP[yy,w(x,> y,)K(l', ;L'/)] > - (338)

Itis easy to verify that Theorem 3.3.3 can be extended alfus@orrected definition. The same mapping
#° can be used, with; = J,w(&;, 7;), whereg; is the training label of example Definition[3.3.6 and
Theoreni 3.3 can be extended in a similar way.

With these modified definitions, Theorems 313.7 land B.3.8nekalso to noisy learning problems. In
the proof of Theorerh 3.3.8, two of the points, z; might be identical, but have different labe)s =
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1,y; = —1 associated with them. This might lead to two different wesgh, w; for the same point. But
sincew is now allowed to depend also on the label, this does not ppsetdem. In the non-discrete case,
this corresponds to defining the weight as:

w(z,y) = Ela”|z,y] / C. (3.39)

3.4 Learning with More General Similarity Functions: A Bett er Definition

We develop here a new notion of a good similarity functiort ttaadens the Balcan - Blum’06 notidﬂZG]
presented in Sectidn 3.3 while still guaranteeing leatitabiAs with the Balcan - Blum’06 notion, this
new definition talks in terms of natural similarity-basedperties and does not require positive semi-
definiteness or reference to implicit spaces. However,rtéig notion improves on the previous Balcan -
Blum’06 definition in two important respects.

First, this new notion provides a better kernel-to-sinitijatranslation. Any large-margin kernel func-
tion is a good similarity function under the new definitiomdawhile we still incur some loss in the
parameters, this loss is much smaller than under the priomitien, especially in terms of the final la-
beled sample-complexity bounds. In particular, when uaiaglid kernel function as a similarity function,
a substantial portion of the previous sample-complexityrtsbcan be transferred over to merely a need
for unlabeled examples.

Second, we show that the new definition allows for good siityidunctions to exist for concept
classes for which there i good kernel. In particular, for any concept cl&dsand sufficiently uncon-
centrated distributiorD, we show there exists a similarity function under our dabnitwith parameters
yielding a labeled sample complexity bound@@ log |C'|) to achieve erroe, matching the ideal sample
complexity for a generic hypothesis class. In fact, we algered this result to classes of finite VC-
dimension rather than finite cardinality. In contrast, wevshhere exist classe§ such that under the
uniform distribution over the instance space, there is maédewith margin8/\/@ forall f € C' eveniif
one allowsD.5 average hinge-loss. Thus, the margin-based guaranteargieseaomplexity for learning
such classes with kernels ¥ |C|). This extends work o andj_L_].llO] who give hardness reswith
comparable margin bounds, but at much lower error ra] [RBbvide lower bounds for kernels with
similar error rates, but their results hold only for regresqnot hinge loss). Note that given access to
unlabeled data, any similarity function under the BalcanunB06 definition @5] can be converted to
a kernel function with approximately the same parametetsisTour lower bound for kernel functions
applies to that definition as well. These results establigamin the representational power of similarity
functions under our new definition relative to the represémmal power of either kernels or similarity
functions under the old definition.

Both this new definition and the Balcan - Blum’'06 definitiore drxased on the idea of a similarity
function being good for a learning problem if there existsoa-negligible subseR of “representative
points” such that most examplesare on average more similar to the representative pointseaf dwn
label than to the representative points of the other lab@kr(ally, the “representativeness” of an example
may be given by a weight between 0 and 1 and viewed as prodtabidir fractional.) However, the
previous Balcan - Blum’06 definition combined the two quiesi of interest—the probability mass of
representative points and the gap in average similaritggioesentative points of each label—into a single
margin parameter. The new notion keeps these quantitidealjsvhich turns out to make a substantial
difference both in terms of broadness of applicability andarms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled lsacgpnplexities: while the total num-
ber of examples needed depends polynomially on the two tjiesnof interest, the number of labeled
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examples will turn out to depend only logarithmically on f®bability mass of the representative set
and therefore may be much smaller under the new definitiors iFtespecially beneficial in situations as
described in Chaptéll 2 in which unlabeled data is plentitullabeled data is scarce, or the distribution
is known and so unlabeled data is free. We discuss in dewitetation to the model in Chaptelr 2 in

Sectio 3.b.

Another way to view the distinction between the two notiofssimilarity is that we now require
good predictions using a weight function with expectationded byl, rather than supremum bounded
by 1: compare the old Definition 3.3.5 and the variant of the nefindi®n given as Definitiod_3.414.
(We do in fact still have a bound on the supremum which is maogelr, but this bound only affects the
labeled sampled complexity logarithmically.) In Theoremd.B3 we make the connection between the
two versions of the new definition explicit.

Conditioning on a subset of representative points, or edemily bounding the expectation of the
weight function, allows us to base our learnability resolsL,-regularized linear learning. The actual
learning rule we get, given in Equatidn (3149), is very similand even identical, to learning rules sug-

ested by various authors and commonly used in practice atexnative to Support Vector Machines
E@@JJLBVE@Z] Here we give a firm theoretical bisthis learning rule, with explicit learning
guarantees, and relate it to simple and intuitive propedfahe similarity function or kernel used (see the
discussion at the end of Section 314.2).

3.4.1 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity dtians generalizing the main definitions
in Section3.B (Definitions_3.3.5 afd 3.13.6) that we proveehawnumber of important advantages. For
simplicity in presentation, for most of this section we withnsider only learning problems where the
labely is a deterministic function af. For such learning problems, we can uge) to denote the label
of point .

In the Definitiond3.3]5 and3.3.6 in sectibn]3.3, a weigli’) € [0,1] was used in defining the
quantity of interest, namel¥, ... p[y'w(z') K (x,2")]. Here, it will instead be more convenient to
think of w(z) as the expected value of an indicator random varidtile) € {0,1} where we will view
the (probabilistic) sefz : R(z) = 1} as a set of “representative points”. Formally, for each X, R(z)
is a discrete random variable ovf, 1} and we will then be sampling from the joint distribution oéth
form

Pr(z,y,r) = Pr(z,y) Pr(R(z) = r) (3.40)

in the discrete case or
p(z,y,7) = p(x,y) Pr(R(z) =r) (3.41)

in the continuous case, whepas a probability density function aP.
Our new definition is now as follows.

Definition 3.4.1 (Main, Margin Violations) A similarity functionk is an(e, v, 7)-good similarity func-
tion for a learning problemP if there existsan extended distributiof?(z, y, ) defined as in’3.40 ¢r3.41
such that the following conditions hold:

1. A1l — e probability mass of examplés, y) ~ P satisfy
E(:B’,y’,r’)NP[yy,K(x7x,) ’ = 1] > (3.42)

2. Pr(x/7y/,r/) [7“/ = 1] > T.
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If the representative sek is 50/50 positive and negative (i.eBr(, [y = 1|r' = 1] = 1/2), we
can interpret the condition as stating that most examplase on averagey more similar to random
representative examplesof their own label than to random representative examples$ the other label.
The second condition is that at least &action of the points should be representative.

We also consider a hinge-loss version of the definition:

Definition 3.4.2 (Main, Hinge Loss) A similarity functionk is an (e, v, 7)-good similarity function in
hinge lossfor a learning problemP if there existsan extended distributio® (z, y, ) defined as ih"3.40
or[3.41 such that the following conditions hold:

1. We have

Ey~p [ [1—yg(x)/7]+ | <e (3.43)
whereg(z) = E(yr o o[y K (2, 2) [ ' = 1].
2. Pr($/7y/’r/) [T‘, = 1] > T,

It is not hard to see that af&,~)-good similarity function under Definitioris 3.3.5 alnd 3] &6also
an (e, v,v)-good similarity function under Definitioris 3.4.1 dnd 3l4&spectively. In the reverse direc-
tion, an(e, v, 7)-good similarity function under Definitioris 3.4.1 and 3l4&2n (e, y7)-good similarity
function under Definitions_3.3.5 and 3.B.6 (respectiveBpecifically:

Theorem 3.4.11f K is an (e,~)-good similarity function under Definitiods_3.8.5 and 3]3iéen K is
also an(e, v, v)-good similarity function under Definitiois 3.#.1 dnd 3l4&spectively.

Proof: If we setPr(, v, (r' = 1 | 2') = w(a'), we get that in order for any point to fulfill equation
(3.8), we must have

Pr(w’,y’,r’) (T/ - 1) =E, [w(x/)] > E(w’,y’)[yy/w(x/)K(x7 .Z'/)] > 7.
Furthermore, for any, y for which (3.8) is satisfied, we have

E(x’,y’,r’) [yy/K((L', $/) ’T‘/ = 1] = E( " /) [yy/K(
E(:c’,y’) [yy/K( )

v

Theorem 3.4.21f K is an (e, ~y, 7)-good similarity function under Definitiofis 3.4.1 and 3l4t®nK is
an (e, y7)-good similarity function under Definitions 3.8.5 dnd 3l@&spectively).

Proof: Settingw(z’) = Pr(, . (" = 1| 2’) we have for anye, y satisfying [3.4R) that
E(m’,y’) [yy/K(x7 x/)w(x/)] = E(:v’,y’,r’)[yy/K(x7 2y = 1]
= By sy Kz, o )|r' =1 Pri (' =1) >~

A similar calculation establishes the correspondenceii@hinge loss. B

As we will see, under both old and new definitions, the numbbéalzeled samples required for learn-
ing grows asl /2. The key distinction between them is that we introduce a navarpeter,r, that
primarily affects the number afnlabeledexamples required. This decoupling of the number of labeled
and unlabeled examples enables us to handle a wider vafisifpiations with an improved labeled sam-
ple complexity. In particular, in translating from a kerela similarity function, we will find that much
of the loss can now be placed into thgarameter.
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In the following we prove three types of results about thig/ metion of similarity. The first is
that similarity functions satisfying these conditions auéficient for learning (in polynomial time in the
case of Definitior 3.412), with a sample size®@f In(-;)) labeled examples an@(>) unlabeled
examples. This is particularly useful in settings wherabaled data is plentiful and cheap—such settings
are increasingly common in learning applicatioE [_8Ti.| 174di for distribution-specific learning where
unlabeled data may be viewed as free.

The second main theorem we prove is thay classC, over a sufficiently unconcentrated distribu-
tion on examples, has@, 1,1/(2|C|))-good similarity function (under either definition 3.4.1@#4.2),
whereas there exist class€shat have nq0.5,8/+/]C|)-good kernel functions in hinge loss. This pro-
vides a clear separation between the similarity and kerogbms in terms of the parameters controlling
labeled sample complexity. The final main theorem we prowhas any large-margin kernel function
also satisfies our similarity definitions, with substatyidéss loss in the parameters controlling labeled
sample complexity compared to the Balcan - Blum'06 defingio For example, i< is a (0, v)-good
kernel, then it is arfe’, ¢v?)-good similarity function under Definitioris 3.3.5 and 3]3a6d this is tight

], resulting in a sample complexity 61(1/(v*¢%)) to achieve erroe. However, we can shoi is
an(e’,~?2, ¢')-good similarity function under the new definitirlesulting in a sample complexity of only

@(1/("}/46)).

3.4.2 Good Similarity Functions Allow Learning

The basic approach proposed for learning using a similantgtion is similar to that in Sectidn 3.3 and in
[@]. First, a feature space is constructed, consistingnoiarities to randomly chosen landmarks. Then,
a linear predictor is sought in this feature space. Howdgethe previous Balcan - Blum’06 definitions
(Definitions[3.3.b and3.3.6 in Sectibn3.3), we used guaemntor largel.,-margin in this feature space,
whereas under the new definitions we will be using guararakest largel.;-margin in the feature spa@e.

After recalling the notion of arl;-margin and its associated learning guarantee, we firshledia
that, for an(e, v, 7)-good similarity function, the feature map constructemg:@(l/(m%) landmarks
indeed has (with high probability) a lardg -margin separator. Using this result, we then obtain a legrn
guarantee by following the strategy outlined above.

In speaking of.; -margin-y, we refer to separation with a margjrby a unit-L, -norm linear separator,
in a unit-L.,-bounded feature space. Formally, det = — ¢(z), ¢(z) € R, with ||p(z)|| < 1 be a
mapping of the data to édimensional feature space. We say that a linear predictar R?, achieves
error e relative to Li-margin-y if Pr(, ) (y(2){a, ¢(x)) > 7v) > 1 — e (this is the standard margin
constraint) and|«||; = 1.

Given ad-dimensional feature map under which there exists somen@wRk) zero-error linear sepa-

rator with L{-margin-~y, we can with high probability — ¢§ efficiently learn a predictor with error at most

€acc USINgO (% : examples. This can be done using the Winnow algorithm wittaadsard online-

to-batch conversio 6]. If we can only guarantee theterte of a separator with errer> 0 relative

to Ly-margin-y, then a predictor with error + e5cc can be theoretically learned (with high probability
1 — 6) from a sample o%(llog(d/é))/(yzegc ) examples by minimizing the number &f -margin~
violations on the sampl 6].

We are now ready to state the main result enabling learnimgy @®od similarity functions:

®Formally, the translation produces &, v /¢, € ¢)-good similarity function for some < 1. However, smaller values af
only improve the bounds.

" Note that in fact even for the previous Balcan - Blum'06 ddimis we could have used guarantees for lakgemargin
in this feature space; however for the new definitions we eanacessarily use guarantees about ldrgenargin in the feature
space.
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Theorem 3.4.3Let K be an(e,~,7)-good similarity function for a learning problen®. LetS =
{z},x,,..., 2/} be a (potentially unlabeled) sample of

log(2/4)
,}/2
landmarks drawn fronP. Consider the mapping® : X — R¢ defined as followss”,(z) = K (x, x%),

i €{1,...,d}. Then, with probability at least — ¢ over the random samplg, the induced distribution
#°(P) in R? has a separator of error at most+ ¢ relative toL; margin at leasty /2.

Proof: First, note that sincek (=, )| < 1 for all z, we have||¢° (z) |00 < 1.

For each landmarl, let r, be a draw from the distribution given b(x}). Consider the linear
separatora € R4, given bya; = y(z})rl/d; whered; = 3.7 is the number of landmarks with
R(z) = 1. This normalization ensuregy||; = 1.

We have, for any:, y(x):

d= % <10g(2/5) +8

Yo y(@)y (@) riK (z, 2
dq

y(z){a, ¢%(2)) =

This is an empirical average df terms

(3.44)

—1 < y(x)y(@)K(z,2") <1

for which R(z’) = 1. For anyz we can apply Hoeffding’s inequality, and obtain that witllpability at
leastl — 62 /2 over the choice of, we have:

2log(5%)
— o 3.45
> (3.45)

y(z){a, ¢%(2)) = Ep[K (z,2")y(a")y ()| R(z")] —
Since the above holds for amywith probability at least — 42 /2 over S, it also holds with probability
at leastl — §2/2 over the choice of andS. We can write this as:

Eg.pd [ Pr (violation )] < 6%/2 (3.46)

where “violation” refers to violating (3.45). Applying Mianv’s inequality we get that with probability at
leastl — /2 over the choice of, at mostj fraction of points violate[(3.45). Recalling Definition 34
at most an additional fraction of the points violatd (3.42). But for the remainihg ¢ — ¢ fraction of the
points, for which both[(3.45) an@ {342) hold, we have:

2log(§;)
dy
To bound the second term we need an upper boungi pthe number of representative landmarks. The

probability of each of the landmarks being representative is at leaghd so the number of representative
landmarks follows a Binomial distribution, ensuridg > 8log(1/5)/v* with probability at least — 6 /2.

y(@) (o, ¢%(z)) > v — (3.47)

When this happens, we ha\a(%zloiiylz) < ~/2. We get then, that with probability at least- ¢, for at
leastl — ¢ — § of the points:
y(@)(e, 6% (2)) > 7/2. (3.48)
|
For the realizabl¢e = 0) case, we obtain:
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Corollary 3.4.4 If K is a(0,,7)-good similarity function then with high probability we cafficiently
find a predictor with error at mosiacc from an unlabeled sample of sidg = (9( ) and from a labeled

sample of sizé; = O(%gi).

Y €acc
Proof: We have proved in Theorem 3.1.3 thatfif is(0,~, 7)-good similarity function, then with high
probability there exists a low-error large-margin (at tea¥ separator in the transformed space under
mapping#®. Thus, all we need now to learn well is to draw a new fresh samplmap it into the
transformed space using’, and then apply a good algorithm for learning linear sepasain the new
space that produces a hypothesis of error at mgstvith high probability. In particular, remember that
the vectora has error at most at L; margin~y/2 over¢° (P), where the mapping® produces examples
of L., norm at mostl. In order to enjoy the better learning guarantees of therabfemcase, we will set
0, sSmall enough so that no bad points appear in the sample.fi8p#yi if we draw

2 log(2/4.)
u — s Gus - — 1 2 m

dy = d(7, 0y, T) 7_<0g( [0u) +8 ~

unlabeled examples then with probability at lelasp,, over the random samplg the induced distribution

#°(P) in R% has a separator of error at mast relative toL; margin at leasty/2. So, if we draw

O(mln (du/5)) new labeled examples then with high probability- 6 ;4 these points are linearly

separable at margi/2, whered ¢, = (:16u6 o2 In (d, /0), wherec; is a constant.

Settingd, = eaccy?76/(c2 ln(l/(eaccwé))) (wherecy is a constant) we get that high probability
1 — §/2 these points are linearly separable at margid in the new feature space. The Corollary now
follows from theL;-margin learning guarantee in the separable case, distessker in the section. B

For the most generdk > 0) case, Theorein 3.4.3 implies that by following our two-stagproach,
first usingd,, = (9( ) unlabeled examples as landmarks in order to constititt), and then using a

fresh sample of sizé, = (9(72?— In du> to learn a low-erroi.;-margin~y separator i (-), we have:

Corollary 3.4.5 If K is a(e,~, 7)-good similarity function then by minimizin; margin violations we

can find a predictor with error at most+ eacc from an unlabeled sample of sidg = (9( ) and from
a labeled sample of sizg = O({;’igm).

The procedure described above, although well defined vaga difficult optimization problem: min-
imizing the number of.;-margin violations. In order to obtain a computationallgctable procedure, we
consider the hinge-loss instead of the margin error. In tufeaspace withj|¢(z)||c < 1 as above,
we say that a unif>;-norm predictora, [[1—y(x){a, d(x))/v]+]
relative to L;-margin~y. Now, if we know there is some (unknown) predictor with hifigss ¢ relative
L1 marginfy, than a predictor with errar + e5cc can be learned (with high probability) from a sample of

log d/(v )) examples by minimizing the empirical average hinge-losstive to L;-margin~ on
the samplelIﬂG]

Before proceeding to discussing the optimization problémiaimizing the average hinge-loss rela-
tive to a fixedL-margin, let us establish the analogue of Thedrem B.4.hhinge-loss:

Theorem 3.4.6 Assume thakS is an (e, 7, 7)-good similarity function in hinge-loss for a learning prob
lem P. Foranye; > 0and0 < A < vye /4 let S = {Z1,Z9,...,24} be a sample of sizé =

2 (log(2/6) + 161log(2/6)/(€17)?) drawn fromP. With probability at leasl — 4 over the random sample

S, the induced distributior® (P) in R?, for ¢° as defined in Theoreln 3.4.3, has a separator achieving
hinge-loss at most+ ¢; at margin-y.
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Proof: We use the same construction as in Thedrem 3.488.

Corollary 3.4.7 K is an (e,,7)-good similarity function in hinge loss then we can effidiefiind a
predictor with error at mosk + €5 from an unlabeled sample of sizg = (5( 1 ) and from a

725§cc7—
labeled sample of sizé — (5(1°§ gl)

Y €ace

For the hinge-loss, our two stage procedure boils down tarspthe following optimization problem
W.r.t.

minimize Z 1—Zajy(ﬂfi)K($z,lfj)
= + (3.49)

This is a linear program and can thus be solved in polynonmed,testablishing the efficiency in Corollary
B.4.1.
We can in fact use results i16] to extend Corollary 3.4bit and get a better bound as follows:

Corollary 3.4.8 If K is a (eacc/8, 7, 7)-good similarity function then with high probability we caifi-
ciently find a predictor with error at most,. from an unlabeled sample of sidg = (’N)(,YTlT) and from

a labeled sample of sizg = (5(1°gd“).
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An optimization problem similar to(3.49), though usuallythwthe same set of points used both
as landmarks and as training examples, is actually fairtproonly used as a learning rule in practice
[@@@7] Such a learning rule is typically discussedaa alternative to SVMs. In fac 02]
suggest the Relevance Vector Machine (RVM) as a Bayesiamative to SVMs. The MAP estimate
of the RVM is given by an optimization problem similar fo (3)4though with a loss function different
from the hinge loss (the hinge-loss cannot be obtained ag-kklihood). Similarly, ] suggests
Norm-Penalized Leveraging Procedures as a boostingtigeoach that mimics SVMs. Again, although
the specific loss functions studied @96] are differentrfrthe hinge-loss, the method (with a norm
exponent of 1, as ilﬂbG]’s experiments) otherwise cowadp to a coordinate-descent minimization of
(3.49). In both cases, no learning guarantees are provided.

The motivation for using[(3.49) as an alternative to SVMsssally that theL;-regularization on
« leads to sparsity, and hence to “few support vectors” (atl;ho], who also discusk (3149), argue
for more direct ways of obtaining such sparsity), and alsd the linear prograni (3.49) might be easier
to solve than the SVM quadratic program. However, we are ware of a previous discussion on how
learning using[(3.49) relates to learning using a SVM, oraariing guarantees usirig (3.49) in terms of
properties of the similarity functiol. Guarantees solely in terms of the feature space in whichealke s
low L;-margin ¢° in our notation) are problematic, as this feature space nemged randomly from
data.

In fact, in order to enjoy the SVM guarantees while usingregularization to obtain sparsity, some
authors suggest regularizing both the norm ||«||; of the coefficient vectory (as in [3.49)), and the
norm [|3|| of the corresponding predictgt = > . a;¢(Z;) in the Hilbert space implied by, where
K(z,2') = (¢(x), #(2')), as when using a SVM witlk’ as a kernel [129, 181].

Here, we provide a natural condition on the similarity fumetXK (Definition[3.4.2), that justifies
the learning rule[(3.49). Furthermore, we show (in Sedfigh43 than any similarity function that is
good as a kernel, and can ensure SVM learning, is also goodsiasilarity function and can thus also
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ensure learning using the learning rdle_(3.49) (thoughiplssith some deterioration of the learning
guarantees). These arguments can be used to justifyl (348) alternative to SVMs.

Before concluding this discussion, we would like to mentioat Eb] previously established a rather
different connection between regularizing the norm ||«||; and regularizing the norm of the corre-
sponding predictop in the implied Hilbert spacelﬁlw] considered a hard-nma®VR (Support Vector
Regression Machine, i.e. requiring each prediction to bkiw{y(z) — x) +€)), in the noiseless case
where the mapping — y(x) is in the Hilbert space. In this settinﬁilg] showed thaiedimargin
SVR is equivalent to minimizing the distanaethe implied Hilbert spacéetween the correct mapping
z — y(x) and the predictions — >, a; K (z, %;), with an L, regularization tern|c|[;. However, this
distance between prediction functions is very differeantthe objective in (3.49), and again refers back
to the implied feature space which we are trying to avoid.

3.4.3 Separation Results

In this Section, we show an example of a finite concept classvfich no kernel yields good learning
guarantees when used as a kernel, but for which there dogisaegood similarity function yielding the
optimal sample complexity. That is, we show that some candegses cannot be reasonably represented
by kernels, but can be reasonably represented by simifariigtions.

Specifically, we consider a clags of n pairwise uncorrelated functions. This is a finite class of
cardinality|C| = n, and so if the target belongs (bthenO(% log n) samples are enough for learning a
predictor with errofe.

Indeed, we show here that fanyconcept clasg§’, so long as the distributiof is sufficiently uncon-
centrated, there exists a similarity function that(s1, ﬁ)—good under our definition for every € C.

This yields a (labeled) sample complex@j% log |C|) to achieve errog, matching the ideal sample com-
plexity. In other words, for distribution-specific leargirfwhere unlabeled data may be viewed as free)
and finite classes, there is imdrinsic loss in sample-complexity incurred by choosing to learrsuiailar-

ity functions. In fact, we also extend this result to classigsounded VC-dimension rather than bounded
cardinality.

In contrast, we show that ' is a class of functions that are pairwise uncorrelated with respect to
distribution D, thenno kernel is(e, v)-good in hinge-loss for alf € C even fore = 0.5 andy = 8//n.
This extends work 0@0] who give hardness results watmparable margin bounds, but at a much
lower error rate. Thus, this shows thésen intrinsic loss incurred by using kernels together withigima
bounds, since this results in a sample complexity boundletat2(|C|), rather than the ided@ (log |C|).

We thus demonstrate a gap between the kind of prior knowledgebe represented with kernels
as opposed to general similarity functions and demonsttete similarity functions are strictly more
expressive (up to the degradation in parameters discusskere

Definition 3.4.3 We say that a distributio® over X is a-unconcentrated the probability mass on any
givenz € X is at mosto.

Theorem 3.4.9 For any class finite class of functiord® and for any1/|C|-unconcentrated distribution
D over the instance spac¥, there exists a similarity functio®” that is a (0, 1, ﬁ)—good similarity

function for all f € C.

Proof: LetC = {f1,..., fn}. Now, let us partitionX into n regionsR; of at leastl /(2n) probability
mass each, which we can do sinbeis 1/n-unconcentrated. Finally, defin€(x,z’) for 2’ in R; to be
fi(z) fi(z"). We claim that for this similarity functionR; is a set of “representative points” establishing
margin~y = 1 for targetf;. Specifically,

E[K (z,2) fi(x) fi(z)|2" € R;] = E[f;(x) fi(2) fi(x) fi(z)] = 1.
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SincePr(R;) > -, this implies that under distributioP, K is a(0, 1, 5-)-good similarity function for
all f; e C.
|

Note 1: We can extend this argument to any cl@sof small VC dimension. In particular, for any
distribution D, the clas<”' has are-coverC, of size(1/€)0@/<) whered is the VC-dimension of’ [53].
By Theoren{3.4]9, we can haveg@ 1, 1/|C|)-good similarity function for the covef’., which in turn
implies an(e, 1,1/|C.|)-good similarity function for the original set (even in hangpss sincey = 1).
Plugging in our bound ofC,|, we get ar(e, 1, eo(d/ﬁ))—good similarity function forC'. Thus, the labeled
sample complexity we get for learning with similarity furaets is onlyO((d/€) log(1/¢)), and again there
is nointrinsic loss in sample complexity bounds due to learning with sintyldunctions.

Note 2: The need for the underlying distribution to be unconceattatems from our use of this distri-
bution for both labeled and unlabeled data. We could furthéend our definition of “good similarity
function” to allow for the unlabeled points to come from some other distributidn’ given apriori such
as the uniform distribution over the instance spaceNow, the expectation over’ and the probability
mass ofR would both be with respect t®’, and the generic learning algorithm would draw poinfs
from D’ rather thanD. In this case, we would only nedd’ to be unconcentrated, rather than

We now prove our lower bound for margin-based learning waimkls.

Theorem 3.4.10Let C be a class of: pairwise uncorrelated functions over distributidn. Then, there
is no kernel that for allf € C'is (e, v)-good in hinge-loss even fer= 0.5 andy = 8//n.

Proof: LetC' = {fi,..., fn}. We begin with the basic fourier setdE[_iGQ]. Given twodtions
f andg, define(f, g) = E.[f(z)g(x)] to be their correlation with respect to distributiéh (This is their
inner-product if we viewf as a vector whosgth coordinate isf(x;)[D(x;)]'/2). Because the functions
fi € C are pairwise uncorrelated, we hayg, f;) = 0 for all i # j, and because th§ are boolean
functions we havé f;, f;) = 1 for all i. Thus they form at least part of an orthonormal basis, andrigr
hypothesis: (i.e. any mapping{ — {+1}) we have

S h ) <1
fieC
So, this implies
> [ £i)] < V.
fieC
or equivalently
Efecl(h, fi)] <1/vn. (3.50)

In other words, for any hypothesis if we pick the target at random frod, the expected magnitude
of the correlation betweeh and the target is at mosf \/n.

We now consider the implications of having a good kernel.fg@sp for contradiction that there exists
a kernelK that is(0.5,~)-good in hinge loss for every; € C. What we will show is this implies that
for any f; € C, the expected value dfh, f;)| for arandomlinear separatoh in the ¢-space is greater
than~/8. If we can prove this, then we are done because this implie® tmustexistan h that has
Es.cc|(h, f)| > ~/8, which contradicts equatioh (3150) for= 8//n.

So, we just have to prove the statement about random lingaraters. Letv* denote the vector
in the ¢-space that has hinge-loss at m@st at margin~ for target functionf;. For any exampler,
define~, to be the margin of(x) with respect tow*, and definen, = sin~!(~,) to be the angular
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margin of ¢(x) with respect tow* [ Now, consider choosing a random vectom the ¢-space, where
we associaté:(x) = sign(h - ¢(x)). Since we only care about the absolute val{ie f;)|, and since
(—h, fi) = —(h, f;), it suffices to show thak[(h, f;) | h - w* > 0] > ~/8. We do this as follows.

First, for any example;, we claim that:

Pe{(h(z) # file)|h - w* > 0| =1/2 — ag/. (3.51)

This is because we look at tedimensional plane defined ly(z) andw*, and consider the half-circle
of ||h|| = 1 such thath - w* > 0, then [3.51) is the portion of the half-circle that labgls:) incorrectly.
Thus, we have:

Eplerr(h)|h-w* > 0] = Egz[1/2 — ay /7],

and so, usingh, f;) =1 — 2 err(h), we have:
Ep[(h, fi) | h-w" > 0] = 2E;[a,]/T.

Finally, we just need to relate angular margin and hinge: Idss,, is the hinge-loss of(z), then a
crude bound oy, is

ay > (1 — (7/2)Ly).

Since we assumed thBt,[L,] < 0.5, we have:
E,[az] > v(1 —7/4).

Putting this together we get expected magnitude of coroelaif a random halfspace is at le@st(1 —
w/4)/m > ~/8 as desired, proving the theoremm

An example of a clas§’ satisfying the above conditions is the class of parity fiomst over{0, 1}'&",
which are pairwise uncorrelated with respect to the unifdistribution. Note that the uniform distribu-
tion is 1/|C|-unconcentrated, and thus thesea good similarity function. (In particular, one could use
K(z;,2;) = fj(xi)f;(x;), wheref; is the parity function associated with indicator vector)

We can extend Theorein 3.4110 to classes of large StatiQigaty dimension as well. In particular,
the SQ-dimension of a clags with respect to distributiorD is the sized of the largest set of functions
{f1, fas-., fa} € Csuchthat(f;, f;)| < 1/d3forall i # j [@]. In this case, we just need to adjust
the Fourier analysis part of the argument to handle the featt the functions may not be completely
uncorrelated.

Theorem 3.4.11Let C be a class of functions of SQ-dimensidmith respect to distributionD. Then,
there is no kernel that for alf € C'is (¢, v)-good in hinge-loss even fer= 0.5 and~y = 16/+/d.

Proof: Let fi,..., fs bed functions inC such that|(f;, f;)| < 1/d® for all i # j. We can define

an orthogonal set of functiong, f5,..., f; as follows: letf{ = fi, f; = fo — fi(f2, f1), and in
general letf/ be the portion off; orthogonal to the space spannedfy..., fi_1. (Thatis, f] = f; —
proj( fi,span(f1,..., fi—1)), where “proj” is orthogonal projection.) Since tffieare orthogonal and have

length at most 1, for any boolean functibrwe have) _, (h, f1)? < 1 and therefordg;|(h, f/)] < 1/Vd.
Finally, since(f, f;) < 1/d3 for all i # j, one can show this implies thgt; — f/| < 1/d for all i. So,
E;|(h, fi)] < 1/vd+1/d < 2/+/d. The rest of the argument in the proof of Theofem 314.10 ngvliep
withy = 16/v/d. |

830, i, is a bit larger in magnitude thap,. This works in our favor when the margin is positive, and w&t jueed to be
careful when the margin in negative.
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For example, the class of sizedecision trees ovef0, 1} hasn‘2(°2") pairwise uncorrelated func-
tions over the uniform distribution (in particular, any ipaof log n variables can be written as aanode
decision tree). So, this means we cannot have a kernel withimg/poly(n) for all sizen decision trees
over{0, 1}". However, wecan have a similarity function with margim, though ther parameter (which
controls running time) will be exponentially small.

3.4.4 Relation Between Good Kernels and Good Similarity Fuctions

We start by showing that a kernel good as a similarity fumctalso good as a kernel. Specifically, if
a similarity functionK is indeed a kernel, and it i&,~, 7)-good as a similarity function (possibly in
hinge-loss), than it is als@, v)-good as a kernel (respectively, in hinge loss). That ibpaigh the notion
of a good similarity function is more widely applicable, fittrose similarity functions that are positive
semidefinite, a good similarity function is also a good kérne

Theorem 3.4.121If K is a valid kernel function, and i&, v, 7)-good similarity for some learning prob-
lem, then it is alsde, v)-kernel-good for the learning problem. K is (e, v, 7)-good similarity in hinge
loss, then it is alsde, v)-kernel-good in hinge loss.

Proof: Consider a similarity functiod that is a valid kernel, i.eK (x, 2’) = (¢(x), ¢(2’)) for some
mappinge of x to a Hilbert spacé{. For any input distribution and any probabilistic set ofregentative
points R of the input we will construct a linear predictor, € H, with ||5r|| < 1, such that similarity-
based predictions using are the same as the linear predictions made With

Define the following linear predictgbr € H:

Br=E,,, ., [Vo) =1].

T Ty

The predictorsg has norm at most:

18Il = 1B, 5.0 [y o)’ =1]]] < max|[y(«)g(z")]]

< max||¢p(z')|| = max /K (2/,2') < 1

where the second inequality follows from(z’)| < 1.
The predictions made hyy are:

<6R7 ¢(1‘)> = <E(ac’,y’,r’) [y/(b( /)’T/ =
= E(x’,y’,r’) [y,<¢(
= E@ oy VK2 =1]

That is, usingGy is the same as using similarity-based prediction wWithin particular, the margin
violation rate, as well as the hinge loss, with respect toraaygin-, is the same for predictions made
using eitherR or 3. This is enough to establish Theorem 3.4.12Klfs (¢, v)-good (perhaps for to the
hinge-loss), there exists some valitthat yields margin violation error rate (resp. hinge lossnaste
with respect to margiry, and sa3y yields the same margin violation (resp. hinge loss) witlpeesto the
same margin, establishing is (e, v)-kernel-good (resp. for the hinge loss)i

We now show the converse: if a kernel function is good in thexélesense, it is also good in the
similarity sense, though with some degradation of the marghis degradation is much smaller than the
one incurred previously by the Balcan - Blum’'06 definitiomsid the proofs in@G],mg], anﬂ?;g]).
Specifically, we can show that i is a (0,v)-good kernel, therk is (e, v2, €)-good similarity function
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for any e (formally, it is (¢,7%/c, ec)-good for some: < 1). The proof is based on the following idea.
Say we have a good kernel in hinge loss. Then we can choosepampaipte regularization parameter
and write a “distributional SVM” such that there exists autioin vector that gets a large fraction of the
distribution correct, and moreover, the fraction of supp@ctors is large enough. Any support vector
will then be considered a representative point in our sirtylaview, and the probability that a point is
representative is proportional tg, whereq; is dual variable associated wiil.

To formally prove the desired result, we introduce an inestiate notion of a good similarity function.

Definition 3.4.4 (Intermediate, Margin Violations) A similarity functionk is arelaxed (¢, v, M )-good
similarity function for a learning problempP if there existsa bounded weighting functiow over X,
w(z') € [0, M] forall 2’ € X, E,.plw(z’)] < 1such that at least & — ¢ probability mass of examples
x satisfy:

B, ply(@)y(@ (@)K (@,2)] > 7. (3.52)

Definition 3.4.5 (Intermediate, Hinge Loss)A similarity functionK is arelaxed (e, v, M)-good simi-
larity function in hinge loss for a learning problem? if there exists a weighting functian(z’) € [0, M]
forall 2’ € X, Epp[w(z")] < 1 such that

E. | [1 - y(@)g(@)/7)+ | <. (359)

whereg(z) = E,op[y(2")w(2’) K (x, 2')] is the similarity-based prediction made using-).
These intermediate definitions are closely related to oun wiailarity function definitions: in par-

ticular, if K is a relaxed(e,~y, M)-good similarity function for a learning problei, then it is also an
(e,7/c,c/M)-good similarity function for some < ¢ < 1.

Theorem 3.4.13If K is a relaxed(e,~y, M )-good similarity function for a learning problen®, then
there existsy < ¢ < 1 such thatK is a (¢,7/c, ¢/M)-good similarity function forP. If K is a relaxed
(e,7v, M )-good similarity function in hinge loss faP, then there existy < ¢ < 1 such thatK is a
(e,7/c,c/M)-good similarity function forP.

Proof: First, dividew(x) by M to scale its range t{, 1], soE[w] = ¢/M for somec < 1 and the
margin is nowy/M. Define random indicatoR () to equal 1 with probabilityw(z’) and 0 with proba-
bility 1 — w(z’), and let the extended probabilify over X x Y x {0, 1} be defined as in Equatiohs 3140
or [3.41.

We have

T = Pr(x’,y’,r’)[’r/ = 1] =E, [w(:c')] = C/Ma

and we can rewritd (3.52) as

E(:v’,y’,r’) [y(l’)y/[(T/ = 1)K(1‘, x/)] > ’Y/M (354)
Finally, divide both sides of (3.54) by = ¢/M, producing the conditiondt . ./ . [y(x)y(z") K (z,2") |
r’ = 1] on the LHS and a margin of/c on the RHS. The case of hinge-loss is identicall

Note that since our guarantees fer~, 7)-good similarity functions depend anonly through~?7,
a decrease i and a proportional increase in(as whenc < 1 in Theorem"3.4.73) only improves
the guarantees. However, allowing flexibility in this traffewill make the kernel-to-similarity function
translation much easier.

We will now establish that a similarity functioR™ that is good as a kernel, is also good as a similarity
function in this intermediate sense, and hence, by Thebtdm3 also in our original sense. We begin
by considering goodness in hinge-loss, and will return tognaviolations at the end of the Section.
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Theorem 3.4.141f K is (g, 7)- good kernel in hinge loss for learning problem (with detamistic labels),

then it is also a relaxede + €1, 1+60/261 )-good similarity in hinge loss for the learning problem,
foranye; > 0.

’ 261+60
Proof: We initially only consider finite discrete distributionshere:
Pr(zi,yi) = pi (3.55)
fori=1...n,with> ", p; =1andx; # x; fori # j.
Let K be any kernel function that &, v)-kernel good in hinge loss. Let be the implied feature

mapping and denot®; = ¢(z;). Consider the following weighted-SVM quadratic optimizatproblem
with regularization parameter':

minimize (16112 + 0> pil1 — ui(8. 00)] (3.56)

i=1

The dual of this problem, with dual variables, is:

. 1
maximize Z -5 Z yiyjoioa; K (xi, x5)
Z. - (3.57)

subjectto 0 < a; < Cp;

There is no duality gap, and furthermore the primal optimtircan be expressed in terms of the dual
optimuma’™: 5* = Y. afyi¢;.

Since K is (e, y)-kernel-good in hinge-loss, there exists a predi¢tgs|| = 1 with average-hinge
losse relative to marginy. The primal optimuns* of (3.58), being the optimum solution, then satisfies:

191+ O nll w0l < gl + O nlt—u S0 )

- % +CE [[1 - y<%ﬁo, ¢($)>]+}

Since both terms on the left hand side are non-negative, @atiem is bounded by the right hand side,
and in particular:

1
Czpz I -y 6 ¢z>] <= 7 +C€O
Dividing by C we get a bound on the average hinge-loss of the predittarelative to a margin of one:

Efll = (8", (e la] < g5z + (358)

We now use the fact that* can be written ag* = ) . oy;¢; with 0 < o < Cp;. Let us consider
the weights

w; = w(z;) = o5 /(Ap;) (3.59)

74



*

So,w; < % andE[w] = ZA .. Furthermore, since we have no duality gap we also have

* 1 *
Zai _5"5 H2 HB H2+Czpz —Yi 6 ¢z>]
S0) o < 71;—1-060.

