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Abstract

Games encode complex strategic interactions involving numerous agents. Specific game
properties, such as the existence of a potential function (Monderer & Shapley, 1996) or
(A, u)-smoothness (Roughgarden, 2009), allow for making predictions about the resulting
agent behavior. In this paper, we examine under which conditions the coupling between
two (or more) games that exhibit such an advantageous property leads to a combined
game that preserves this property. To study this question formally, we introduce a novel
game-theoretic construct that we call game-coupling.

Game coupling intuitively allows us to stitch together the payoff structures of two or
more games into a new game. We establish sufficient and necessary conditions for the
coupling of two potential games to result into a new potential game. Similar questions
are explored for the case of weakly acyclic games. Furthermore, we present settings that
allow for particularly advantageous couplings that can enhance desirable properties of the
original games, such as convergence of best response dynamics and low price of anarchy.
Furthermore, we extend the price of anarchy framework in this setting, to account both for
the social welfare within each subgame as well as that of the coupled game. Such concerns
give rise to a new notion of equilibrium, as well as a new learning paradigm. We provide
welfare guarantees for both individual subsystems as well as for the global system, using
generalizations of the (), p)-smoothness framework.

1. Introduction

Many large networked systems, either by evolution or by design, exhibit subsystems of
increased internal homogeneity. The prototypical example in the field of technological net-
works is that of the Internet. The internet consists of multiple independently operated
autonomous systems (AS), each implementing a clearly defined routing policy. It has no
centralized governance in either technological implementation or policies for usage. As a
result, each subnetwork sets its own standards. The coupling of these individual subnet-
works is achieved via the centralized maintenance of a few principal name spaces and the
standardization of the core protocols (IPv4 and IPv6).
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Hierarchically organized systems also exist in socioeconomic environments. The Euro-
pean Union is a political and economic union of a number of European countries. The
member states are internally regulated by locally elected governments with highly diverse
economies. The European Union on the other hand enables a closer coupling of these
economies via a monetary union and a number of policies that enable the free movement of
people, goods and capital.

A unifying characteristic of the above systems is that they consist of pockets of in-
ternally homogeneous subsystems. The individual subsystems are endowed with different
abilities and local (possibly conflicting) goals, and may have little or no knowledge of the
implementation details of other subsystems. Such systems are ubiquitous both in techno-
logical as well as socioeconomic networks, however, very little is formally known about their
properties and global dynamics.

The heterogeneity of these environments have given risen to much speculation about the
long term stability of such environments (Hall, Anderson, Clayton, Ouzounis, & Trimintzios,
2001). The hope, of course, is that these coupled systems do not come at a significant cost
for the involved parties. Ideally, we would like to be able to argue that the dynamics of
the emerging system do not merely lead to stable states but furthermore that the emergent
system is, in some sense, more efficient that the sum of its parts.

We investigate these questions by introducing a novel game-theoretic construct that
we call game-coupling. Game coupling intuitively allows us to stitch together the payoff
structures of two or more games into a new game. Specifically, we consider populations
with J disjoint groups N'... N7 of agents such that agents in group N7 take part in a
game with a desirable property P for any fixed behavior of all agents from other groups.
We define such settings as couplings of P-games. We examine the effect of different classes
of properties P on the performance of each group. We also look for necessary or sufficient
conditions for couplings to preserve (to some degree) P.

Ever since the seminal work of Monderer and Shapley (Monderer & Shapley, 1996) the
study of dynamics in economic environments has been closely connected with a structural
property of games known as potential (and generalizations thereof). Informally, a potential
function maps states of the games to the real line, in such a way such that it captures at any
state the deviation incentives of all agents. Local optima of the potential correspond to pure
Nash equilibria and several learning dynamics are known to converge to them (Monderer
& Shapley, 1996; Kleinberg, Piliouras, & Tardos, 2009; Marden, Arslan, & Shamma, 2007).
Although the set of potential games is sparse within the set of all games, the existence of
a potential function is a highly desired property, and a lot of recent work has been focused
on design paradigms that infuse such properties in distributed systems (Marden, Arslan, &
Shamma, 2009a; Li & Marden, 2011).