So, we have for every, y:

YEu g [w( )y K (z,2")] = yzpiw(wi)yiK (z, ;)
= yipiafyzK(wvwi)/(Api)
- yia:ym,m»m
— (b)) A
Multiplying by A and using[(3.38):
Eo[[1= AyEry [0l W K@) 1] = Enyl[1= 905" 0(@) }+] < 3575 + <0 (3.60)

Sincew; < %, E[w] = ZZ‘ L,and) ), af < % + Cep, and we wantE[w] < 1, we need to impose

that( + C’eo> < 1. We also wantw; € [0, M], so we also have the constraiﬁtg M. Choosing

M=zt A= 1+E${2€1, andC = 1/(2¢;72) we get an average hinge-lossegf+ ¢; at marginl /A

Esy [ [1—yEq [w(w’)y/K(x, x/)] /(1/A) ]+] <e€+e (3.61)

as desired This establishes thafsifis (g, y)-good kernel in hinge loss then it is also a relaxegl+

€1, m, 261+EO) good similarity in hinge loss, for amst > 0, at least for finite discrete distributions.
To extend the result also to non-discrete dlstrlbutlonscmconsmer the variational “infinite SVM”
problem and apply the same arguments, as in [199] and incBEEE. W

Interpretation The proof of theorerh 3.4.14 shows the following. Assume #ias (0, v)-good kernel.
Assume that is our desired error rate. Then we can choose a regularizpticametet” = 1/(272 - 7)
for the “distributional SVM” (Eq[:3.56) such that there dgia solution vector that gets(a — 7) fraction
of the distribution correct, and moreover, the number ofpsupvectors is at least® - 7 fraction of the
whole distribution; so, we do end up spread out a bit the sup@ztors of the SVM in Eq_3.56. Any
support vector will then be considered a representativatpoiour similarity view, and the probability
that a point is representative is proportionabtgp; .

Note however that if thé( is a good kernel, then there might exist multiple differenbd sets of
representative points ; and the argument in thedrem 3.4dwssthe existence of such a set based on an
SVM argument

We can now use the hinge-loss correspondence to get a sieslalt for the margin-violation defini-
tions:

°In fact, the original proof that a good kernel is a good sinitijafunction in the Balcan - Blum'06 sense which appeared
in [IE] was based on a different Perceptron based argument.

75



Theorem 3.4.151f K is (ep,y)-good kernel for a learning problem (with deterministic ¢&), then it is

also a relaxedeq + 1,2 /2, m)-good similarity function for the learning problem, for aay > 0.

Proof: If K is (0,~)-good as a kernel, it is als@, v) good as a kernel in hinge loss, and we can apply
Theoreni3.4.74 to obtain thaf is also(ey/2, 1, 71)-good, wherey; = 2 andr; = 1/¢;. We can then
bound the number of margin violations @t = -, /2 by half the hinge loss at margim, to obtain the
desired result.

If K is only (e,)-good as a kernel, we follow a similar procedure to that desdrin ] and in
Sectiori 3.B, and consider a distribution conditioned onlyhmse places where there is no error. Returning
to the original distribution, we must scale the weights umhyamount proportional to the probability of
the event we conditioned on (i.e. the probability of no mangblation). This yields the desired bound.

[ |

Note: We also note that if we want our Definitions 3}4.1 and Definif®o4.2 to include the usual notions
of good kernel functions, we do need to allow the et R(x) = 1} to be probabilistic. To see this, let
us consider the following example.

1= (V1-7%7), v =1, plzé—e
o= (—V1-7%7), y=1  p=e
3= (V1-7%-7,), yz=-1, ps=c¢

(

1
T4 = _\/1_ 27_’7)a y4:_1a Py =5 —€

2

for some (smallp < v < \/g and (small) probability) < e < % The four points are all on the unit

sphere (i.e||z;|| = 1 and soK (z;,z;) = (z;, ;) < 1), and are clearly separated py= (0, 1) with a
margin of+. The standard inner-product kernel is theref(irey)-kernel-good on this distribution. Note
however that for any, in order to getK to be a(0,~, 7)-good similarity function we need to alloi
to be probabilistic. This can be easily verified by a caseyaisl Clearly we cannot havg contain just
one point. Also, we cannak be only{z, 24} sincezs will fail to satisfy the condition. Similarly wrt
{z2,x3}. Other cases can be easily verified as well.

One can use the same example in order to show that we needgsmean(z) € [0, 1] rather than
w € {0,1} in the context Definitions"3.3.5 and Definitidns 3]3.6.

3.4.5 Tighteness

We show here that in fact we need to alla¥+?) loss in the kernel to similarity translation. Specifically:

Theorem 3.4.16 (Tightness, Margin Violations)For anye, 7, and~ there exists a learning problem and
a kernel functionk’, which is(0, v)-kernel-good for the learning problem, but which cannot bey, 7)-
good similarity fory > 2+2.

Proof: Assume thatX € R, ford > % Assume that:; has all coordinated except for coordinates
and: which are set tg(x;)y andy/1 — 42, respectively. Itis easy to verify that the standard inpreduct
kernel is a(0, v)-kernel-good on this distribution — it is separatedby= (1,0, ...,0) with a margin of
~v. We also clearly havek (z;,z;)| < 42 for all i # j and K (x,x) = 1 for all z, which implies that
By my~plyy K(z,2') | ' = 1] < 24* for any extended distributio(, y, r). This then implies the
desired conclusion. B
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Theorem 3.4.17 (Tightness, Hinge Losslor anye < % 7, and~ there exists a learning problem and a
kernel functionk’, which is(0, v)-kernel-good in hinge loss for the learning problem, butahhtannot
be (¢,7, 7)-good similarity in hinge loss fof > 442.
Proof: The same example as in Theorem 3.4.16 gives us the desirellisiom.

Letg(x) = By [y K(z,2") | r' = 1] be defined as in Definitidn 3.4.2. We clearly haye) <
[—272,272]. So, clearly fory > 4+% we have[l — y(z)g(z)/F]+ > [1 — y(z)v?/(27?)]+ > 1/2. This
then implies the desired conclusionli

3.4.6 Learning with Multiple Similarity Functions

We consider here as in Section 313.4 the case of learningmithiple similarity functions. Suppose that
rather than having a single similarity function, we weretéasl givenn functions K1, ..., K,,, and our
hope is that some convex combination of them will satisfy mfin[3.4.1. Is this sufficient to be able to
learn well? The following generalization of Theorem 3l 48ws that this is indeed the case. (The analog
of Theoreni 3.4J6 can be derived similarly.)

Theorem 3.4.18 Supposeky, ..., K, are similarity functions such that some (unknown) conver-co
bination of them is(e,y,7)-good. For anyé > 0, let S = {z/,5,...,2)} be a sample of size
d = 1610{(# drawn from P. Consider the mapping® : X — R"? defined as follows®,(x) =
(Ki(z,2h), ..., Kp(z,2h), ..., Ki(z,2)), ..., Kp(x, 2))).

With probability at least — & over the random samplg, the induced distributiom® (P) in R"¢ has
a separator of error at most+ § at Ly, L., margin at leasty/2.

Proof: Let K = o K1 + ... + a, K, be an(€~,’y,7')-900d convex-combination of th&;. By Theorem
[3.4.3, had we instead performed the mappifg: X — R defined as

0% (x) = (K(2,21),...,K(x,i)),

then with probabilityl — 4, the induced distributiods(P) in R% would have a separator of error at most
e+ atmargin at least/2. Let 5 be the vector corresponding to such a separator in that shaee let us
convert/ into a vector inR™ by replacing each coordinatg with then values(a, 55, . . ., a, 3;). Call

the resulting vectoB. Notice that by design, for anywe have<B, ¢S(x)> = <B, gES(:U)>. Furthermore,

UB\ l, = ||3]|:. Thus, the vectop under distributiony® (P) has the same properties as the vectonder
#°(P). This implies the desired resultm

Note that we get significantly better bounds here than ini@e&3.4 and in|E6], since the margin
does not drop by a factor % since we use ai; based learning algorithm.

3.5 Connection to the Semi-Supervised Learning Setting

We discuss here how we can connect the framework in this ehapth the Semi-Supervised Learning
model in Chapt€r]2. The approach here does have a similar fatlee approach in in Chapfér 2, however,
at a technical level, the final guarantees and learning proes are somewhat different.

Given a similarity functionX let us define’'x as the set of functions of the form

fo=Y_ al@)K(, ).

zr, €X
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Clearly, in general’’x, may have infinite capaci Our assumptions on the similarity function, e.g., the
assumption in Definition 3.3.5 can be interpreted as sayiagthe target function has unlabeled errat
margin~, where the unlabeled error rate of a functibnspecified by coefficients(z;) is defined as

errunl(foz) =1- X(fouP) =Pr HEmr[K(w,x')a(m’)H S ’y]

Note that here we can defing f,, z) = 1if |E./[K (z,2")a(z")]| <~ and0 otherwise.

Let us defineP, = P\ (s, )—1 and letd, (f,g) = Prz~p, [f(z) # g(x)]. What we are effectively
doing in Sectio 314 is the following. Given a fixed we extract a4, 6/2)-randomized approximate
cover of C'x with respect to distancé, . -] In particular, the guarantee we get is that for any function
fo with probability at leastt — 6/2, we can find a functiory,, in the cover such that, (fa, fa) < 4.
SinceK is (¢,~y)-good in the sense of Definitidn 3.8.5, it follows that thexésea functionf,, such that
erruni(fo) + erry(fa) < €, where

erry(fa) = Pr [f(z) # y(@)] Pr[x(f, =) = 1].
T~ Py T

Since we extract &), d/2)-randomized approximate cover O, it follows that with high probability, at

leastl — 6/2, we can find a functiorf,, such thaerr(f,) < erryu(fo) + erry(fa) + 0 . Once we have

constructed the randomized approximate cover, we then étensl stage use labeled examples to learn

well.

So, in the case studied in this chapter, the hypothesis spagehave arinfinite capacitybefore
performing the inference. In the training process, in a §itage, we first use unlabeled in order to extract
a much smaller set of functions with the property that witjhiprobability the target is well approximated
by one the functions in the smaller class. In a second stagheveuse labeled examples to learn well.
(Note that our compatibility assumption implies an uppeurimbon the best labeled error we could hope
for.)

For the hinge loss definitidn 3.3.6, we need to consider ara@rding to the distance

dy(f,9) = E[[f(z) — g(x)[ /7.

3.6 Conclusions

The main contribution of this chapter is to develop a thedidgarning with similarity functions—namely,

of when a similarity function is good for a given learning piem—that is more general and in terms of
more tangible quantities than the standard theory of kéunetions. We provide a definition that we show
is both sufficient for learning and satisfied by the usualdarargin notion of a good kernel. Moreover,
the similarity properties we consider do not require rafeecto implicit high-dimensional spaces nor do
they require that the similarity function be positive saifinite. In this way, we provide the first rigorous
explanation showing why a kernel function that is good inldrge-margin sense can also formally be
viewed as a good similarity function, thereby giving formadtification to the standard intuition about
kernels. We prove that our main notion of a “good similaritjdtion” is strictly more powerful than

the traditional notion of a large-margin kernel. This notielies uponL; regularized learning, and our

19By capacity of a set of functions here we mean a distributiofependent notion of dimension of the given set of functions
e.g., VC-dimension.

HGiven a class of function§', we define ar{c, 3)-cover ofC' with respect to distancéto be a probability distribution over
sets of function€ such that for any e C with probability at least — «, the randomly chose@' from the distribution contains
f such thatd(f, f) < 3.
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separation result is related to a separation result betwheanis learnable witll, vs. L, regularization.
In a lower bound of independent interest, we show thatif a class of pairwise uncorrelated functions,
thennokernel is(e, v)-good in hinge-loss for alf € C even fore = 0.5 andy = 8/+/n.

From a practical perspective, the results of Sedtioh 3.33ddsuggest that if< is in fact a valid
kernel, we are probably better off using it as a kernel, ewqani SVM or Perceptron algorithm, rather
than going through the transformation of Secfion 3.3.3. elmw, faced with a non-positive-semidefinite
similarity function (coming from domain experts), the tsésrmation of Theorerh 3.3.3 might well be
useful. In fact, Liao and Noble have used an algorithm sintidethe one we propose in the context of
protein cIassificatioHE‘SZ]. Furthermore, a direct imation of our results is that we can indeed think (in
the design process) of the usefulness of a kernel functiderins of more intuitive, direct properties of
the data in the original representation, without need terref implicit spaces.

Finally, our algorithms (much like those E?,Z]) suggestéumal way to use kernels or other similarity
functions in learning problems for which one also wishesde the native features of the examples. For
instance, consider the problem of classifying a stream otio@nts arriving one at a time. Rather than
running a kernelized learning algorithm, one can simphettiie native features (say the words in the
document) and augment them with additional features reptieg the similarity of the current example
with each of a pre-selected set of initial documents. Onetlean feed the augmented example into a
standard unkernelized online learning algorithm. It wdwgdinteresting to explore this idea further.

It would be interesting to explore whether the lower boundldde extended to covenargin vio-
lations with a constant error rate > 0 rather than only hinge-loss. In addition, it would be pautacly
interesting to develop even broader natural notions of gaadarity functions, that allow for functions
that are not positive-semidefinite and yet provide everebégrnel-to-similarity translations (e.g., not
squaring the margin parameter).

Subsequent Work: Inspired by our work in|E6], Wang et. @12} have recenthablyzed different,
alternative sufficient conditions for learning via pairevifunctions. In particular, Wang et. @12]
analyze unbounded dissimilarity functions which are iramtrto order preserving transformations. They
provide conditions that they prove are sufficient for leagpithough they may not include all good kernel
functions.

On a different line of inquiry, we have used this appro:@] fét analyzing similarity functions in
the context ofclustering(i.e. learning from purelynlabeleddata). Specifically, in@l] we ask what
(stronger) properties would be sufficient to allow one todoice an accurate hypothesis without any
label information at all. We show that if one relaxes the otiye (for example, allows the algorithm
to produce a hierarchical clustering such that some pruisittpse to the correct answer), then one can
define a number of interesting graph-theoretic and ganmmr¢tie properties of similarity functions that
are sufficient to cluster well. We present this in detail iraQtel4.
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Chapter 4

A Discriminative Framework for
Clustering via Similarity Functions

Problems of clustering data from pairwise similarity infation are ubiquitous in Machine Learning and
Computer Science. Theoretical treatments often view timdagity information as ground-truth and then
design algorithms to (approximately) optimize variougpgrdased objective functions. However, in most
applications, this similarity information is merely basau some heuristic; the ground truth is really the
unknown correct clustering of the data points and the real igao achieve low error on the data. In this
work, we develop a theoretical approach to clustering frbis perspective. In particular, motivated by
our work in Chaptel13 that asks “what natural properties afralarity (or kernel) function are sufficient
to be able to learn well?” we ask “what natural properties sihailarity function are sufficient to be able
to clusterwell?”

To study this question we develop a theoretical framewoak tlan be viewed as an analog for clus-
tering of the discriminative models for Supervised clasatfon (i.e., the Statistical Learning Theory
framework and the PAC learning model), where the objectud\strather than being a concept class, is
a class of (concept, similarity function) pairs, or equivdly, aproperty the similarity function should
satisfy with respect to the ground truth clustering. Ouiarobf property is similar to the large margin
property for a kernel or the properties given in Definitiba3.3,[3.3.5[ 3.316, 3.4.1 br 3.4.2 for supervised
learning, though we will need to consider stronger condgisince we have no labeled data.

We then analyze both algorithmic and information theorissties in our model. While quite strong
properties are needed if the goal is to produce a single &jppately-correct clustering, we find that a
number of reasonable properties are sufficient under twaralatelaxations: (a) list clustering: analo-
gous to the notion of list-decoding, the algorithm can pomda small list of clusterings (which a user
can select from) and (b) hierarchical clustering: the atgor's goal is to produce a hierarchy such that
desired clustering is some pruning of this tree (which a gseitd navigate). We develop a notion of
the clustering complexitpf a given property (analogous to the notioncafover examined in Chaptel 2),
that characterizes its information-theoretic usefulrfesglustering. We analyze this quantity for several
natural game-theoretic and learning-theoretic propertes well as design new efficient algorithms that
are able to take advantage of them. Our algorithms for lubieal clustering combine recent learning-
theoretic approaches with linkage-style methods. We disashow our algorithms can be extended to
the inductive case, i.e., by using just a constant-sizedplgmas in property testing. The analysis here
uses regularity-type results @14] ar@[m].
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4.1 Introduction

Clustering is an important problem in the analysis and agpion of data. It has a wide range of ap-
plications in data mining, computer vision and graphics] gane analysis. It has many variants and
formulations and it has been extensively studied in marferdint communities.

In the Algorithms literature, clustering is typically stad by posing some objective function, such
as k-median, min-sum ok-means, and then developin orithms for approximatelynozing this
objective given a data set represented as a weighted g{édﬁé ] That is, the graph is viewed as
“ground truth” and then the goal is to design algorithms ttirojze various objectives over this graph.
However, for most clustering problems such as clusteringuoi@nts by topic or clustering web-search
results by category, ground truth is really the unknown tagEc or true category of each object. The
construction of the weighted graph is just done using soruedie: e.g., cosine-similarity for clustering
documents or a Smith-Waterman score in computational ¢gioltn all these settings, the goal is really
to produce a clustering that is as accurate as possible afathe Alternatively, methods developed both
in the algorithms and in the machine learning literatureléarning mixtures of distributionﬂ[ﬁz.%,
@, 9] explicitly have a notion of ground-truth ckrstwhich they aim to recover. However, such
methods are based on very strong assumptions: they requéraladedding of the objects inf®* such that
the clusters can be viewed as distributions with very spegifiperties (e.g., Gaussian or log-concave). In
many real-world situations (e.g., clustering web-seaedulits by topic, where different users might have
different notions of what a “topic” is) we can only expect artin expert to provide a notion of similarity
between objects that is related in some reasonable ways tteired clustering goal, and not necessarily
an embedding with such strong properties.

In this work, we develop a theoretical study of the clus@grproblem from this perspective. In
particular, motivated by our work on similarity functionsepented in Chaptéd 3 that asks “what nat-
ural erties of a given kernel (or similarity) functidd are sufficient to allow one tearn well?”

é &b 1114)4] we ask the question “what natural gntigs of a pairwise similarity function are
suff|C|ent to allow one telusterwell?” To study this question we develop a theoretical fraworéx which
can be thought of as a discriminative (PAC style) model faswring, though the basic object of study,
rather than a concept class, iprapertyof the similarity functionk in relation to the target concept much
like the types of properties stated in Chajpter 3.

The main difficulty that appears when phrasing the problethisigeneral way is that if one defines
success as outputtirgysingle clusteringhat closely approximates the correct clustering, thenrmezls
to assume very strong conditions on the similarity functibar example, if the function provided by our
expert is extremely good, sdy(z,y) > 1/2 for all pairsz andy that should be in the same cluster, and
K(x,y) < 1/2 for all pairsz andy that should be in different clusters, then we could just tiserecover
the clusters in a trivial way.However, if we just slightly weaken this condition to simpiquire that all
pointsz are more similar to all pointg from their own cluster than to any poingdrom any other clusters,
then this is no longer sufficient to uniquely identify evenaad approximation to the correct answer. For
instance, in the example in Figure .1, there are multiplstekings consistent with this property. Even
if one is told the correct clustering hasclusters, there is no way for an algorithm to tell which of the
two (very different) possible solutions is correct. In factsults of KIeinberg@S] can be viewed as
effectively ruling out a broad class of scale-invariantgadies such as this one as being sufficient for
producing the correct answer.

!Correlation Clustering can be viewed as a relaxation tHatvalsomepairs to fail to satisfy this condition,
and the algorithms of [11, 67, 185, 201] show this is suffictertluster well if the number of pairs that fail is small.
Planted partitiormodelsl] allow for many failures so long as theyupatrandom We will be interested
in much more drastic relaxations, however.
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Figure 4.1: Data lies in four region$, B, C, D (e.qg., think of as documents on baseball, football, TCS,
and Al). Suppose thak'(z,y) = 1 if = andy belong to the same regiof (z,y) = 1/2 if x € A and

y € Borifx € Candy € D, andK (z,y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in artyeotcluster, there are still multiple consistent
clusterings, including two consistesiclusterings (A U B, C, D) or (A, B, C'U D)). However, there is

a single hierarchical decomposition such that any comttistestering is a pruning of this tree.

In our work we overcome this problem by considering two rateons of the clustering objective that
are natural for many clustering applications. The first isSralist-decoding to allow the algorithm to
produce a smalist of clusterings such that at least one of them has low erroe sHtond is instead to
allow the clustering algorithm to producerae (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, ¥aeple in Figuré 4]1 has a natural hierarchical
decomposition of this form. Both relaxed objectives makessefor settings in which we imagine the
output being fed to a user who will then decide what she lilest.l-or example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wetssure how specific you wanted to be, so
if any of these clusters are too broad, just click and | willitsip for you.” We then show that with
these relaxations, a number of interesting, natural lagrthieoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to elustell.

At the high level, our framework has two goals. The first istovide advice about what type afgo-
rithmsto use given certain beliefs about the relation of the sirityidunction to the clustering task. That
is, if a domain expert handed us a similarity function thattbelieved satisfied a certain natural property
with respect to the true clustering, what algorithm wouldnhest appropriate to use? The second goal
is providing advice to theesignerof a similarity function for a given clustering task (suchchsstering
web-pages by topic). That is, if a domain expert is trying @pdme up with a similarity measure, what
properties should they aim for?

4.1.1 Perspective

The standard approach in theoretical computer scienceistecing is to choose some objective function
e.g.,k-median) and then to develop algorithms that approximaiptymize that objectiv Ebﬂm,
]. If the true goal is to achieve low error with respectiauaderlying correct clustering (e.g., a user’'s
desired clustering of search results by topic), howevemn thne can view this as implicitly making the
strong assumption that not only does the correct clustdrawg a good objective value, but also that all
clusterings that approximately optimize the objective nhesclose to the correct clustering as well. In
this work, we instead explicitly consider the goal of prodigca clustering of low error and then ask what
natural properties of the similarity function in relatiom the target clustering are sufficient to allow an
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algorithm to do well.

In this respect we are closer to work done in the area of aiagter learning with mixture modelE|[8
@@@ 9]. That work, like ours, has an explicit notad a correct ground-truth clustering of
the data points and to some extent can be viewed as addreksimgestion of what properties of an
embedding of data int&™ would be sufficient for an algorithm to cluster well. Howevanlike our
focus, the types of assumptions made are distributionalratidit sense are much more stringent than the
types of pro ertles we will be considering. This is simyatie case with work on planted partitions in
graphs|[1 |Ic ’1] Abstractly speaking, this view of usg parallels theyenerativeclassification
setting m1 while the framework we propose parallelsdiseriminativeclassification setting (i.e. the
PAC model of Vallant-S] and the Statistical Learning Thefbamework of Vapmk.?] and the setting
used in Chapteid P] B] 6 ahd 5 of this thesis).

In the PAC model for IearnindﬁbS], the basic object of stusl{the concept classand one asks
what natural classes are efficiently learnable and by wigatrihms. In our setting, the basic object of
study isproperty, which can be viewed as a set of (concept, similarity fumjtiairs, i.e., the pairs for
which the target concept and similarity function satisfg ttesired relation. As with the PAC model for
learning, we then ask what natural properties are suffi¢@afficiently cluster well (in either the tree or
list models) and by what algorithms. Note that an altereadipproach in clustering is to pick some specific
algorithm(e.g.,k-means, EM) and analyze conditions for that algorithm tewteed”. While there is also
work in classification of that type (e.g., when does someikgtitike ID3 work well), another important
aspect is in understanding which classes of functions ammdble and by what algorithms. We study
the analogous questions in the clustering context: whaigsties are sufficient for clustering, and then
ideally the simplest algorithm to cluster given that prayer

4.1.2 Our Results

We provide a PAC-style framework for analyzing what proiesrof a similarity function are sufficient to
allow one to cluster well under the above two relaxatiorst @ind tree) of the clustering objective. We
analyze both algorithmic and information theoretic questiin our model and provide results for several
natural game-theoretic and learning-theoretic properpecifically:

e We consider a family of stability-based properties, shgwihat a natural generalization of the
“stable marriage” property is sufficient to produce a hiehnaral clustering. (The property is that
no two subsetst c C, A’ ¢ C’ of clustersC' # C" in the correct clustering are both more similar
on average to each other than to the rest of their own clustfereover, a significantly weaker
notion of stability is also sufficient to produce a hieracahiclustering, but requires a more involved
algorithm.

¢ We show that a weaker “average-attraction” property (wlgcprovably not enough to produce a
single correct hierarchical clustering) is sufficient toquce a small list of clusterings, and give
generalizations to even weaker conditions that gener#iigenotion of large-margin kernel func-
tions.

¢ We define theclustering complexityf a given property (the minimum possible list length that ca
be guaranteed by any algorithm) and provide both upper amdrlbounds for the roertles we
consider. This notion is analogous to notions of capacitglassification |_[_Z|3- 207] and it
provides a formal measure of the inherent usefulness ofemgivoperty.

¢ We also show that properties implicitly assumed by apprexiom algorithms for standard graph-
based objective functions can be viewed as special casemefaf the properties considered above.

¢ \We show how our methods can be extended tartbactivecase, i.e., by using just@nstant-sized
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sample as in property testing. While most of our algorithms extémd natural way, for certain
properties their analysis requires more involved argumesing regularity-type results &ﬂ14].

More generally, our framework provides a formal way to amalywhat properties of a similarity function
would be sufficient to produce low-error clusterings, aslwslwhat algorithms are suited for a given
property. For some of our properties we are able to show thawk algorithms succeed (e.g. variations
of bottom-up hierarchical linkage based algorithms), butlie most general ones we need new algorithms
that are able to take advantage of them.

4.1.3 Connections to other chapters and to other related wdr

Some of the questions we address can be viewed as a gertaralidaguestions studied in Chapfér 3 or in
other work machine learning that asks what properties ofaiity functions (especially kernel functions)
are sufficient to allow one tiearnwell [@@ EJEM]. E.g., the usual statement isitlzekernel
function satisfies the property that the target functioreasable by a large margin in the implicit kernel
space, then learning can be done from few labeled examples.cllstering problem is more difficult
because there is no labeled data, and even in the relaxat®eensider, the forms of feedback allowed
are much weaker.

We note that as in learning, given an embedding of data imtesuoetric space, the similarity function
K (x, ") neednot be a direct translation of distance like?(**"), but rather may be a derived function
based on the entire dataset. For example, irdifiesion kernebf [@], the similarity K (x, z’) is related
to the effective resistance betweerandz’ in a weighted graph defined from distances in the original
metric. This would be a natural similarity function to usey, instance, if data lies in two well-separated
pancakes.

In the inductive setting, where we imagine our given datanlg a small random sample of the entire
data set, our framework is close in spirit to recent work donesample-based clustering (e.ﬂ [50]) in
the context of clustering algorithms designed to optimizedain objective. Based on such a sample,
these algorithms have to output a clustering of the full donset, that is evaluated with respect to the
underlying distribution.

We also note that the assumption that the similarity fumctatisfies a given property with respect
to the target clustering is analogous to the assumptionideresl in Chapter]2 that the target satisfies a
certain relation with respect to the underlying distribati That is, the similarity function plays the role
of the distribution in Chaptdr] 2. At a technical level howetfee results are not directly comparable. In
particular in Chapter]2 we focus on compatibility notionattban be estimated from a finite sample and
the main angle there is understanding what is a good target goven distribution given a compatibility
relation and what is a good distribution for a given comp#ttjnotion. Here we imagine fixing the both
the target, and we are trying to understand what is a goodasityifunction for the given target pair.

4.2 Definitions and Preliminaries

We consider a clustering problefs, /) specified as follows. Assume we have a dataSset n objects,
where each object is an element of an abstract instance spadéachxz € S has some (unknown)
“ground-truth” labell(z) in Y = {1,..., k}, where we will think ofk as much smaller than. The goal

is to produce a hypothests: X — Y of low error up to isomorphism of label names. Formally, wirde
the error ofh to beerr(h) = min,cs, [Pryes [o(h(z)) # [(x)]]. We will assume that a target error rate
€, as well agt, are given as input to the algorithm.
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We will be considering clustering algorithms whose onlyesstto their data is via a pairwise similarity
function K (z, z’) that given two examples outputs a number in the rdrge 1]@ We will say thatK is
a symmetric similarity function i< (z, 2') = K (2/, z) for all x, 2.

Our focus is to analyze natural properties that sufficientaf@imilarity function K to be good for
a clustering problengS, 7) which (ideally) are intuitive, broad, and imply that suchimitarity function
results in the ability taluster well Formally, a propertyP is a relation{(, K)} and we say thak’ has
propertyP with respect tdP if (I, K) € P.

As mentioned in the introduction, however, requiring aroathm to output a single low-error clus-
tering rules out even quite strong properties. Instead wWecamsider two objectives that are natural if
one assumes the ability to get some limited additional faekllfrom a user. Specifically, we consider the
following two models:

1. List model: In this model, the goal of the algorithm is to propose a smathber of clusterings
such that at least one has error at mos#As in work on property testing, the list length should
depend ore andk only, and be independent af This list would then go to a domain expert or
some hypothesis-testing portion of the system which wdugd fpick out the best clustering.

2. Tree model: In this model, the goal of the algorithm is to produce a hi@raal clustering: that
is, a tree on subsets such that the root is theSsand the children of any nod# in the tree form
a partition ofS’. The requirement is that there must exigiraning i of the tree (not necessarily
using nodes all at the same level) that has error at most many applications (e.g. document
clustering) this is a significantly more user-friendly auttthan the list model. Note that any given
tree has at mo®* prunings of size: [@], so this model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “transductiO?]t;ﬂmn in that we are
asked to cluster givenset of pointsS. We can also consider anductivemodel in whichS' is merely a
small random subset of points from a much larger abstratdnos space&’, and our goal is to produce a
hypothesish : X — Y of low error on.X. For a given property of our similarity function (with regpe
to X) we can then ask how large a setve need to see in order for our list or tree produced with respe
to S to induce a good solution with respect X0 For clarity of exposition, for most of this chapter we
will focus on the transductive setting. In Section]4.6 wevslnow our algorithms can be adapted to the
inductive setting.

Realizable vs Agnostic.For most of the properties we consider here, our assumpémanalogous to
therealizablecase in supervised learning and our goal is toegelbse to the target (in a tree of list) for
any desired > 0. For other properties, our assumptions are more likagfmosticin that we will assume
only that1 — v fraction of the data satisfies a certain condition. In theses our goal 0s to gett e-close
to the target.

Notation. We will denote the underlying ground-truth clusters@s. .., C, (some of which may be
empty). Forz € X, we useC(z) to denote the cluste€,) to which pointz belongs. ForA C
X,B C X, let K(A,B) = Eyecaep[K(z,2")]. We call this theaverage attractiorof A to B. Let
Kinaz(A, B) = maxgea ep K(x, 2"); we call thismaximum attractiomf A to B. Given two clusterings
g andh we define the distana§( g, h) = min,cs, [Pryes [o(h(z)) # g(z)]], i.e., the fraction of points in
the symmetric difference under the optimal renumberindhefdusters.

We are interested in naturptopertiesthat we might ask a similarity function to satisfy with respe
to the ground truth clustering. For example, one (strongperty would be that all points are more
similar to all pointsz’ € C(z) than to anyz’ ¢ C(x) — we call this thestrict separationproperty. A

2That is, the input to the clustering algorithm is just a wésghgraph. However, we still want to conceptually
view K as afunctionover abstract objects.
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weaker property would be to just require that pointare on averagemore similar to their own cluster
than to any other cluster, that i&(z, C(x) — {z}) > K(z,C;) for all C; # C(x). We will also consider
intermediate “stability” conditions. For properties suzhthese we will be interested in the size of the
smallest list any algorithm could hope to output that wouldmgintee that at least one clustering in the list
has error at most. Specifically, we define thelustering complexitpf a property as:

Definition 4.2.1 Given a propertyP and similarity functionk’, define thee, k)-clustering complexity
of the pair (P, K) to be the length of the shortest list of clusteririgs. . . , ; such that any consistent
k-clustering ise-close to some clustering in the BT hat is, at least oné; must have error at most
The(e, k)-clustering complexity of P is the maximum of this quantity over all similarity functsof.

The clustering complexity notion is analogous to notiongagacity in cIassificatiorEJVBO?]
and it provides a formal measure of the inherent usefulneagiven property.

Computational Complexity. In the transductive case, our goal will be to produce a list tree in time
polynomial inn and ideally polynomial irc and k& as well. We will indicate when our running times
involve a non-polynomial dependence on these parameterihelinductive case, we want the running
time to depend only o ande and to be independent of the size of the overall instanceesfacinder
the assumption that we have an oracle that in constant timearaple a random point frods.

In the following sections we analyze both the clustering plaxity and the computational complexity
of several natural properties and provide efficient algong to take advantage of such functions. We
start by analyzing the strict separation property as weh asitural relaxation in Sectidn 4.3. We also
give formal relationships between these properties anskticonsidered implicitly by approximation al-
gorithms for standard clustering objectives. We then aealy much weaker average-attraction property
in Sectior 4.4 that is similar to Definitidn 3.8.1 in ChaptHiaBd which, as we have seen, has close con-
nections to large margin properties studied in LearningoT%@,@J_l_ﬁbmmﬂ.) This property is
not sufficient to produce a hierarchical clustering, howese we then turn to the question of how weak
a property can be and still be sufficient for hierarchicaktung, which leads us to analyze properties
motivated by game-theoretic notions of stability in Seciol.

Our framework allows one to study computational hardnesslt®as well. While our focus is on
getting positive algorithmic results, we discuss a simple hardness examples in Section 4.8.1.

4.3 Simple Properties

We begin with the simple strict separation property mermibabove.
Property 1 The similarity functionk” satisfies thestrict separation property for the clustering problem
(S,1) ifall « are strictly more similar to any point’ € C'(z) than to everyr’ ¢ C(z).

Given a similarity function satisfying the strict sepaoatiproperty, we can efficiently construct a tree
such that the ground-truth clustering is a pruning of thée t(Theoreni 4.312). As mentioned above, a
consequence of this fact is22(*) upper bound on the clustering complexity of this propertye Mégin
by showing a matching®*(*) lower bound.

Theorem 4.3.1For e < ﬁ the strict separation property hds, k)-clustering complexity at leagt’/?.

Proof: The similarity function is a generalization of the simitgrin the picture in Figure4]1. Specifically,
partition then points intok subsets{R;,..., Ry} of n/k points each. Group the subsets into pairs
{(R1, R2),(R3,Ry4),...}, and letK (z,2’) = 1if = anda’ belong to the sam®&;, K(z,z') = 1/2 if

x andz’ belong to two subsets in the same pair, d@r, 2') = 0 otherwise. Notice that in this setting

3A clusteringC is consistent ifK has propertyP with respect t.
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there are2s clusterings (corresponding to whether or not to split eah ®; U R; ) that are consistent
with Property[l and differ from each other on at leagt points. Since: < ﬁ any given hypothesis
clustering can be-close to at most one of these and so the clustering compliext leas2*/2. m

We now present the upper bound.

Theorem 4.3.2 Let K be a similarity function satisfying the strict separatioroperty. Then we can
efficiently construct a tree such that the ground-truth ttiag is a pruning of this tree.

Proof: If K is symmetric, then to produce a tree we can simply use bottorisingle linkage” (i.e.,
Kruskal's algorithm). That is, we begin withclusters of size 1 and at each step we merge the two clusters
C, C’ maximizing K .. (C,C"). This maintains the invariant that at each step the currestaring is
laminar with respect to the ground-truth: if the algorithrenges two cluster€ andC’, andC'is strictly
contained in some cluste?, of the ground truth, then by the strict separation propergymust have
¢’ c C, as well. If K is not symmetric, then single linkage may tailHowever, in this case, the
following “Boruvka-inspired” algorithm can be used. Stagtwith n clusters of size 1, draw a directed
edge from each cluster' to the clusterC’ maximizing K, (C, C’). Then pick some cycle produced
(there must be at least one cycle) and collapse it into aesiclgister, and repeat. Note that if a cluster
C in the cycle is strictly contained in some ground-truth tdug’,., then by the strict separation property
its out-neighbor must be as well, and so on around the cydehiS collapsing maintains laminarity as
desired. B

Note: Even though the strict separation property is quite strargimilarity function satisfying this prop-
erty can still fool a top-down spectral clustering approd®be Figur€ 412 in Sectidn 4.8.4.

We can also consider the agnostic version of the strict aéiparproperty, where we require that
satisfies strict separation farostof the data.

Property 2 The similarity functionk” satisfies/-strict separation for the clustering problengS, [) if for
someS’ C S of size(1 — v)n, K satisfies strict separation fdiS’, [).

We can then show that:

Theorem 4.3.3 If K satisfiesv-strict separation, then so long as the smallest correct cluster has size
greater than5vn, we can produce a tree such that the ground-truth clusteisngclose to a pruning of
this tree.

For a proof see Sectidn 4.7, where we also show that propémtiglicitly assumed by approximation
algorithms for standard graph-based objective functicns lme viewed as special cases of thstrict
separation property.

4.4 \Weaker properties

A much weaker property to ask of a similarity function is jtisit most points are noticeably more similar
on averageto points in their own cluster than to points in any other tus This is similar to Defini-
tion[3.3.1 in Chaptel]l3 (and which, as we have seen, has ctosgections to large margin properties

studied in Learning Theory [26.132, 135, 181.1194].)

Specifically, we define:
“Consider 3 points, y, z whose correct clustering iz}, {y, 2}). If K(z,y) =1, K(y,2) = K(z,y) = 1/2,

andK (y,x) = K(z,z) = 0, then this is consistent with strict separation and yet therghm will incorrectly
merger andy in its first step.
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Property 3 A similarity function K satisfies thgv, v)-average attraction property for the clustering
problem(S,1) if a 1 — v fraction of examples satisfy:

K(z,C(z)) > K(x,C;) +~ foralli € Y,i # I(x).

This is a fairly natural property to ask of a similarity furwet: if a pointz is more similar on av-
erage to points in a different cluster than to those in its ,0ivis hard to expect an algorithm to label
it correctly. The following is a simple clustering algoriththat given a similarity functiord” satisfying
the average attraction property produces a list of clugjsriof size that depends only enk, and~.
Specifically,

Algorithm 2 Sampling Based Algorithm, List Model

Input: Data sefS, similarity functionK, parameters, e > 0, k € Z*; N(e,v, k), s(e, v, k).
e Setl = 0.
e RepeatN (¢,, k) times
Fork’ =1,...,kdo:
- Pick a setR¥’ of s(e,~, k) random points frons.
- Leth be the average-nearest neighbor hypothesis induced bgthg's 1 < i < k’. That s,
for any pointz € S, defineh(x) = argmax;c gy 0 [K (z, RY)]. Addhto L.

e Output the listC.

Theorem 4.4.1 Let K be a similarity function satisfying the’, v)-average attraction property for the

clustering problen{.S, 7). Using Algorithni2 with the parametesge, v, k) = % In (25) and N (e, v, k) =

(2) % (%) In(}) we can produce a list of at mok?(% tn (2)m (%)) clusterings such that with prob-
ability 1 — ¢ at least one of them g’ + ¢)-close to the ground-truth.
Proof: We say that a ground-truth cluster is big if it has probapifitass at leas;; otherwise, we say
that the cluster is small. Lét be the number of “big” ground-truth clusters. Clearly thelbility mass
in all the small clusters is at most2.

Let us arbitrarily number the big cluste€s, ..., C,.. Notice that in each round there is at least a

(£)°“"*) probability thatRs* C C;, and so at least &5 )"*“”*) probability thatRs’ € C; for all

i < K'. Thus the number of rounc(sze—k)%ln (%) In(4) is large enough so that with probability at least
1—4/2, in at least one of th&/ (¢, v, k) rounds we havérs’ C C; for all i < k. Let us fix now one such
good round. We argue next that the clustering induced bydteemcked in this round has error at most
v + e with probability at least — §.

Let Good be the set of in the big clusters satisfying

K(z,C(x)) > K(x,Cj) +~ forall j € Y, j # l(x).

By assumption and from the previous observatidhs,.s[z € Good] > 1—v—¢/2. Now, fixz € Good.
SinceK (z,2') € [—1, 1], by Hoeffding bounds we have that over the random drai&f, conditioned
onRg’ C Cj,
) . N _ N> < 90 2IRsT|7? /4
Pr (|Bupg K (o] = K (2, )| 2 7/2) < 2 ,

forall j € {1,...,k'}. By our choice ofRgs’, each of these probabilities is at mesfy4k. So, for any
givenx € Good, there is at most aj/4 probability of error over the draw of the ses’. Since this is
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true for anyz € Good, it implies that theexpectecerror of this procedure, over € Good, is at most

€0 /4, which by Markov’s inequality implies that there is at most/@ probability that the error rate over

Good is more thare/2. Adding in ther + ¢/2 probability mass of points not iBood yields the theorem.
|

Note that Theorerh 4.4.1 immediately implies a correspandipper bound on thé:, k)-clustering
complexity of the(e/2, v)-average attraction property. Note that this bound howsveot polynomial in
k and~. We can also give a lower bound showing that the exponergigidence of is necessary, and
furthermore this property is not sufficient to cluster in tree model:

Theorem 4.4.2 For e < /2, the (¢, k)-clustering complexity of the), v)-average attraction property is
1
at Ieastg;gzc K~ /K'!, and moreover this property is not sufficient to cluster ia tfee model.

Proof: Consider% regions{Ry, ..., Ry, } each withyn points. Assumé{(z,z’) = 1if x andz’ belong
to the same regio®; and K (x,2’) = 0, otherwise. Notice that in this setting all the k-way paotis
of the set{ Ry, ..., Ry, } are consistent with Properfty 3 and they are all pairwisestadce at leasgn
from each other. Since < ~/2, any given hypothesis clustering can &elose to at most one of these
and so the clustering complexity is at least the sum of 8gjriumbers of the 2nd kingj’,j,zl S(1/~,kK)
which is at leastnax KV /K. .

Note: In fact, the clustering complexity bound immediately ingglione cannot cluster in the tree model
since fork = 2 the bound is greater than 1.

We can further extend the lower bound in Theofem 4.4.3 to gsheviollowing:
Theorem 4.4.3For € < 1/2, the (e, k)-clustering complexity of thé), v)-average attraction property is
k
at leastk s .

One can even weaken the above property to ask only thatékistsan (unknown) weighting function
over data points (thought of as a “reasonableness scouel),teat most points are on average more similar
to thereasonablepoints of their own cluster than to tlleasonablepoints of any other cluster. This is a
generalization of the notion df being a kernel function with the large margin prope@ @@7]
as shown in Chaptér 3.

Property 4 A similarity function K satisfies thgv, v)-average weighted attractionproperty for the
clustering problem(S, () if there exists a weight functiom : X — [0, 1] such that al — v fraction of
examples: satisfy:

Eyec(o [w@)K(z,2)] = Kyec, [w(@) K (z,2)] + 7 forallr € Y, r # 1(z).

If we have K a similarity function satisfying thév, v)-average weighted attraction property for the
clustering problentsS, (), then we can again cluster well in the list model, but via aavovolved cluster-
ing algorithm. Formally we can show that:

Theorem 4.4.41f K is a similarity function satisfying thév, v)-average weighted attraction property

A k
for the clustering problentsS, ), we can produce a list of at mokp(??) clusterings such that with
probability 1 — ¢ at least one of them is+ v-close to the ground-truth.

We defer the proof of Theorein 4.4.4 to Secfion 4.10.

A too-weak property: One could imagine further relaxing the average attractimpgrty to simply
require that for allC’;, C; in the ground truth we hav& (C;, C;) > K(C;, Cj) + ~; that is, the average
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intra-cluster similarity is larger than the average irgkister similarity. However, even fdr = 2 and
~ = 1/4, this isnot sufficiento produce clustering complexity independent of (or evegrpmial in) n.
In particular, suppose there are two regiohsB of n/2 points each such thdt (z,2') = 1 for z, 2’ in
the same region anfl’ (z, ') = 0 for z, 2’ in different regions. However, suppoég contains75% of
A and25% of B andC;, contains25% of C; and75% of Cs. Then this property is satisfied for= 1/4
and yet by classic coding results (or Chernoff bounds),tetirey complexity is clearly exponential im
for e < 1/8. Moreover, this implies there is no hope in the inductivegaperty testing) setting.

4.5 Stability-based Properties

The properties in Sectidn 4.4 are fairly general and allomstmiction of a list whose length depends only
on one andk (for constanty), but are not sufficient to produce a single tree. In thisisectve show that
several natural stability-based properties that lie betwthose considered in Sectidns]4.3 4.4 arein
fact sufficient forhierarchical clustering.

For simplicity, we focus on symmetric similarity functiond/e consider the following relaxations of
Property 1 which ask that the ground truth be “stable” in tiable-marriage sense:

Property 5 A similarity functionk satisfies thetrong stability property for the clustering probleits, [)
if for all clustersC,., C,/, r # r’ in the ground-truth, for allA c C,., A’ C C,» we have

K(A,C,\ A) > K(A, A").

Property 6 A similarity functionk satisfies theveak stability property for the clustering problerts, /)
if for all C,., C,r, 7 # ¢/, forall A c C,., A’ C C,,, we have:

e If A’ C C,v then eitherK(A,C, \ A) > K(A,A")or K(A",C. \ A') > K(4', A).

o If A =CpthenK(A,C.\ A) > K(A,A).

We can interpret weak stability as saying that for any twetets in the ground truth, there does
not exist a subsetl of one and subset’ of the other that are more attracted to each other than to the
remainder of their true clusters (with technical condisiat the boundary cases) much as in the classic
notion of stable-marriage. Strong stability asks thathbe more attracted to their true clusters. To further
motivate these properties, note that if we take the exanpie Figurd 4.1l and set a small random fraction
of the edges inside each dark-shaded region to 0, then vgthgrobability this would still satisfy strong
stability with respect to all the natural clusters even tffoit no longer satisfies strict separation (or even
v-strict separation for any < 1 if we included at least one edge incident to each vertex). efwless,
we can show that these stability notions are sufficient talyece a hierarchical clustering. We start by
proving this for strong stability here and then in Theofem2we also prove it for the weak stability.

Algorithm 3 Average Linkage, Tree Model

Input: Data selS, similarity function K. Output: A tree on subsets.
e Begin withn singleton clusters.

e Repeat till only one cluster remains: Find clust€rsC’ in the current list which maximize
K(C,C") and merge them into a single cluster.

e Output the tree with single elements as leaves and intewd#scorresponding to all the merges
performed.

Theorem 4.5.1 Let K be a symmetric similarity function satisfying Propdrty e we can efficiently
construct a binary tree such that the ground-truth clustgris a pruning of this tree.
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Proof: We will show that AlgorithniB (Average Linkage) will produtiee desired result. Note that the al-
gorithm used< (C, C") rather tharnk’,,,...(C, C’) as in single linkage; in fact in Figure 4.3 (In section 4.8.4)
we show an example satisfying this property where singlatje would fail.

We prove correctness by induction. In particular, assuraedhbr current clustering is laminar with
respect to the ground truth clustering (which is true at thg)s That is, for each clust&r in our current
clustering and each, in the ground truth, we have eithét C C,, orC, € C or C N C, = (. Now,
consider a merge of two clustefsandC’. The only way that laminarity could fail to be satisfied aftez
merge is if one of the two clusters, sdy,, is strictly contained inside some ground-truth cluster(so,

C, — C' # ) and yetC is disjoint fromC;.. Now, note that by Properfy % (C’,C, — C’) > K(C’, x)
forall z ¢ C,, and so in particular we hav& (C’, C, — C’) > K(C’,C). Furthermore K (C',C, — C")

is a weighted average of th€(C’, C") over the set€” C C, — C" in our current clustering and so at
least one such”” must satisfyK (C’,C”) > K(C’, C). However, this contradicts the specification of the
algorithm, since by definition it merges the pair C’ such thatk (C’, C') is greatest. B

Theorem 4.5.2 Let K be a symmetric similarity function satisfying the weak #itsitproperty. Then we
can efficiently construct a binary tree such that the grotnuth clustering is a pruning of this tree.

Proof: As in the proof of theorern 4.5.1 we show that bottom-up awetadkage will produce the desired
result. Specifically, the algorithm is as follows: we begiithw: clusters of size 1, and then at each step
we merge the two clusters, C’ such that' (C, C’) is highest.

We prove correctness by induction. In particular, assuraedhbr current clustering is laminar with
respect to the ground truth clustering (which is true at thg)s That is, for each clust&r in our current
clustering and eacty, in the ground truth, we have eithét C C,, orC, C C orC N C, = (. Now,
consider a merge of two clustefsandC’. The only way that laminarity could fail to be satisfied aftes
merge is if one of the two clusters, sdy,, is strictly contained inside some ground-truth clugterand
yetC is disjoint fromC...

We distinguish a few cases. First, assume ¢hat a clusteiC’,. of the ground-truth. Then by definition,
K(C',C.—C") > K(C',C). FurthermoreK (C’, C,. — C") is a weighted average of ti€(C’, C") over
the setsC” C C,» — C" in our current clustering and so at least one sG¢must satisfyK (C’, C") >
K(C',C). However, this contradicts the specification of the alfonit since by definition it merges the
pair C, C’ such thatk (C’, C) is greatest.

Second, assume that is strictly contained in one of the ground-truth clustéts Then, by the
weak stability property, eithek (C,C,. — C) > K(C,C") or K(C',C,» — C") > K(C,C"). This again
contradicts the specification of the algorithm as in the iptev case.

Finally assume tha€’ is a union of clusters in the ground-trutt, ... Cy,. Then by definition,
K, C. —C") > K(C',C;), fori = 1,...k, and soK(C",C,» — C') > K(C',C). This again
leads to a contradiction as argued abovll.

While natural, Propertidd 5 afél 6 are still somewhat brittiehe example of Figurle 4.1, for instance,
if one adds a small number of edges with similaritgeltweerthe natural clusters, then the properties are
no longer satisfied for them (because pairs of elements ctethéy these edges will want to defect). We
can make the properties more robust by requiring that #tahibld only for large sets. This will break
the average-linkage algorithm used above, but we can shawatimore involved algorithm building on
the approach used in Sectibnl4.4 will nonetheless find aroajppately correct tree. For simplicity, we
focus on broadening the strong stability property, as fedlgone should vievg as small compared 'k
in this definition):

Property 7 The similarity functionX satisfies thed s, v)-strong stability of large subsetsproperty for
the clustering probleniS,!) if for all clusters C,., C,., » # ' in the ground-truth, for allA c C,,
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A’ C Cpwith [A] + |A'| > sn we have
K(A, G\ A) > K(A,A') + 7.

The idea of how we can use this property is we will first run agoathm for the list model much like
Algorithm [2, viewing its output as simply a long list of caddie clusters (rather than clusigs). In

. . . O(%logllog(si) . .-
particular, we will get a listC of £~ ‘\~ € 77 clusters such that with probability at ledst- § any

cluster in the ground-truth of size at legtis close to one of the clusters in the list. We then run a second
“tester” algorithm that is able to throw away candidates #dre sufficiently non-laminar with respect to
the correct clustering and assembles the ones that rentaia iimee. We present and analyze the tester
algorithm, Algorithn4, below.

Algorithm 4 Testing Based Algorithm, Tree Model.

Input: Data setS, similarity function K, parametersy > 0, k € Z*, f,g,s,a > 0. A list of
clustersC with the property that any clustéf in the ground-truth is at leagtclose to one of them.
Output: A tree on subsets.

1. Throw out all clusters of size at mast:. For every pair of cluster§’, C’ in our list £ of clusters
that are sufficiently “non-laminar” with respect to eachestin that|C' \ C’| > gn, |C"\ C| > gn
and|C'NC’'| > gn, computeK(C N C',C\ C")andK(C nC’,C"\ C). Throw out whichever
one does worse: i.e., throw oGtif the first similarity is smaller, else throw odt’. Let £’ be the
remaining list of clusters at the end of the process.

2. Greedily sparsify the lisf’ so that no two clusters are approximately equal (that ispsb@ clus-
ter, throw out all that are approximately equal to it, andeagjp We say two cluster§, C’ are
approximately equal ifC'\ C’'| < gn, |C'\ C| < gn and|C’'NC| > gn. Let L” be the list
remaining.

3. Construct a forest on the remaining li3f. C becomes a child of” in this forest ifC’ approxi-
mately containg”, i.e. |C'\ C'| < gn, |C"\ C| > gnand|C’' N C| > gn.

4. Complete the forest arbitrarily into a tree.

Theorem 4.5.3Let K be a similarity function satisfyings, v)-strong stability of large subsets for the
clustering problem(S,[). Let L be a list of clusters such that any cluster in the groundkrat size at
leastan is f-close to one of the clusters in the list. Then AlgorifAm 4wwarameters satisfying+ f < g,

f < gv/10 anda > 6kg yields a tree such that the ground-truth clusterin@dst-close to a pruning of
this tree.

Proof: Let k' be the number of “big” ground-truth clusters: the clustersipe at leastvn; without
loss of generality assume th@i, ..., C) are the big clusters.

LetC1, ...C}, be clusters irC such thati(C;, CY) is at mostf for all i. By Property ¥ and Lemnia4.5.4
(stated below), we know that after Stefthe “testing of clusters” step) all the clust&rs, ....C), survive;
furthermore, we have three types of relations between thairéng clusters. Specifically, either:

(@) C andC’ are approximately equal; that medas\ C’| < gn, |C'\ C| < gnand|C' N C| > gn.
(b) C andC’ are approximately disjoint; that meajts \ C’| > gn, |C’\ C| > gnand|C' N C| < gn.
(c) orC’ approximately contain€’; that meansC \ C’| < gn, |C’\ C| > gn and|C’' N C| > gn.

Let £ be the remaining list of clusters after sparsification.d#sy to show that there exigiy, ..., Cy,
in £” such that!(C;, C/') is at most(f + 2g), for all i. Moreover, all the elements if” are either in the
relation “subset” or “disjoint”. Also, since all the clusse(, ..., C)s have size at leastn, we also have
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thatCy’, C7 are in the relation “disjoint”, for alf, j, i # j. Thatis, in the forest we construct’ are not
descendants of one another.

We showCY', ..., C}/, are part of a pruning of small error rate of the final tree. Weddy exhibiting
a small extension to a list of cluste3” that are all approximately disjoint and nothing elsefif is
approximately disjoint from any of the clustersAf{’ (thus.£"’ will be the desired pruning). Specifically
greedily pick a clusteC’; in £” that is approximately disjoint frong, ..., Cy,, and in general in step
i > 1 greedily pick a cluste€; in £” that is approximately disjoint fror@'/’, ..., Cy,, C1, ..., Ci_1. Let
Ct,...,CL,Cy,...,C; bethe listC”. By design,.™ will be a pruning of the final tree and we now claim
its total error is at mos2akn. In particular, note that the total number of points misdiogn C7', ..., C?/,
is at mostk(f +2¢)n-+kan < 3kan. Also, by construction, eaahi; must contain at leasin — (k+i)gn
new points, which together with the above implies that 2k. Thus, the total error of”” overall is at
most3akn + 2kk'gn < 2akn. W

Lemma 4.5.4 Let K be a similarity function satisfying the, )-strong stability of large subsets property
for the clustering probleniS, ). LetC, C’ be such thatC' N C’| > gn, |C'\ C’| > gn and|C'\ C| > gn.
Let C* be a cluster in the underlying ground-truth such thét \ C| < frn and|C \ C*| < fn. Let
I=0NnC. Ifs+ f<gandf <gy/10,thenK(I,C\I) > K(I,C"\ I).

Proof: Let I* = I N C*. So,I* = C N C" N C*. We prove first that

K(I,C\1I)> K(I*,C*\ I*) — v/2. (4.1)
SinceK (x,z') > —1, we have

K(I,C\I) =z (1 =p)K(INC* (C\I)NC¥) = p,

wherel — p; = ||I;|| : % By assumption we havd| > gn, and alsql \ I*| < fn. That means

Ik = UL > 9=f similarly, |C'\ 1] > gn and|(C'\ ) N C*| < |C'\ C*| < fn. So,

1] 1]

(C\DNC _ICNII-[(€\DNC| g f
O\ 1] [eayi =g

2
Let us denote by — p the quantity(%) . We have:
K(I,C\I) = (1 =p)K(I",(C\I)nC") —p. (4.2)
Let A= (C*\ I*)NCandB = (C*\ I*) N C. We have
K({I*,C*'\I"')=(1—-a)K(I*,A) — aK(I*, B), (4.3)
o= AL
wherel — a = [CRAVEaR Note that

A= (C*\I")NC = (C*NC)\ (I*NC) = (C*NC)\ I*

and
(C\IHnC*=CnNnCH\NINC*) =(C*"NnC)\ I,

soA = (C'\ I)nC*. Furthermore
[(C\NI) N C7 = [(C\C\(C\(C'NCT))| = [C\C|=|C\(C'NC™)| = [C\C'|=|C\C™| = gn— fn.
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> |C* \ C|. These imply that — Al 1 o=t

We also haveéB| = |(C*\ I*) N O = TE = TEA 2 g

o
and furthermore®; = —1+ = < ﬁ. Equation[(4.B) implies

1
—a

1 aq

and sincek (z, z’') < 1, we obtain:
K(I*,A) > K(I*,C*\ I*) — I (4.4)
g—1
Overall, combining[(4]2) and(4.4) we obtaif:(1,C' \ I) > (1 —p) |K(I*,C*\ I*) — ﬁ} —p, SO
f

2
We prove now thakp-+(1—p)-L; < /2, which finally implies relation[(4]1). Since-p = (%) , we
_ 20/ f? fo_ o212 =) _ 4f o (N L (£ i _o ()
havep = 2021° s02p+ (1—p) Ly = 22200 L 12D — 41y <5> +1- (5) =5l-2(1) <
~/2, since by assumptioli < gv/10.
Our assumption thak is a similarity function satisfying the strong stabilitygperty with a threshold
sn and ay-gap for our clustering problerfs, (), together with the assumptiont+ f < g implies

K(I*,C*\ I*) > K(I*,C"\ (I* U C*)) + 7. (4.5)
We finally prove that
K(I*,C"\ (I*UC*) > K(I,C'\ I) — v/2. (4.6)
The proof is similar to the proof of statemeht (4.1). Firstenthat
K(I,O'\I) < (1 —pa)K(I*,(C"\ I) N C*) + pa,

I [(C"\D)nC*|
1] |C"\|

wherel — py =

’ T 2
7|(C|g<?|c > 2L S0l —py > (L), and sgpy < 24 < 4/2, as desired.

To complete the proof note that relatiohs {4.0),1(4.5) an@)@gether imply the desired result, namely
thatK (I,C\I)> K(I,C'\I). ®

. We know from above tha.%' > %, and we can also show

Theorem 4.5.5 Let K be a similarity function satisfying thg, -)-strong stability of large subsets prop-
erty for the clustering problerS, 1). Assume that = O(e?v/k?). Then using Algorithril4 with param-
etersa = O(e/k), g = O(?/k?), f = O(e*y/k?), together with Algorithni]2 we can with probability
1 — ¢ produce a tree with the property that the ground-trutk-slose to a pruning of this tree. Moreover,
the size of this tree i©(k/¢).

Proof: First, we run AlgorithniR2 get a lis€ of clusters such that with probability at ledst- § any
cluster in the ground-truth of size at leg§tis f-close to one of the clusters in the list. We can ensure

that our listZ has size at mogt® (52 5 719235) \we then run Procedufé 4 with parameters- O(e/k),

g = O(?/k?), f = O(e*y/k?). We thus obtain a tree with the guarantee that the grourtid-isu-close
to a pruning of this tree (see Theorém 415.3). To completgtbef we only need to show that this tree
hasO(k/¢) leaves. This follows from the fact that all leaves of our thewe at leastvn points and the
overlap between any two of them is at mgst(for a formal proof see lemnia 4.5.6)R
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Lemma 4.5.6 Let Py, ..., P, be a quasi-partition of5 such that|P;| > n% and |P; N P;| < gn for all
i,je{l,....s},i#j. If g =, thens < 2%,

Proof: Assume for contradiction that > L = 2%, and consider the first partsPy, ..., Pr.. Then

(n% —2%gn) 2% is a lower bound on the number of points that belong to examtly of the parts?,

i € {1,...,L}. For our choice ofy, g = % we have(n¥ —2kgn) 25 = 2n — in. Sofnis a
lower bound on the number of points that belong to exactlyafrtbe partsP;, i € {1,..., L}, which is

impossible sincgS| = n. So, we must have < 2%. =

To better illustrate our properties, we present a few istarg examples in Sectidn 4.8.4.

4.6 Inductive Setting

In this section we consider anductivemodel in whichS' is merely a small random subset of points from
a much larger abstract instance spa€eand clustering is representauplicitly through a hypothesis
h : X — Y. In the list model our goal is to produce a list of hypothedés, ..., h;} such that at least
one of them has error at mostIn the tree model we assume that each node in the tree indudaster
which is implicitly represented as a functigh: X — {0,1}. For a fixed tre¢ and a pointz, we define
t(x) as the subset of nodesTnthat contain: (the subset of nodeg € ¢ with f(x) = 1). We say that a
treeT has error at mostif 7'(X) has a pruningf, ..., fx- of error at most.

We analyze in the following, for each of our properties, havgé a sef we need to see in order for
our list or tree produced with respect$ao induce a good solution with respectXa

The average attraction property. Our algorithms for the average attraction property (Priyg@rand the
average weighted attraction property are already inhigrenttuctive.

The strict separation property. We can adapt the algorithm in Theorém 41.3.2 to the inductteng as
follows. We first draw a se§ of n = O(£1n (%)) unlabeled examples. We run the algorithm described
in Theorenm 4,312 on this set and obtain a ttem the subsets of. Let @ be the set of leaves of this
tree. We associate each nadén ¢ a boolean functiory,, specified as follows. Consider € X, and let
q(z) € Q be the leaf given byirgmax, ., K (7, q); if u appears on the path frogfz) to the root, then set
fu(z) = 1, otherwise sef,(z) = 0.

Note thatn is large enough to ensure that with probability at lelast §, S includes at least a point
in each cluster of size at least Remember that = {C, ..., C}} is the correct clustering of the entire
domain. LetCg be the (induced) correct clustering on our samg@lef sizen. Since our property is
hereditary, Theorem 4.3.2 implies tha4 is a pruning oft. It then follows from the specification of our
algorithm and from the definition of the strict separationgarty that with probability at leadt— § the
partition induced over the whole space by this pruningaose toC.

The strong stability of large subsets property.We can also naturally extend the algorithm for Propérty 7
to the inductive setting. The main difference in the indeetsetting is that we have &stimate(rather
thancomputg the |C,. \ Cyv|, |C \ Cr, |Cr N Cy|, K(Cr, N Crr, Cy \ Crv) and K (Cr N Crr, Crr \ Cr)

for any two clusters’,, C,- in the list£. We can easily do that with onlyoly(k,1/¢,1/7,1/5)log(|L]))
additional points, wheré is the input list in Algorithn{# (whose size dependsigh, 1/ andk only).
Specifically, using a modification of the proof in Theorem.4.8nd standard concentration inequalities
(e.g. the McDiarmid inequalitmw we can show that:

Theorem 4.6.1 Assume thak is a similarity function satisfying thes, -)-strong stability of large subsets
property for(X,1). Assume that = O(e?y/k?). Then using Algorithril4 with parametetis= O(e/k),
g = O(2/k?), f = O(e?y/k?), together with Algorithni]2 we can produce a tree with the propthat
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the ground-truth is-close to a pruning of this tree. Moreover, the size of thietisO(k/¢). We use
k.

O(Vi2 In (L) (%)%ln (%) In(%)) points in the first phase an@(ng%ng log log% log k) points in
the second phase.

Note that each cluster is represented as a nearest neigyjimthbsis over at mogt sets.

The strong stability property. We first note that we need to consider a variant of our progbey has
a~v-gap. To see why this is necessary consider the followingngl& Suppose alk (x, ') values are
equal tol/2, except for a special single center paintin each cluster”; with K (z;,xz) = 1 for all z in

C;. This satisfies strong-stability since for evetyC C; we haveK (A, C; \ A) is strictly larger than /2.
Yet it is impossible to cluster in the inductive model be@asar sample is unlikely to contain the center
points. The variant of our property that is suited to the cithe setting is the following:

Property 8 The similarity functionk satisfies they-strong stability property for the clustering problem
(X,1) if for all clustersC,., C,, r # ' in the ground-truth, for allA C C,, for all A’ C C,» we have

K(A, 0\ A) > K(A, A) + .

For this property, we could always run the algorithm for Tie®a[4.6.1, though running time would
be exponential irk and1/~. We show here how we can get polynomial dependence on these@ers
by adapting Algorithni 13 to the inductive setting as in thescafthe strict order property. Specifically, we
first draw a sefS of n unlabeled examples. We run the average linkage algoriththisiset and obtain a
treet on the subsets of. We then attach each new pointo its most similar leaf in this tree as well as
to the set of nodes on the path from that leaf to the root. Forradl description see Algorithad 5. While
this algorithm looks natural, proving its correctness reggumore involved arguments.

Algorithm 5 Inductive Average Linkage, Tree Model

Input: Similarity functionK’, parameters, e > 0, k € Z*; n = n(e, v, k,d);
e PickasetS = {z1,...,z,} of n random examples frolX

e Run the average linkage algorithm (Algoritfiin 3) on the$eind obtain a treé on the subsets of
S. Let@ be the set of leaves of this tree.

e Associate each nodein ¢ a functionf, (which induces a cluster) specified as follows.

Considerr € X, and letq(z) € Q be the leaf given byirgmax . K (7, q); if u appears on the
path fromg(z) to the root, then sef,(x) = 1, otherwise sef,(z) = 0.

e Output the tree.

We show in the following that for. = poly(k,1/¢,1/v,1/6) we obtain a tred” which has a pruning
f1, ..., fir Of error at most. Specifically:

Theorem 4.6.2 Let K be a similarity function satisfying the strong stabilityoperty for the clustering
problem(X, 7). Then using Algorithrhl5 with parametets= poly(k, 1/¢,1/~,1/§), we can produce a
tree with the property that the ground-truthdsclose to a pruning of this tree.

Proof: Remember thaf = {C4,...,C}} is the ground-truth clustering of the entire domain. Let
Cs = {C1,...,C,} be the (induced) correct clustering on our samplef sizen. As in the previous
arguments we assume that a cluster is big if it has probabiless at leas{; .

First, Theorer1 4.613 below implies that with high probapithe clusters”! corresponding to the large
ground-truth clusters satisfy our property with a gg2. (Just perform a union bound overc S\ C!.)
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It may be thatC! corresponding to the small ground-truth clusters do nasfyathe property. However,
a careful analysis of the argument in Theofem 4.5.1 showighhawith high probabilityCs is a pruning
of the treet. Furthermore since is large enough we also have that with high probabilityz, C(z)) is
within v/2 of K (z,C’(x)) for a1l — e fraction of pointsz. This ensures that with high probability, for any
such goodr the leafq(x) belongs toC'(x). This finally implies that the partition induced over the who
space by the pruningg of the treet is e-close toC. B

Note that each cluster is implicitly represented by the functiofi, defined in the description of
Algorithm[B.

We prove in the following that for a sufficiently large valuerosampling preserves stability. Specifi-
cally:

Theorem 4.6.3 LetCy, (s, ..., Cy be a partition of a sefX’ such that for anyd C C; and anyx ¢ C;,
K(A,Ci\ A) > K(Az) + 7.

Letz ¢ C; and letC! be a random subset of elements of”;. Then,n’ = poly(1/v,log(1/9)) is
sufficient so that with probability — ¢, forany A C C/,

K(A,CI\ A) > K(A,z) + %

Proof: First of all, the claim holds for singleton subsetsvith high probability using a Chernoff bound.
This implies the condition is also satisfied for every sub$eif size at mostyn’/2. Thus, it remains
to prove the claim for large subsets. We do this using thedeatmposition ofl [11 4] and the random
sampling analysis om4 .

Let N = |C;|. By ], we can decompose the similarity matrix fdy into a sum of cut-matrices
Bi + By + ... + B, plus a low cut-norm matri¥y” with the following properties. First, each; is a
cut-matrix, meaning that for some subsgi of the rows and subse;, of the columns and some value
dj, we have:B;[zy| = d; for x € S;1,y € S;2 and all B;[xy] = 0 otherwise. Second, eaah = O(1).
Finally, s = 1/e2 cut-matrices are sufficient so that matfiX has cut-norm at mos£N: that is, for
any partition of the verticesl, A’, we have|>_ 4, Wlzy]| < eN?2; moreover,||W||s < 1/e and
[W]|F < N.

We now closely follow arguments iE[|14]. First, let us imagthat we have exact equality, = By +
...+ B, and we will add in the matriXi” later. We are given that for all, K(A,C;\ A) > K(A,x)+7.
In particular, this trivially means that for each “profilef sizes{t;, }, there is no setl satisfying

AN S| € [tjyr—a,tjr +alN
Al > (v/4)N

that violates our given condition. The reason for consieGut-matrices is that the valugd N S, |
completely determine the quantify (A, C; \ A). We now setx so that the above constraints determine
K(A,C;\ A) up to£~/4. In particular, choosing: = o(?/s) suffices. This means that fixing a profile
of values{t;,}, we can replace “violates our given condition” witti(A,z) > ¢, for some value,
depending on the profile, losing only an amoypt. We now apply Theorem 9 (random sub-programs of
LPs) of [14]. This theorem states that with probabilityd, in the subgrapld’’, there is no setl’ satisfying

the above inequalities where the right-hand-sides andctiger, are reduced by)(/log(1/9)/+/n).
Choosingn > log(1/6)/a? we get that with high probability the induced cut-matricgs have the
property that there is nd’ satisfying

A0S, € [t — /2t + /N
AT = (/2
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with the objective value, reduced by at mosi/4. We now simply do a union-bound over all possible
profiles{t;,} consisting of multiples ofv to complete the argument.
Finally, we incorporate the additional matfiX using the following result frorﬂﬂ4].

Lemma 4.6.4 [@][Random submatrix] For,§ > 0, and anyi¥ an N x N real matrix with cut-norm
[Wllc < eN?, |[W||leo < 1/e and||W||r < N, let S’ be a random subset of the rows 18f with

n' = |S'| and letW’ be then’ x n’ submatrix ofi¥” corresponding tdV. For n’ > (c1/e*6°)log(2/¢),

with probability at leastl — 4,

g
W[l < ca—=n"

Vo

wherecy, co are absolute constants.

We want the addition ofV”’ to influence the value& (A4, C! — A) by o(~). We now use the fact that we
only care about the case that| > yn//2 and|C] — A| > ~n//2, so that it suffices to affect the sum
Yweayecr—a K(z,y) by o(y*n"?). In particular, this means it suffices to have- 5(v), or equivalently

s = O(1/4%). This in turn implies that it suffices to have= 6(+%), which implies that’ = O(1/~'?)
suffices for the theorem.l

4.7 Approximation Assumptions

When developing a&-approximation algorithm for some clustering objectivedtion F', if the goal is
to actually get the points correct, then one is implicitly king the assumption (or hope) that any
approximation toF' must bee-close in symmetric difference to the target clustering. hlew here we
show how assumptions of this kind can be viewed as speciasadgher-strict separation property.

Property 9 Given objective functiorF’, we say that a metrid over point setS satisfies the(c, €)-F
property with respect to target if all clusteringsC’ that are within a factore of optimal in terms of
objectivel" are e-close toC.

We now consider in particular themedian andi-center objective functions.

Theorem 4.7.1 If metricd satisfies theQ, ¢)-k-median property for datasét, then the similarity function
—d satisfies thev-strict separation property for = 4e.

Proof: Let C' = (4, Cy, ..., Cy, be the target clustering and P T = {OPT;,OPT,...,OPT}} be the
k-median optimal clustering, whede, |C; N OPT;| > (1 — €)n. Let's mark the all set of points of size
at mosten at most where&’ andOPT disagree.

If there exists an unmarked; that is more similar to some unmarkeglin a different cluster than to
some unmarkeg; in its own cluster, and if so we mark all three points. If thisgess halts afte< en
rounds, then we are happy: the unmarked set, which has atlease)n points, satisfies strict separation.
We now claim we can get a contradiction if the process lastgdo Specifically, begin witPT (not
C) and move each; to the cluster containing point. Call the resulOPT’. Note that for allj, the pair
(x,y;) are in thesamecluster inC' (because we only chose from unmarked points wideamd OPT
agree) but are inlifferentclusters inOPT’. So,d(OPT’,C) > en. However,OPT’ has cost at most
2 OPT; to see this note that moving into the cluster of the correspondingwill increase the:-median
objective by at mostost’(z;) < d(xj,z;) + cost(z;) < d(z;,y;) + cost(z;) < cost(z;) + cost(y;) +
cost(z;). Thus, thek-median objective at most doubles, i@st'(OPT’) < cost(OPT) contradicting
our initial assumption. W

We can similarly prove:
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Theorem 4.7.2 If the metricd satisfies the3, ¢)-k-center property, then the similarity functign-d)
satisfies thev-strict separation property for = 4e.

So if the metricd satisfies theQ, ¢)-k-median or the %, ¢)-k-center property for dataset, then
the similarity function—d satisfies the/-strict separation property far = 4¢. Theoreni4.313 (in Sec-
tion[4.7.1) then implies that as long as the smallest clustére target has size0en we can produce a
tree such that the ground-truth clusteringiésclose to a pruning of this tree.

Note: In fact, the both thé2, ¢)-k-median property and th@, ¢)-k-means property are quite a bit more
restrictive tharnv-strict separation. They imply, for instance, that excepten O(e) fraction of “bad”
points, there existd such that all points in the same cluster have distance mgsttani and all points
in different clusters have distance much greater tlhain contrast,v-strict separation would allow for
different distance scales at different parts of the graph.

We have further exploited this in recent w[43]. Speclfican [@] we show that if we assume that
any c-approximation to the k-median objectivecdlose to the target—then we can produce clusterings
that areO(e)-close to the targegven for values for which obtaining a--approximation is NP-hard

In particular, the main results dﬂ43] for the are the follog:

Theorem 4.7.3 If metric d satisfies thé1 + o, €)-k-median property for dataset and each cluster in the
target clustering has size at least+ 15/a)en + 2, then we can efficiently find a clustering thatislose
to the target.

Theorem 4.7.4 If metric d satisfies thg1 + «, €)-k-median property for datasét, then we can efficiently
find a clustering which i$)(e/a)-close to the target.

These results also highlight a somewhat surprising coneéglfference between assuming that the
optimal solution to thek-median objective ig-close to the target, and assuming that approximately
optimal solution ise-close to the target, even for approximation factor say 1.01. In the former case,
the problem of finding a solution thatd(¢)-close to the target remains computationally hard, andoret f
the latter we have an efficient algorithm.

We also prove ir@?)] similar results for themeans and min-sum properties.

4.7.1 Thev-strict separation Property

We end this section by proving theorém 413.3.

Theorem[4.3.3If K satisfiesv-strict separation, then so long as the smallest correct cluster has size
greater tharbvn, we can produce a tree such that the ground-truth clusté&ineclose to a pruning of
this tree.

Proof: Let S’ C S be the set of1 — v)n points such thak satisfies strict separation with respect
to S’. Call the points inS’ “good”, and those not irt” “bad” (of course, goodness is not known to the
algorithm). We first generate a ligt of n? clusters such that, ignoring bad points, any cluster in the
ground-truth is in the list. We can do this by for each pairg S creating a cluster of thenearest points
to it for eachdvn < t < n.

We next run a procedure that removes points from clustetsatieanon-laminar with respect to each
other without hurting any of the correct clusters, untiltbmaining set is fully laminar. Specifically, while
there exist two cluster§' andC"’ that are non-laminar with respect to each other, we do thewoig:

1. If eitherC or C’ has size< 4vn, delete it from the list. (By assumption, it cannot be onehef t

ground-truth clusters).

2. If C andC’ are “somewhat disjoint” in thaC' \ C’| > 2vn and|C’ \ C| > 2vn, each point
x € CNC’' chooses one af or C’ to belong to based on whichever@f\ C’ or C"\ C respectively
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has largemediansimilarity to . We then remove: from the cluster not chosen. Because each of
C'\ C"andC"\ C has a majority of good points, if one 6f or C’ is a ground-truth cluster (with
respect tas’), all good pointsr in the intersection will make the correct choi¢g.andC”’ are now
fully disjoint.

3. If C, C" are “somewhat equal” in tha€' \ C’| < 2vn and|C’\ C| < 2vn, we make them exactly
equal based on the following related procedure. Each pointthe symmetric difference of’
and C’ decidesin or out based on whether its similarity to tHen + 1)st most-similar point in
C N " is larger or smaller (respectively) than its similarity k& {zn + 1)st most similar point in
S\ (Cul”). If xisagood point irC'\ C" andC'is a ground-truth cluster (with respect$0), then
x will correctly choosen, whereas ifC” is a ground-truth cluster thenwill correctly chooseout
Thus, we can replac€ andC’ with a single cluster consisting of their intersection phllgpointsz
that chosen, without affecting the correct clusters.

4. If none of the other cases apply, it may still be there eXigf” such thatC' “somewhat contains”
C’inthat|C'\ C’| > 2vn and0 < |C"\ C| < 2vn. In this case, choose the largest sathnd apply
the same procedure as in Skép 3, but only over the poirts”’ \ C. At the end of the procedure,
we haveC D €’ and the correct clusters have not been affected with respéee good points.

Since all clusters remaining are laminar, we can now arrémg® into a forest, which we then arbitrarily
complete into a tree. B

4.8 Other Aspects and Examples

4.8.1 Computational Hardness Results

Our framework also allows us to study computational harslmesults as well. We discuss here a simple
example.

Property 10 A similarity functionk satisfies thaunique best cut property for the clustering problem

(S,)ifr=2and >  K(z,2')< Y, K(x,2)forall partitions (4, B) # (C1,C5) of S.
zeC,x’'eCq reAx'eB

Clearly, by design the clustering complexity of Propért}id@. However, we have the following compu-
tational hardness result.

Theorem 4.8.1 List-clustering under the unique best cut property is NPPFdhd hat is, there exists > 0
such that given a datasét and a similarity functionk satisfying the unique best cut property, it is NP-
hard to produce a polynomial-length list of clusterings Isubat at least one ig-close to the ground
truth.

Proof: It is known that the MAX-CUT problem on cubic graphs is APXRHI@] (i.e. itis hard to
approximate within a constant factar< 1).

We create a family((.S,1), K') of instances for our clustering property as follows. L&t= (V, E)
be an instance of the MAX-CUT problem on cubic graphi§| = n. For each vertex € V in the
graph we associate a poinf € S; for each edgegi, j) € £ we defineK (z;,z;) = —1, and we define
K(z;,xzj) = 0 for each(i,j) ¢ E. Let Sy denote the sefz; : i € V’}. Clearly for any given cut
(1, Vo) in G = (V, E), the value of the cut is exactly

F(Svi,Sw)= Y, —K(za).

Z’ESVl ,ZCIESVQ

Let us now add tiny perturbations to ttfé values so that there is a unique partitigfi;, Cs) =
(Svy, Svy ) minimizing the objective functiort”, and this partition corresponds to some maxégt, V")
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of G (e.g., we can do this so that this partition corresponds edekicographically first such cut). By
design, K now satisfies the unique best cut property for the clustepimmiplem.S with target clustering
(C1,Co).