The above approaches, however, are based on the assumptions that there exists a single
designer for the whole system or that the individual subsystems exist in isolation from each
other. Focusing on the reality of coupled systems, we present conditions for couplings to
preserve the existence of potential functions (and generalizations thereof). Our necessary
and sufficient condition for preserving an exact potential leverages a condition in (Monderer
& Shapley, 1996). We also provide conditions for game couplings to preserve the existence of
a weak potential (equivalently, weak acyclicity), a more general notion guaranteeing weaker
convergence than an exact potential.



We continue by presenting distributed settings where coupling between heterogeneous
systems is provably not merely sufficient but also necessary to achieve convergence to glob-
ally efficient outcomes. Aggregation games (Mol, Vattani, & Voulgaris, 2011) model pop-
ulations aiming for high internal connectivity given an underlying (social) network. Agent
type can either be of the form of opinion-leaders, favoring being a node with high degree,
or of opinion-follower favoring being in the neighborhood of many other agents. Prior work
has established that homogeneous groups can exhibit highly inefficient equilibria, whereas
well mixed populations do not. We complete the understanding of these settings by solv-
ing in the affirmative an open question regarding the convergence of Nash dynamics of
heterogeneous populations in aggregation games.

The efficiency of equilibrium states is captured by the notion of price of anarchy. A
game is said to have a low price of anarchy (Koutsoupias & Papadimitriou, 1999) if the per-
formance of the worst (Nash) equilibrium state is comparable to that of the socially optimal
state. Recent work (Roughgarden, 2009) has established a structural property known as
(A, u)-smoothness that provably implies tight bounds on the inefficiency of standard equi-
librium concepts in several game classes (Nadav & Roughgarden, 2010; Roughgarden, 2009;
Roughgarden & Schoppmann, 2011).

In the case of coupled subsystems the notion of efficiency is more intricate as both
the collective efficiency of the individual subgroups as well as that of the merged system
are of interest. For example, in the case of socioeconomic systems, such as the European
Union, a successful coupling would improve the overall system welfare without imposing
significant penalties to the welfare of any individual state. We show how to achieve tight
guarantees on group performance when each subgame N7 exhibits a local version of the
(M, 7 )-smoothness. These performance guarantees carry over to a wide set of equilibrium
notions as well as for no-regret learning algorithms. Using LP-duality arguments, we identify
new equilibrium notions, which are applicable to any coupled systems, and for which these
bounds extend automatically to individual groups.

The possibility of subnetwork designers with broadcasting power to their respective
subgroups also opens up the possibility of novel learning paradigms. We introduce a novel
learning framework modeling interactions of competing groups/institutions (e.g. Internet
autonomous systems). In our framework each group has a center that provides public
advertisement (Balcan, Blum, & Mansour, 2009, 2010; Balcan, Krehbiel, Piliouras, & Shin,
2012) of (possibly different) strategies to each agent in the group. We analyze centers
whose advertised behaviors exhibit vanishing average regret with hindsight. This is a rather
natural benchmark, since several simple learning algorithms offer such guarantees (Cesa-
Bianchi & Lugosi, 2006). On the side of the agents, we make a similarly weak assumption.
We assume that the average performance of each agent will eventually be roughly as high
as that of his advertised strategy. We provide welfare guarantees for each group in this
framework as well as global guarantees for the system as a whole.

2. Related work

Structural properties of games often follow from analysis of their subgames. Sandholm (Sand-
holm, 2010) considers subgames defined by all subsets of agents (as opposed to a specific
partition as we do here) and shows that a game has an exact potential if and only if all



active agents in a sub-game have identical utility functions. Fabrikant et al. (Fabrikant, Jag-
gard, & Schapira, 2013) show that the uniqueness of a Nash equilibrium in any sub-game
is sufficient, but not necessary, for a game to be weakly acyclic. Candogan et al. (Cando-
gan, Menache, Ozdaglar, & Parrilo, 2011) introduce a decomposition of any game via its
payoffs matrix rather than subsets of players. They show that any game can be projected
orthogonally onto three subspaces, corresponding to potential games, harmonic games and
non-strategic games.