Definee such that any clustering which ésclose to the correct clustering’;, C2) must be at least
«a-close in terms of the max-cut objective. E.g.< 1‘Ta suffices because the graghis cubic. Now,
suppose a polynomial time algorithm produced a polynosiegd list of clusterings with the guarantee
that at least one clustering in the list has error at raastterms of its accuracy with respect 6", C5).

In this case, we could then just evaluate the cut value fahallclusterings in the list and pick the best
one. Since at least one clustering is at leasibse to(C4, Cy) by assumption, we are guaranteed that at
least one is withirx of the optimum cut value. B

Note that we can get a similar results for any clusteringahbje £ that (a) is NP-hard to approximate
within a constant factor, and (b) has the smoothness propeat it gives approximately the same value
to any two clusterings that are almost the same.

4.8.2 Other interesting properties

An interesting relaxation of the average attraction prgpisrto ask that there exists a cluster so that most
of the points are noticeably more similar on average to gtioémts in their own cluster than to points
in all the other clusters, and that once we take out the paintisat cluster the property becomes true
recursivelﬁ. Formally:

Property 11 A similarity functionk satisfies the)-weak average attractionproperty for the clustering
problem(S, 1) if there exists cluste€’,. such that all examples € C, satisfy:

K(z, C(x)) = K(z,5\ Cr) +7,

and moreover the same holds recursively on thesseC,.
We can then adapt Algorithi 2 to get the following result:

Theorem 4.8.2 Let K be a similarity function satisfying-weak average attraction for the clustering
4k 8k
problem(s3, 1). Using AlgorithnT® withs(e, 7, k) = =5 In (%) and N (e, v, k) = (%)?ln (%) In(}) we
k 1 k
can produce a list of at mokto(? tn (£) 0 (%)) clusterings such that with probability— § at least one

of them ise-close to the ground-truth.

Strong attraction An interesting property that falls invibe¢n the weak stability property and the aver-
age attraction property is the following:

Property 12 The similarity functionk” satisfies they-strong attraction property for the clustering prob-
lem (S, 1) if for all clustersC,., C,.,  # r’ in the ground-truth, for allA C C,. we have

K(A,Co\ A) > K(A,Cy) + 7.

We can interpret the strong attraction property as sayiagftr any two clusterg’, andC,- in the
ground truth, for any subset C (), the subsetd is more attracted to the rest of its own cluster than to
C,s . Itis easy to see that we cannot cluster in the tree modelireordover we can show an lower bound
on the sample complexity which is exponential. Specifically

Theorem 4.8.3 For e < 7/4, the~-strong attraction property ha&, 2) clustering complexity as large as
2Q(1/7),

*Thanks to Sanjoy Dasgupta for pointing out that this propisrsatisfied on real datasets, such as the MINST dataset.

102



Proof: ConsiderN = % blobs of equal probability mass. Let's consider a specidtimag of these blobs
{(R1,L1), (Ra, La),...,(Ryy2, Lns2)} and let's defineK (z,2') = 0if 2z € R; anda’ € L; for some
iand K (z,2') = 1 otherwise. Then each partition of these blobs imto pieces of equal size that fully
"respects” our matching (in the sense that foriall;, L; are on two different parts) satisfies Propérty 12
with a gapy’ = 2v. The desired result then follows from the fact that the nunalbeuch partitions (which

split the set of blobs into two pieces of equal “size” andyfuétspect our matching) 952%—1. [ |

It would be interesting to see if one could develop algorghespecially designed for this property
that provides better guarantees than Algoritim 2.

4.8.3 \erification

A natural question is how hard is it (computationally) toedetine if a proposed clustering of a given
datasetS satisfies a given property or not. It is important to note, &esv, that we can always in poly-
nomial time compute the distance between two clusterings gwveighted matching algorithm). This
then ensures that the user is able to compare in polynoma tine target/built-in clustering with any
proposed clustering. So, even if it is computationally diffiy to determine if a proposed clustering of
a given datase$ satisfies a certain property or not, the property is stilkogable to consider. Note that
computing the distance between two the target clusteridgaag other clustering is the analogue of com-
puting the empirical error rate of a given hypothesis in th€ Betting @H; furthermore, there are many
learning problems in the PAC model where the consistenchlenois NP-hard (e.g3-Term DNF), even
though the corresponding classes are learnable.

4.8.4 Examples

In all the examples below we consider symmetric similanitydtions.

Strict separation and Spectral partitioning Figure4.2 shows that it is possible for a similarity funaotio
to satisfy the strict separation property for a given clistgproblem for which Theorefn 4.3.2 gives a
good algorithm, but nonetheless to fool a straightforwamecsral clustering approach.

Considerk blobsBy, Bs, ..., By, B}, B, . .., By, of equal probability mass. Assume thétz, 2’) =
lif z € B;andz’ € B, andK (z,2') = 1if z,2’ € B;orz,a’ € B, foralli € {1,...,k}. Assume also
K(z,2') = 0.5if 2 € B;and2’ € Bj orz € B} and2’ € B}, fori # j; let K(z,2") = 0 otherwise. See
Figurel4.2 (a). LeC; = B; U B, foralli € {1, ..., k}. Itis easy to verify that the clustering, . .., Cj
(see Figuré 412 (b)) is consistent with Propérty 4.2 (a pbssialue for the unknown thresholdds= 0.7).
However fork large enough the cut of min-conductance is the one shownguréfid.2 (c), namely the
cut that splits the graph into paf$3:, B, ..., By} and{Bj, B;, ..., B; }. A direct consequence of this
example is that applying a spectral clustering approachddead to a hypothesis of high error.

Linkage-based algorithms and strong stability Figure[4.3 (a) gives an example of a similarity func-
tion that does not satisfy the strict separation propenty,for large enoughn, w.h.p. will satisfy the
strong stability property. (This is because there are at méssubsetsA of sizek, and each one has fail-
ure probability onlye=©(") ) However, single-linkage using ;... (C, C") would still work well here.
Figure[4.B (b) extends this to an example where single-fjgkasingK.,,...(C, C’) fails. Figure[4.B (c)
gives an example where strong stability is not satisfied aachge linkage would fail too. However notice
that the average attraction property is satisfied and Adgmi2 will succeed.
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(a)

Figure 4.2:Consider2k blobsB1, Bs, ..., B, B}, B, ..., B;, of equal probability mass. Points inside the same
blob have similarity 1. Assume thaf(z, 2') = 1if « € B; andz’ € B]. Assume alsd{(z,z') = 0.5if x € B; and

x' € Bjorz € Bjandz’ € B}, fori # j; let K(z,2") = 0 otherwise. LeC; = B; U B, foralli € {1,... k}. It

is easy to verify that the clustering, . . ., Cy, is consistent with Properky 1 (part (b)). However, fdarge enough
the cut of min-conductance is the cut that splits the grafthparts{ B, Bs, ..., B;} and{B{, B, ..., B} (part

(©)).

4.9 Conclusions and Discussion

In this chapter we provide a generic framework for analyzirat properties of a similarity function are
sufficient to allow it to be useful for clustering, under twatuaral relaxations of the clustering objective.
We propose a measure of thieistering complexityf a given property that characterizes its information-
theoretic usefulness for clustering, and analyze this ¢exitg for a broad class of properties, as well as
develop efficient algorithms that are able to take advantégigem.

Our work can be viewed both in terms of providing formal aévio thedesignerof a similarity
function for a given clustering task (such as clusteringrgsearch results) and in terms of advice about
whatalgorithmsto use given certain beliefs about the relation of the siityldunction to the clustering
task. Our model also provides a better understanding of wimeterms of the relation between the
similarity measure and the ground-truth clustering) diffe hierarchical linkage-based algorithms will
fare better than others. Abstractly speaking, our notioa pifoperty parallels that of alata-dependent
concept clas@] (such as large-margin separators) in the contextasfsification.

Open questions: Broadly, one would like to analyze other natural propergésimilarity functions, as
well as to further explore and formalize other models ofrmtéve feedback. In terms of specific open
guestions, for the average attraction property (Propértye8have an algorithm that fdr = 2 produces

a list of size approximatelp®(t/7*In1/<) and a lower bound on clustering complexity 25t1/7). One
natural open question is whether one can close that gap. @ndeapen question is that for the strong
stability of large subsets property (Propdrty 7), our atbar produces hierarchy but has larger running
time substantially larger than that for the simpler st&pgiroperties. Can an algorithm with running time
polynomial ink and1/~ be developed? Can one prove stability properties for dimstédased on spectral
methods, e.g., the hierarchical clustering algorithm rgive[@]? More generally, it would be interesting
to determine whether these stability properties can bddurtveakened and still admit a hierarchical
clustering. Finally, in this work we have focused on formmlg clustering with non-interactive feedback.
It would be interesting to formalize clustering with othextural forms of feedback.
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Figure 4.3:Part (a): Consider two blohB;, By with m points each. Assume thaf(z,z') = 0.3 if z € By and

z' € Bg, K(z,2') is random in{0,1} if z,z’ € B; for all i. ClusteringC;, C> does not satisfy Properfy 1, but
for large enoughn, w.h.p. will satisfy Propert]5. Part (b): Consider fourld3;, Bs, B3, B4 of m points each.
AssumeK (z,2') = 1if z,2’ € B;, foralli, K(z,2’) = 0.85if x € By anda’ € By, K(z,2') = 0.85if x € B3
andz’ € By, K(z,2') = 0if € By andz’ € By, K(z,2') = 0if z € By anda’ € Bs. Now K (z,2’) = 0.5 for

all pointsz € By andz’ € Bs, except for two special points; € By andxzs € Bs for which K (21, z3) = 0.9.
Similarly K (z,2") = 0.5 for all pointsz € By andz’ € By, except for two special points, € By andzy € By

for which K (z5,x4) = 0.9. For large enoughn, clusteringC;, C> satisfies Propertyl5. Part (c): Consider two
blobsB;, Bs of m points each, with similarities within a blob all equaltd, and similarities between blobs chosen
uniformly at random fron{0, 1}.

4.10 Other Proofs

Algorithm 6 Sampling Based Algorithm, List Model

Input: Data sefS, similarity function K, parameters, e > 0, k € Z"; dy(e,7, k,0), da(€,7, k, §).
e Setl = 0.

e Pickaset/ = {xi,...,zq4 } Of d; random examples frorf, whered; = d;(¢,~, k, ). UseU to
define the mappingy : X — R, py(z) = (K(z,71), K(2,22), ..., K(z,24,)).

e Pick aset/ of dy = ds(e, 7, k, §) random examples fror and consider the induced st (U).

e Consider all the(k + 1)% possible labellings of the sgt;(U) where thek + 1st label is used to
throw out points in the fraction that do not satisfy the property. For each labgllise the Winnow
algonthm @5] to learn a multiclass linear separatand add the clustering induced hyto

° Output the listC.

Theorem[d.4.4 LetK be a similarity function satisfying the-, v)-average weighted attraction property

for the clustering probleniS, 1). Using Algorithm[® with parameterd, = O (1 (7% + 1) In (%)) and

A k
do = O(% <71; Ind; +1In %) ) we can produce a list of at mols?(ﬁ) clusterings such that with proba-

bility 1 — ¢§ at least one of them is+ v-close to the ground-truth.

Proof:

For simplicity we describe the cage= 2. The generalization to largérfollows the standard multi-
class to binary reductiorﬁb?].

For convenience let us assume that the labels of the twoectuate{—1, +1} and without loss of
generality assume that each of the two clusters has at Iraspebability mass. LeU be a random
sample fromS of d; = 1 ((4/~)* + 1) In(4/6) points. We show first that with probability at ledst- §,
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the mappingy : X — R% defined as
pU(m) = (K(l‘,ﬂj‘l), K(l‘,ﬂj‘g), s >K($a$d1))

has the property that the induced distributjgn(.S) in R has a separator of error at mégof thel — v
fraction of the distribution satisfying the property)/at margin at leasty /4.

First notice thatd, is large enough so that with high probability our sample amst at least! =
(4/)*1n(4/4) points in each cluster. Léf* be the subset df/ consisting of the first/ points of true
label +1, and letU~ be the subset aof/ consisting of the firstl points of true label-1. Consider the
linear separatof in the py space defined a8 = I(x;)w(x;), forz; € U~ UUT and3; = 0 otherwise.
We show that, with probability at least — ¢), 3 has error at most at L; margin~/4. Consider some
fixed pointz € S. We begin by showing that for any suech

i 2
. >d—)>1-6°
l?]r (l(m)ﬁ pu(x) > d4> >1-90
To do so, first notice that is large enough so that with high probability, at least 62, we have both:
Byrev+[w(@) K(z,2')] — Epslw(@) K (z,2")[l(z") = 1]| < %

and
By [w(a) K (2,2')] = Earmsfuw(@) K (@,2)I(@) = =1]| < 1.

Let's consider now the case whé) = 1. In this case we have

1(2)8 - pu () = d (; > wle) K m) -5 S w(mi)K(ﬂc,azi)),

z;eUy z,eU_
and so combining these facts we have that with probabilitgast(1 — §2) the following holds:
()8 pu(z) = d(Ey~sw(z) K (z,2")|l(z") = 1] — 7/4 = Eyos[w(@’) K (z,2')[U(2") = —1] — 7/4).

This then implies thalt(z) 3-py (z) > dv/2. Finally, sincew(z’) € [—1, 1] for all 2/, and sinceX (z, z') €
[—1, 1] for all pairsz, 2/, we have that|5]|; < d and||py(z)|| < 1, which implies

TRy A C)) Y s
0 <l( B0 @) = 4) SR

The same analysis applies for the case that = —1.

Lastly, since the above holds for amyit is also true for random: € S, which implies by Markov’s
inequality that with probability at least — ¢, the vector3 has error at most at L, margin~/4 over
pu(S), where examples have,, norm at most 1.

So, we have proved that K is a similarity function satisfying thé, v)-average weighted attraction
property for the clustering probleitt, [), then with high probability there exists a low-error (at s
large-margin (at leasf) separator in the transformed space under mappingrhus, all we need now to
cluster well is to draw a new fresh samjile guess their labels (and which to throw out), map them into
the transformed space usipg, and then apply a good algorithm for learning linear sepasah the new
space that (if our guesses were correct) produces a hywotfesrror at most with probability at least
1 — 4. Thus we now simply need to calculate the appropriate valuk.o
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The appropriate value af; can be determined as follows. Remember that the vettumas error at
mostd at L; margin~/4 over py(S), where the mapping;; produces examples df,, norm at most
1. This implies that the Mistake bound of the Winnow algaritbn new labeled data (restricted to the
1 — 6 good fraction) isO(% Ind,). Settingd to be sufficiently small such that with high probability no
bad points appear in the sample, and using standard mistakellio PAC conversions [166], this then

implies that a sample size of side = O (1 (71; Ind; + In %) ) is sufficient. m
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Chapter 5

Active Learning

In this chapter we return to the supervised classificatittimgeand present some of our resultsActive
Learning As mentioned in Chaptéd 1, in the active learning model @ the learning algorithm is
allowed to draw random unlabeled examples from the undwyldistribution and ask for the labels of
any of these examples. The hope is that a good classifier daatmed with significantly fewer labels by
actively directing the queries to informative examples.

As in passive supervised learning, but unlike in semi-stiped learning (which we discussed in
Chaptef 2), the only prior belief about the learning probleene is that the target function (or a good
approximation of it) belongs to a given concept class. Fonesgoncept classes such as thresholds on
the line, one can achieve an exponential improvement oweusiual sample complexity of supervised
learning, under no additional assumptions about the Iegrpioblem 6]. In general, the speedups
achievable in active learning depend on the match betweedata distribution and the hypothesis class,
and therefore on the target hypothesis in the class. Themotstvorthy non-trivial example of improve-
ment is the case of homogeneous (i.e., through the origiegli separators, when the data is linearly
separable and distributed uniformly over the unit spr@%,@ . There are also simple examples
where active learning does not help at all, even in the rallézcase [96]. (We refer here to the traditional
sample complexity analysis in the active learning setfitpte that in the active learning model the goal
is to reduce the dependence bfe from linear or quadratic to logarithmic, and that this is swvhat
orthogonal to the goals considered in Chapter 2 where thesfa@s on reducing the complexity of the
class of functions.

In our work, we provide several new theoretical results fative Learning. First, we prove for
the first time, the feasibility of agnostic active learning§pecifically we propose and analyze the first
active learning algorithm that finds aroptimal hypothesis in any hypothesis class, when the lyidgr
distribution has arbitrary forms of noise. We also analyzegim based active learning of linear separators.
We discuss these in Sectidnsl5.1 5.2 below, and as medtiorSection 113, these results are based
on work appearing ir@i,__é[l%]. Finally, in recent Wdﬂ,[@], we consider a twist on the usual active
learning model; in particular, we show that in an asymptotadel for Active Learning where one bounds
the number of queries the algorithm makes before it finds a donction (i.e. one of arbitrarily small
error rate), but not the number of queries beforknibwsit has found a good function, one can obtain
significantly better bounds on the number of label querigsired to learn than in the traditional active
learning models. See section]5.3.
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5.1 Agnostic Active Learning

In this section, we provide and analyze the first active liegralgorithm that finds ar-optimal hypothe-
sis in any hypothesis class, when the underlying distidioutias arbitrary forms of noise. The algorithm,
A? (for AgnosticActive), relies only upon the assumption that it has accessstoeam of unlabeled ex-
amples drawn.i.d. from a fixed distribution. We show that? achieves an exponential improvement
(i.e., requires onhO (ln %) samples to find am-optimal classifier) over the usual sample complexity of
supervised learning, for several settings consideredréefothe realizable case. These include learn-
ing threshold classifiers and learning homogeneous lireggarators with respect to an input distribution
which is uniform over the unit sphere.

5.1.1 Introduction

Most of the previous work on active learning has focused enréalizable case. In fact, many of the
existing active learning strategies areise seekingn natural learning problems, because the process
of actively finding an optimal separation between one classanother often involves label queries for
examples close to the decision boundary, and such exanffdashave a large conditional noise rate (e.qg.,
due to a mismatch between the hypothesis class and the d#atéudion). Thus the most informative
examples are also the ones that are typically the most pose.

Consider an active learning algorithm which searches feroptimal threshold on an interval using
binary search. This example is often used to demonstratedteatial of active learning in the noise-free
case when there is a perfect threshold separating the sl@]e Binary search needs(In %) labeled
examples to learn a threshold with error less thawhile learning passively require3 (%) labels. A
fundamental drawback of this algorithm is that a small anhofiadversarial noise can force the algorithm
to behave badly. Is this extreme brittleness to small ansoahnoise essential? Can an exponential
decrease in sample complexity be achieved? Can assumptions the mechanism producing noise be
avoided? These are the questions addressed here.

Previous Work on Active Learning There has been substantial work on active learning undeéticul
assumptions. For example, the Query by Committee ana [assumes realizability (i.e., existence
of a perfect classifier in a known set), and a correct Baygmian on the set of hypotheses. Dasgu@l [96]
has identified sufficient conditions (which are also neagsagainst an adversarially chosen distribution)
for active learning given only the additional realizalyilassumption. There are several other papers that
assume only realizabilitﬂb 9]. If there exists a perfegotheses in the concept class, then any infor-
mative querying strategy can direct the learning procesisowt the need to worry about the distribution
it induces—any inconsistent hypothesis can be eliminats#d on asingle query, regardless of which
distribution this query comes from. In the agnostic casevdwer, a hypothesis that performs badly on
the query distribution may well be the optimal hypothesithwespect to the input distribution. This is
the main challenge in agnostic active learning that is nes@nmt in the non-agnostic case. Burnashev and
Zigangirov E{S] allow noise, but require a correct Bayegmior on threshold functions. Some papers
require specific noise models such as a constant noise ratgwdhere |{Eb] or Tsybakov noise condi-
tions @1 ]. (Infact, in section 3.2 we discuss activeri@sy of linear separators under a certain type
of noise related to the Tsybakov noise conditions I[Eh 79].)

The membership-quergetting HQ] is similar to active learning colesed here, except
that no unlabeled data is given. Instead, the learning i#thgoris allowed to query examples of its own
choice. This is problematic in several applications beeawstural oracles, such as hired humans, have
difficulty labeling synthetic exampleﬂél?]. Ulam’s Protmigquoted in @1]), where the goal is find a
distinguished element in a set by asking subset memberstgpes, is also related. The quantity of
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interest is the smallest number of such queries requireddcdliie element, given a bound on the number
of queries that can be answered incorrectly. But both typessults do not apply here since an active
learning strategy can only buy labels of the examples it mese For example, a membership query
algorithm can be used to quickly hone on a separating hygeegh a high-dimensional space. An active
Iearningﬁlgorithm can not do so when the data distributioeschot support queries close to the decision
boundar

Our Contributions  We present here the firagnosticactive learning algorithmAZ2. The only neces-
sary assumption is that the algorithm has access to a strearamples drawn.i.d. from some fixed
distribution. No additional assumptions are made abouitrtbehanism producing noise (e.g., class/target
misfit, fundamental randomization, adversarial situatjoii he main contribution of our work is to prove
the feasibility of agnostic active learning.

Two comments are in order:

1. We define thenoise rateof a hypothesis clas§' with respect to a fixed distributio® as the min-
imum error rate of any hypothesis (i on D (see section 2 for a formal definition). Note that for
the special case of so calltabel noise(where a coin of constant bias is used to determine whether
any particular example is mislabeled with respect to thé lngsothesis) these definitions coincide.

2. We regard unlabeled data as being of minimal cost so asctes fexclusively on the question of
whether or not agnostic active learning is possible at allbsEantial follow-up to the original
publication of our work|[31] has successfully optimized ab#led data usage to be on the same
order as passive learni 0

A?is provably correct (for ang < e < 1/2 and0 < § < 1/2, it outputs are-optimal hypothesis with

probability at leasti — §) and it is never harmful (it never requires significantly entabeled examples
than batch learning)4? provides exponential sample complexity reductions in sheettings previously
analyzed without noise or with known noise conditions. Th@udes learning threshold functions with
small noise with respect toand hypothesis classes consisting of homogeneous (thtbagirigin) linear
separators with the data distributed uniformly over the sphere inR?. The last example has been the
most encouraging theoretical result so far in the realizabtse@g].

The A? analysis achieves an almost contradictory property: fareseets of classifiers, anoptimal

classifier can be output with fewer labeled examples thameegled to estimate the error rate of the
chosen classifier with precisiarfrom random examples only.

Lower Bounds Itis important to keep in mind that the speedups achievalfiteagtive learning depend
on the match between the distribution over example-labie pad the hypothesis class, and therefore on
the target hypothesis in the class. Thus one should expecesults to be distribution-dependent. There
are simple examples where active learning does not helpiattak model analyzed in this section, even
if there is no noiseEG]. These lower bounds essentiallultédsom an “aliasing” effect and they are
unavoidable in the setting we analyze in this section (wherdound the number of queries an algorithm
makes before itan proveit has found a good functiof).

!Note also that much of the work on using membership queri@sii 75/ 139] has been focused on problems where the it
was not possible to get a polynomial time learning algorithrthe passive learning setting (in a PAC sense) with the ltiogie
the membership queries will allow learning in polynomiahd. In contrast, much of the work in the Active Learning ktieire
has been focused on reducing the sample complexity.

20One can show we might end up using a factod 6§ more unlabeled examples than the number of labeled exaroptes
would normally need in a passive learning setting.

3In recent WorkBZ], we have shown that in an asymptoticdehdor Active Learning where one bounds the number of
queries the algorithm makes before it finds a good functi@n ¢ine of arbitrarily small error rate), but not the numifegeries
before it can prove or it knows it has found a good functiorg oan obtain significantly better bounds on the number ofl labe
queries required to learn. See Secfiod 5.3.
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In the noisy situation, the target function itself can beyveimple (e.g., a threshold function), but
if the error rate is very close tb/2 in a sizeable interval near the threshold, then no activenileg
procedure can significantly outperform passive learninmgpdrticular, in the pure agnost|c setting one
cannothope to achieve speedups when the noisewrdtelarge, due to a lower bound 6f(Z; ) on the
sample complexity of any active IearnElMG] However,emspecific noise models (such as a constant
noise rate everywherﬂSO] or Tsybakov noise condm@ls@t}) and for specific classes, one can still
show significant improvement over supervised learning.

Structure of this section Preliminaries and notation are covered in Sedfion b.42.is presented in
Sectiori 5.13; Section_5.1.3 also proves théts correct and that it is never harmful (i.e., it never regsir
significantly more samples than batch learning). Threshaidtions such ag;(x) = sign(z — t) and
homogeneous linear separators under the uniform disoibwver the unit sphere are analyzed in Sec-
tion[5.1.4. Conclusions, a discussion of subsequent warkppen questions are covered in Sedtion 5.1.6.

5.1.2 Preliminaries

We consider a binary agnostic learning problem specifiecbb®afs. Let X be an instance space and
Y = {—1,1} be the set of possible labels. Létbe the hypothesis class, a set of functions mapping
from X to Y. We assume there is a distributi@hover instances itX', and that the instances are labeled
by a possibly randomized oracte (i.e. the target function). The orac{e can be thought of as taking
an unlabeled example in, choosing a biased coin based rthen flipping it to find the label-1 or 1.

We let P denote the induced distribution ov&r x Y. Theerror rate of a hypothesig with respect to a
distribution P over X x Y is defined agrrp(h) = Pr,_p[h(z) # y|. The error raterr 5(h) is not

generally known sincé® is unknown, however the empirical versieni 5(h) = Pr, ,s[h(z) # y] =
% Zmes I(h(z) # y) is computable based upon an observed samplé deawn fromP.
Letry = %mg (errp,o(h)) denote the minimum error rate of any hypothesi€’imith respect to the
S

distribution (D, O) induced byD and the labeling oracl®. The goal is to find am-optimal hypothesis,
i.e. a hypothesié € C with errp o(h) within e of v, wheree is some target error.

The algorithmA? relies on a subroutine, which computes a lower bound4,B, §) and an upper
bound UBS, h, §) on the true error raterr(h) of h by using a samplé' of examples drawni.d. from
P. Each of these bounds must hold for/aimultaneously with probability at least- §. The subroutine
is formally defined below.

Definition 5.1.1 A subroutine for computing L, /,d) and UB(S, h,d) is said to belegal if for all
distributionsP over X x Y, forall0 < § < 1/2andm € N,

LB(S, h,6) < errs(h) < UB(S, h, d)

holds for allh € C simultaneously, with probability — & over the draw ofS according toP™.

Classic examples of such subroutines are the (distributidependent) VC boun-G] and the
Occam Razor boun(ﬁb or the newer data dependent geraiali bounds such as those based on
Rademacher Complexnlei?S]. For concreteness, we caddhe VC bound subroutine stated in Ap-
pendix(A1.1.

As we will see in the following section, a key point in the algfam we present is that we will not
have to bring the range close d¢the desired target accuracy), but it will be enough to bestzom width
on a series of carefully chosen distributions oXex Y.
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5.1.3 TheA? Agnostic Active Learner

At a high level,A? can be viewed as a robust version of the selective samplagitim of ]. Selective
sampling is a sequential process that keeps track of twaspathe currentersion space’;, defined as

the set of hypotheses i@ consistent with all labels revealed so far, and the cumegion of uncertainty

R;, defined as the set of all € X, for which there exists a pair of hypotheses(inthat disagrees on

z. In roundi, the algorithm picks a random unlabeled example frByrand queries it, eliminating all
hypotheses ir; inconsistent with the received label. The algorithm thémielates thoser € R; on
which all surviving hypotheses agree, and recurses. Thisgss fundamentally relies on the assumption
that there exists a consistent hypothesig’in In the agnostic case, a hypothesis cannot be eliminated
based on its disagreement with a single example. Any algorinust be more conservative in order to
avoid risking eliminating the best hypotheses in the class.

A formal specification of4? is given in Algorithm[7. LetC; be the set of hypotheses still under
consideration by4? in roundi. If all hypotheses irC; agree on some region of the instance space, this
region can be safely eliminated. To help us keep track ofnes®gin decreasing the region of uncertainty,
define DSAGREEp(C;) as the probability that there exists a pair of hypotheses; ithat disagrees on a
random example drawn froml:

DISAGREED(CZ‘) = Pll‘)[;]hl, ho € C; : hl(x) 75 hg((ﬁ)]

Hence DSAGREEp (C;) is the volume of the current region of uncertainty with resge D.

Clearly, the ability to sample from the unlabeled data diatron D implies that ability to compute
DISAGREEp(C;). To see this, note thaDiSAGREEL (C;) = E,pl(3hy, he € C; : hi(x) # hao(x)) IS
an expectation over unlabeled points drawn frém Consequently, Chernoff bounds on the empirical
expectation of a0, 1} random variable imply that BAGREEp(C;) can be estimated to any desired
precision with any desired confidence using an unlabeleasdatvith size limiting to infinity.

Let D; be the distributionD restricted to the current region of uncertainty. Formally,= D(z |
3h1,he € C; : hi(x) # ha(x)). Inroundi, A% samples a fresh set of examplgdrom D;, O, and uses
it to compute upper and lower bounds for all hypothese§;inlt then eliminates all hypotheses whose
lower bound is greater than the minimum upper bound.

Since A% doesn't label examples on which the surviving hypotheseseagn optimal hypothesis in
C; with respect taD; remains an optimal hypothesisd, ; with respect taD; 1. Since each roundcuts
DISAGREEp (C;) down by half, the number of rounds is boundedldsg/%. Section§ 5.1]4 gives examples
of distributions and hypothesis classes for whithrequires only a small number of labeled examples to
transition between rounds, yielding an exponential imprognt in sample complexity.

When evaluating bounds during the course of Algorifini7 uses a schedule éfaccording to the
following rule: thekth bound evaluation has confidenie= % for k > 1. In Algorithm[7, k& keeps
track of the number of bound computations arud the number of rounds.

Note: It is important to note thatl> does not need to know in advance. Similarly, it does not need to
know D in advance.

Correctness

Theorem 5.1.1 (Correctness)or all C, for all (D, O), for all legal subroutines for computing B and
LB, forall0 < e < 1/2and0 < § < 1/2, with probability 1 — §, A? returns ane-optimal hypothesis or
does not terminate.

Note 2 For most “reasonable” subroutines for computidgB and LB, A? terminates with probability
at leastl — §. For more discussion and a proof of this fact see the Fallkb@nalysis Section.
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Algorithm 7 A2 (allowed error rate, sampling oracle foD, labeling oracle), hypothesis clasg’)

seti«—1,D;, D, C; — C,C;_1 «— C, S;_1 +— 0, andk « 1.

(1) while DISAGREEp(C;—1) | min UB(S;_1,h, pur) — min LB(S;—1,h,uk)| > €
heCi—1 heCi_1

setS; — 0,C! — Cij, k—k+1
(2) while DISAGREEp(C]) > $DISAGREEp(C))
if DISAGREEp(C;) (}111%151 UB(S;, h, pu) — }112161} LB (S, h, ux)) < €
(%) return h = argminpec, UB(S;, h, ix).
else S’/ = rejection sample|S;| 4 1 samples: from D satisfying
hy, hg € C; : hi(x) # ha(x).
Si— S;U{(z,0(x)):xze S} k—k+1
(xx) Cl = {h € C; : LB(S;, h, g, ) < f{/rélgz UB(S;, W ) bk —k+1
end if
end while
Cit1 < Cl, Di11 «— D; restricted to{x : 3hy, ho € C} : hy(x) # hao(x)}
1—1+1
end while

return h = argmingec, , UB(S;_1, h, pg).

Proof: The first claim is that all bound evaluations are valid siogtously with probability at least
1 — 4, and the second is that the procedure producesaatimal hypothesis upon termination.

To prove the first claim, notice that the samples on which dmmind is evaluated are drawimnd.
from some distribution oveK x Y. This can be verified by noting that the distributiéh used in round
1 is precisely that given by drawingfrom the underlying distributio conditioned on the disagreement
Jhy, he € C; : hy(x) # ho(z), and then labeling according to the ora€le

The k-th bound evaluation fails with probability at m 5+1). By the union bound, the probability
that any bound fails is less then the sum of the probabildiemdividual bound failures. This sum is

bounded by> 37| 2y = 6.

To prove the second claim, notice first that since every bawaduation is correct, ste@x) never
eliminates a hypothesis that has minimum error rate witheeig D, O). Let us now introduce the fol-
lowing notation. For a hypothesise C andG C C define:

[h(x) # yl,

ep,go(h) = Pr
x,y~D,0|3h1,h2€G:h1 (x)#ha(x)
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[h(x) # yl-

fp.coh) = Pr
x,y~D,0|Vh1,ho€G:h1 (x)=ho(x)

Notice thatep ¢ 0(h) is in facterrp, o(h), whereD¢ is D conditioned on the disagreemettt;, hy €
G : hi(x) # ho(z). Moreover, given anyx C C, the error rate of every hypothegisdecomposes into
two parts as follows:

errpo(h) = epago(h) - DISAGREED(G) + fp,a,0(h) - (1 — DISAGREER(G))
= errpgo0(h) - DISAGREED(G) + fp,g,0(h) - (1 — DISAGREEp(G)).

Notice that the only term that varies withe G in the above decomposition, is) ¢,0(h). Conse-
quently, finding ar-optimal hypothesis requires only boundig p,, o (h)-DISAGREEp (G) to precision
e. But this is exactly what the negation of the main while-lapmard does, and this is also the condition
used in the first step of the second while loop of the algoritimother words, upon terminatioA?
satisfies

D|SAGREED(CZ-)(}€1%ng UB(S;, h, o) — }13%151 LB(S;, h,0k)) < e,

which proves the desired resultll

Fall-back Analysis

This section shows that? is never much worse than a standard batch, bound-basedttaigdn terms
of the number of samples required in order to learn. (A stah@aample of a bound-based learning
algorithm is Empirical Risk Minimization (ERM) [207].)

The sample complexity (e, 6, C') required by a batch algorithm that uses a subroutine for ctinmgp
LB(S, h,d) and UB(S, h,0) is defined as the minimum number of samplesuch that for allS € X",
|[UB(S, h,d) —LB(S,h,0)| < eforall h € C. For concreteness, this section uses the following bound on
m(e, d,C') stated as Theorem A.1 in Appendix’/All.1:

mie5.0) = 5 (2vem (Z) +1n(5))

HereV is the VC-dimension of’. Assume thatn(2¢,, H) < M and also that the functiom is
monotonically increasing ith /6. These conditions are satisfied by many subroutines for atmpUB
and LB, including those based on the VC-bound [206] and thea@xs Razor bound [69].

Theorem 5.1.2 For all C, for all (D, O), for all UB and LB satisfying the assumption above, for all
0 <e<1/2and0 < § < 1/2, the algorithmA? makes at mostm (e, &, H) calls to the oracleD, where

V' = Nmoesor adN (e, 6, C) satisfiesN (¢, 6, C) > In L lnm(e, yrseymeserrn: C)- Here
m(e, d, H) is the sample complexity of UB and LB.
Proof: Letd;, = —>— be the confidence parameter used in/tkta application of the subroutine for

E(k+1
computing UB and L(B. '?’he proof works by finding an upper bow, 4, C') on the number of bound
evaluations throughout the life of the algorithm. This implthat the confidence parametgris always
greater than’ = x— 13(5,5,0)“)-

Recall thatD; is the distribution ovesr: used on théth iteration of the first while loop. Considér 1.
If condition 2 of Algorithm A? is repeatedly satisfied then after labelinge, &', C') examples fromD;
for all hypotheses < 1,

|UB(S1,h,0") —LB(S1,h,d)| <€
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simultaneously. Note that in these conditiod$ safely halts. Notice also that the number of bound
evaluations during this process is at miogf, m(e, &', C).

On the other hand, if loof2) ever completes andincreases, then it is enough, if you finish when
1 = 2, to have uniformly for allh € C>,

|UB(S3, h,8") — LB(Sa,h,8")| < 2€.

(This follows from the exit conditions in the outer whilesjp and the ‘i’ in Step 2 ofd2.) Uniformly
bounding the gap between upper and lower bounds over allthgpesh € (5 to within 2¢, requires
m(2¢,6',C) < M labeled examples fromv, and the number of bound evaluations in round 2
is at mostlog, m(e, &', C).

In general, in round it is enough to have uniformly for all € C;,

|UB(S;, h,6') — LB(S;,h,&")| < 27 e,

and which requiresn (2 t¢, 8, C) < w
evaluations in roundis at mostlog, m(e, 8, C).

Since the number of rounds is bounded lby, % it follows that the maximum number of bound

evaluations throughout the life of the algorithm is at miogt, % log, m(e,d’,C). This implies that in
order to determine an upper bounde, 4, C') only a solution to the inequality:

labeled examples fron®;. Also the number of bound

1 J
> —
N(e, 0,C) > log, ; logy, m (e, No.0)(N(cs.0) % 1),C>

is required.
Finally, adding up the number of calls to the label oraglén all rounds yields at mostm(e, &', C)
over the life of the algorithm. B

Let Vi denote the VC-dimension af, and letm(e, §, C) be the number of examples required by
the ERM algorithm. As stated in Theordm All.1 in Apperdix A,1a classic bound om(e, d,C) is
m(e,8,C) = & (2VeIn (12) 4+ 1n (%)). Using Theoreri 5.112, the following corollary holds.

Corollary 5.1.3 For all hypothesis classeS of VC-dimensior/c, for all distributions (D, O) over X x
Y, forall0 < e < 1/2and0 < § < 1/2, the algorithmA? requires at most (4 (Ve lnl +1n3))
labeled examples the oradle.

Proof: The form of m(e,d, H) and Theorend 5.112 implies an upper bound¥n= N (e, 0, H). It is
enough to find the smalle#{ satisfying

2
N >1In <1> In <6—§ <2Vcln <E> + In <—4N >>>
€ € € 1)
Using the inequalityna < ab — Inb — 1 for all a,b > 0 and some simple algebraic manipulations, the
desired upper bound aN (e, 4, C') holds. The result then follows from Theorém 5]1.2

5.1.4 Active Learning Speedups

This section gives examples of exponential sample comntylériprovements achieved by?.
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Learning Threshold Functions

Linear threshold functions on the real line are the simpdest easiest to analyze class. It turns out that
even for this class, exponential reductions in sample cexitylare not achievable when the noise rate
is large M] We prove the following three results:

1. An exponential improvement in sample complexity whenrtbise rate is small (Theordm 5.11.4).

2. A slower improvement when the noise rate is large (The@gn3).

3. An exponential improvement when the noise rate is largedba to constant label noise (Theo-
rem[5.1.6). This shows that for some forms of high noise egpbal improvement remains possi-
ble.

All results in this subsection assume that subroutines LR in A2 are based on the VC bound.

Theorem 5.1.4 Let C be the set of thresholds on an interval. For all distribusdiD, O) whereD is a
continuous probability distribution function, for army< 3 1 and 15 > v, the algorithmA? makes

o[+ () (*3)

calls to the oracleD on examples drawni.d. from D, with probability 1 — §.

Proof: Consider round > 1 of the algorithm. Foihy, he € C;, let d;(hy, he) be the probability
that h, and ho predict differently on a random example drawn accordinghi distributionD;, i.e.,
di(h1, hg) = Pro~p,[hi(x) # ho(z)].