Monderer (Monderer, 2007) defines the classes of J-potential games and J-congestion
games for J € N and shows they are isomorphic. In a J-congestion game, each agent’s’
delay functions can belong in one of J classes. The case J = 1 is treated in Monderer and
Shapley’s seminal paper (Monderer & Shapley, 1996).

Moving towards the goal of improving system security and robustness for distributed
services, several models have been developed that allow for different classes of buggy, selfish,
or even malicious nodes. Byzantine-Altruistic-Rational (BAR) (Aiyer, Alvisi, Clement,
Dahlin, Martin, & Porth, 2005) behavioral models are used to model such environments
and the main goals of this research agenda is to reduce the cost of such Byzantine fault
tolerant systems as well as to broaden their applicability. Another model of such malicious
behavior is due to Gairing (Gairing, 2008), who studies atomic congestion games with
players that are either purely malicious or purely selfish (with probabilities p and 1 — p).
Even in singleton linear congestion games, the resulting games may not have a pure Bayesian
Nash equilibrium and deciding the existence of such an equilibrium is NP-complete. In our
work, we also introduce a model of malicious agents and show how the question of the
existence of Nash equilibria can be addressed via our game coupling tools.

The view of a population divided into groups is often adopted in distributed adaptive
control, where a center can only control a local group of agents, e.g. in the collective
intelligence (Tumer & Wolpert, 2004) and probability collectives (Wolpert & Bieniawski,
2004) frameworks.

One of the main advantageous structural properties of a distributed environment is the
existence of stable states with high performance. A standard measure of such distributed
inefficiency is the price of anarchy (PoA) (Koutsoupias & Papadimitriou, 1999), defined as
the ratio of the social cost of the worst pure Nash equilibrium to the optimum. Recent
work has shown that most positive results in this area can be derived via a canonical
property of games known as (A, )-smoothness (Roughgarden, 2009; Nadav & Roughgarden,
2010). This analysis allows to extent such guarantees in a black-box manner to much wider
equilibrium sets (e.g. correlated equilibria, no-regret learning (Blum, Hajiaghayi, Ligett,
& Roth, 2008)). In the setting of coupled systems we will analyze both the collective
performance of the system as well as the performance of each subsystem.

We also study and provide performance guarantees for learning dynamics both from
the perspective of each group as well as from a global perspective. Work in the area of
learning dynamics has provided strong guarantees in the terms of convergence and per-
formance of learning dynamics (e.g. congestion games (Kleinberg et al., 2009; Kleinberg,
Piliouras, & Tardos, 2011)), in some games matching the theoretically optimal (centralized)
guarantees both in terms of speed as well as approximation guarantees (Piliouras, Valla,
& Végh, 2012). Recent work has started incorporating learning in structured /hierarchical
environments, e.g. language games with coevolutionary dependence between languages



and linguistic communities (Fox, Piliouras, & Shamma, 2012), oligopolistic markets with
evolving coalition structures (Nadav & Piliouras, 2010; Immorlica, Markakis, & Piliouras,
2010). Interestingly, in some cases persistent disequilibrium behavior can provide perfor-
mance guarantees that are significantly stronger than that of the best equilibrium outcome
(Kleinberg, Ligett, Piliouras, & Tardos, 2011; Ligett & Piliouras, 2011).

The structure of the paper is as follows: In section 3 we start off by presenting some basic
facts and definitions about games, price of anarchy and potential games. We continue in
section 4 by providing the formal definition of game couplings. Section 5 presents conditions
under which the coupling of two exact potential games gives rise to another exact potential
game. This question is also addressed in terms of the coupling of weak potential games.
Furthermore, in section 6 we study the case of aggregation games and resolve the open
question about convergence of dynamics in the case of heterogeneous populations. Finally,
in section 7 we argue about the efficiency of general coupled systems. This discussion gives
rise to novel notions of equilibria and learning paradigms whose performance we analyze
utilizing a generalization of the (A, p)-smoothness framework.