Let ~* be any minimum error rate hypothesisdh Note that for any hypothesis € C;, we have
errp, o(h) > di(h, h*)—errp, o(h*) anderrp, o(h*) < v/Z;, whereZ; = Pr,.p[z € [lower;, upper;] |
is a shorthand for BAGREEp (C;) and[lower;, upper;| denotes the support @;. Thuserrp, o(h*) <
dl(h, h*) - I//ZZ

We will show that at least %—fraction (measured with respect 10;) of thresholds inC; satisfy
di(h,h*) > 1, and these thresholds are located at the ends of the infésvadr;, upper;]. Assume first
that bothd; (h* lower;) > L andd;(h*, upper;) > then let/; andu; be the hypotheses to the left and
to the right ofh*, respectlvely that satisfy;(h*, ! ) = randd;(h*,u;) = 7. All h € [lower;, l;] U
[u;, upper;) satisfyd;(h*, h) > 1 and moreover

[\')l}—‘

PB[ac € [lower;, ;] U [u;, upper;] | >
Now suppose that; (h*, lower;) < +. Letu; be the hypothesis to the right bf with d; (h, uppen) =1
Then allh € [u;, upper;] satisfyd; ( ,h) > 1 and moreovePr,..p,[z € [u;, upper;]] > 1. A similar
argument holds fod; (h*, upper;) < %

In

Using the VC bound, with probability — &', if |S;| = O (ﬁ
877

simultaneously|UB(S;, h,d) — LB(S;, h,d)| < % -7 holds. Note that'/Z; is always upper bounded

) then for all hypothesek € C;

by 75
Consider a hypothests € C; with d;(h, h*) > 1. For any sucth,

1 v

) > d; ) — >
errp,o(h) > di(h,h") —v/Z; > 17

and so . . ,

14 14
. > - (Z_ )=
LB(S;, h,0) > 7 (8 Zz) <



Z; 8

ThusA? eliminates alk € C; with d;(h, h*) >
thus terminating roundd

Each exit fromwhile loop (2) decreases BAGREEp(C;) by at least a factor dt, implying that the
number of executions is bounded hy L. The algorithm make® (In (4 ) In (2)) calls to the oracle,
whered’ = + 6’5’0)(]\‘;(6’5’0)“) and N (¢, 6, C) is an upper bound on the number of bound evaluations
throughout the life of the algorithm.

The number of bound evaluations required in rouisD (In 3, ), which implies thatV (e, 6, C') should
satisfy
cln (N(E’ d C')(Né(e,é, ) + 1)> In <1> < N(e,0,C),
€

for some constant. Solving this inequality completes the proofll

Theoreni5.1J5 below asymptotically matches a lower bouritBéfiainen 6]. Recall that? does
not need to know in advance.

1. Butthat means BAGREEp(C]) < 3DISAGREE(C}),

Theorem 5.1.5 Let C be the set of thresholds on an interval. Suppose ethat% andv > 16e. For all
v? 1n%
€2

D, with probability 1 — &, the algorithmA? requires at most) ( ) labeled samples.

Proof: The proof is similar to the previous proof. Theorém 5.1.4 liggpthat loop (2) completes
O(log %) times. At this point, the minimum error rate of the remainmgpotheses conditioned on dis-
agreement becomes sufficient so that the algorithm may aityia the return steg«). In this case,

DISAGREE (C) = ©(v) implying that the number of samples requiredﬁis{”iﬁ%)_ N

The final theorem is for the constant noise case Wherg..o|,[h*(7) # y] — =vforallz € X.
The theorem is similar to earlier worﬂ?G], except that whiege these improvements with a general
purpose active learning algorithm that does not use any pvier the hypothesis space or knowledge of
the noise rate, and is applicable to arbitrary hypothesises

Theorem 5.1.6 Let C be the set of thresholds on an interval. For all unlabeledaddistributionsD, for
all labeled data distribution®), for any constant label noise < 1/2 ande < % the algorithmA? makes

1
(0] (W In (%) In (%)) calls to the oracle) on examples drawni.d. from D, with probability

1—4.

The proof is essentially the same as for Theotem b.1.4, &thapthe constant label noise condi-
tion implies that the amount of noise in the remaining atyiVebeled subset stays bounded through the
recursions.

Proof: Consider round > 1. Forhy, hy € Cy, letd;(h1, he) = Pryp,[h1(z) # ha(z)]. Note that
for any hypothesi& € C;, we haveerrp, o(h) = d;(h, h*)(1 —2v) + v anderrp, o(h*) = v, whereh*
is a minimum error rate threshold.

As in the proof of Theoremn 5.1.4, at Ieasga‘raction (measured with respect i®) of thresholds in
C; satisfyd;(h,h*) > %, and these thresholds are located at the ends of the suppoet:;, upper;] of

4The assumption in the theorem statement can be weakenet tm for any constani\ > 0.
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D;. The VC bound implies that for any > 0 with probability 1 — 5’ if ]S-] =0 (%) then for all
hypotheses € C; simultaneously|UB(S;, h,d) — LB(S;, h, 0)| < =2

Consider a hypothesise C; with d;(h, h*) > 1. For any sucth, eer oh) > +v=141%
and so LRS;, h,d) > 4 + - —(1 2v) = 3 + 3 On the other handkrrp, o(h*) = v, and so
UB(S;,h*,8) < v+ (3 — %) = £ + 2. ThusA? eliminates allh € C; with d;(h,h*) > L. But this
means that BAGREED(C;) < 1 DISAGREEp(C;), thus terminating round

Finally notice thatA” makesO (In () In ({)) calls to the oracle, wher® = 5 — =¥
andN (e, 6, C') is an upper bound on the number of bound evaluations thraughe life of the algorithm.
The number of bound evaluations required in roursl O(In(1/4")), which implies that the number of
bound evaluations throughout the life of the algoritie, 4, C') should satisfy

. (N(e,é, C)(N(e,8,C) + 1)) N <1> < N(€.5.0),

) €
for some constant. Solving this inequality, completes the proofll

Linear Separators under the Uniform Distribution

A commonly analyzed case for which active learning is knowgite exponential savings in the number
of labeled examples is when the data is drawn uniformly frowa wnit sphere iR¢, and the labels
are consistent with a linear separator going through thgaroriNote that even in this seemingly simple
scenario, there exists @ (1 (d + log 1)) lower bound on the PAC passive supervised learning sample
complexity @] We will show thati? provides exponential savings in this case even in the pcesei
arbitrary forms of noise.

Let X = {z € R?: ||z|| = 1}, the unit sphere iR?. Assume thaD is uniform overX, and letC' be
the class of linear separators through the origin. Argy C' is a homogeneous hyperplane represented by
a unit vectorw € X with the classification rulé(z) = sign(w - ). The distance between two hypotheses
u andv in C' with respect to a distributiod® (i.e., the probability that they predict differently on adam
example drawn fronD) is given bydp (u,v) = arccos(u) - Finally, letf(u,v) = arccos(u - v). Thus
dp(u,v) = fw)

D s
In this section we sill use a classic lemma about the unifoistridution. For a proof see, for exam-

ple, [3 @9]

Lemma 5.1.7 For any fixed unit vectow and any0 < v < 1,

v v
- < o < — <
el < 2] <o,

wherez is drawn uniformly from the unit sphere.

Theorem 5.1.8Let X, C, and D be as defined above, and let LB and UB be the VC bound. Thenyor an
0<e< 2, O<rv< f andd > 0, with probability 1 — 3, A2 requires

O(d dlnd—i—lnl ln1
o’ €

calls to the labeling oracle, whe® =

5
NS OTNes o) and

dlni
N(e,6,0) =0 <ln— (dzlnd—i—dln ;))
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Proof: Letw* € C' be a hypothesis with the minimum error rateDenote the region of uncertainty
in roundi by R;. ThusPr,.p[z € R;] = DISAGREEp(C;). Consider round of A%2. We prove that
the round completes with high probability if a certain th@sl on the number of labeled examples is
reached. The round may complete with a smaller number of pbenbut this is fine because the metric
of progress DSAGREEp (C;) must halve in order to complete.

Theoren AL says that it suffices to query the oracle on & s8tO(d?Ind + dIn %) examples
from ith distribution D, to guarantee, with probability — ¢’, that for allw € C;,

_ 1 1 v
lerr, ow) — &, 0(w)| < 5 (— -2,

wherer; is a shorthand for BAGREEp (C}).
that DSAGREED(O) > e. Thus the precision above is at Ieask— ﬁ% This implies that UBS, w, ¢’) —

errp,o(w) < 8\/8 =, anderrp, o(w) — LB(S w,d) < V — . Consider anyw € Cj with
dp, (w, w*) > 4_\1/8' For any suchu, errp, o(w) > 47 — £, and so

1 v 1 v 1
LB(S,w,0) > — — — — — + — = ——.
( ) 4\/3 T 8\/3 T 8\/3

However, erp, o(w*) < %, and thus UBS, w*, ") <

Thus round: eliminates all hypotheses € C; with dp, (w, w*) > 7
agree on every ¢ R;,

v 1 _ v _ 2
v ava f S0 A” eliminatesw in step

. Since all hypotheses i@

g

1 0w, w*
dp,(w,w*) = ;dD(w,w*) = %

Thus round: eliminates all hypotheses € C; with 6(w,w*) > L. But since20/m < sin#, for

4
6 € (0, 5], it certainly eliminates ally with sin 6(w, w*) > 2%.
Consider any: € R;; and the valuéw* - z| = cos §(w*, x). There must exist a hypothesise C;;
that disagrees withw* on z; otherwisex would not be inR; ;. But thencosf(w*,z) < cos(§ —

O(w,w*)) = sinf(w,w*) < f, where the last inequality is due to the fact thﬁ eliminates all

w with sin 6(w, w*) > 27\"}2. Thus anyz € R;y; must satisfylw* - z| < 2’\}3. Using the fact that
Pr[A|B] = P;Ef“?] < Prﬁ for any A and B,
. Prz-p { ] 4
T z 2\/ T 1
P 1] < P < < < L=,
:ENE [CL’ € ki +1] I‘ |:|w l’| 2\/E:| PI‘IND[QE S RZ] - 2r; 2

where the third inequality follows from Lemrha5.]1.7. ThusBGREEp (Cj11) < %DISAGREED(Ci), as
desired.

In order to finish the argument, it suffices to notice thatsieeery round cuts BAGREEp(C;) at
least in half, the total number of rounds is upper boundedb@yl Notice also that thed? algorithm
makesO (d?Ind + dIn §;) In (1) calls to the oracle, wher& = Neso Vs andN(e,6,0) is
an upper bound on the number of bound evaluations througheutfe of tﬂwe algorlthm The number

® The assumption in the theorem statement can be weakeneet t?W for any constaniA > 0.
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of bound evaluations required in rounds O (d2 Ind+dln %) This implies that the number of bound
evaluations throughout the life of the algorithi(e, 0, C') should satisfy

c <d2 Ind+dln <N(6’5’ C)(N(e,6,0) + 1)>> In <1> < N(e,5,0),

0 €

for some constant. Solving this inequality, completes the proofll

Note: For comparison, the query complexity of the Perceptrorethasctive learning algorithm 9]
is O(dln 5(In ¢ + Inln 1)), for the same”, X, and D, but only for the realizable case when= 0
Similar bounds are obtained im34] both in the realizableecand for a specific form of noise related to
the Tsybakov small noise condition. (We present thesetseguBectioi 5.J2.) The cleanest and simplest
argument that exponential improvement is in principle fiadesn the realizable case for the safig X,
andD appears i ]. Our work provides the first justification dfynone can hope to achieve similarly
strong guarantees in the much harder agnostic case, wheoiderate is sufficiently small with respect
to the desired error.

5.1.5 Subsequent Work

Following the initial publication ofd?, Hanneke has further analyzed tHé algorithm Eil], deriving a
general upper bound on the number of label requests made by his bound is expressed in terms of
particular quantity called thdisagreement coefficienivhich roughly quantifies how quickly the region
of disagreement can grow as a function of the radius of theiareispace. For concreteness this bound is
included below.

In addition, Dasgupta, Hsu, and MonteledﬂlOO] introdand analyze a new agnostic active learning
algorithm. While similar ta4?, this algorithm simplifies the maintenance of the regionrafartainty with
a reduction to supervised learning, keeping track of theigarspace implicitly via label constraints.

Subsequent Guarantees for4?

This section describes the disagreement coefficient [13d }tlke guarantees it provides for tHé algo-
rithm. We begin with a few additional definitions, in the rtiga of Sectiorl 5.1.J2.

Definition 5.1.2 Thedisagreement ratA (1) of a setV’ C C'is defined as

A(V) = Pr [z € DISAGREEp(V)].

x~D

Definition 5.1.3 For h € C,r > 0, let B(h,r) = {k' € C : d(W',h) < r} and define thelisagreement
rate at radius as

A, = sup (A(B(h,r))).
heC

Thedisagreement coefficierg the infimum value af > 0 such thatvr > v + ¢,

A, < 0Or.

We now present the main result ﬂSl].

®Note also that it is not clear if the analysis |E[99] is extablg to commonly used types of noise, e.g., Tsybakov noise.
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Theorem 5.1.91f ¢ is the disagreement coefficient fof, then with probability at least — §, given the
inputse andd, A2 outputs are-optimal hypothesig. Moreover, the number of label requests madeiBy

is at most:
_ 2
oo (% +1) (vemtsmi)ml),
€2 € ) €

whereV > 1 is the VC-dimension af'.

As shownin [L1_3|1] for the concept spaCeof thresholds on an interval the disagreement coefficients
2. Also X = {x € R?: ||z|| = 1} is the unit sphere iR?, D is uniform overX, and letC be the class
of linear separators through the origin, then the disagesemoefficient) satisfies

1mi]n{ﬂ\/E,L} Sﬂgmin{ﬂ\/a, ! }
4 Ve

Ve

These clearly match the results in Secfion 5.1.4.

5.1.6 Conclusions

We present herd?, the first active learning algorithm that finds @optimal hypothesis in any hypothesis
class, when the distribution has arbitrary forms of noiske @lgorithm relies only upon the assumption
that the samples are dravind. from a fixed (unknown) distribution, and it does not need towkrhe
error rate of the best classifier in the class in advance. Vsyza@A? for several settings considered
before in the realizable case, showing tHatachieves an exponential improvement over the usual sample
complexity of supervised learning in these settings. We pievide a guarantee that> never requires
substantially more labeled examples than passive learning

A more general open question is what conditions are suftidad necessary for active learning to
succeed in the agnostic case. What is the right quantityclratcharacterize the sample complexity of
agnostic active learning? As mentioned already, some essgn this direction has been recently made
in [@] and ]; however, those results characterize-amggressive agnostic active learning. Deriving
and analyzing the optimal agnostic active learning stsategtill an open question.

Much of the existing literature on active learning has bemus$ed on binary classification; it would
be interesting to analyze active learning for other lossftions. The key ingredient allowing recursion in
the proof of correctness is a loss that is unvarying witheesp substantial variation over the hypothesis
space. Many losses such as squared error loss do not hapedppésty, so achieving substantial speedups,
if that is possible, requires new insights. For other losg#s this property (such as hinge loss or clipped
squared loss), generalizations 4t appear straightforward.

5.2 Margin Based Active Learning

A common feature of the selective sampling algoritm [87], and otherslﬂO] is that they are all non-
aggressive in their choice of query points. Even points oictlwvthere is a small amount of uncertainty
are queried, rather than pursuing the maximally uncertaintp We show here that a more aggressive
strategies can generally lead to better bounds. Specdjfieai analyze a margin based active learning
algorithm for learning linear separators and instantiaferia few important cases, some of which have
been previously considered in the literature. The genencetlure we analyze is Algorithih 8. The key
contributions of this section are the following:
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1. We point out that in order to get a labeled data sample caxiiplwhich has a logarithmic depen-
dence onl /e without increasing the dependence @fi.e., a truly exponential improvement in the
labeled data sample complexity over the passive learnimghave to use a strategy which is more
aggressivehan a version space strategy (the one proposed by Cohexs, @ttl Ladner i|+__[$7] and
later analyzed in@l] — which we discussed in Secfion 5.1 pbint out that this is true even
in the special case when the data instances are drawn ulyftnom the the unit ball inR¢, and
when the labels are consistent with a linear separator gbiraygh the origin. Indeed, in order
to obtain a truly exponential improvement, and to be able#or with onlyO (dlog (1)) labeled
examples, we need, in each iteration, to sample our exarfrplesa subregion carefully chosen,
and not from the entire region of uncertainty, which woulgiyna labeled data sample complexity

of O(d% log (%)) The fact that a truly exponential improvement is possiblthis special setting

(through computationally efficient procedures) was prowefore both in 9] and_L_L{S], but via
more complicated and more specific arguments (and whictiexally are not easily generalizable
to deal with various types of noise).

2. We show that our algorithm and argument extend to the ealzable case. A specific case we
analyze here is again the setting where the data instaneesaawrn uniformly from the the unit ball
in R, and a linear classifier* is the Bayes classifier. We additionally assume that ourstsfies
the popular Tsybakov small noise condition along the denibioundary4]. We consider both
a simple version which leads &xponentiaimprovement similar to the item 1 above, and a setting
where we get only a polynomial improvement in the sample derity, and where this is provably
the best we can do [81]. Our analysis here for this specifiecamproves significantly the work
presented in Sectidn 5.1 and the previous related wo [81

Definitions and Notation: In this section, we consider learning linear classifiersC'sg the class of
functions of the formh(z) = sign(w - x). As in sectiorl 5.ll, we assume that the data paintg) are
drawn from an unknown underlying distributidh over X x Y and we focus on the binary classification
case (i.e.Y = {—1,1}). Our goal is to find a classifief with small true error where whekear(h) =
Pr, y~plh(z) # y]. We denote by , g) the probability that the two classifieksandg predict differently
on an example coming at random frafh Furthermore, forv € [0, 1] we denote by Bh, ) the set
{g | d(h,g) < a}. As in sectioi 51 we leD denotePyx.

In this section we focus on analyzing margin based activenie@ algorithms, in particular variant
of Algorithm[8. Specific choices for the learning algorith4y sample sizesn;, and cut-off valuedy
depends on various assumptions we will make about the ddt@hwve will investigate in details in
the following sections. We note that margin based activenieg algorithms have been widely used in
practical applications (see e.@%]).

5.2.1 The Realizable Case under the Uniform Distribution

We assume here that the data instances are drawn uniforamty thie the unit ball inR<, and that the
labels are consistent with a linear separatérgoing through the origin (that i®(w* - xy < 0) = 0).
We assume thatw*||2 = 1. As mentioned in Sectidn 3.1 even in this seemingly simpb&iteg scenario,
there exists afi? (1 (d + log 1)) lower bound on the PAC learning sample complel67].

Before presenting our better bounds, we start by informgligwing how it is possible to get a

O(d% log (%)) labeled sample complexity via a margin based active legraigorithm. (Note that the
analysis for thed? algorithm in Sectiof 5.114 already implies a bound(fd®log (1)), and as we in
fact argue below that analysis can be improveaﬁt@% log (%)) in the realizable case. We make this

123



Algorithm 8 Margin-based Active Learning.

Input: unlabeled data s&ty = {z1,z2,...,},

a learning algorithmA that learns a weight vector from labeled data,
a sequence of sample sizesc m; < Mo < ... < Mg = Mgi1,

a sequence of cut-off valuég > 0 (k=1,...,5)

Output: classifierw,

Label data pointsy, . .., x5, using the oracle
iterate k =1,...,s
useA to learn weight vectorti;, from the firstmm,, labeled samples.
for j =y +1,..., M0
if |y, - ;] > by, thenlety; = sign(wy, - x;)
elselabel data point:; using the oracle
end iterate

clearer in the note after Theordm 5]2.1.) Let us consideortlym[8, whereA is a learning algorithm
for finding a linear classifier consistent with the trainirggal Assume that in each iteratién.A finds a
linear separatotiy, ||wy||2 = 1 which is consistent with the first, labeled examples. We want to ensure
that err(wy) < 2% (with large probability), which (by standard VC bounds) uizgs a sample of size
i, = O(2¥d); note that this implies we need to add in each iteration abput 1,41 — 1y = O(2"d)
new labeled examples. The desired result will follow if wa staiow that by choosing appropridtg we
only need to ask the oracle to label, = O(d*?) out of then;, = O(2*d) data points and ensure that all
ny, data points are correctly labeled (i.e. the examples ld@aléomatically are in fact correctly labeled).
Note that given our assumption about the data distributienetror rate of any given separatoris
err(w) = @, wheref(w, w*) = arccos(w - w*). Thereforeerr(iy) < 27% implies that|wy, —
w*|]z < 27%7. This implies we carsafelylabel all the points withy, - 2| > 27%7 becauses* and
1y, predict the same on those examples. The probability sfich thatjwy, - z| < 2757 is O(27%/d)
because in high dimensions, thalimensional projection of uniform random variables in timét ball is
approximately a Gaussian variable with variangd. Therefore if we leb, = 27%= in the k-th iteration,
and drawmy 1 —my = O(2’fd) new examples to achieve an error rat@of+1) for w1, the expected

number of human labels needed is at rr(é(sdi%). This essentially implies the desired result. For a high
probability statement, we can use Algorithin 9, which is a ification of Algorithm[8.

Note that we can apply our favorite algorithm for finding a sistent linear separator (e.g., SVM for
the realizable case, linear programming, etc.) at eachtioer of Algorithm[®, and the overall procedure
is computationally efficient

Theorem 5.2.1 There exists a constant, such that for any, § > 0, using AlgorithniB with

1 k
bk:F and my = Cd2 (dlnd—l—lng>,

after s = [log, %1 iterations, we can efficiently find a separator of error at inowith probability 1 — 6.

Proof: The proof is essentially a more a rigorous version of therinéd one given earlier. We prove
by induction onk that at thek'th iteration, with probabilityl — 6(1 — 1/(k + 1)), we haveerr(w) < 2%
for all « consistent with data in the s8t (k); in particular,err(wy) < 27*.
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Algorithm 9 Margin-based Active Learning (separable case).

Input: allowed error rate, probability of failured, a sampling oracle fobD, and a labeling oracle
a sequence of sample sizes > 0, k € Z; a sequence of cut-off valuég > 0, k € Z

Output: weight vectori, of error at most with probability 1 — §

Drawm; examples fronD, label them and put into a working siéf(1).
iterate k=1,...,s
find a hypothesisi. (||w||2 = 1) consistent with all labeled exampleslif (k).
letW(k+1) = W(k).
until my,, additional data points are labeled, draw sampfeom D
if |y - x| > by thenrejectz
elseask for label ofr, and put intolV (k + 1)
end iterate

For k = 1, according to Theorem A.2.1 in Appendix A.2, we only need = O(d + In(1/4))
examples to obtain the desired result. In particular, weelay(w;) < 1/2 with probability 1 — §/2.
Assume now the claim is true fér— 1. Then at thés-th iteration, we can let

Sy ={x:|wg_1 x| <bp_1} and Sy={x:|wk_1-x|>bp_1}.
Using the notatiorrr(w|S) = Pr,((w - z)(w* - z) < 0]z € S), for all v we have:
err(w) = err(w|S1) Pr(Sy) + err(w|Ss) Pr(Ss).

Consider an arbitrany consistent with the data W (k£ — 1). By induction hypothesis, we know that with
probability at least — §(1 —1/k), bothy,_; andw have errors at mogt —* (because both are consistent
with T (k — 1)). As discussed earlier, this implies thiaty, 1 — w* ||z < 2! %7 and|jw — w* ||z < 2! F7.
Thereforeve € S5, we have

(Wg—1 - z)(w-2) >0 and (Wr—1-z)(wW*-2) > .0

This implies thaerr(w|S2) = 0. Now using the estimate provided in Lemma“Al2.2 wjth= b;_; and
v2 = 0, we obtainPr, (S1) < by_1+/4d/m. Therefore

err(w) < 227%V4rd - err(w|Sy),

for all «w consistent withHV (k — 1). Now, since we are labelingy;, data points inS; at iterationk — 1,
it follows from TheorenT A2l that we can find s. t. with probabilityl — 6/(k*> + k), for all w
consistent with the data i (k), err(0|S1), the error ofi» on Sy, is no more thar /(4v/4rd). That is,
err(w) < 27% with probability at least — §((1 — 1/k) + 1/(k* + k)) =1 —6(1 — 1/(k + 1)) for all
consistent witHV (k), and in particulaerr(wy) < 27%, as desired. B

The choice of rejection region in Theorém 5]2.1 essentiallipws the “sampling from the region
of disagreement idea” idea introduced[87] for the redile case. As mentioned in Sectfon] 5.1, [87]
suggested that one should not sample from a regigmn(the proof) in which all classifiers in the current
version space (in our case, classifiers consistent withabeléd examples i/ (k)) predict the same
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label. In Sectioh 5]1 and iﬂbl] we have analyzed a more gémersion of the strategy proposed m[87]
that is correct in the much more difficult agnostic case anthawe provided theoretical analysis. Here we
have used a more a refined VC-bound for the realizable cage,Téeoreni A.Z]1, to get a better bound.
However, the strategy of choosihg in Theoren{ 5.2]1 (thus the idea m87]) is not optimal. Tras be
seen from the proof, in which we showerd (w;|S2) = 0. If we enlargeS; (using a smalleby), we can
still ensure thatrr(ws|S2) is small; furthermorePr(.S;) becomes smaller, which allows us to use fewer
labeled examples to achieve the same reduction in errorefdre in order to show that we can achieve an
improvement fronD () to O(dlog (1)) as in [99], we need a momyggressivestrategy. Specifically, at

roundk we set as margin parametgr= O (1;’5\(/%) ) and in consequence use fewer examples to transition

between rounds. In order to prove correctness we need te tifranalysis as follows:

Theorem 5.2.2 There exists a constaidt such that ford > 4, and for anye,d > 0, ¢ < 1/4, using
Algorithm[9 with

k
my, = C+/In(1 + k) <dln(1 +Ink)+1In g) and by = 2"Frd=Y2/5 + In(1 + k),

afters = [log, 5 — 2 iterations, we efficiently find a separator of errgre with probability at leastl —§.

Proof: Asin Theorenh 5.2]1, we prove by induction bthat at thek's iteration, fork < s, with probability
atleastl — §(1 —1/(k +1)), weerr(w) < 2~%=2 for all choices ofi» consistent with data in the working
setWW (k); in particularerr(iy,) < 27572,

Fork = 1, according to Theorem A.2.1, we only neeq = O(d + In(1/6)) examples to obtain the
desired result; in particular, we haver(1;) < 27%=2 with probability 1 — §/(k + 1). Assume now the
claim is true fork — 1 (k > 1). Then at theé:-th iteration, we can let

S1=A{x:|wp—1- x| < bp1}

and

Sy ={w: |1 z[ > b1}
Consider an arbitraryb consistent with the data i/ (k — 1). By induction hypothesis, we know that
with probability 1 — §(1 — 1/k), bothiy,_; and« have errors at mog*—!, implying that

O(p—1,w*) <277 1z and  O(w,w*) <27 1r.

Therefored (i, iwy,_,) < 27 %n. Let § = 2~%7 and usingeos 3/sin § < 1/3 andsin § < [ it is easy to
verify that the following inequality holds

bi—1 > 2sin Bd—l/Z\/5 +In (1 + \/lnmax(l, cos 3/ sinB)).

By LemmdA. 2.5, we have both

l?cr [(W—1 - x)(W-x) < 0,2 € S| < e;i;fg < \/555 and
sin 3 - V23

Pr [(wp_1 - Lx) < 0,2 € S < _ .
rl(e- )W 2) <02 € 8o < s < T
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Taking the sum, we obtain

Pri(w-z)(w*-z) < 0,2 € Sg] <

xT

2\/35 < 9 (k+3),
(&

Using now Lemm@aA.Z]2 we get that for all consistent with the data iV (k — 1) we have:

err(w]S1) Pr(Sy) + 27 *F3) < err(ay|S1)by—1v/4d/7 + 27+
o (k-+2) (err(tb|51)16\/47r 5+ In(l+k) +1 /2) .

err(w)

IN

IN

Since we are labellingn;, points in Sy at iterationk — 1, we know from Theoreni A.211 in Ap-
pendiX/A.2, thatiC' s. t. with probabilityl — §/(k + k?) we have

err(wg|S1)16V4r/5+ In(1 + k) < 0.5

for all @ consistent witH¥ (k); so, with probabilityl —&((1—1/k)+1/(k+k?)) = 1-5(1—1/(k+1)),
we haveerr(w) < 27%=2 for all @ consistent witiV (k). R

The bound in Theoreiin 5.2.2 is generally better than the offtha@oreni 5.2]1 due to the improved
dependency od in my,. However,m;, depends on/Ink Inlnk, for k < [log, 2] — 2. Therefore when
d < Ink(Inln k)2, Theoreni5.2]1 offers a better bound. Note that the strateggl in Theoren 5.2.2 is
more aggressive than the strategy used in the selectivelisgrafgorithm of 8 ]- Indeed, we do not
sample from the entire region of uncertainty — but we samydeffom a subregion carefully chosen. This
helps us to get rid of the undesird&/2. Our analysis also holds with very small modifications whe t
input distribution comes from a high dimensional Gaussian.

5.2.2 The Non-realizable Case under the Uniform Distributbn

We show that a result similar to Theorém 512.2 can be obtamed for non-separable problems under a
specific type of noise although not necessarily in a comjmuially efficient manner. The non-realizable
(noisy) case for active learning in the context of clasdiftcawas recently explored irﬁbl] and as we
have seen in Sectidn .1 m 36] as well. We consider hemedel which is related to the simple one-
dimensional problem irJL_[$1], which assumes that the datsfgdlhe increasingly popular Tsybakov small
noise condition along the decision bound204]. We fiestsider a simple version which still leads to
exponential convergence similar to Theofem 5.2.2. Spadifiave still assume that the data instances are
drawn uniformly from the the unit ball i?, and a linear classifiar* is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We considenltbeihg low noise condition: there exists

a known paramete® > 0 such that:

Po(|P(y = 1|z) = P(y = —1|z)| = 48) = 1.

It is known that in the passive supervised learning settinig ¢tondition can lead to fast convergence
rates. As we will show in this section, the condition can disoused to quantify the effectiveness of
active-learning. The key point is that this assumption iegpthe stability condition required for active
learning:

40 (w, w*)

™

1/(1-a)
B min <1, > < err(w) — err(w*) (5.2.1)
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Algorithm 10 Margin-based Active Learning (non-separable case).

Input: allowed error rate, probability of failured, a sampling oracle fobD, and a labeling oracle
a sequence of sample sizes > 0, k € Z; a sequence of cut-off valuég > 0, k € Z

a sequence of hypothesis space raglii> 0, k € Z;

a sequence of precision valugs> 0, k € Z

Output: weight vectoro, of excess error at mostwith probability 1 — §

Pick randomwy: ||wpl|2 = 1.
Draw my examples fromD, label them and put into a working sif.
iterate k =1,....s
find wy, € B(wg—1,7k) (||r]|2 = 1) to approximately minimize training error:
2 @yyew L@k - 2Y) < MiNyepi, ) 2oz yyew L (W - TY) + myey.
clear the working seitl’
until my,, additional data points are labeled, draw sampfeom D
if |y, - x| > by, thenrejectz
elseask for label ofr, and put intolV/
end iterate

with o = 0. We analyze here a more general setting witk [0,1). As mentioned already, the one
dimensional setting was examined[81]. We eatl(w) — err(w*) theexcess erroof w. In this setting,
the Algorithm[9 needs to be slightly modified, as in AlgoritfGh

Theorem 5.2.3 Letd > 4. Assume there exists a weight veatdrs. t. the stability conditidn5.2.1 holds.
Then there exists a constafit s. t. for anye, d > 0, e < /8, using Algorithni_ID with

b =27 U=k =12, /5 L akIn2 —In§ + In(2 + k),

rp=2"0"0k20f0r > 1,y =,

e =245/ /5 t akn2—Inf+1n(1+ k) and

0

afters = [log,(3/€)] iterations, we find a separator with excess ertok with probability 1 — 4.

Proof: The proof is similar to that of Theorein 5.2.2. We prove by ittthn onk that afterk < s
iterations,err(wy) — err(w*) < 27%3 with probability 1 — §(1 — 1/(k + 1)).

Fork = 1, according to TheoreA1.1, we only need. = 520(d + In(k/J5)) examples to obtain
1y with excess erro2—* 3 with probability 1 — 6 /(k 4 1). Assume now the claim is true fér— 1 (k > 2).
Then at the:-th iteration, we can let

k
mg = Ce, 2 <d+ln —) ,

S ={z:|Wg_1 x| <by—1} and Sy ={z:|Wk_1 x| > br_1}.

By induction hypothesis, we know that with probability aadel — §(1 — 1/k), w1 has excess errors at
most2~5+1 3, implying 6 (iy,_1, w*) < 2-0- =Dz /4 By assumptiond (iwy,_1, wy,) < 2~ (1-®k=25,
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Let 5 = 2-(1=®k=21 and usingcos 3/ sin 3 < 1/ andsin § < 3, it is easy to verify that the following
inequality holds:

br_1 > ZSinﬁd_l/z\/5+akln2 —Inf+1In <1 + \/ln(cosB/sinB)>.

From Lemmd&A. 25, we have both

sin 3 _ V268

ePB-120k cos 3 — 29Ked

Pr((wg—1 - z)(Wg - ) < 0,2 € Sg] <

and

A i} sin 3 V2060
P - . < = < .
r[(g—1 - 2)(w” - 2) <0,x € 5 < BB 120k cos § - 20FeD

Taking the sum, we obtain

Pr[(wg - z)(w* - 2) < 0,z € So] <

xT

Therefore we have (using LemmaAR.2):

(err(iby]S1) — err(w*|S1)) Pr(Sy) +2-*+Dg
(err(iy]S1) — err(w*[S1))bp_11/4d /7 + 2~ *+D 3
27%3 ((err(wg|S1) — err(w*[S1))v/7/(der) +1/2) .

err(wy) — err(w™)

VAN VAN VAN

From Theorem A.2]1, we know we can cho@se. t. withm, samples, we obtain
err(wg|S1) — err(w*[S1) < 2/

with probability 1 — 6/(k + k?). Thereforeerr (1) < 2% with probability 1 — 6((1 — 1/k) + 1/(k +
E)=1-61-1/(k+1). &

If a = 0, then we can achieve exponential convergence similar t@réne5.2.2, even fonoisy
problems. However, for € (0,1), we have to labe} ", mr = O(e2*In(1/¢)(d + In(s/5)) examples
to an achieve error rate ef That is, we only get a polynomial improvement compared ® lihtch
learning case (with sample complexity betwe@tx—2) andO(e~1)). In general, oneannotimprove
such polynomial behavior — 5@81] for some simple one-diiomal examples.

Note: This bounds here improve significantly over the previouskWnr[@,@]. ] studies a similar
model to ours, but for the much simpler one dimensional célse.model studied in [31] and also consid-
ered in Sectiof 5]1 is more general, it applies to the purghostic setting and also the algorithm itself
works generically for any concept space; however, for tlexi§igc case of learning linear separators the
bounds end up having a worse quadratic rather than lineandiepce om.

Note: Instead of rejecting: when|wy, - x| > by, we can add them t&/ using the automatic labels from
wg. We can then remove the requiremeint € B(w_1,7;) (thus removing the parameters). The
resulting procedure will have the same convergence behasi®heorerh 5.213 because the probability of
making error by, when |y, - z| > by, is no more tharz—(++2) 3,
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Other Results on Margin Based Active Learning In [@] we also give an analysis of our algorithm
for a case where we have a “good margin distribution”, andhesvshow active learning can dramatically
improve (the supervised learning) sample complexity irt #&ting as well; the bounds we obtain for
thatdo not depenan the dimensionalityl. We also provide a generic analysis of our main algorithm,
Algorithm|[8.

5.2.3 Discussion

We have shown here that a more aggressive active learnaiggigs can generally lead to better bounds.
Note however that the analysis in this section (base@r) [84$ specific to the realizable case, or done
for a special type of noise. It is an open question to desigmesgive agnostic active learning algorithms.

While our algorithm is computationally efficient in the reable case, it remains an open problem
to make it efficient in the general case. It is conceivable fblasome special cases (e.g. the marginal
distribution over the instance space is uniform, as in saf.2.2) one could use the recent results of
Kalai et. al. for agnostically learning halfspacl471.fact, it would be interesting to derive precise
bounds (both in the realizable and the non-realizable ésethe more general of class of log-concave
distributions.

5.3 Other Results in Active Learning

In recent work, we also show that in an asymptotic model févadearning where one bounds the number
of queries the algorithm makes before it finds a good fundfi@n one of arbitrarily small error rate), but
not the number of queries beforekitowsit has found a good function, one can obtain significantlydset
bounds on the number of label queries required to learn thdhe traditional active learning models.
These results appear E[ 42]. We summarize in the foligueiome of the main results in these papers.
(Full details of the model and results can be found_in [[__3’5,)42]

At a high level, in [@5@2] we point out that traditional aysés [@5] have studied the number of label
requests required before an algorithm can both produeegaod classifier and prove that the classifier's
error is no more thaa These studies have turned up simple examples where thiserusmo smaller than
the number of random labeled examples required for passivaihg. This is the case for learning certain
nonhomogeneoulinear separators and intervals on the real line, and giye®ems to be a common
problem for many learning scenarios. As such, it has led goneenclude that active learning does not
help for most learning problems. In our WOE[:E] 42] we disihés misconception. Specifically, we
study the number of labels an algorithm needs to requestéd@foan produce an—good classifier, even
if there is no accessible confidence bound available toywénd quality of the classifier. With this type
of analysis, we prove that active learning can essentidlyays achieve asymptotically superior sample
complexity compared to passive learning when the VC dinmens finite. Furthermore, we find that for
most natural learning problems, including the negativargdas given in the previous literature, active
learning can achieve exponential improvements over passarning with respect to dependencecon

Formally, in this work we consider the realizable settingvimich it is assumed that there is a distri-
bution D over instances iX, and that the instances are labeled by a target funétian the clas<”; we
assume that' has a finite VC dimension. We assume the existence of an mfiaduence, zo, . . . of ex-
amples sampled i.i.d. according fa The learning algorithm may access any finite prefixzs, . . ., 2,
of the sequence. Essentially, this means we allow the #fgoraccess to an arbitrarily large, but finite,
sequence of random unlabeled examples. In active leartiaglgorithm can select any examplg and
request the labél* (z;) that the target assigns to that example, observing theslaball previous requests
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before selecting the next example to query. The goal is todimgpothesig with small error with respect
to D, while simultaneously minimizing the number of label resfsehat the learning algorithm makes.

The following definitions present a subtle but significargtidiction between two different notions of
sample complexity.

Definition 5.3.1 A functionS(e, ¢, h*) is a verifiable sample complexitior a pair (C, D) if there exists
an active learning algorithmA(¢, §) that outputsboth a classifief, s and a valug;, 5 € R after making
at mostt label requests, such that for any target functiohe C,e € (0,1/2),d € (0,1), for anyt > 0,
Prp(err(hys5) < é.5) > 1 — 6 and for anyt > S(e, d, h*),

Prp(err(his) < €5 <€) >1—0.

Definition 5.3.2 A functionS(e, d, h*) is a sample complexitfor a pair (C, D) if there exists an active
learning algorithmA(t, ¢) that outputs a classifiel, s after making at mostlabel requests, such that for
any target functiorh* € C,e € (0,1/2),6 € (0,1), for anyt > S(e, d, h*),

Prp(err(hys) <€) >1—4.

Both definitions allow the sample complexity to depend bathhe target function and on the input
distribution. The only distinction is whether or not theseanaccessible guaranteer confidence bound
on the error of the chosen hypothesis that is also at mo$his confidence bound can only depend on
guantities accessible to the learning algorithm, suchasrbquested labels.

Clearly, any verifiable sample complexity function is alssaaple complexity function, but we study
a variety of cases where the reverse is not true. We desceifgedonditions under which active learning
can achieve a sample complexity asymptotically superigiassive learning. The results are surprisingly
general, indicating that whenever the VC dimension is figsentiallyany passive learning algorithm is
asymptoticallydominatedoy an active learning algorithm all targets.

Definition 5.3.3 A functionS(e, §, h*) is apassive learningample complexity for a paiiC, D) if there
exists an algorithmA(((x1, h*(x1)), (z2, h*(22)), .. ., (2, h*(x))), 6) that outputs a classifiefi; 5, such
that for any target functio* € C, e € (0,1/2),9 € (0,1), for anyt > S(e, d, h*),

Prp(err(hys) <€) >1—46.

Thus, a passive learning sample complexity correspondseéstaction of an active learning sample
complexity to algorithms that specifically request the firlstbels in the sequence and ignore the rest. In
particular, it is known that for any finite VC dimension clad®ere is always a® (1/¢) passive learning
sample complexity@?,]. Furthermore, this is often (thoumpt always) tight, in the sense that for any
passive algorithm, there exist targets for which the cpoeding passive learning sample complexity is
Q(1/e) “E%

The following theorem states that for any passive learnamgme complexity, there exists an achiev-
able active learning sample complexity with a strictly stovasymptotic rate of growth.

Theorem 5.3.1 Suppos&” has finite VC dimension, and Iét be any distribution onX. For any passive
learning sample complexity, (e, 6, k) for (C, D), there exists an active learning algorithm achieving a
sample complexity, (¢, J, ) such that, for ally € (0,1/4) and targetsh* € C for which S, (e, d, h*) =
w(l)E

Sa(€,0,h™) = 0(Sp(e/4,0,h")).

"Recall that we say a non-negative functiofe) = o (1/e) iff lin% ¢(€)/(1/e) = 0. Similarly, p(€) = w(1) iff lin% 1/¢(e) =
0. Here and below, the(-), w(-), £2(-) andO(-) notation should be interpreted @as- 0 (from the+ direction), treating all other
parameters (e.gé,andh™) as fixed constants.
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In particular, this implies the following simple corollary
Corollary 5.3.2 For any C with finite VC dimension, and any distributidn over X, there is an active
learning algorithm that achieves a sample complesity, J, »*) such that for € (0,1/4),

S(e,0,h") =o0(1/e¢)

for all targetsh* € C.

Note the interesting contrast, not only to passive learmngalso to the known results on therifiable
sample complexity of active learning. This theorem defiglfi states that thé€) (1/¢) lower bounds
common in the literature on verifiable samples complexity maverarise in the analysis of the sample
complexity of finite VC dimension classes when the verifidpthssumption is removed.
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Chapter 6

Kernels, Margins, and Random Projections

In this chapter we return to study learning with kernel fimts. As discussed in Chapfer 3, a kernel
is a function that takes in two data objects (which could bages, DNA sequences, or points /%)
and outputs a number, with the property that the functiorymrsetric and positive-semidefinite. That
is, for any kernelK, there must exist an (implicit) mapping, such that for all inputs:, 2’ we have
K(z,2') = ¢(x) - ¢(2'). The kernel is then used inside a “kernelized” learning @fgm such as SVM
or kernel-perceptron as the way in which the algorithm eates with the data. Furthermore even though
¢ may be a mapping into a very high-dimensional space, thegeiilms have convergence rates that
depend only on thenargin~ of the best separator, and not on the dimension oﬁ;ﬁtlwaceﬂdl%].
Thus, kernel functions are often viewed as providing mucthefpower of this implicit high-dimensional
space, without paying for it computationally (becausegtieapping is only implicit) or in terms of sample
size (if data is indeed well-separated in that space).

In this chapter, we point out that the Johnson—Lindensﬁ@] lemma suggests that in the presence
of a large margin, a kernel function can also be viewed as gimgo alow-dimensional space, one of
dimension onI)O(l/fy2). We then explore the question of whether one can efficiemtgyce such low-
dimensional mappings, using only black-box access to aekdéunction. That is, given just a program
that computeds (z,y) on inputsz,y of our choosing, can we efficiently construct an explicit &ijn
set of features that effectively capture the power of theliciighigh-dimensional space? We answer
this question in the affirmative if our method is also allowsdck-box access to the underlying data
distribution (i.e., unlabeled examples). We also give alolaound, showing that if we do not have access
to the distribution, then this is not possible foramntbitrary black-box kernel function.

Our positive result can be viewed as saying that designingoal ¢cernel function is much like de-
signing a good feature space. Given a kernel, by runningathitack-box manner on randoomlabeled
examples, we caefficientlygenerate an explicit set d?(l/ny) features, such that if the data was linearly
separable with margity under the kernel, then it is approximately separable inrthig feature space.

6.1 Introduction

The starting point for this chapter is the observation thatéarning problem indeed has the large margin
property under some kerné{ (x,y) = ¢(x) - ¢(y), then by the Johnson-Lindenstrauss lemmegra
domlinear projection of the ¢-space” down to #ow dimensional space approximately preserves linear
separabilityﬂ?bﬂﬂhq. Specifically, suppose datae®from some underlying distributian over

the input spaceX and is labeled by some target function If D is such that the target function has
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margin-y in theqﬁ spac@ then a random linear projection of tilespace down to a space of dimension
d=0 ( L Jog 4 =5 ) Will, with probability at leastl —d, have alinear separator with error rate at mdsee

Arriaga and Vempal@Z] and also Theorem 8.4.2 in this @ypThis means that for any kern&l and
margin-y, we can, in principle, think of{ as mapping the input spacé into anO(l/y )-dimensional
space, in essence serving as a method for representingtthim danew (and not too large) feature space.

The question we consider in this chapter is whether, givendtd<, we can in fact produce such
a mapping efficiently. The problem with the above observai®that it requires explicitly computing
the functiong(z). In particular, the mapping ok into R¢ that results from applying the Johnson-
Lindenstrauss lemma is a functiéf(x) = (r; - ¢(z),...,rq¢- ¢(x)), wherery, ..., rq are random vectors
in the p-space. Since for a given kerngl, the dimensionality of theé-space might be quite large, this is
not efficient. Instead, what we would like is an efficient @dare that giveri(., .) as a black-box pro-
gram, produces a mapping with the desired properties ardrunining time that depends (polynomially)
only on1/~ and the time to compute the kernel functiin with no dependence on the dimensionality of
the ¢-space.

Our main result is a positive answer to this question, if orrcpdure for computing the mapping
is also given black-box access to the distributior(i.e., unlabeled data). Specifically, given black-box
access to a kernel functidi (z, y), a margin valuey, access to unlabeled examples from distributidn
and parameters andé, we can in polynomial time construct a mappiAg: X — R (i.e., to a set ofl

real-valued features) whete= O (% log 5_15> with the following property. If the target concept indeed

has marginy in the ¢-space, then with probability — ¢ (over randomization in our choice of mapping
function), the induced distribution iR is separable with errok ¢. In fact, not only will the data in

R? be separable, but it will be separable with margify). Note that the logarithmic dependence on
implies that if the learning problem has a perfect sepa@tanargin-y in the ¢-space, we can setsmall
enough so that with high probability a sg&bf O(dlog d) labeled examples would be perfectly separable
in the mapped space. This means we could apply an arbitraoyrmase linear-separator learning algo-
rithm in the mapped space, such as a highly-optimized kpeagramming package. However, while the
dimensiond has a logarithmic dependence bfx, the number of (unlabeled) examples we use to produce
our mapping i) (1/(y%¢)).

To give a feel of what such a mapping might look like, supposeane willing to use dimension
d = O(%[VIZ + In %]) (so this is linear inl /e rather than logarithmic) and we are not concerned with
preserving margins and only want approximate separabiliben we show the following simple proce-
dure suffices. Just draw a random sample ohlabeled pointsy, ..., x4 from D and defineF'(z) =
(K(x,21),...,K(x,24)). Thatis, if we think of K not so much as an implicit mapping into a high-
dimensional space but just as a similarity function ovemgxas, what we are doing is drawimg‘ref-
erence” points and then defining tita feature ofr to be its similarity with reference poirit We show
(Corollary[6.3:2) that under the assumption that the tafigettion has marginy in the ¢ space, with
high probability the data will be approximately separabheler this mapping. Thus, this gives a partic-
ularly simple way of using the kernel and unlabeled data datdre generation, and in fact this was the
motivation for the work presented in Chagtér 3.

Given the above results, a natural question is whether ihttig possible to perform mappings of this
type without access to the underlying distribution. In 8ed6.53 we show that this is in generabt pos-
sible, given only black-box access (and polynomially-mgngries) to ararbitrary kernel . However,
it may well be possible for specific standard kernels sucheagtlynomial kernel or the gaussian kernel.

That is, there exists a linear separator in¢hspace such that any example frdinis correctly classified by margin. See

Sectiori 6.P for formal definitions. In Sectibn 6J4.1 we cdesithe more general case that only-a« fraction of the distribution
D is separated by margin
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Relation to Support Vector Machines and Margin Bounds: Given a sefS of n training examples, the
kernel matrix defined ove$ can be viewed as placing into ann-dimensional space, and the weight-
vector found by an SVM will lie in this space and maximize thargin with respect to the training data.
Our goal is to define a mapping over the entire distributioith wuarantees with respect to the distribution
itself. In addition, the construction of our mapping regsionly unlabeled examples, and so could be
performed before seeing any labeled training data if utdabexamples are freely available. There is,
however, a close relation to margin bounds @ 195] for S\(bte the remark after the statement of
Lemmal6.3.11 in Section 8.3), though the dimension of our wuspace is lower than that produced by
combining SVMs with standard margin bounds.

Our goals are to some extent related to those of Ben-Davild @]. They show negative results
giving simple classes of learning problems for which onencdiconstruct a mapping to a low-dimensional
space under which all functions in the class are linearlpssdpe. We restrict ourselves to situations where
we know that such mappings exist, but our goal is to produemtéfficiently.

Interpretation:  Kernel functions are often viewed as providing much of thevgoof an implicit high-
dimensional space without having to pay for it. Our resuliggest that an alternative view of kernels is
as a (distribution-dependent) mapping into a low-dimemaligpace. In this view, designing a good kernel
function is much like designing a good feature space. Givegriael, by running it in a black-box manner
on random unlabeled examples, one can efficiently genenaggmicit set ofO(1/~2) features, such that

if the data was linearly separable with margininder the kernel, then it is approximately separable using
these new features.

Outline of this chapter: We begin with by giving our formal model and definitions in 8ec[6.2. We
then in Sectiofi 613 show that the simple mapping describdiiem this section preserves approximate
separability, and give a modification that approximatelgsgrves both separability and margin. Both of
these map data intodimensional space fat = O(; [ + In 5]). In Sectior 6}, we give an improved

mapping, that maps data to a space of dimension CML% log ). This logarithmic dependence dn
means we can setsmall enough as a function of the dimension and our input gr@@oameter that we
can then plug in a generic zero-noise linear separatoritigoin the mapped space (assuming the target
function was perfectly separable with margirin the ¢-space). In Sectioh 8.5 we give a lower bound,
showing that for a black-box kernel, one must have accedsetartderlying distributiorD if one wishes

to produce a good mapping into a low-dimensional space.

6.2 Notation and Definitions

We briefly introduce here the notation needed throughouthlapter. We assume that data is drawn from
some distributionD over an instance spacg€ and labeled by some unknown target function X —
{—1,+1}. We useP to denote the combined distribution over labeled examples.

A kernel K is a pairwise functiork (z, y) that can be viewed as a “legal” definition of inner product.
Specifically, there must exist a functignhmappingX into a possibly high-dimensional Euclidean space
such thatK (z, y) = ¢(x)-¢(y). We call the range ab the “¢-space”, and use(D) to denote the induced
distribution in thep-space produced by choosing randarfrom D and then applying(z).

For simplicity we focus on theé — 1 loss for most of this chapter. We say that for a Seif labeled
examples, a vectar in the ¢-space has margin if:

v 0()
Tl o]
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Thatis,w has marginy if any labeled example iff is correctly classified by the linear separaiog(z) >
0, and furthermore the cosine of the angle betweeand¢(x) has magnitude at Ieasﬁ If such a vector
w exists, then we say thatis linearly separable with marginunder the kernek'. For simplicity, we are
only considering separators that pass through the origaugh our results can be adapted to the general
case as well (see Sectibn 614.1).

We can similarly talk in terms of the distributiaR rather than a samplg. We say that a vectar in
the ¢-space has margip with respect taP if:

w - ¢(x)
B i <] =°
If such a vectomw exists, then we say tha is linearly separable with margin under K (or just thatP
has marginy in the p-space). One can also weaken the notion of perfect segarabik say that a vector
w in the ¢-space has errar at marginy if:

@~p | ||wl] [lo()]|

Our starting assumption in this chapter will be tifats perfectly separable with marginunder K,
but we can also weaken the assumption to the existence oftaerveavith error o at margin-, with a
corresponding weakening of the implications (see Se€fidli Our goal is a mapping : X — R?
whered is not too large that approximately preserves separagldlitgl, ideally, the margin. We ugg( D)
to denote the induced distribution & produced by selecting points i from D and then applying®,
and usef'(P) = F (D, c) to denote the induced distribution on labeled examples.

For a set of vectors,, va, .. ., v in Euclidean space, lepan(vy, ..., vx) denote the set of vectots
that can be written as a linear combination, + ... + avg. Also, for a vector and a subspackg, let
proj(v, Y) be the orthogonal projection efdown toY". So, for instanceproj(v, span(vy, ..., v)) is the
orthogonal projection of down to the space spanned by, . .., v,. We note that given a set of vectors
v1, ..., v and the ability to compute dot-products, this projection ba computed efficiently by solving
a set of linear equalities.

|<a

6.3 Two simple mappings

Our goal is a procedure that given black-box access to a kiemmetion K (., .), unlabeled examples from
distribution D, and a margin value, produces a (probability distribution over) mappings X — R?
with the following property: if the target function indee@simarginy in the ¢-space, then with high
probability our mapping will approximately preserve linsgparability. In this section, we analyze two
methods that both produce a space of dimensien O(1 -5 + In 5]), wheres is our desired bound on
the error rate of the best separator in the mapped space.ethadof these mappings in fact satisfies a
stronger condition that its output will be approximatelpaeable at margiry/2 (rather than just approx-
imately separable). This property will allow us to use thigpping as a first step in a better mapping in
Sectior{ 6.1.

The following lemma is key to our analysis.

Lemma 6.3.1 Consider any distribution over labeled examples in Eueidepace such that there exists
a vectorw with margin~. Then if we draw

81 1
>SS 4=
d_6[72+n5]

%This is equivalent to the notion of margin in Chagier 3 sifee we have assuméa(z)|| < 1.
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examples:y, ..., z4 i.i.d. from this distribution, with probability> 1 — ¢, there exists a vectow’ in
span(zi, ..., zq) that has error at most at margin-y/2.

Before proving LemmBa6.3.1, we remark that a somewhat weakend ond can be derived from the
machinery of margin bounds. Margin bounfs! [45./195] tellha tisingd = O(%[le logQ(%) + log 1)
points, with probabilityl — §, any separator with margit» ~ over the observed data has true erok.
Thus, the projection of the target functianinto the space spanned by the observed data will have true
error < ¢ as well. (Projectingv into this space maintains the valuewf z;, while possibly shrinking the
vectorw, which can only increase the margin over the observed dakee only technical issue is that we
want as a conclusion for the separator not only to have a low eate over the distribution, but also to
have a large margin. However, this can be obtained from thbldesample argument used m[ﬁl%] by
using ay/4-cover instead of g /2-cover. Margin bounds, however, are a bit of an overkill far needs,
since we are only asking for an existential statement gtistenceof ') and not a universal statement
about all separators with large empirical margins. For te&son we are able to get a better bound by a
direct argument from first principles.

Proof of Lemm&G6.3]1For any set of points, letw;, (S) be the projection ofv to span(.S), and let
weut (S) be the orthogonal portion af, so thatw = w;;, (S) + weut (S) @andw;, (S) L weu(S). Also, for
convenience, assumeand all examples are unit-length vectors (since we have defined marginsimger
of angles, we can do this without loss of generality). Nowuemake the following definitions. Say that
Wout(S) is largeif Pr,(|weut (S) - 2| > v/2) > ¢, and otherwise say that,,;(S) is small Notice that if
weut (S) is small, we are done, because

w2 = (win(S) - 2) + (Wout (5) - 2),

which means thatv;,,(S) has the properties we want. That is, there is at most probability mass of
points z whose dot-product withw andw;, (S) differ by more tharny/2. So, we need only to consider
what happens whem,,;(S) is large.

The crux of the proof now is that if,,.. (.5) is large, this means that a new random peihas at least
ane chance of significantly improving the sét Specifically, considet such thafw,,:(S) - z| > ~/2.
Let z;,(S) be the projection of to span(S), let zo,:(S) = z — 2, (S) be the portion of orthogonal to
span(.S), and letz’ = 24, (S)/||zout (S)||. Now, for S’ = S U {z}, we have

Wout (S") = Wout (S) — Proj(wout (S), span(S’)) = weut(S) — (weut (S) - 272,

where the last equality holds becausg;(S) is orthogonal tepan(S) and so its projection ontgan(S’)
is the same as its projection onto Finally, sincew,,:(S’) is orthogonal to:’” we have

Hwout(s/)H2 = Hwout(S)Hz — |wout (S) - Z/\2,

and since
[Wout (S) - z/| > |wout (S) * Zout (S)| = |wout (S) - 2],

this implies by definition ot that
Hwout(S,)HQ < Hwout(S)HZ - (7/2)2-

So, we have a situation where so longasg; is large, each example has at leastsachance of

reducing||we.||? by at leasty? /4, and since|w||? = [|weu(?)]]?> = 1, this can happen at mosf~?
times. Chernoff bounds state that a coin of higippedn = & [712 +1In H times will with probability

€
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1 — & have at leaste/2 > 4/~2 heads. Together, these imply that with probability at léast, w,:(S)
will be small for|S| > g [V% +1In %] as desired. H

Lemmd®.3.1l implies that i is linearly separable with marginunderk, and we drawl = 2[712 +

In %] random unlabeled examples, . . . , x4 from D, then with probability at least—¢ there is a separator
w’ in the ¢-space with error rate at masthat can be written as

w' = a1d(x1) + ...+ agp(zy).

Notice that sincev’-¢(x) = oy K (2, 21)+. . .+aqK (x, z4), an immediate implication is that if we simply
think of K (x, z;) as theith “feature” ofx — that is, if we define (z) = (K(z,z1),..., K(z,zq)) —
then with high probability the vectdi, ..., a4) is an approximate linear separator 6f(P). So, the
kernel and distribution together give us a particularly @ernway of performing feature generation that
preserves (approximate) separability. Formally, we hiaeddllowing.

Corollary 6.3.2 If P has margimny in the ¢-space, then with probability 1 — 6, if z1, ..., x4 are drawn

from D ford = & [71; +1In %] , the mapping
Fl(l‘) = (K($7$1)7"'7K($7$d))

produces a distributiorF; (P) that is linearly separable with error at most

The above mappingi; may not preserve margins (within a constant factor) becausdo not have
a good bound on the length of the vecter, ..., a4) defining the separator in the new space, or the
length of the examples) (z). The key problem is that if many of th&(x;) are very similar, then their
associated featurds (x, ;) will be highly correlated. Instead, to preserve margin watta choose an
orthonormal basis of the space spanned bydthe): i.e., to do an orthogonal projection ¢fz) into
this space. Specifically, &8 = {xz1,...,xz,} be a set of ofg[y—l2 + In 1] unlabeled examples from.
We can then implement the desired orthogonal projection(of as follows. RunK (z,y) for all pairs
r,y € S, and letM(S) = (K (v, 7))z, 2,e5 be the resulting kernel matrix. Now decompaggS)
into UTU, whereU is an upper-triangular matrix. Finally, define the mappifig: X — R‘ to be
Fy(z) = Fi(x)U~!, whereF; is the mapping of Corollariy 6.3.2. This is equivalent to athogonal
projection ofg(x) into span(¢(z1), ..., ¢(xq)). Technically, ifU is not full rank then we want to use the
(Moore-Penrose) pseudoinverse|[52]6fn place of U 1.

We now claim that by Lemmia 6.3.1, this mappiAg maintains approximate separability at margin

/2.
Theorem 6.3.3 If P has marginy in the ¢-space, then with probability 1 — §, the mappingts : X —
R ford > g [712 +1In H has the property thak (P) is linearly separable with error at mostat margin
/2.

Proof: The theorem follows directly from Lemnia6.8.1 and the faat #}, is an orthogonal projec-
tion. Specifically, sincey(D) is separable at margin, Lemma6.311 implies that fat > £ [71; +1In %]

with probability at least — §, there exists a vectar’ that can be written a8’ = ay¢(z1) + ...+ agp(xq),
that has error at mostat marginy /2 with respect tap(P), i.e.,

W(w'-d(x)) 7

T < —-| <Le.
@h~P [|[w]| [lo()]] 2

Now considern = a; Fo(x1) + ... + agFa(z4). SinceF; is an orthogonal projection and thigz;) are
clearly already in the space spanned by dfie;), w can be viewed as the same:&'sbut just written in
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a different basis. In particular, we hayj@|| = ||«'||, andw’ - ¢(z) = W - F»(x) for all z € X. Since
[|Fo(x)|| < ||o(x)|| for everyxz € X, we get thatw has error at most at marginy,/2 with respect to
FQ(P), i.e.,

l(w- F
r —(_w 2(2)) <1 <e.
@~P L[] |[Fa(z)]] 2
Therefore, for our choice af, with probability at least — § (over randomization in our choice @h),
there exists a vectar € R? that has error at mostat marginy/2 with respect taF»(P). H

Notice that the running time to compukg(x) is polynomial inl /v, 1/e,1/4 and the time to compute
the kernel functionk’.

6.4 An improved mapping

We now describe an improved mapping, in which the dimengidras only a logarithmic, rather than
linear, dependence orye. The idea is to perform a two-stage process, composing thgpimg from
the previous section with a random linear projection from itinge of that mapping down to the desired
space. Thus, this mapping can be thought of as combiningypeastof random projection: a projection
based on points chosen at random frbiand a projection based on choosing points uniformly atoand
in the intermediate space.

We begin by stating a result from [Eﬂ @1@144] that vileuse. HereN (0, 1) is the standard
Normal distribution with mea and variancd andU(—1, 1) is the distribution that has probability/2
on —1 and probabilityl /2 on 1. Here we present the specific form givenm [22].
Theorem 6.4.1 (Neuronal RP[[22])Letu, v € R™. Letu = ﬁuA andv’ = ﬁvA whereA is an x k

random matrix whose entries are chosen independently fithrareV (0, 1) or U(—1,1). Then,

3\ k
2_85)2.

Pr((1—)llu—olf? < ju' = o/|> < (1 +&)llu—v]/2] > 1 - 27

Let F, : X — R% pe thg: mapping from Sectidn 6.3 usiag2 andd/2 as its error and confidence
parameters respectively. Lét: R% — R% be a random projection as in TheoreEm 6.4.1. Specifically,
we pick A to be a randond, x ds matrix whose entries are chosen i.id(0,1) or U(—1,1). We then

setF'(z) = deB:cA. We finally consider our overall mappirig; : X — R% to be F5(z) = F/(Fy(x)).

We now claim that fordy = O(2[5y + In3]) andds = O(zy log(z5)), with high probability, this
mapping has the desired properties. The basic argumeratim&initial mappingF, maintains approxi-
mate separability at margin/2 by Lemmd6.3.11, and then the second mapping approximategepres
this property by Theorein 6.4.1.

Theorem 6.4.2If P has marginvy in the ¢-space, then with probability at least— o, the mapping
Fy = FoF,: X — R%, for valuesdy, = O (% [712 +In %D andds = O (71210g(€i5)), has the
property thatFs(P) is linearly separable with error at mostat margin-y /4.

Proof:

By Lemmd 6.3.11, with probability at least— §/2 there exists a separatarin the intermediate space

R® with error at most/2 at marginy/2. Let us assume this in fact occurs. Now, consider some point
r € R%, Theorenfi6.4]1 implies that a choicedaf= O(,Yi2 log(Z)) is sufficient so that under the random

projection 7, with probability at least — &6 /4, the squared-lengths of, z, andw — x are all preserved
up to multiplicative factors of 4+ ~/16. This then implies that the cosine of the angle betweeandx
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(i.e., the margin of: with respect tav) is preserved up to an additive factor-bfy/4. Specifically, using
Fw)F(z) _ _ F(®)-F(#)

& =y andd = . which implies oS miEan = T ran Ve have:
F( w) - FA( ) LUIF ()] + Hf%( )H?—AHF(ﬁ)) F(#)]%)
[ ()| || F(2)]] |E'(w)]] || F'(2)]]

|
€ [w-T—~v/4,w- T+ /4]
In other words, we have shown the following:

||w|| [l IIF(w)II IIF(SU)II

For all z, Pr [

‘ > 7/4] < ed/4.

Since the above is true for all it is clearly true for random from F»(D). So,

W F(w) - F(x)
[l Tl2ll ||| || F ()]

P 4| <e5/4,
i A [ v/] ed/

which implies that:

Pr[ Pr (
A | z~Fy(D)

Sincew has error at most/2 at marginvy/2, this then implies that the probability that(w) has error
more thare over F'(F» (D)) at marginry/4 is at most /2. Combining this with the /2 failure probability
of F, completes the proof.

|

w-xr ?(w)ﬁ()
[l ]| || F ()] || F ()]

> 7/4) > 5/2] <4/2.

As before, the running time to compute our mappings is patyiabin 1/+,1/¢,1/6 and the time to
compute the kernel functiofi'.

Since the dimensiods; of the mapping in Theorem 6.4.2 is only logarithmiclife, this means we can
sete to be small enough so that with high probability, a sampleiz& € (ds log d3) would be perfectly
separable. This means we could @s® noise-free linear-separator learning algorithmAf® to learn
the target concept. However, this requires usipg= O~(1/’y4) (i.e., O~(1/’y4) unlabeled examples to
construct the mapping).

Corollary 6.4.3 Givene’,d,v < 1, if P has marginy in the ¢-space, therO( ; 4) unlabeled examples
are sufficient so that with probability — ¢, mappingf; : X — Rd3 has the property thafs(P) is
linearly separable with errob(e’/(ds log ds)), whereds = O( log -1~

Proof: Just plug in the desired error rate into the bounds of The dnl.

6.4.1 A few extensions

So far, we have assumed that the distributiBris perfectly separable with margin in the ¢-space.
Suppose, however, th&t is only separable with errax at marginy. That is, there exists a vectar in

the ¢-space that correctly classifiesla- « probability mass of examples by margin at leasbut the
remaininga probability mass may be either within the margin or incatiseclassified. In that case, we
can apply all the previous results to the- o portion of the distribution that is correctly separated by
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margin-~y, and the remaining: probability mass of examples may or may not behave as dedired all
preceding results (Lemnia6.8.1, Corollary 6.3.2, Thedréd@6and Theorem 6.4.2) still hold, but with
e replaced by(1 — a)e + « in the error rate of the resulting mapping.

Another extension is to the case that the target separags mat pass through the origin: that is, it is
of the formw - ¢(z) > [ for some values. If ¢ is normalized, so thd{é(x)|| = 1 for all z € X, then
all results carry over directly. In particular, all our réstfollow from arguments showing that the cosine
of the angle betweew and¢(x) changes by at mostdue to the reduction in dimension. ¢fz) is not
normalized, then all results carry over wittreplaced byy/ R, whereR is an upper bound of¢(z)||, as
is done with standard margin boun@[ 195].

6.5 On the necessity of access 10

Our algorithms construct mappinds: X — R? using black-box access to the kernel functiiiiz, )
together with unlabeled examples from the input distrilmutD. It is natural to ask whether it might
be possible to remove the need for acces®toln particular, notice that the mapping resulting from
the Johnson-Lindenstrauss lemma has nothing to do witmha distribution: if we have access to the
¢-space, then no matter what the distribution is, a randorjegion down toR? will approximately
preserve the existence of a large-margin separator wittn pigbabilit)E So perhaps such a mapping
F' can be produced by just computidg on some polynomial number of cleverly-chosen (or uniform
random) points inX. (Let us assumeX is a “nice” space such as the unit ball @, 1}" that can be
randomly sampled.) In this section, we show this is not fssin general for an arbitrary black-box
kernel. This leaves open, however, the case of specificaldtemels.

One way to view the result of this section is as follows. If vedide a feature space based on uniform
binary (Rademacher) or gaussian-random points ingfspace, then we know this will work by the
Johnson-Lindenstrauss lemma. If we define features basediots in¢(X) (the image ofX underg)
chosen according (D), then this will work by Corollary 6.3]2. However, if we defifeatures based on
points in¢(X) chosen according to some method that does not depehy tiven there will exist kernels
for which this does not work.

In particular, we demonstrate the necessity of acce€3 &s follows. ConsideX = {0,1}", let X'
be a random subset 8f/2 elements of, and letD be the uniform distribution o&X”. For a given target
function ¢, we will define a speciap-function ¢. such thatc is a large margin separator in thiespace
under distributionD, but that only the points itX’ behave nicely, and points not X’ provide no useful
information. Specifically, considef, : X — R? defined as:

(1,0) if v ¢ X'
de(z) = (—1/2,4/3/2) if z € X andc(z) =1
(—1/2,—/3/2) if z € X" andc(z) = —1
See figuré€ 6.5]1. This then induces the kernel:

{ 1 if x,y & X' or[x,y € X" andc(z) = c(y)]

Ke(x,y) ~1/2 otherwise

Notice that the distributior® = (D, c) over labeled examples has margin= v/3/2 in the ¢-space.

3To be clear about the order of quantification, the statensetttait for any distribution, a random projection will workttwi
high probability. However, for any given projection, thenay exist bad distributions. So, even if we could define a rimappf
the sort desired, we might still expect the algorithm to belmamized.
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xin X'
c(x)=1

120 x natin X'

xin X'
c(x)=-1

Figure 6.5.1: Functio,. used in lower bound.

Theorem 6.5.1 Suppose an algorithm makes polynomially many calls to &kidbax kernel function over
input space{0, 1}" and produces a mapping : X — R? whered is polynomial inn. Then for random
X' and randon in the above construction, with high probabiliey( P) will not even be weakly-separable
(even thoughP has marginy = v/3/2 in the ¢-space).

Proof: Consider any algorithm with black-box accesgifattempting to create a mappidg: X — R%.
Since X’ is a random exponentially-small fraction &f, with high probability all calls made t& when
constructing the functiod' are on inputs not inX’. Let us assume this indeed is the case. This implies
that (a) all calls made t& when constructing the functiof return the value 1, and (b) at “runtime” when
x chosen fromD (i.e., whenF is used to map training data), even though the functigm) may itself
call K(z,y) for different previously-seen poinis these will all giveK (x,y) = —1/2. In particular, this
means that¥'(x) is independent of the target functien Finally, sinceX’ has size2"/2 andd is only
polynomial inn, we have by simply counting the number of possible partitiohF'(X”) by halfspaces
that with high probability'(P) will not even be weakly separable for a random functioaver X'.
Specifically, for any given halfspace, the probability oghpice ofc that it has error less thaty2 — ¢

is exponentially small inX’| (by Hoeffding bounds), which is doubly-exponentially shialn, whereas
there are “only”20(4") possible partitions by halfspacesl

Notice that the kernel in the above argument is positive defimite. If we wish to have a positive
definite kernel, we can simply changé&’to “1 — o” and “~1/2" to “—1(1 — )" in the definition of
K (z,y), except fory = x in which case we keef{ (x,y) = 1. This corresponds to a functi@hin which
rather that mapping points exactly ini¥, we map intokR>+2" giving each example ga-component in
its own dimension, and we scale the first two components/by- o to keepé.(x) a unit vector. The

margin now become@(l—a). Since the modifications provide no real change (an alguonitlith access
to the original kernel can simulate this one), the aboveraanis apply to this kernel as well.

One might complain that the kernels used in the above arguanemot efficiently computable. How-
ever, this can be rectified (assuming the existence of onefwactions) by definingX’ to be a crypto-
graphically pseudorandom subsetXfandc to be a pseudorandom functi26]. In this case, except
for the very last step, the above argument still holds foypomial-time algorithms. The only issue,
which arises in the last step, is that we do not know any patyabtime algorithm to test iff'(P) is
weakly-separable if® (which would distinguish: from a truly-random function and provide the needed
contradiction). Thus, we would need to change the conatusidhe theorem to be tha#*( P) is not even
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weakly-learnabléoy a polynomial time algorithm”.
Of course, these kernels are extremely unnatural, eachitsitbwn hidden target function built in.

It seems quite conceivable that positive results indepsndethe distributionD can be achieved for
standard, natural kernels.

6.6 Conclusions and Discussion

We show how given black-box access to a kernel funcfioand a distributionD (i.e., unlabeled exam-
ples) we can us& and D together teefficientlyconstruct a new low-dimensional feature space in which
to place the data that approximately preserves the desimgmkpties of the kernel. Our procedure uses
two types of “random” mappings. The first is a mapping basedaodom examples drawn froi that

is used to construct the intermediate space, and the sesahapping based on Rademacher/binary (or
Gaussian) random vectors in the intermediate space as dlohmson-Lindenstrauss lemma.

Our analysis suggests that designing a good kernel fundiomuch like designing a good feature
space. It also provides an alternative to “kernelizing” aréng algorithm: rather than modifying the
algorithm to use kernels, one can instead construct a mgppio a low-dimensional space using the
kernel and the data distribution, and then run an un-kereélalgorithm over examples drawn from the
mapped distribution.

Our main concrete open question is whether, for naturadstahkernel functions, one can produce
mappingsF : X — R%in an oblivious manner, without using examples from the digtribution. The
Johnson-Lindenstrauss lemma tells us that such mappingfs lext the goal is to produce them without
explicitly computing thep-function. Barring that, perhaps one can at least reduceritabeled sample-
complexity of our approach.

On the practical side, it would be interesting to exploredhernatives that these (or other) mappings
provide to widely used algorithms such as SVM, or Kernel Bgiton.
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Chapter 7

Mechanism Design, Machine Learning,
and Pricing Problems

In this chapter we make an explicit connection between nmaclgarning and mechanism design. In
particular, we show how Sample Complexity techniques iriSitzal Learning Theory can be used to
reduce problems of incentive-compatible mechanism desigtandard algorithmic questions, for a wide
range of revenue-maximizing problems in an unlimited (aestricted) supply setting.

7.1 Introduction, Problem Formulation

In recent years there has been substantial work on probléragarithmic mechanism design. These
problems typically take a form similar to classic algorithesign or approximation-algorithm questions,
except that the inputs are each givendafish agentsvho have their own interest in the outcome of the
computation. As a result it is desirable that the mechani@hesalgorithms and protocol) bacentive
compatible— meaning that it is in each agent’s best interest to repstrite value — so that agents do
not try to game the system. This requirement can greatly tioatp the design problem.

In this work we consider the design of mechanisms for oneefitlbst fundamental economic objec-
tives: profit maximization Agents participating in such a mechanism may choose telfateport their
preferences if it might benefit them. What we show, howewethat so long as the number of agents is
sufficiently large as a function of a measure of the compjexitthe mechanism design problem, we can
apply sample-complexity techniques from learning theorgetduce this problem to standard algorithmic
guestions in a broad class of settings. It is useful to thinthe techniques we develop in the context of
designing an auction to sell some goods or services, thdwehalso apply in more general scenarios.

In a seminal paper Myersomn] derives the optimal auctanselling a single item given that
the bidders’ true valuations for the item come from some kmgwior distribution. Following a trend
in the recent computer science literature on optimal andafiesign, we consider thgior-free setting in
which there is no underlying distribution on valuations avelwish to perform well for any (sufficiently
large) set of bidders. In absence of a known prior distrdyutive will use machine learning techniques
to estimate properties of the bidders’ valuations. We amrsiheunlimited supplysetting in which this
problem is conceptually simpler because there are no iileaallocations; though, it is often possible
to obtain results for limited supply or with cost functions the outcome via reduction to the unlimited
supply caseDS]. Research in optimal prior-freetian design is important for optimal auction
design because it directly links inaccurate distributidrewledge typical of small markets with loss in
performance.
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Implicitin mechanism design problems is the fact that thigssteagents that will be participating in the
mechanism havprivate informationthat is known only to them. Often this private informatiorsisiply
the agent’s valuation over the possible outcomes the mesrhamould produce. For example, when selling
a single item (with the standard assumption that an agegtaanks if they get the item or not and not
whether another agent gets it) this valuation is simply haweinthey are willing to pay for the item. There
may also bepublic informationassociated with each agent. This information is assumeed tvailable
to the mechanism. Such information is present in structopiimization problems such as tkeapsack
auction probler‘r‘{lg] and multicast auction proble] and is the natural way to generalize optimal
auction design for independent but non-identically distied prior distributions (which are considered by
Myerson ]) to the prior-free setting. There are manynddad economic settings where such public
information is available, e.g., in the college tuition magtsm, in-state or out-of-state residential status is
public; for acquiring a loan, a consumer’s credit reportublc information; for automobile insurance,
driving records, credit reports, and the make and color efvehicle are public information.

A fundamental building block of an incentive compatible im&aism is aroffer. For full generality an
offer can be viewed as an incentive compatible mechanismrferagent. As an example, if we are selling
multiple units of a single item, an offer could béake-it-or-leave-itprice per unit. A rational agent would
accept such an offer if it is lower than the agent’s valuafmrthe item and reject if it is greater. Notice
that if all agents are given the same take-it-or-leaveiitepthen the outcome ison-discriminatoryand
the same price is paid by all winners. Prior-free auctiorsedan this type of non-discriminatory pricing
have been considered previously (see, @ [125]).

One of the main motivations of this work is to expladescriminatory pricingin optimal auction
design. There are two standard means to achieve discriomynaiticing. The first, is to discriminate based
on the public information of the consumer. Naturally, lo@me more costly for individuals with poor
credit scores, car insurance is more expensive for drivétspoints on their driving record, and college
tuition at state run universities is cheaper for studeratdle in-state residents. In this setting a reasonable
offer might be a mapping from the public information of theeats to a take-it-or-leave-it price. We refer
to these types of offers gwicing functions The second standard means for discriminatory pricing is to
introduce similar products of different qualities and prtbem differently. Consumers who cannot afford
the expensive high-quality version may still purchase a&xpensive low-quality version. This practice
is common, for example, in software sales, electronicsssaed airline ticket sales. An offer for the
multiple good setting could be a take-it-or-leave it prioe éach good. An agent would then be free to
select the good (or bundle of goods) with the (total) pria they most prefer. We refer to these types of
offers asitem pricings

Notice that allowing offers in the form of pricing functiorsd item pricings, as described above,
provides richness to both algorithmic and mechanism degiggstions. This richness; however, is not
without cost. Our performance bounds are parameterized dyjtable notion of theomplexityof the
class of allowable offers. It is natural that this kind of q@exity should affect the ability of a mechanism
to optimize. It is easier to approximate the optimal offemfra simple classes of offers, such as take-
it-or-leave-it prices for a single item, than it is for a maemplex class of offers, such as take-it-or-
leave-it prices for multiple items. Our prior-free anafysiakes the relationship between a mechanism’s
performance and the complexity of allowed offers precise.

We phrase our auction problem generically as: given sonss cfreasonable offers, can we construct
an incentive-compatible auction that obtains profit claséhe profit obtained by the optimal offer from
this class? The auctions we discuss are generalizatioteeahhdom sampling auction of Goldberg et
al. M]. These auctions make use of a (non-incentive-ediie) algorithm for computing a best (or
approximately best) offer from a given class for any set @istoners. Thus, we can view this construction
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as reducing the optimal mechanism design problem to thenepalgorithm design problem.

The idea of the reduction is as follows. Ldtbe an algorithm (exact or approximate) for the purely
algorithmic problem of finding the optimal offer in some da&ifor any given set of consumers$ with
known valuations. Our auction, which does not know the \&na a priori, asks the agents to report
their valuations (as bids), splits agents randomly into $&tsS; andSs, runs the algorithmA separately
on each set (perhaps adding an additional penalty term toljeetive to penalize solutions that are too
“complex” according to some measure), and then appliesfteefound for S; to S» and the offer found
on S, to S1. The incentive compatibility of this auction allows us teasie that the agents will indeed
report their true valuations. Sample-complexity techegjadapted from machine learning theory can
then give a guarantee on the quality of the results if the ptasize is sufficiently large compared to a
measure of complexity of the class of possible solutionsonfan economics perspective, this can be
viewed as replacing the Bayesian assumption that biddeng ¢dmm a known prior distribution (e.g., as
in Myerson’s work ]) with the use of learning, over a ramdsubsetS; of an arbitrary set of bidders
S, to get enough information to apply & (and vice versa).

It is easy to see that as the size of the market grows, the ldavgd numbers indicates that the above
approach is asymptotically optimal. This is not surprisasgconventional economic wisdom suggests that
even the approach of market analysis followed by the Bagegitimal mechanism would incur negligibly
small loss compared to the Bayesian optimal mechanism wirkshendowed with foreknowledge of the
distribution. In contrast, the main contribution of thisnkds to give a mechanism with upper bounds on
the convergence rate, i.e., the relationship between #eeadithe market, the approximation factor, and
the complexity of the class of reasonable offers.