3. Preliminaries

We model interactions within a population as games G with simultaneous moves. For a
game G we denote by {1,...,n} the agents, by X; agent i’s set of (pure) strategies, and by
A(Y) all distributions over outcomes ¥ = x"_;%;. Any agent i aims to minimize his cost!
Ci(o1,...,0p) with o, € Xj chosen by agent h=1...n. Individual costs are aggregated
by the social cost C(o)=7)_,Ci(c). We denote by v_; = (v1,...,Vi—1,Vit1,...,r) & vector
v = (v1,...,v,) without its ith entry, for 1<i<r.

A pure Nash equilibrium is a stable outcome in which for any agent, its strategy
minimizes its cost given others’ strategies. Formally, a strategy vector (o1,...,0,) € ¥
is a pure Nash equilibrium (PNE) if any agent ¢ minimizes its cost by playing o;, i.e.
CZ'(Ui,J_Z') < Ci(Ué,O'_i),Vi,Vaé €Y.

PNE may not be efficient from a social perspective. A standard measure of distributed
inefficiency is the price of anarchy (PoA) (Koutsoupias & Papadimitriou, 1999), defined as
the ratio of the social cost of the worst PNE to the optimum:

PoA — max,epNE C(0)

ming«ey, C(0*)

Potential games: Game G exhibits an ezact potential (Monderer & Shapley, 1996) ® :
Y — Rif Ci(O'i, U—i) — C’Z‘(O'Z/-7 U_i) = (I)(O'i, U—i) — (I)(Ug, U—i) Vi, Yo, O'g €Y, 0, €X_;. Game
G has an ordinal potential ® : ¥ — R if Cy(0y,0_;) <Ci(0},0-;) < ®(0i,0-;) <P(0},0-;)

G has a weak potential ® : ¥ — R (Marden et al., 2009a) if and only if at any strategy
vector (o1,...,0,) that is not a (pure) Nash equilibrium, there exists an agent ¢ that can
simultaneously lower both his cost and ® by switching to some strategy o}: C;(o;,0-;) >
Ci(o},0-;) and ®(0;,0_;) > ®(0},0_;).

If G has an exact potential (respectively ordinal potential, or weak potential) then G is
called an ezxact potential (respectively ordinal potential, or weakly acyclic) game.

1. In Section 6 we use utility maximization instead of cost minimization.



The relations between the different potential notions have as follows:
exact potentials C ordinal potentials C weak potentials

An ordinal potential ® is also a weak one, since it suffices that one agent increases ®
upon improving his utility. The existence of an ordinal potential is equivalent (Monderer &
Shapley, 1996) to the convergence of better response dynamics, i.e. asynchronous updates
by each agent to a better strategy given others’ current strategies. Any weakly acyclic game
has at least one PNE, for example the global optimum of the weak potential.

4. Game Couplings

In the preliminaries section, we went over a number of beneficial system level properties
such as a low price of anarchy and the existence of a pure Nash equilibrium. We denote any
game that exhibits such a property P as a P-game. Our goal is to understand under which
conditions such a property P extends from individual subgames to the coupled system. To
this goal we introduce and study the concept of game coupling.

In terms of notation, we will be using subscripts to refer to agents, while superscripts
refer to sets of agents, i.e., groups. In other words, we partition the set N of agents to
subgroups N7 where j € {1,...J}. Let ¥/ = x;cn;%; and 77 = X;gnidi. For any j
and any fixed vector 077 € ¥77 of agents in N7/, we denote as G|y-j._,—; the sub-game
of G (played by N7) that arises when the strategies of the agents outside group j are
fixed according to o=7. In other words, G|y-i_,—; is a game of |[N7| agents where each
agent 7 has a set ¥, of pure strategies and her cost at any outcome 08 € ¥ is equal to
Ci(ag) = Ci(o7, Ug). Next, we formally define a game coupling between P-games:

Definition 1. G is a (N, ..., N/)-coupling of P-games if

e N'....,N’ are groups partitioning {1...n}, i.e. NI N N/'=pV1<j<j <J, and
N'U...UNY ={1...n}. The groups are fired: no agent can choose its group.

e For any j and any fived vector o=/ € X7 of agents in N7, the sub-game G|n-j_o—i
(played by N7 ) has property P.

Coupling Example. In a load balancing game, each agent (job) chooses a machine. Each
machine e has a specific cost function ¢, which depends only on e’s load, i.e., number of
jobs on it. PNE always exist in such games (Monderer & Shapley, 1996). Jobs are rarely
this homogeneous; instead, there are often groups of jobs, e.g., computation-intensive or
memory-intensive. In this case, each machine has a cost function ¢! for each type j of jobs.
When fixing the strategies of other jobs, the game experienced by jobs of any type j is a
standard load balancing game and hence admits a PNE. Thus, a load balancing game with
heterogeneous jobs is a coupling of games that admit PNE. The question is then, when does
the coupled (global/heterogeneous) game also admit a PNE?

5. Couplings and potentials

In this section we consider the effect of game couplings on two closely connected P-
properties, the existence of an exact potential and weak acyclicity.



5.1 Exact potential games

The existence of an exact potential is a highly desirable game property, since it implies,
among others, the convergence of better response dynamics. In multi-agent systems, exact
potentials arise for example in the “wonderful life utility” scheme (Tumer & Wolpert, 2004),
by which a planner can ensure that individual agents will act in accordance to the common
welfare.

We provide sufficient and necessary conditions for a coupling of exact potential games
to also have an exact potential. Our analysis leverages the following well-known character-
ization of (exact) optential games (Monderer & Shapley, 1996).

Lemma 1. (Monderer € Shapley, 1996) Game G has an exact potential if and only if the
changes in payoff for the deviating agents along any closed path of length 4 sum up to zero.
Equivalently, for any agents i,k, any strategies o;,0; of i and oy, 0}, of k and for any o_;
of the other agents we have dgiaégk%(a—ik) =0 where

oi0loL0) O—ik) ‘— oiop\O—ik) — o;0) O—ik) — ooy 0 —ik ool \O—ik
dootorol (O—ik) = ooy (0—ik) = Dot (0-ik) = Doty (0—ik) + Doior (0—ik) (1)
and Ag5,.(0_i) :=Ci(Gi, 0k, 0—ite) —Ck (i, 0k, 0_i), ¥ strategies G;, 6.

The forward direction is trivial, since for any closed path in any potential game the
changes in payoff correspond to changes in potential and the total change of the potential
along any closed path is equal to zero. However, this lemma further states that checking
all 4-cycles suffices to verify that the game has indeed an exact potential.

Our condition on couplings abstracts away the individuals in a group and considers an
auxiliary game using group potentials.

Theorem 1. Let G be a (N, N?)-coupling of exact potential games: Vo) € X7, the sub-
game G|yi_qi induced by group N7 playing strategy vector o’ has evact potential (),
for j=1,2. Define a game I' with agents {1,2} in which agent j’s strategy space is ¥J and
the utilities from playing (o*,02) are (®,2(0t), ®,1(0?)), then G is an exact potential game
if and only if I' is an exact potential game.

Proof. “ =" Assume first that G has an exact potential ®(-,-). We show that I is an exact
potential game as well.

We note that Cﬁgl (02?) = ®(0!, 0?) is a potential for the game G|y1._,1 as ® is a potential
for G. Defining analogously exact potentials i’g,l() of Gln151, ‘5;2() of G|n242 and
@22() of G|n2_52, we get that dyi51,252(®) = 0 clearly holds for the game I' induced by
o (in particular this game is one of identical interest, i.e. any A as defined in Eq. (1)
equals 0). Let 0,5 € B! and ¢?,6% € X2 and exact potentials U2, () of G|y1_p1, U2, (:)
of G|y151, ULy(:) of G|y2p2 and W1, (+) of G|y2_52. For any other potential function
W2, (-) of G|y1_o1 there exists (Monderer & Shapley, 1996) d,1 € R with

02, (0%) = ®%,(0%) 4+ dp1 = B(0', 0%) + d,1, Vo> (2)

From analogous conditions to Eq. (2) we easily get d i51,252(V) = dyi5145252(P) = 0.