Our contributions: We present a general framework for reducing problems ofnitiaecompatible
mechanism design to standard algorithmic questions, faoadbclass of revenue-maximizing pricing
problems. To obtain our bounds we use and extend samplelexitgtechniques from machine learn-
ing theory (sedﬂﬁﬂbﬂO?]) and to design our mechenise employ machine learning methods
such asstructural risk minimization In general we show that an algorithm (@approximation) can be
converted into g1 + ¢)-approximation (or3(1 + €)-approximation) for the optimal mechanism design
problem when the market size is at leést3¢~2) times a reasonable notion of the complexity of the class
of offers considered. Our formulas relating the size of tlagkat to the approximation factor give upper
bounds on the performance loss due to unknown market consgiind we view these as bounds on the
convergence ratef our mechanism. From a learning perspective, the meadmadésign setting presents
a number of technical challenges when attempting to get ooads: in particular, the payoff function
is discontinuous and asymmetric, and the payoffs for difieffers are non-uniform. For example, in
Section 7Z.38 we develop bounds based on a different nofi@eering numbethan typically used in
machine learning, in order to obtain results that are moraningful for our setting.

We instantiate our framework for a variety of problems, sahehich have been previously consid-
ered in the literature, including:

Digital Good Auction Problem: The digital good auction problentonsiders the sale of an unlimited
number of units of an item to indistinguishable consumend, laas been considered by Goldberg et
al. @] and a number of subsequent papers. As argu@h {ie2nly reasonable offers for this
setting are take-it-or-leave-it prices.

The analysis technigues developed in our work gisavleproof that the random sampling auction
(related to that o 2]) obtains(@ — ¢) fraction of the optimal offer as long as the market size is
at IeastO(eﬁ2 log %) (whereh is an upper bound on the valuation of any agent).

Attribute Auction Problem: The attribute auction problenis an abstraction of the problem using dis-
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criminatory prices based on public information (a.kadtributeg of the agents. A seller can often
increase its profit by using discriminatory pricing: for exale, the motion picture industry uses
region encodings so that they can charge different priceB%bs sold in different markets. Fur-
ther, in many generalizations of the digital good auctiabpem, the agents are distinguishable via
public information so the techniques exposed in the studgttoibute auctions are fundamental to
the study of profit maximization in general settings.

Here a reasonable class of offers to consider are mappiogstfie agents’ attributes to take-it-
or-leave-it prices. As such, we refer to these offerpmasing functions For example, for one-
dimensional attributes, a natural class of pricing funionight be piece-wise constant functions
with & prices, as studied ilﬁbl]. In our work we giveganeraltreatment that can be applied
to arbitrary classes of pricing functions. For example tifilsutes are multi-dimensional, pricing
functions might involve partitioning agents into markefided by coordinate values or by some
natural clustering, and then offering a constant price ar@ephat is some other simple function of
the attributes within each market. Our bounds giv@ a ¢)-approximation when the market size
is large in comparison te~2 scaled by a suitable notion of the complexity of the classfigis.

Combinatorial Auction Problem: We also consider the goal of profit maximization in an unled#
supply combinatorial auction. This generalizes the digited auction and exemplifies the problem
of discriminatory pricing through the sale of multiple pumtis. The setting here is the following. We
havem different items, each in unlimited supply (like a supernedrkand bidders have valuations
over subsetof items. Our goal is to achieve revenue nearly as large abdberevenue that uses
take-it-or-leave-it prices for each item individuallye.i. the besitem-pricing

For arbitrary item pricings we show that our reduction haoavergence rate of? (hT”f) no

matter how complicated those bidders’ valuations are (etiee( hides terms logarithmic in, the
number of agentsn, the number of items; an, the highest valuation). If instead the specification
of the problem constrains the item prices to be integral (engpennies) or the consumers touat-
demand(desiring only one of several items) single-mindeddesiring only a particular bundle of
items) then our bound improves fa)(f;—g”) This improves on the bounds given IMIlZO] for the
unit-demand case by roughly a factorraf

A special case of this setting is the problem of auctionirgright to traverse paths in a network.
When the network is a tree and each user wants to reach thélifk@drivers commuting into
a city or a multicast tree in the Internet), Guruswami et give an exact algorithm for the
algorithmic problem to which our reduction applies as nabdve.

Related Work: Several paper&bﬂ%] have applied machine learning iggés to mechanism design in
the context of maximizing revenue in online auctions. Thinersetting is more difficult than the “batch”
setting we consider, but the flip-side is that as a result,wioaek only applies to quite simple mechanism
design settings where the clagsof allowable offers has small size and can be easily listetsoAin

a similar spirit to the goals of our work, Awerbuch et E[Zﬁ\}/e reductions from online mechanism
design to online optimization for a broad class of revenugimization problems. Their work compares
performance to the sum of bidders’ valuations, a quite delimgnmeasure. As a result, however, their
approximation factors are necessarily logarithmic rathan(1 + ¢) as in our results.

Structure of this chapter: The structure of the chapter is as follows. We describe tiherge setting in

which our results apply in Sectidn 7.2 and give our generiicéon and bounds Sectign 7.3. We then
apply our techniques to the digital good auction problent{ie[7.4), attribute auction problems (Sec-
tion[7.3), the problem of item-pricing in combinatorial doas (Sectioh 7]6). We present our conclusions
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in Sectior 7.V

7.2 Model, Notation, and Definitions

7.2.1 Abstract Model

We assume a se&f = {1,...,n} of agents. At the heart of our approach to mechanism desitreis
idea that the interaction between a mechanism and an agartsréom the combination of an agent’s
preferencewith anoffer made by the mechanism. The precise notion of what prefesesmue offersare
will depend on the setting and is defined in Seclion 7.2.2. él@w fixing the preference of agenand
an offerg we letg(i) represent the payment made to the mechanism when d@g@néference is applied
to the offerg. Essentially, we are letting the structure of an agent'$gpemce and the structure of the
offer be represented solely lfi). We extend our notation to allow(S) to be the total profit when
offering ¢ to all agents inS, and we assume thatsS) = > . s g(i). This effectively corresponds to an
unlimited-supply assumption in the auction setting.

In our setting we have a clagsof allowable offers. Our problem will be to find offers ¢hto make to
the agents to maximize our profit. For this abstract settiagprmpose an algorithmic optimization problem
and a mechanism design problem, the difference being théteiformer we constrain the algorithm to
make the same offer to all agents, and in the latter the mésshas constrained by lack of prior knowledge
of the agents’ true preferences and musirfoentive compatible

Given thetrue preferences ob and a class of offerg, the algorithmic optimization problenis to
find theg € G with maximum profit, i.e.pptg(S) = argmax g g(5). LetOPTg(S) = max,eg g(5)
be this maximum profit. This computational problem is ingéirgy in its own right, especially when the
structure of agent preferences and the allowable offetdtseim a concise formula fog(:) for all g € G
and alli € S. All of the techniques we develop assume that such an aigoribr an approximation to it)
exists, and some require existence of an algorithm thatages over the profit of an offer minus some
penalty term that is related to the complexity of the offas,, inax,cg [9(5) — pen,(S5)].

We now define an abstract mechanism-design-like probletmsinaodelled after the standard charac-
terization of single-round sealed-bid direct-revelatiocentive-compatible mechanisms (see below). For
the class of offergj, each agent has a payoff profile which lists the payment theyldvmake for each
possible offer, i.e.[,g(i)]geg for agent; (notice that this represents all of the relevant infornratioagent
i's preference). Our abstract mechanism chooses angffer each agent in a way that is independent
of that agent’s payoff profile, but can be a function of therdigadentity and the payoff profiles of other
agents. That is, for some functigh g; = f (4, [g(j)]geg#i). The mechanism then selects the outcome
for agent: determined by their preference apd which nets a profit ofj;(¢). The total profit of such
a mechanism i$ , g;(¢). We define an abstract deterministic mechanism to be coetplspecified by
such a functionf and an abstract randomized mechanism is a randomizatiorabs&act deterministic
mechanisms. The main design problem considered in our vgdkdome up with a mechanism (e.g., an
f or randomization over functiong) to maximize our (expected) profit.

Our approach is through a reduction from the mechanism dgsigblem to the algorithm design
problem that is applicable at this level of generality (bdésign and analysis), though tighter analysis is
possible when we expose more structure in the agent pretsend class of offers (as described next).
Our bounds make use of a paraméterhich upper bounds on the value gffi) for all i € S andg € G;
that is, no individual agent can influence the total profit byrenthank. The auctions we describe that
make use of the technique of structural risk minimizatioh meéed to knowh in advance.
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7.2.2 Offers, Preferences, and Incentives

To describe how the framework above allows us to considerge lelass of mechanism design problems,
we formally discuss the details of offers, agent preferene@md the constraints imposed by incentive
compatibility. To do this we develop some notation; howgetlee main results in our work will be given
using the general framework above.

Formally, amarketconsists of a set of agents,S, and a space of possible outcom®&s,We consider
unlimited supplyallocation problems wher@; is set of possible outcomes (allocations) to ageaid
O =0, x---x0, (.e., all possible combinations of allocations are fel@3itExcept where noted, we
assume there is no cost to the mechanism for producing anogret

As is standard in the mechanism design literature! [179],cmmiE’s preference is fully specified by
its private type, which we denote. We assum@o externalitieswhich means that; can be viewed as a
preference ordering;,,, over (outcome, payment) pairs@ x R. That is, each agent cares only about
what outcome it receives and pays, and not about what otlestsaget. Abid, b;, is a reporting of one’s
type, i.e., it is also a preference ordering over (outcoragnpent) pairs, and we say a bidder is bidding
truthfully if the preference ordering undermatches that given by its true typse,

A deterministic mechanism igmcentive compatibléf for all agentsi and all actions of the other
agents, bidding truthfully is at least as good as bidding-tnotinfully. If o;(b;,b_;) andp;(b;,b_;) are
the outcome and payment when agebidsb; and the other agents blil_;, then incentive compatibility
requires for all;, b;, andb_;,

(0i(vi, b—i),pi(vi,b—;)) =y, (0i(bi;b_;), pi(bi,b_;)).

A randomized mechanism is incentive compatible if it is ad@mization over deterministic incentive
compatible mechanisms.

An offer, as described abstractly in the preceding sectieed not beanonymous This allows the
freedom to charge different agents different prices forddmme outcome. In particular, for a fixed offer
g, the payment to two agentg(:) andg(i’), may be different even ; = b;;. We consider a structured
approach to this sort of discriminatory pricing by assao@gto each agent some publicly observable
attribute value pub,. An offer then is a mapping from a bidder’s public information to a eciion of
(outcome, payment) pairs which the agent’s preferencestrawe interpret making an offer to an agent
as choosing the outcome and payment that they most preferdaog to their reported preference. For
an incentive compatible mechanism, where we can assume;thab;, ¢(i) is the payment component
of this (outcome, payment) pair. Clearly, the mechanism @ghaays makes every agent a fixed offer is
by definition incentive-compatible. In fact the followingome general result, which motivates the above
definition of an abstract mechanism, is easy to show:

Fact 7.2.1 A mechanism isicentive compatiblé the choice of which offer to make to any agent does not
depend on the agent’s reported preference.

Because all our mechanisms are incentive compatible, thblethied notation ofi(:) as the profit of
offer g on agent will be sufficient for most discussions and we will omit exjglireference ta; andb;
where possible.

7.2.3 Quasi-linear Preferences

We will apply our general framework and analysis to a numbiespecial cases where the agents’ pref-
erences are to maximize thejuasi-linear utility This is the most studied case in mechanism design
literature. The typey;, of a quasi-linear utility maximizing agemntspecifies itsvaluation for each out-
come. We denote the valuation of agérfor outcomeo; € O; asv;(0;). This agent'sutility is the
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difference between its valuation and the price it is requiepay. l.e., for outcome; and paymenp;,
agenti’s utility is u; = v;(0;) — p;- An agent prefers the outcome and payment that maximizeslity.
le.,vi(0;) — pi > v;i(0;) — pl if and only if (o, pi) =, (0}, p}).

For the quasi-linear case, the incentive compatibilitystaints imply for alk;, b;, andb_; that,

vi(0i(vi, b)) — pi(vi, b_i) > vi(0;(bs, b_;)) — pi(bi, b_;).

Notice that in the quasi-linear setting our constraint g{&af < /4 would be implied by the condition
thatv;(o;) < hforall o; € O;.

7.2.4 Examples

The following examples illustrate the relationship betw#ige outcome of the mechanism, offers, valua-
tions, and attributes. (The first three examples are quasadi, the fourth is not.)

Digital Good Auction: The digital good auction models an auction of a single itemnlmited supply
to indistinguishable bidders. Here the set of possibleants for bidder is O; = {0,1} where
o; = 1 represents bidderreceiving a copy of the good anrg = 0 otherwise. We normalize their
valuation functionv;(0) = 0 and use a simple shorthand notationupf= v;(1) as the bidders
privately known valuation for receiving the good. As desed in the introduction, in this setting
the bidders have no public information. Here, a naturalsctdoffers,g, is the class of all take-it-
or-leave-it prices. For bidderwith valuationv; and offerg, = “take the good for $, or leave it”

the profit is
(0) p ifp<uw
1) =
I 0 otherwise.

We consider the digital good auction problem in detail int®ed7.4.

Attribute Auctions: This is the same as the digital good setting except now eatttebi is associated
a public attributepub, € X', whereX' is theattribute space We view X’ as an abstract space, but
one can envision it aR?, for example. LefP be a class of pricing functions froi to R, such
as all linear functions, or all functions that partitidh into £ markets in some natural way (say,
based on distance to cluster centers) and offer a different price in each. Gdie the class of
take-it-or-leave-it offers induced by. That is, ifp € P is a pricing function, then the offer, € G
induced byp is: “for bidder, take the good forpub,), or leave it". The profit to the mechanism
from bidder: with valuationv; and public informatiorpub; is

0 otherwise.

0oli) = {p(pum f p(pub) < v,

We will give analyses for several interesting classes d@fipgi functions in Section 71.5.

Combinatorial Auctions: Here we have a sef of m distinct items, each in unlimited supply. Each
consumer has a private valuatiosf.J’) for each bundle/’ C .J of items, which measures how much
receiving bundle/’ would be worth to the consumeé(again we normalize such thgt () = 0). For
simplicity, we assume bidders are indistinguishable, itere is no public information. A natural
class of offergj (studied in [[Iab]) is the class of functions that assign agssp price to each item,
such that the price of a bundle is just the sum of the pricekeftems in it (called item pricing).
For price vectop = (pi, ..., pn) let the offerg, = “for bundle J', payzjej, p;". The profit for

151



bidder: on offer g, is

NOESY {pj D J € argmax yic g [’Ui(J/) - Zj’ej’ pj'] } '

(If the bundleJ’ maximizing the bidder’s utility is not unique, we define thechanism to select
the utility-maximizing bundle of greatest profit.) We dissicombinatorial auctions in Section]7.6.

Marginal Cost Auctions with Budgets: To illustrate an interesting model with agents in a non-guas
linear setting consider the case each biddepreference is given tupleB;, v;) whereB; is their
budget and; is their value-per-unit received. Possible allocationsdbfdder:, O;, are non-negative
real numbers corresponding to the number of units theywecéssuming their total payment is
less than their budget, biddés utility is simply v;0; minus their payment; a bidder’s utility when
payments exceed their budget is negative infinity.

We assume that the seller has a fixed marginal ¢@st producing a unit of the good. Consider the
class of offergg with g, = “pay $p per unit received”. A biddei faced with offerg, with p < v;

will maximize their utility by buying enough units to exactéxhaust their budget. The payoff to

the auctioneer for this biddéris thereforB; lessc times the number of units the bidder demands.
l.e.,

] B; —cB;/p ifp<uw,
gp(i) = .
0 otherwise.

This model is quite similar to one considered by Borgs et].[ Though we do not explicitly
analyze this setting, it is simple to apply our generic asialyo get reasonable bounds.

7.3 Generic Reductions

We are interested in reducing incentive-compatible meshaesign to the (non-incentive-compatible)
algorithmic optimization problem. Our reductions will baded on random sampling. Ldtbe an algo-
rithm (exact or approximate) for the algorithmic optimipat problem ovelG. The simplest mechanism
that we consider, which we call R$§) 4) (Random Sampling Optimal offer), is the following genezati
tion of the random sampling digital-goods auction from 122

0. Bidders commit to their preferences by submitting th&sb

1. Randomly split the bidders into two groufs and S by flipping a fair coin for each bidder to
determine its group.

2. RunA to determine the best (or approximately best) offerce G over Sy, and similarly the best
(or approximately best), € G overSs.

3. Finally, applyg; to all bidders inS; andgs to all bidders inS; using their reported bids.

We will also consider various more refined versions of RS54 that discretizej or perform some type of
structural risk minimizatior{(in which case we will need to assundecan optimize over the modifications
made tag).

Note 1: One might think that the “leave-one-out” mechanism, whaeedffer made to a given bidder

is the best offer for all other bidders, i.eptg(S \ {i}), would be a better mechanism than the random
sampling mechanism above. However, as pointed out in ], buch a mechanism (and indeed,
any symmetric deterministic mechanism) has poor wors-cagenue. Furthermore, even if bidders’
valuations are independently drawn from some distribytiba leave-one-out revenue can be much less
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stable than RS@Q 4) in that it may have a non-negligable probability of achigwievenue that is far from
optimal, whereas such an event is exponentially small de@g)E

Note 2: The reader will notice that in converting an algorithm fordiimy the best offer irg into an
incentive-compatible mechanism, we produce a mechanisosevbutcome is not simply that of a single
offer applied to all consumers. For example, even in the Estrase of auctioning a digital good to
indistinguishable bidders, we compare our performancéddoest take-it-or-leave-it price, and yet the
auction itself does not in fact offer each bidder the sameepiall bidders inS; get the same price, and
all bidders inSs get the same price, but those two prices may be differenfadi Goldberg and Hartline
[@] show that this sort of behavior is necessary: it is russible for an incentive-compatible auction to
approximately maximize profit and offer all the bidders theng price.

7.3.1 Generic Analyses

The following theorem shows that the random sampling andtiocurs only a small loss in performance
if the profit of the optimal offer is large in comparison to tlegarithm of the number of offers we are
choosing from. Later sections of this chapter will focus echiniques for bounding the effective size (or
complexity) ofG that can yield even stronger guarantees.

Theorem 7.3.1 Given the offer clas§ and ag-approximation algorithmA for optimizing overg, then
with probability at leastl — § the profit of RSQ; 4 is at least(1 — ¢)OPTg /3 as long as

OPTg > 8184 In (%)

Notice that this bound holds for adl and 6 simultaniously as these are not parameters of the mecha-
nism. In particular, this bound and those given by the two édiate corollaries, below, show how the
approximation factor improves as a function of market size.

Corollary 7.3.2 Given the offer clas§ and as-approximation algorithmA for optimizing overg, then
with probability at leastl — 4, the profit of RSQ; 4 is at least(1 — ¢)OPTg/3, whenOPTg > n and
the number of bidders satisfies

n > 18;# In (@)

Corollary 7.3.3 Given the offer clas§ and ag-approximation algorithmA for optimizing overg then
with probability at leastl — 4, the profit of RSQ; 4 is at least

(1—€)OPTg/f — 1848 1 (%)

If bidders’ valuations are in the intervél, k] and the take-it-or-leave-it offer of $1 is @, then the
conditionOPTg > n is trivially satisfied and Corollarfly 7.3.2 can be interpcess giving a bound on the
convergence ratef the random sampling auction. Corolldry 713.3 is a useduinf of our bound when
c[énsidering structural risk minimization and it also maigihe form of bounds given in prior work (e.g.,

)2

For example, in the digital good auction with the class oéitj. consisting of all take-it-or-leave-it
offers in the interval[1, »] discretized to powers of + ¢, we haveOPTg. > n (since each bidder’s

1For example, say we are selling just one item and the disioibover valuations is 50% probability of valuatiarand 50%
probability of valuatiorR. If we haven bidders, then there is a nontrivial chance (abigli/n) that there will be the exact same
number of each typen(/2 bidders with valuatiori andn /2 bidders with valuatior2), and the mechanism will make the wrong
decision on everybody. The R$§4) mechanism on the other hand has only an exponentially smrabibpility of doing this
poorly.
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valuation is at least 1)§ = 1 (since the algorithmic problem is easy), ajifl| = [log,,.h]. So,
Corollary[7.3.2 states th:ﬂ?(eﬁ2 loglog, . h) bidders are sufficient to perform nearly as well as optimal
(we derive better bounds for this problem in Secfion 7.4).

In general we will give our bounds in a similar form as Theof@@.1, knowing that bounds of
the form of Corollary_7.3]2 and 7.3.3 can be easily derivetle dnly exceptions are the structural risk
minimization results which we give in the same form as Carg(lZ.3.3.

In the remainder of this section we prove Theofem T.3.1. \Ak stith a lemma that is key to our
analysis.

Lemma 7.3.4 Given S, an offer g satisfying0 < ¢(i) < hforall i € S, and a profit leveb, if we
randomly partition.S into S; and Sa, then the probability thatg(S1) — ¢g(S2)| > emax[g(S), p| is at

_<p
mosth{ o ]
Proof: LetYi,...,Y, be ii.d. random variables that define the partitionSahto .5, and Ss: that is,Y;
is 1 with probability% andY; is 2 with probability%. Lett(Y1,....,Yn) = > .y, 9(i). So, as a random
variable,g(S1) = t(Y1, ..., Y,,) and clearlyE[t(Y1, ..., Y,,)] = @. Assume first thag(S) > p. From the
McDiarmid concentration inequality (see Theorlem A.3.1 ppandi{A.3), by plugging ir; = g(i), we
get:

Pr{‘g(sl) - @' > %g(S)} < 26_5629(5)2/12219(7;)2'
Since
ang(if < max{g(i)} zn:g(i) < hg(S),
we obtain: = =1
pr{fatsi) - 22| > So(s)} < e |57

Pr{|g(51) — g(S2)| > €g(S)} < 2P/

as desired. Consider now the case (&) < p. Again, using the McDiarmid inequality we have

_162 2/2 (Z)2
Pr{lg(S1) — g(Sa)| = ep} < 2¢ © &

Since}"" , g(i)> < hg(S) < ph we obtain again that

€p

Pr{[g(S1) — g(S2)| > ep} < 26[_W},

which gives us the desired boundl

It is worth noting that using tail inequalities that depenmdtbe maximum range of the random vari-
ables rather than the sum of their squares in the proof of Lali@4 would increase thieto anh? in the
exponent. Note also thatgfi) = ¢(¢) for all : € S then they are equivalent from the point of view of the
auction; we will usgg| to denote the number diifferentsuch offers irg A Lemmd 734 implies that:

“Notice that in our generic reductiofgj| only appears in the analysis and we do not actually have te kviwether two offers
are equivalent with respect Hwhen running the auction.
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Corollary 7.3.5 For a random partition ofS into S; and .Sy, with probability at leastl — ¢, all offersg

in G such thaty(5) > 2 In (%) satisfy|g(S1) — g(S2)| < eg(S).

Proof: Follows from Lemm&7.3]4 by plugging im= E—Q In (@) and then using the union bound over
algeg. m

We complete this section with the proof of the main theorem.
Proof of Theorerh 7.3} 1:et ¢g; be the offer inG produced byA over.S; andg- be the offer inG produced
by A over Sy. Let gopr be the optimal offer inG over S; so gopr(S) = OPTg. Since the optimal
offer overS; is at least as good agpr 0n.S; (and likewise forSs), the fact that4 is as-approximation
implies thatg; (1) > “2PL5 andg,(Sy) > 2222(52),

Letp = 168—2h1n (@) Using Lemmd_7.3]4 (applying the union bound overgalE G), we have

that with probabilityl — 6, everyg € G satisfies|g(S1) — g(S2)| < §max[g(S),p]. In particular,
91(S2) > 91(S1) — § max[g1(5), pl, andgz(S51) > g2(S2) — § max[g2(5), p).
Since the theorem assumes thetTg > (p, summing the above two inequalities and performing a

case analyﬁwe get that the profit of RS@ 4y, namely the sum; (Sz2) +g2(51), is atleas{1 —e) OPﬁTQ .

More specifically, assume first that(S) > p andg,(S) > p. This implies that

91(S2) > 91(51) — ggl(s) and  ga2(S1) > ga(S2) — 592(5),

and therefore

(1+ %)91(52) > (1- %)91(51) and (1 + %)92(51) > (1~ 5)92(S2)'

So, the profit of RS@A) in this case is at least

_|_

1—
1+

wlm
—_
wlm
O

PTg
B

OPTg
B

(91(S1) + 92(52)) > >(1—e)

wlm
—_
wlm

If both g1 () < p andga(S) < p, theng;(S2) > g1(S1) — §p andgz(S1) > g2(S2) — §p, and so the
profit of RSQg, 4 in this case is at least-1¢ — Zp which is at leas{1 — ¢) 21 by our assumption
thatOPTg > Gp.

Finally, assume without loss of generality thhafS) > p andg2(S) < p. This implies that

91(S2) > g1(51) — %91(5) and  g2(51) > g2(52) — %P-

The former inequality implies thafl + £)g1(S2) > (1 — £)g1(S1), and sog1(S2) > (1 — %) g1(S1),

and the latter inequality implies tha§(S1) > g2(Sa) — § 257, Together we have that

OPTg
/8 Y

91(S) + g2(Sh) > <1 B %) QOPTB(Sl) N QOPTB(Sz) B %OPng > (1—e)

as desired. B

3Note that if3 = 1, then the conclusion follows easily. The case analysisligmeed to deal with the cage> 1.
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7.3.2 Structural Risk Minimization

In many natural cases; consists of offers at different “levels of complexity: In the case of attribute
auctions, for instancey could be an offer class induced by pricing functions thatifh@n bidders into

k markets and offer a constant price in each market, for diffevalues oft. The largerk is the more
complex the offer is. One natural approach to such a setinng performstructural risk minimization
(SRM): that is, to assign a penalty term to offers based oim twnplexity and then to run a version
of RSQg 4 in which A optimizes profit minus penalty. Specifically, igtbe a series of offers classes
G1,G9, ..., and letpen be a penalty function defined over these classes. We theredegnprocedure
RSO-SRMg pen as follows:

1. Randomly partition the bidders into two sets,andSs, by flipping fair coin for each bidder.
2. Computey; to maximizemaxj, maxgyeg, [9(S1) — pen(Gy)] and similarly computes, from Ss.
3. Use the offegy; for bidders inS5 and the offery, for bidders inSj.

We can now derive a guarantee for the RSO-SRM, mechanism as follows:

Theorem 7.3.6 Assuming that we have an algorithm for solving the optinozaproblem required by
RSO-SRM; pen): then for any given value of, ¢, andd, with probability at leastl — ¢, the revenue of

RSO-SRI, per) for pen(Gx) = 2 In (2581 ) is at least
mae ([(1 ~ ¢) OPT), ~2pen(Gy)),

wherehy, is the maximum payoff frogy, andOPT;, = OPTg, .

Proof: Using Corollanf7.35 and a union bound over the valyes: §/(4k?), we obtain that with proba-
bility at leastl —¢, simultaneously for alt and for all offersy in G;. such thay(.S) > %ﬁ In(8k2%|Gk|/6) =
pen(Gy), we havelg(S1) — g(S2)| < §g(S). Letk* be the optimal index, namely Iét be the index such
that

(1 —€) OPTy+ —2pen(Gy+) = max ((1 —€) OPTy —2pen(Gi)),

and letk; be the index of the best offer (according to our criteriorgrad, for i = 1, 2. By our assumption
thatg; andg, were chosen by an optimal algorithm, we have

gi(Si) — pen(Gk,) > gopt,. (Si) — pen(Gy-), for i=1,2.

We will argue next thay; (S2) > ;—? (gopt,. (S1) — pen(Gy+)). First, if g1(S1) < pen(Gg,), then
2
the conclusion is clear since we have

0> g1(S1) — pen(Gx,) > goPT,- (S1) — pen(Gi-).
If g1(S1) > pen(Gy, ), then as argued above we haye(S1) — g1(S2)| < 591(5) and so

_ e 1_¢
g1(S2) > T 291(51) > 1 +§ (9opT,. (S1) — pen(Gi+)) .

Similarly, we can prove that we haye(S;) > i—? (gopT,. (S2) — pen(Gy+)). All these together imply
2
that the profit of the mechanism RSO-SR}.,,), namelyg: (S2) + g2(51), is at least
1—
1+

[\elfe}

(gopT,. (S) — 2pen(Gg+)) > ((1 — €) OPTy+ —2pen(Gy+))

[\elfe

as desired. B
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7.3.3 Improving the Bounds

The results above say, in essence, that if we have enougarbidd that the optimal profit is large com-
pared toeﬁ2 log(|G|), then our mechanism will perform nearly as well as the befgraf G. In these
bounds, one should think dbg(|G|) as a measure of the complexity of the offer clgsgor instance,

it can be thought of as the number of bits needed to descrippi@at offer in that class. However, in
many cases one can achieve a better bound by adapting teekrdgveloped for analyzing generaliza-
tion performance in machine learning theory. In this segtige discuss a number of such methods that
can produce better bounds. These include laotlysistechniques (such as using appropriate forms of
covering numbeils where we do not change the mechanism but instead proviglereger guarantee, and
designtechniques (likediscretizing, where we modify the mechanism to produce a better bound.

Discretizing

Notation: Given a class of offerg, defineg,, to be the set of offers induced by rounding all prices down
to the nearest power ¢f + «).

In many cases, we can greatly redygewithout much affecting) PTg by performing some type of
discretization. For instance, for auctioning a digital dothere are infinitely many offers induced by all
take-it-or-leave-it prices but onlyg, ., h ~ éln h offers induced by the discretized prices at powers of
1 4+ «a. Also, since rounding down the optimal price to the nearesigr of 1 + « can reduce revenue
for this auction by at most a factor af+ «, the optimal offer in the discretized class must be close, in
terms of total profit, to the optimal offer in the original sta More generally, if we can find a smaller
offer classg’ such thatOPTg is guaranteed to be close @PTg, then we can instruct our algorithm
A to optimize overg’ instead ofg to get better bounds. We consider the discretiza@igrin our refined
analysis of the digital good auction problem (Secfiod 7t & our consideration of attribute auctions
(Sectior_Z.b). Further, in Sectién I7.6 we discuss an intiegealternative discretization for item-pricing
in combinatorial auctions.

Counting Possible Outputs

Suppose we can argue that our algoritimrun on a subset of, will only ever output offers from a
restricted sej4 C G. For example, for the problem of auctioning a digital godddipicks the offer
based on the optimal take-it-or-leave-it price over itsuinflhen this price must be one of the bids, so
|G 4| < n. Then, we can simply repladg| with |G 4| (or |G 4| + 1 if the optimal offer is not inG 4) in all
the above arguments. Formally we can say that:

Observation 7.3.7 If algorithm A, run on any subset &f, only output offers from a restricted sgf C G,
then all the bounds in Sections 713.1 &nd 7.3.2 hold Vgttreplaced byG 4| + 1.

Using Covering Numbers

The main idea of these arguments is the following. Supgbkas the property that there exists a much
smaller clasg/’ such that every € G is “close” to somey’ € G’, with respect to the given set of bidders
S. Then one can show that if all offers § perform similarly onS; as they do onS,, then this will

be true for all offers inG as well. These kind of arguments are quite often used in madeiarning
(see for instance [18, 73, 104, 207]), but the main challéage define the right notion of “close” for
our mechanism design setting to get good and meaningful dsu®pecifically, we will consider,;
multiplicative v-covers which we define as follows:
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Definition 7.3.1 G’ is an L, multiplicative~-cover ofG with respect taS if for everyg € G there exists
g € G’ such that

D lgli) =g @) < y9(S5).

i€S
In the following we present bounds based bn multiplicative ~-covers. We start by proving the
following structural lemma characterizing thesgcovers.

Lemma 7.3.81f > [g(i) — ¢'(2)] < ~vg(S)and|g'(S1) — ¢'(S2)| < € max[¢'(S), p] then we have
i€s

9(S1) — 9(S2)| < € max[g'(S5), p] +79(S).

This further implies that

9(S1) — g(S2)| < (v + € (1 + 7)) max[g(S), p].

Proof: We will first prove thaty(S;) > g(S2) — € max[¢'(S), p] — v9(S). Note that this clearly implies

9(S1) > g(S2) — (v + €(1 + 7)) max[g(S), p),

since the first assumption in the lemma implies th&f) — ¢'(S)| < vg¢(S) . Let us define
Agig( Zmax 91(2) — 92(1), 0)
€S

and consider
Ngg(8) = Aggr(S) + Agrg(S Z’Q

€S

Clearly, for anyS’ C S we havelA,, (S) > A,,(S") and likewiseA,, (S) > A,y (S'). Also, for
any subsets’ C S we haveg(S') — ¢'(S') < A,y(S) andg'(S") — g(S") < Ayy(S). Now, from
g'(S1) > ¢'(S2) — ¢ max[¢'(S), p] we obtain that

9(S1) + Ayrg(S) > ¢'(Sa) — € max[g'(S), p] > g(Sa) — Ayy(S) — € max[g'(S), pl.

Therefore we have
9(S1) > g(S2) — Agy (S) — € max[g'(5), pl,

which implies
9(51) = 9(S2) — ¢ max[g'(S5), p] — 79(5),
as desired. Using the same argument \iiftreplaced byS, yields the theorem. B

Using Lemma 7.318, we can now get the following bound:

Theorem 7.3.9 Given the offer clas§ and ag-approximation algorithmA for optimizing overg, then
with probability at leastl — 4, the profit of RSQ; 4 is at least(1 — ¢)OPTg/j3 so long as

OPTg > %3 In (251),
for someL; multiplicative 5-coverG’ of G with respect tcS.
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Proof: Letp = %" In (%) By Lemmd 7.3.4, applying the union bound, we have that witiability
16, everyg’ € G’ satisfiegg'(51) —¢'(S2)| < § max [¢'(S), p]. Using Lemm&7.3]8, witk set to§ and
7 set tof5, we obtain that with probability — 4§, everyg € G satisfiegg(S1) — g(S2)| < §max [g(S), p].
Finally, proceeding as in the proof of Theorem 7.3.1 we obtia¢ desired result. B

Notice that Theorer 7.3.9 implies that:

Corollary 7.3.10 Given the offer clas§ and aS-approximation algorithmA for optimizing ovelg, then
with probability at leastl — 4, the profit of RSQ; 4 is at least(1 — ¢)OPTg/3, so long asOPTg > n
and the number of bidders satisfies

72003 2|G'|
nz g (T)

for someL; multiplicative 5-coverg’ of G with respect tcf.

We will demonstrate the utility of.; multiplicative covers in Section 4.4 by showing the existen
of L; covers of sizen(n) for the digital good auction. It is worth noting that a stfsfgrward appli-
cation of analogous-cover results in learning theorﬂ18] (which would requare additive, rather than
multiplicative gap ofe for every bidder) would add an extra factor/ointo our sample-size bounds.

7.4 The Digital Good Auction

We now consider applying the results in Secfiod 7.3 to thélpro of auctioning a digital good to indis-
tinguishable bidders. In this section we defth¢o be the natural class of offers induced by the set of all
take-it-or-leave-it prices (see for instan@lZS]). @hea this case, it is trivial to solve the underlying
optimization problem optimally: given a set of bidders tjostput the offer induced by the constant price
that maximizes the price times the number of bidders witls litlleast as high as the price. Also, it is
easy to see that this price will be one of the bid values. Tapplying Theorerh 7.3.7 with the bound on
|G4| = n, we get an approximately optimal auction with convergerate® (h log n).

We can obtain better results usifig multiplicative-cover arguments and Theorem 7.3.9 as \ialo
Let by,...,b, be the bids of the: bidders sorted from highest to lowest. Defigieas the offer class
induced by{b; : i = [(1+~)7| forsomej € Z} U{(1+~)" : i € {1,...,log, . h}}. Consider
g € G and find theg’ € G’ that offers the largest price less than the offer pricg.ofNotice first that
all the winners inS on g also win ing’. Second, the offer price af is within a factor ofl + ~ of the
offer price ofg. Third, ¢’ has at most a factor df + v more winners thag. The first two facts above
imply that A,/ (S) < ~vg(S). The third fact implies thaft,,(S) < vg(S). Thus,A,, < 2v¢(S) and
therefore,’ is a2y-cover ofG (see the proof of Lemn{a7.3.8 for definitions &f, andA,,). Since
IG'| is O(log hn), the additive loss of RS@_4) is O(h log log nh)

We can also apply the discretization technique by defigindo be the set of offers induced by the
set of all constant-price functions whose price [1, k] is a power of(1 + ) anda = §. Clearly, if we
can get revenue at leat — §) times the optimal in this class, we will be withiii — ¢) of the optimal
fixed price overall. For example, Corolldry 713.2 ¢an trivially find the best offer iy’ by simply trying
all of them) shows that with probability — § we get at leasi — e times the revenue of the optimal
take-it-or-leave-it offer so long as the number of bidders at Ieast?—{l ln(%) = O(hloglogh).

“It is interesting to contrast these results with tha{Ef_I]Mich showed that RSO over the set of constant-price fonstis
near6-competitive with the promise that > h.
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7.4.1 Data Dependent Bounds

We can use the high level idea of our structural risk minid@areduction in order to get a bettdata
dependenbound for the digital good auction. In particular, we canlaep the h” term in the additive
loss with the actual sale price used by the optimal take-ieave-it offer (in fact, even better, the lowest
sales price needed to generate near-optimal revenuediingeh much better bound when most of the
profit to be made is from the low bids. The idea is that rathan fpenalizing the “complexity” of the offer
in the usual sense, we instead penalize the use of high&spric

Letg; = (1 + «)® and offerg; be the take-it-or-leave-it price af. DefineG = {g1},{g2},... and
consider the auction RSO-SRM,,, with pen({g;}) specified from Section 7.3.2 to K{é In (%) The
following is an a corollary of of Theorefn 7.3.6.

Corollary 7.4.1 For any given value of, ¢, andd, with probability 1 — §, the revenue of RSO-SRMen)
is at leastmax; [(1 — €)g;(S) — 2pen({gi})], wherepen({¢; }) = % In (%).

In other words, if the optimal take-it-or-leave-it offersha sale price op, then RSO-SRW; ...,y has
convergence rate bounded BYp log log h) instead ofO(h log log h) as provided by our generic analysis

0of RSQg 4)-

7.4.2 A Special Purpose Analysis for the Digital Good Auctin

In this section we present a refined data independent aadtyshe digital good auction. Specifically, we
can show for an optimal algorithtd, that:

Theorem 7.4.2 For § < % with probability 1 — 6, RSQg,, 4) obtains profit at least

OPTy, —8,/hOPTg, log ().

3
Corollary 7.4.3 For § < ; anda = §, so long asOPTg, > (12)2hlog (), then with probability at
least1 — 4, the profit of RSQ;, 4 is at least(1 — ¢) OPTyg.

The above corollary improves over our basic discretizatésults using Theoren 7.3.1 by @tflog log )
factor in the convergence rate.

To prove Theorerh 7.4].2, let us introduce some notation. l®wffer g, induced by the take-it-or-
leave-it offer of pricev, let n,, denote the number of winners (bidders whose value is at 1@aand let
ry, = v - n, denote the profit of, on.S. Denote byr, the observed profit af, on Sy (and sor, = v - 7y,
wheren, is the number of winners i, for g,). So, we haveE[7,] = %. We now begin with the
following lemma.

Lemma7.4.4Lete < 1 andd < % With probability at least — 6 we have that, for every, € G, the

observed profit oty satisfies:
hlog (2=
S max <M7 Err-v> A
€

Ty

Proof: First for a given pricev let a,,,, be |7, — %+|. To prove our lemma we will use the consequence
of Chernoff bound we present in Appendix_A.3, Theorem A.3Fr anyv andj > 1 we consider

1+a)i log (2
n = (Q)E%, and so we get

J 4 )
Pr {an,v > emax (nv, (1+a)log (0‘5)> } < 9e2(1+a) log (45)

€2
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j 1 p
This further implies that we have, , > ¢ max <n M) with probability at mosg(ad)2(1+e)’

Therefore forv = ﬁ we have

pr{

and so the probability that there existsga € G, such that|#, — 2| > max (2 er,) is at most

23 ()20’ < 2% 1(a6)>?" < 5. This implies that with high probability, at least— o, we
have that simultaneously, for evegy € G, the observed revenue ¢ satisfies:

1

€

hl 1 )
e (23

R Ty
Fo — —
2

€

as desired. B

Proof of Theoreri 7.412Assume now that it is the case that for evepyc G, we have

whereH = hlog (25). Letv* be the optimal price level among pricesdp, and leti* be the price that
looks best ort;. Obviously, our gain orbs is rz+ — 7#5+. We have

) >r: H 1-2 H
Ty = — — — — €Ty = T+ - —
v 2 € v v 2 67
N N N Ty H To* H
Tge > Tyx, and Py §7+?+€Tﬁ* §7+?+€Tv*a

and therefore;« — 75+ > 7y« — % — ery+, Which finally implies that

1 H
Tyx — f‘f)* 2 Ty* <§ — 2€> — 2?

This implies that with probability at least— § our gain onS, is at leastr,« (3 — 2¢) —2£, and similarly
our gain onS is at leastr,~ (3 — 2¢) — 2. Therefore, with probability. — 4, our revenue is

1 1
OPTg, (1 — 4e) — o108 (ag).

€

1
Optimizing the bound we set= Mog (a5) and get a revenue of

1
OPTga - 8\/h OPTga log <£>,

which completes the proof. R
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7.5 Attribute Auctions

We now consider applying our general bounds (Seétion 7.&{tibute auctions. For attribute auctions an
offer is a function from the publicly observable attribufeao agent to a take-it-or-leave-it price. As such,
we identify such an offer with itgricing function We begin by instantiating the results in Secfion 7.3
for market pricing auctions, in which we consider pricingiétions that partition the attribute space into
market segments and offer a fixed price in each. We show howcaneuse standard combinatorial
dimensions in learning theory, e.g. the Vapnik-Chervorse(XC) dimension@ﬂmmﬁon in
order to bound the complexity of these classes of offers. Wa give an analysis for very general offer
classes induced by general pricing functions over thebateispace that uses the notion of covers defined
in Sectio 7.3.8.

7.5.1 Market Pricing

For attribute auctions, one natural class of pricing fuoriare those that segment bidders imtarkets

in some simple way and then offer a single sale price in eagkahaegment. For example, suppose we
defineP,, to be the set of functions that chodsbiddershy, . .., b;; use these as cluster centers to partition
S into k markets based on distance to the nearest center in attspate; and then offer a single price in
each market. In that case, if we discretize prices to powlefs-6 ¢), then clearly the number of functions
in the offer clasgj,, induced by the pricing clasBy, is at most:*(log, , . h)*, so Corollanf7.312 implies
that so long as > 8 [In (%) + klnn + k1n (log; . h)] and assuming we can solve the optimization
problem, then with probability at least— ¢, we can get profit at leagl — ¢) OPTyg, .

We can also consider more general ways of defining markets C'llge any class of subsets 4f,
which we will call feasible markets For & a positive integer, we considéf,;(C) to be the set of all
pricing functions of the following form: pick disjoint subsetsty,... X, C X from C, andk + 1 prices
po,---pi discretized to powers of + . Assign pricep; to bidders inX;, and pricepy to bidders not in
any of xy,...X,. For example, itt = R¢ a naturalC’ might be the set of axis-parallel rectanglesif.
The specific case of = 1 was studied in@l]. One can envision more complex parttiarsing the
membership of a bidder iA; as a basic predicate, and constructing any function overgt,(a decision
list).

We can apply the results in Section]7.3 by using the machioeAC-dimension to count the number
of distinct such functions over any given set of biddérsin particular, letD = VCdim(C') be the VC-
dimension ofC' and assumé < oco. DefineC[S] to be the number of distinct subsets®fnduced by

C. Then, from Sauer's Lemm@[S] < (%)D, and therefore the number of different pricing functions in
Fy(C) overS is at most(log, . h)l‘C (%)w. Thus applying Corollariz 7.3.2 here we get:

Corollary 7.5.1 Given ag-approximation algorithmA for optimizing over the offer clagg, induced by
the class of pricing functionsj,(C'), then so long a®PTg, > n and the number of bidders satisfies

18h 3 2 1 ne
> — _
Z [ln<5>—|—k’ln<elnh>—|—k‘Dln< >],
then with probability at least — ¢, the profit of RSQ), 4 is at least(1 — ¢) OpﬁTQk .

The above lemma has" on both sides of the inequality. Simple algebra yields:

Corollary 7.5.2 Given ag-approximation algorithmA for optimizing over the offer clas$, induced by
the class of pricing functions},(C), then so long a®PTg, > n and the number of bidders satisfies

n236h5 In 2 + kln 1lnh + kDIn 36khS ,
€2 ) € €2
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OPTgk

—5 =

Proof: Sincelna < ab — Inb — 1 for all a,b > 0, we obtain: 52 1n 5y < 7 4 18EDAG ) (36’Z£h5> .
Therefore, it suffices to have:

+ 1815 {ln 2 + kln E Inh | 4+ kDln 36kh5 ] ,
€2 ) € €2
n > 3615 In g + kIn l Inh) 4+ kDIn 36kh5
€2 ) € €2

For certain classe€’ we can get better bounds. In the following, denote(fyythe concept class
of unions of at mosk sets fromC, and letL be [log,, h]. If C'is the class of intervals on the line,
then the VC-dimension of’;, is 2k, and so the number of different pricing functionsAp(C) over S

is at mostL¥ (%)%; also, if C' is the class of all axis parallel rectanglesdinlimensions, then the VC-
dimension ofC is O(kd) [@]. In these cases we can removelthek term in our bounds, which is nice
because it means we can interpret our results (e.g., Cor@llg.2) as chargin@PT a penalty for each
market it creates. However, we do not know how to removeltlzjé term in general, since in general the
VC-dimension ofC}, can be as large &Dk log(2Dk) (see[@% 3)).

Corollary[7.5.2 gives a guarantee in the revenue of RS0so long as we have enough bidders. In
the following, fork > 0 let OPT;, = OPTg,. We can also use Corollaries 7]3.5 &nd 1.5.2 to show a
bound that holds for alt, but with an additive loss term.

then with probability at least — 4, the profit of RS@Q, 4 is at least(1 — ¢)

n >

o3

SO

suffices. &

Theorem 7.5.3 For any given value of, k, e, and §, with probability at leastl — §, the revenue of

RS@MA is
% [(1 - 6) OPTk —h - TF(k, D, h, €, (5)] N

whererp(k, D, h,e,0) = O (52 In (251)).

Proof: For simplicity, we show the proof fgf = 1, the general case is similar. We prove the bound with
the “(1 — €)” term replaced by the termnin (“;;,)2 ;1= 26/>, which then implies our desired result by
simply usinge’ = §. If

36h 2 1 36kh
then the desired statement follows directly from Corol[@fy.2. Otherwise, consider first the case when

we have n ) .
ne
> _ —
OPTy > 6/2(1 — ) [ln <5> + kln <€/ lnh> + kDln ( >] .

Let g; be the optimal offer irGj, overS;, fori = 1,2, and letgopr be the optimal offer irgj, overS (and
s0g;(Si) > gopr(S;)). From Corollary 7.35, we have

2h 2 1 ne
gopT(S;) > - {ln <5> +kln <e’ lnh> + kDlIn (D)} for 1=1,2

2h 2 1 ne
gi(S;i) > 72 {ln <5> + kln <glnh> + kDlIn (E)} )
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Using again Corollary 7.35, we obtain(S;) > }%jgi(si) for j # i, which then implies the desired

result. To complete the proof notice that if both

4h 2 1 ne
P — — — -
OPT < 6/2(1_6/) [ln <5> + kln <€/ lnh> —I—k,’Dln( >]

4h 2 2 4kh
n < oz {ln <5> + kIn <glnh> + kD lIn (6/—2>} ,

then we easily get the desired statemerill.

and

Finally, as in Theoreri 7.3.6 we can extend our results to wgetsral risk minimization, where we
want the algorithm to optimize ovét, by viewing the additive loss term,- rz(+), as a penalty function.

Theorem 7.5.4 LetG be the sequendg, G, ..., G, of offer classes induced by the sequence of classes
of pricing functionsF; (C), F»(C), ..., F,(C). Then for any value of, ¢ and ¢ with probability 1 — §
the revenue of RSO-SRI., is

max ((1—€)OPTy —h-rp(k,D,h,e€,0)),

wherepen(Fy(C)) = % rp(k,D,h,€,0) = O (k;_g In (kgsh))'

To illustrate the tightness of Theordm 7]5.3, notice thanefor the special case of pricing using
interval functions (the case df= 1 studied in [@l]), the following lower bound holds.

Theorem 7.5.5Let ¥ = R and letC}, be the class ok intervals overX. Then there is no incentive
compatible mechanism whose expected revenue is at%@@trk —o(kh).

That is, an additive loss linear i is necessary in order to achieve a multiplicative ratio déast3 /4.
Proof: Consider% bidders with distinct attributes (for instance, say biddéras attributei), each of
whom independently hasﬁ]aprobability of having valuatiork and al — % probability of having valuation

1. Then, any incentive-compatible mechanism has expectdd at most% because for any given bidder
and any given proposed price, the expected profit (over raizdtion in the bidder’s valuation) is at most
1. However, there is at leasti®% chance we will have at leagt bidders of valuatior, and in that
caseOPTy can give% — 1 of those bidders a price df and the rest a price of 1 for an expected profit
of (8 —1)h+ (2 —%+1)1 =kh—h—%+1. Onthe other hand even if that does not occur, we
always haveOPT), > %, So, the expected profit 61PT}, is at leasB* — & — X Thus, the profit of the

2 4
incentive-compatible mechanism is at m@€dP T, —52 + o(kh).

We note that a similar lower bound holds for most base clagslss for the case of intervals on the
line, both our auction and the auction [61] match this lobv@und up to constant factors.

7.5.2 General Pricing Functions over the Attribute Space

In this section we generalize the results in Secfion 7.5.ivimways: we consider general classes of
pricing functions (not just piecewise-constant functidegined over markets), and we remove the need to
discretize by instead using the covering arguments disduissSection 7.3]3. This allows us to consider
offers based on linear or quadratic functions of the attebuor perhaps functions that divide the attribute
space into markets and use pricing functions are linear énattributes (rather than constant) in each
market. The key point of this section is that we can bound ire af the L; multiplicative cover in an
attribute auction in terms of natural quantities.
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Assume in the following that C R¢, let P be a fixed class of pricing functions over the attribute
spaceX and letG be the induced class of offers. L&Y be the class of decision surfaces @)
induced byP: that is, to eacly € P we associate the set of &lt,v) € X' x [1, h] such thaig(z) < v.
Also, let us denote by the VC-dimension of clas®,;. We can then show that:

Theorem 7.5.6 Given the offer clas§ and a-approximation algorithmA for optimizing overg, then
so long asx0PTg > n and the number of bidders satisfies

n2154h5 In 2 + Dln 15445 Elmh—|—1 ,
€2 ) €2 €
OPTg
7
The key to the proof is to exhibit ah; multiplicative cover ofG whose size is exponential it only, and

then to apply Corollarf 7.3.10.

Proof: Leta = =5. For each bidde(z,v) we conceptually introduc€(2 In k) “phantom bidders”
having the same attribute valueand bid valued, (1 + «), (1 +«)?,--- , h. Let.S* be the sef5 together
with the set of all phantom bidders; let = |S*|. Let Split be the set of possible splittings 6 with
surfaces fronP;. We clearly haveSplit| < P;[S*]. For each element € Split consider a representative
function in G that induces splitting: in terms of its winning bidders, and |&plit; be the set of these
representative functions. Lét be the offer class induced by the pricing cl&lit;. Notice thatg’ is
actually anZ; multiplicative a-cover forG with respect to S, since for every offer ¢hthere is a offer in
G’ that extracts nearly the same profit from every bidder;fioe.gvery offer ing € G, there existy’ € G’

such that for everyz,v) € S, we have both

then with probability at least — 4, the profit of RSQ; 4 is at least(1 — ¢)

g ((z,v) < 1+ a)g((z,v)) and g((z,v)) < (1 +a)g'((z,v)).

From Sauer’s lemma we knoyBplit;| < ("T?S)D, and applying Corollar{_7.3.10, we finally get the
desired statement by using simple algebra as in Cordll&7. B

The above theorem is the analog of Corollary 7.3.2. UsingdtBheoreni 7.3]9, it is easy to derive a
bound that holds for alk (i.e., the analog of Theorem 7.5.3). One can further eagiignel these results
to get bounds for the corresponding SRM auction (as done éofEm{ Z.5.14).

7.5.3 Algorithms for Optimal Pricing Functions

There has been relatively little work on the algorithmic sfian of computing optimal pricing functions in
general attribute spaces. However, for single-dimentiattebutes and piece-wise constant pricing func-
tions @] discusses an optimal polynomial time dynamiagpam. For single-dimentional attributes and
monotone pricing functionsD[Q] gives a polynomial time dymc program. The problem of computing the
optimal of linear pricing function oveim-dimentional attributes generalizes the problem of itetoimy

(m distinct items) for single-minded combinatorial consusn@ee Section 7.8.4) that has been shown to
be hard to approximate to better thatvg’ () factor for somey > 0 ].

7.6 Combinatorial Auctions

Combinatorial auctions have received much attention irmegears because of the difficulty of merging
the algorithmic issue of computing an optimal outcome wht@ game-theoretic issue of incentive com-
patibility. To date, the focus primarily has been on the pFobof optimizing social welfare: partitioning
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a limited supply of items among bidders to maximize the sutheif valuations. We consider instead the
goal of profit maximization for the seller in the case thatithens for sale are available in unlimited sup-
plyﬁ We consider the general version of the combinatorial angiioblem as well as the special cases of
unit-demandidders (each bidder desires only singleton bundles)samgle-mindedidders (each bidder
has a single desired bundle).

It is interesting to restrict our attention to the case ahigricing, where the auctioneer intuitively is
attempting to set a price for each of the distinct items adddxis then choose their favorite bundle given
these prices. Item-pricing is without loss of generality floee unit-demand case, and general bundle-
pricing can be realized with an auction withh = 2 “items”, one for each of possible bundle of the
original m itemd

First notice that if the set of allowable item pricings aresained to be integrafjz, then clearly
there are at mosg| = (h + 1)™ possible item pricings. By Corollafy 7.3.2 we get toaf3!) bidders
are sufficient to achieve profit close @PTg,. Generally it is possible to do much better if non-integral
item-pricings are allowed, i.eQPTg(S) > OPTg,(S). In these settings we can still get good bounds
following the guidelines established in Section 7.3.3, e considering an offer clagg’ induced
by discretization (see Section 7J6.1), or from countingsfiide outcomes i 4 (see Section 7.6.2). A
summary of our results is given in Talble]7.6.

Table 7.1: Size of offer classes for combinatorial auctions

general unit-demand | single-minded
G'] | O(logT o ™) | O(logi'y o ?) | O(logl’ )
|G Al nmo2m? n™(m + 1)*m (n+m)™

We can apply Theorein 7.3.1 and Corollary 7.3.2 to the sizékeobffer classes in Table T.6 to get
bounds on the profit of random sampling auctions for combiigltitem pricing. In particular, using

Corollary(7.3:2 we get thad (%—2) bidders are sufficient to achieve revenue close to the optitem-

pricing in the general case, aﬁil(’i—?) bidders are sufficient for the unit-demand case. Also, bggisi
Theoren{ Z.3]1 instead of Corolldry 713.2 we can replace dineliion on the number of bidders with a
condition onOPTg, which gives a factor ofn improvement on the bound given ﬂI[_iZO].

As before we leth = maxgegics g(i). In particular, this implies thaOPTg > h which will be
important later in this section.

7.6.1 Bounds via Discretization

As shown in Sectiof 7.3.3, we can obtain good bounds if we aligvto optimize over a sefy’ of
offers induced by a small set of discretized prices satigithatOPTg is close toOPTg. Prior to
this work, @Z] shows how to construct discretized clasgesvith OPTg > 1%6 OPTg and size
O(m™logT", . 2) for the unit-demand case and si2€log?", . “*) for the single-minded case. Nis@SO]
gives the basic argument necessary to generalize thedes tesobtain the result in Theordm 7.6.1 which
applies to combinatorial auctions in general. We note irsipgsthat Theorern 7.6.1 allows for general-
ization and improvement of the computational result|131' he discretization results we obtain are

SOther work focusing on profit maximization in combinatorialctions include Goldberg and HartliHn_eT[llZO], Hartline and
Koltun ], Guruswami et aIO], Likhodedov and Saridtn], and Balcan et al|:[_138].

5We make the assumption that all desired bundles contain st ome of each item. This assumption can be easily relaxed
and our results apply given any bound on the number of cogieaah item that are desired by any one consumer. Of course,
this reduction produces an exponential blowup in the nurnbgems.

166



summarized in the first row of Talle7.6.
Letp = (p1,...,pm) be an item-pricing of then items. Letg,, correspond to the offering pricing.
The following is the main result of this section.

Theorem 7.6.1 Let k be the size of the maximum desired bundle.d die the optimal discretized price
vector that uses item prices equalttr powers of(1 + ¢) in the range[ 2, 4] and letp* be the optimal
price vector. Then we have:

g (8) = (1 = 2V/€)gp= ().

Proof: Let§ = y/e. For the optimal price vectop* with item j priced atp; (i.e., gp=(S) = OPTy),
consider a price vectop with p; in [(1 — 0)p}, (1 — 6 + 52)pj-] if pj > 2—5]: and 0 otherwise, where

pj = (1 + ¢)* for some integerk (note that such a price vector always exists). We show now tha
gp(S) > (1 —2y/€)gp+(S), which clearly implies the desired result.

Let J be a multi-set of items and Prdfit) = Zje]p; be the payment necessary to purchase bundle
J under pricingp*. DefineR; = p; — Dj- Thus we have:

* x 62 * 2
(06— 6%)p} < Rj < max{dp}, Tt} < op) + 2L

This implies that for any multisef with |J| < k, we have the following upper and lower bounds:

Y R; > (6-6°)Profit]), (7.6.1)
jedJ
STR; < 6ProfitJ) + 2 (7.6.2)
jeJ’

Let J* and J; be the bundles that biddérprefers under pricingp* and p, respectively. Consider
bidderi who switches from bundl€;* to bundleJ; when the item prices are decreased frpfrto p. This
implies that:

> R; <> R

jet; =

Combining this with equation§ (7.6.1) afd (716.2) and ctimge& common factor of we see that:
(1 — §)Profit(.J;") < Profit(.J;) + 2.

Summing over all bidders, we see that the total profit under our new pricipgs at least(1 —
9) OPTg —hd. SinceOPTg > h, we finally obtain that the profit undegris at leas{1 — 26) OPT;. W

Note that we can now apply Theorém 716.1 by lettifighe the offer class induced by the class of
item prices equal t0 or powers of(1 + ¢) in the range[ 2 ] (wherek bounds the maximum size of a

bundle). Using Theoref 7.3.1 we obtain the following gutgan

Corollary 7.6.2 Given ag-approximation algorithmA optimizing overg’, then with probability at least
1 — 0, the profit of RS@ 4 is at least(1 — 3¢)OPTg /[ so long as

OPTg > 1818

€

(mIn(log,, 2 nk) +In (%)) .
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7.6.2 Bounds via Counting

We now show how to use the technique of counting possibleoougs (See Sectidn 7.8.3) to get a bound
on the performance of the random sampling auction with aorékgn A for item-pricing. This approach
calls for bounding|G 4, the number of different pricing schemes RgQ, can possibly output. Our
results for this approach are summarized in the second raalie 7.6.

Recall that biddet’s utility for a bundle.J given pricingp is u;(J,p) = vi(J) — >_;c; p; - We now
make the following claim about the regions of the space oibes pricings,R’", in which bidderi’s
most desired bundle is fixed.

Claim1 LetP;(J) = {p | VJ,u;i(J,p) > u;i(J',p)}. The set’;(J, p) is a polytope.

Proof: This follows immediately from the observation that the cggP;(.J) is convex and the only way
to pack convex regions into space is if they are polytopes.

To show thatP;(J) is convex, suppose the allocation to a particular biddepfandp’ are the same,
J. Then for any other bundlg’ we have:

ij>vl (J') - ij

jed jeJ’

and

) - Sih = ul) -

jed jeJ’

If we now consider any price vectap + (1 — «a)p’, for a € [0, 1], these imply:

vi(1) =3 (apj + (1= a)p)) = v(J) = Y (ap; + (1 — a)p)).

jeJ jeJ

This clearly implies that this agent prefers allocatiéron any convex combination ¢f andp’. Hence
the region of prices for which the agent prefers bungdis convex. B

The above claim shows that we can divide the space of priomggolytopes based on an agent’s most
desirable bundle. Consider fixing an outcome, i.e., thelasnd, ..., J,, obtained by agents, ..., n
respectively. This outcome occurs for pricings in the mﬂaetlonﬂles i (J;).

Definition 7.6.1 For a set of agents, let Vertsg denote the set of vertices of the polytopes that partition
the space of prices by the allocation produced. Mertss = {p such thatp is a vertex of the polytope
containing(,.¢ P;(J;) for somei € " C S and bundles/;}.

Claim 2 For S’ C S we havevertsg C Vertsg.
Proof: Follows immediately from the definition dfertsg and basic properties of polytopesli

Now we consider optimal pricings. Note that when fixing amedition./, ..., J, we are looking
for an optimal price point within the polytope that givessthallocation. Our objective function for this
optimization is linear. Let; be the number of copies of itegnallocated by the allocation. The seller’s
payoff for pricesp = (p1,...,pm) IS Zj pjnj. Thus, all optimal pricings of this allocation lie on facets
of the polytope and in particular there is an optimal pricihgt is at a vertex of the polytope. Over the
space of all possible allocations, all optimal pricings@ndacets of the allocation defining polytopes and
there exists an optimal pricing that is at a vertex of one efghblytopes.

Lemma 7.6.3 Given an algorithmA that always outputs a vertex of the polytope tlienC Vertsg.
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Proof: This follows from the fact that RS@,A) runs.4 on a subse$’ of S which hasVertsg: C Vertsg.
A must pick a price vector frorertss,. By Claim[2 this price vector must also beViertsg. This gives
the lemma. R

We now discuss getting a bound ¥ertsg for n agents;n distinct items, and various types of pref-
erences.

Theorem 7.6.4 We have the following upper bounds (Mertsg|:
1. (n +m)™ for single-minded preferences.
2. n™(m + 1)?>™ for unit-demand preferences.
3. nm22m” for arbitrary preferences.

Proof: We consider how many possible bundl@g, an agent might obtain as a function of the pricing.
An agent with single-minded preferences will always obtaie of M, = 2 bundles: either their desired
bundle or nothing (the empty bundle). An agent with unit-dechpreferences receives one of thé&ems

or nothing for a total ofd/,, = m + 1 possible bundles. An agent with general preferences res@ine
of the M, = 2" possible bundief§.

We now bound the number of hyperplanes necessary to parthi® pricing space intd/ convex
regions (e.g., that specify which bundle the agent recgie® convex regions, each pair of regions can
meet in at most one hyperplane. Thus, the total number ofrpigrees necessary to partition the pricing
space into regions is at mo@bg[). Of course we wish to restrict our pricings to be non-negatso we
must addn additional hyperplanes at = 0 for all ;.

For alln agents, we simply intersect the regions of all agents. Tdes diot add any new hyperplanes.
Furthermore, we only need to count thehyperplanes that restrict to non-negative pricings ondeisT
the total number of hyperplanes necessary for specifyirgéigions of allocation for. agents with)/
convex regions each, & = n(%¥) +m. Thus, Ky = n+m, K, < n("3') +m < n(m + 1), and
K, < n(z;n) +m < n22™ (for m > 2).

Of course, K hyperplanes inn dimensional space intersect in at maégt) < K™ vertices. Not all
of these intersections are vertices of polytopes definirgatbocation, still K is an upper bound on the
size of Vertsg. Plugging this in gives us the desired boundsmoft m)™, n™(m + 1)>™, andn™22m"
respectively for single-minded, unit-demand, and geranefierences. i

We note that are above arguments apply to approximatiomitidges that always output a price corre-
sponding to the vertex of a polytope as well. Though we do oosider this direction here, it is entirely
possible that it is not computationally difficult to postpess the solution of an algorithm that is not a
vertex of a polytope to get a solution that is on a vertex of Iatppeﬁ This would further motivate the
analysis above. If for some reason, restricting to algorgihat return vertices is undesirable, it is possible
to use cover arguments on the set of vertices we obtain whewdadditional hyperplanes corresponding
to the discretization of the preceding section.

7.6.3 Combinatorial Auctions: Lower Bounds

We show in the following an interesting lower bound for condiorial auction8 Notice that our upper
bounds and this lower bound are quite close.

"Here we make the assumption that desired bundles are sietpldfthey are actually multi-sets with bounded multipjic
k, then the agent could receive one of at mst = (k + 1)™ bundles.

8Notice that this is not immediate because of the compleXitgpresenting an agent’s combinatorial valuation.

®This proof follows the standard approach for lower boundsdeenue maximizing auctions that was first given by Golgber
etal. in ].
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Theorem 7.6.5 Fix m andh. There exists a probability distribution on unit-demanaigée-minded agents
such that the expected revenue of any incentive compatiéxtbanism is at moégh whereas the expected
revenue oDPT is at least).7mh.

Thus, this theorem states that in order to achieve a closgéphzdtive ratio with respect t&PT, one
must have additive 08(mh).

Proof: Consider the following probability distribution over valions of agents preferences. Assume
we haven = ™ agents in total, ang agents desire iteionly, j € {1, -- m} [ Each of these agents
has valuatiorh with probability + and valuationl with probability 1 — .

Notice now any incentive-compatible mechanism has exggmtefit at most:. To see this, note that
for each bidder, any proposed price has expected profit bxgerandomization in the selection of his
valuation) of at most. Moreover, the expected profit 6fP T is at least: + %h For each iteny, there
isal — (1 — +)"/? ~ 0.4 probability that some bidder has valuatibn For those itemsQPTg gets at
least a profit ofh. For the restOPTg gets a profit of%. So, overallOPTg gets an expected profit of at
least0.4mh + 0.6m(h/2) = 0.7h. All these together imply the desired resulm

7.6.4 Algorithms for Item-pricing

Given standard complexity assumptions, most item-prigirgplems are not polynomial time solvable,
even for simple special cases. We review these results Weefocus our attention to the unlimited
supply special case, though some of the work we mention assiders limited supply item-pricing.
Algorithmic pricing problems in this form were first posed Byruswami et aIO] though item-pricing
for unit-demand consumers with several alternative paymees (i.e., rules that do not represent quasi-
linear utility maximization) were independently consiei@by Aggarwal et aImO].

For consumers with single-minded preferend@[lSO] gveisnpleO (log mn) approximation algo-
rithm. Demaine et aI@)Z] show the problem to be hard to @xiprate to better thanlag5(m) factor for
somed > 0. Both Briest and Krysta [74] and Grigoriev et 27] prdwbat optimal pricing is weakly
NP-hard for the special case known as “the highway probleimére there is a linear order on the items
and all desired bundles are for sets of consecutive itentsalfcthis hardness result follows for the more
specific case where the desired bundles for any two ag&nésd.S;/, satisfy one of.S; C Sy, S;y C S;,
or S; U Sy = 0). In the case when the cardinality of the desired bundledbavaded byk, Briest and
Krysta ] give an0O(k?) approximation algorithm. In our worﬁlzB] we have improvéikt by giving a
simpler and bette® (k) approximation. Finally, when the number of distinct iterosdale,m, is constant,
Hartline and KoItun@Z] show that it is possible to imprawe the trivial O(n) algorithm by giving
a near-linear time approximation scheme. Their approxonadlgorithm is actually an exact algorithm
for the problem of optimizing over a discretized set of iterit@s G’ which is directly applicable to our
auction RSQ% A)» discussed above.

For consumers with unit-demand preferenc@ [130] (]je{iﬁentially) give a trivial logarithmic
approximation algorithm and show that the optimizationbtem is APX-hard (meaning that standard
complexity assumptions imply that there does not exist grohial time approximation scheme (PTAS)
for the problem). Again, Hartline and KoItulﬂ32] show howimprove on the trivialO(n™) algo-
rithm in the case where the number of distinct items for salgis constant. They give a near-linear time
approximation scheme that is based on considering a d=etetet of item prices; however, the discretiza-
tion of Nisan mb] that we discussed above gives a significaprovement on their algorithm and also
generalizes it to be applicable to the problem of item-pgdior consumers with general combinatorial
preferences.

ONotice that these preferences are both unit-demand anksinigded.
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7.7 Conclusions and Discussion

In this work we have made an explicit connection between imadearning and mechanism design. In
doing so, we obtain anifiedapproach to considering a variety of profit maximizing meusia design
problems including many that have been previously coneitler the literature.

Some of our techniques give suggestions fordasignof mechanisms and others for thamalysis
In terms of design, these include the use of discretizatiqggraduce smaller function classes, and the use
of structural-risk-minimization to choose an appropriaiesl of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both $leeofibasic sample-complexity arguments, and
the notion of multiplicative covers for better bounding thee complexity of a given class of offers.

Our results substantially generalize the previous work amdom sampling mechanisms by both
broadening the applicability of such mechanisms and by I#iying the analysis. Our bounds on ran-
dom sampling auctions for digital goods not only show how dletion profit approaches the optimal
profit, but also weaken the required assumption [122] tyrestant factor. Similarly, for random sam-
pling auctions for multiple digital goods, our unified arg$y/gives a bound that weakens the assumptions
of ] by a factor of more tham, the number of distinct items. This multiple digital gooccton prob-
lem is a special case of the a more general unlimited supphbotatorial auction problem for which we
obtain the first positive worst-case results by showing ithiatpossible to approximate the optimal profit
with an incentive-compatible mechanism. Furthermoreikanihe case for combinatorial auctions for
social welfare maximization, our incentive-compatiblecimenisms can be easily based on approximation
algorithms instead of exact ones.

We have also explored the attribute auction problem that prvaposed in@l] for 1-dimensional
attributes in a much more general setting: the attributeeslcan be multi-dimensional and the target
pricing functions considered can be arbitrarily complexe Méund the performance of random sampling
auctions as a function of the complexity of the target pgdumctions.

Our random sampling auctions assume the existence of exappooximate pricing algorithms. So-
lutions to these pricing problem have been proposed forrakeé our settings. In particular, optimal
item-pricings for combinatorial auctions in the singleashed and unit-demand special cases have been
considered in@djﬂ?ﬁ]. On the other hand for afteitauctions, many of the clustering and
market-segmenting pricing algorithms have yet to be cameiat all.
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Appendix A

Additional Proof and Known Results

A.1 Appendix for Chapter
A.1.1 Standard Results

We state in the following a few known generalization bounas$ eoncentration results used in our proofs. We start
with a classic result fron@M].

Theorem A.1.1 Suppose that is a set of functions fronX to {—1, 1} with finite VC-dimensio® > 1. LetD be
an arbitrary, but fixed probability distribution oveX x {—1,1}. For anye, 6 > 0, if we draw a sample frond of

size
m(e, §,D) = % <2Dln <g) +In <é)> ,
€ € 1)

then with probability at least — ¢, we hav%err(h) - Ji(h)‘ <eforall feC.

We present now another classic results fr@[104].

Theorem A.1.2 Suppose that is a set of functions fronX to {—1, 1} with finite VC-dimensio®® > 1. Let D be
an arbitrary, but fixed probability distribution oveX x {—1,1}. Then

Pr [ sup
 Lrec,i(n=o0

err(f)_fl(f)] Ze] < 2C[2m, D]e~™/2.

So, for any, ¢ > 0, if we draw a sample fromD of size

m> > (21n (C[2m, D)) +In (%)) ,

then with probability at least — &, we have that all functions with(f) = 0 satisfyerr(f) < e.
We present now another classic results from [104].

Theorem A.1.3 Suppose that is a set of functions fronX to {—1, 1} with finite VC-dimensio®® > 1. Let D be
an arbitrary, but fixed probability distribution oveX x {—1,1}. Then

Pr | sup
s Lec

err(f) — ﬁ(f)‘ > e‘| < 8C[2m,D)e "< /8,
So, for any, ¢ > 0, if we draw fromD a sample satisfying

m > 6% (1n (C[m, D]) + In (%)) ;

err(f) — L(f)] = e

then with probability at least — ¢ all functionsf satisfy
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We now state a result frorﬂ? 2].

Theorem A.1.4 Suppose that is a set of functions frolX to {—1,1}. Let D be an arbitrary, but fixed probability
distribution overX x {—1,1}. Then for any targef € C and for any i.i.d. sample &f of sizem from D, letf,, be
the function that minimizes the empirical error ovrThen for any > 0, the probability that

err(fm) < L(fm) + \/ InClS] | 4\/@

m

is greater thanl — ¢.

Note that in fact the above statement is true even if in thet igndside we us€|[S’] instead ofC[\S] wheresS’
is another i.i.d sample of size drawn fromD.

Theorem A.1.5 For any class of functions we have:

2

«
Pr{logy(C[S]) = Eflogy(C[S])] + ] < exp ~3B[log, (ClS))| 7 2073 (A1)
Also,
1
Eflog, C[S5]] < log, E[C[S]] < {—Ellog, C[S]]. (A12)
A.1.2 Additional Proofs
Theorem A.1.6 For any class of functions we have:
Pr [log,(C[S]) > 210g E[C[S]] + ] < e 2, (A.1.3)

Proof: Inequality [A.1:1) implies that:

(o + Eflog, (C[S])])?
2E[log, (C[S])] + 2(E[logy (C[S])] + @)/3 |

Pr{logy(C[S]) = 2E[log, (C[S])] + o] < exp |~

(ata)?

Since 2a+2(a+a)/3

> g foranya > 0 we get
Pr [log, (C[S]) > 2E[log, (C[S])] + o] < e™/2.
Combining this together with the following fact (implied hyequality [A.1.2))
Pr{log,(C[S]) = 21og E[C[S]] + o] < Pr[log,(C[5]) = 2E[logy (C[S])] + o],

we get the desired resultl

A.2 Appendix for Chapter

Theorem A.2.1 Let C be a set of functions fronX to {—1, 1} with finite VC-dimensiorD > 1. Let P be an
arbitrary, but fixed probability distribution ovek x {—1,1}. For anye, § > 0, if we draw a sample fron® of size
N(e,0) = 1 (4Dlog (1) +2log (%)), then with probabilityl — &, all hypotheses with error € are inconsistent
with the data.
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A.2.1 Probability estimation in high dimensional ball

Considerz = [z1,...,z4] ~ P, uniformly distributed on unit ball ilz?. Let A be an arbitrary set ii?; we are
interested in estimating the probabiliy,. ((x1,22) € A). LetV; be the volume ofl-dimensional ball; we know

Vi =92 /(1 +d/2),

wherel is the Gamma-function. In particuldf_»/V; = d/(2). It follows that

Vi
21’((&61,,@2) €A = ?/dQ /( : A(l — a2 — 22 D2y day
T1,T2)€
_ 4 (1= 22 — 2D 20 gy < 2 e~ =D+ 20 4
27T (:61,:62)614 ™ (Il,xz)eA

where we use the inequalify — z) < e .

LemmaA.2.2 Letd > 2 and letz = [z1,...,x4] be uniformly distributed in thé-dimensional unit ball. Given
v € [0,1], 2 € [0,1], we have

d
Pr((21,22) € [0,7] X [2,1]) < NV a-aye,

Proof: Let A = [0,11] X [v2,1]. We have

4 / @22y g < 1Y / —(a-2)s3/2,
2w 2w

(z1,22)€EA T2€[y2,1]

Nd__(4-2)42/2 / e~=2a*/2qy « N —@-293/2 50 g oy |
27 27 2(d — 2)

IN

121"((:61,:62) €A

IN

z€[0,1—72)

Note that whenl > 2, min(1, /7 /(2(d — 2))) < /7w /d. B

Lemma A.2.3 Assume: = [z, ..., 24] is uniformly distributed in the-dimensional unit ball. Given, € [0, 1],
we have

x

1
Pr(z; > 7) < iefd'yf/Q.

Proof: Let A = [y1, 1] x [—1, 1]. Using a polar coordinate transform, we have:

d _
Pr((x1,22) € A) — / (1—a% — I%)%d(bld(bg
(11,12)614

_ 1

= (1—72) = rdrdf = 5 / dod(1 — %)%
™ ™

(r,rcos0)€[0,1] X [y1,1] (r,rcos0)€[0,1] X [v1,1]

4 4
2 2,

I
|

dod(1 —r?)
2

(r,0)€[v1,1]xX[—7/2,7/2]

—05(1-72)

Using inequality(1 — z) < e %, we obtain the desired bound.ll

LemmaA.2.4 Letd > 4 and letz = [z, ..., 24] be uniformly distributed in thé-dimensional unit ball. Given
~, 3 > 0, we have:

(1++/—Inmin(1, 6))87d72/(452).

Pr(z:1 < 0,21 + fzo > ) <

x

[N SY
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Proof: Leta = 3y/—2d~!Inmin(1, 3), we have

Pr(z1 < 0,21+ fz2 > ) < Pr(zs < —a,z1+ fz2 >7) + lzr(:vl € [—a,0],z1 + Bag > )

x x

< 1;1"(:101 < —a,12 > (a+7)/0) —i—I;r(xl € [-a,0],z2 > v/P)
1
< 5 Pr(az > (a+7)/8) +Pr(a1 € [0,0],22 > 7/)
< le—d(aJr'V)z/(?ﬁz) + M(;dwz/(wz) <
4 2/
Lot oVd] g min(1,p) By 2hmin(L B | -

LemmaA.2.5 Let w andv be two unit vectors imk?, and assume that(u,v) < § < /2. Letd > 4 and let
x = [z1,...,24) be uniformly distributed in thé-dimensional unit ball. Consider' > 0 arbitrary, let

= 25\1/%6\/11104—111 (1 + Vlnmax(l,cos@/sinﬁ)).

Then

Pl a)(w-a) < 0.fw-al 2] < 220

Proof: We rewrite the desired probability as

2Prjw-z > vy,u-xz <0].

W.l.g., letu = (1,0,0,...,0) andw = (cos(#),sin(),0,0,...,0). Forx = [x1,x9, ..., 4] We haveu - x = x; and
w - x = cos(f)x1 + sin(f)z2. Using this representation and LemmaAl2.4, we obtain

Priw-z>vyu-z<0] = Pr[cos(0)zy + sin(f)xe > v, 21 < 0]
< Pr xl—l—sm(ﬁ)xgz ’Y~,x1<0
x cos(3) cos(f3)
R 3 2
< SmﬁN 1+ {/lnmax(1, COS@ ¢~ T
2cos 3 sin 8
_ sinﬁ~ o1
2 cos 3 ’

as desired. B

A.3 Appendix for Chapter [7]

A.3.1 Concentration Inequalities

Here is the McDiarmid inequality (se|e__LJlO4]) we use in ourgiso

Theorem A.3.1 Let Y7, ..., Y,, be independent random variables taking values in someiseind assume that
t: A" — R satisfies:

sup |t(y13 ey yn) - t(yla ey yiflvyivyiJrla yn)| < Ci,
Y1, Yn €AY, EA
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forall 4, 1 < ¢ <mn. Then for ally > 0 we have:

_2,)/2/ i C?
Pr{|t(Y1,....Y,) — E[t(Y1, ..., Y»)]| = 7} < 2e &

Here is also a consequence of the Chernoff bound that we ndehimd 7.4 4.
Theorem A.3.2 Let X1, ..., X,, be independent Poisson trials such that, foK i < n, Pr[X; =1] = % and let
X =", X,. Then any:’ we have:

Pr {‘X — g‘ > emax{n, n’}} < 2e~ '€
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