“ <" We establish Lemma 1’s condition (Eq. (1)) for G given that it holds for I".

0= (271(0%) = Dy2(0")) = (95:(67) — ®3a(0))

— (P21 (0%) = 0,2(7")) + (23:(7%) — @52(0)) & (3)
0= (25:(0%) = 25:(67)) = (Pya(0) — @pa(d"))

+(R52(01) = @2(01)) = (251 (07) — 23, (67)) (4)

For G, consider two agents i and k, fixed (pure) strategies o_; of the other agents (that
we will drop for ease of notation), and (pure) strategies o;,d; of ¢ and oy, ) of k. If ¢ and
k are part of the sub-game N' (where [ € {1,2}) then Eq. (1) holds since N is a potential
game. By symmetry, we can focus on the case i € N1, k € N2.

Let o' = (0y,0! ! 2

1),6! = (64,0L,),0% = (0%,0%,) and 6% = (63,02 ,). Using the exact

potential property in each subgame, we can rewrite Eq. (4) as

0= (Ck(O'i,O'k) — C’k(ai,ﬁk)) — (Ci(Ui,O'k) — Ck(a'i,dk))
+ (Ci(0i,0x) — Ci(04,0k)) — (C(Gi, 0x) — Ck(04,0%))

which, after rearranging, becomes Eq. (1). O

We note that this result is tight in the following sense: There exists a game G that
does not admit an exact potential, with the following property: For any partition of agents
(N, N?), there ezist fixed strategy vectors o', o2 such that the game G|y;._,; has an exact
potential. Furthermore, the game I' induced by potentials of G’s sub-games is an exact
potential game. An example of such a game is an arbitrary two-agent game, where we pick
the unique (non-trivial) partition of the agents in two sets and respectively assign to each
of the agents a specific strategy.

5.2 Weakly acyclic games

We further extend the study of the effects of game coupling on the existence of a potential
by focusing on the case of weakly acyclic games. Weak acyclicity is defined as the existence
of a better-response path from any strategy vector to a PNE. Similarly to the stronger
property of the existence of an exact potential, the existence of a weak potential allows for
the provable convergence of some families of distributed dynamics (Marden et al., 2009a;
Marden, Arslan, & Shamma, 2009b; Young, 1998, 2004).

In the following proposition we present a sufficient condition for the coupling of two
weakly potential games to give rise to a coupled system that also exhibits a weak potential.

Proposition 1. If a coupling G of weakly acyclic games satisfies

o G|ni_gs1 has weak potential @31 for VoleXx!,
o G|n2_42 has weak potential @(172 for Vo2 e¥?,
e if 0% is PNE in G|yi_g1 then any better-response 5; to o', (and 0?) by any i in

sub-game G|n2_,2 does not increase the weak potential: @(2}_1701__(02) < 92, (0?)

then G is a weakly acyclic game.



Proof. We will show that G has a weak potential of the form ®(c!,0?) = C - ®2,(0?) +
<I>L172 (o!) for some large enough C' > 0. It suffices to choose C' > 0 such that for all
ot e Xl 07,07 € 7,02, € X2, with ®2,(0?) — ®2,(57,02;) > 0 it holds that C- (92, (c?) —
P2, (52, 02 ) > \@%52702 .)(01) — ®1,(01)|. Such a choice is always possible in any finite
game.

Consider a non-PNE strategy vector o € X: there exists a sub-game j € {1,2} and an
agent i € N7 that can (strictly) decrease his cost in G by switching to strategy ;. If choice
7 = 2 is viable, always choose j = 2. In this case, ¢ equally decreases his cost in sub-game
G|n1—o1. The choice of C implies that ® decreases as well. Otherwise, we have that o2
is a PNE in G|y1_,1 and j =1, i.e. 3i € N! that decreases ®!, by weak acyclicity. By
assumption, i’s switch to &; cannot increase ®2 and thus ® decreases. O

We showcase the power of the Proposition 1 by applying it to a establish the existence
of PNE for classes of games with malicious agents.

5.3 Congestion-seeking malice

We apply Proposition 1 to the well-studied setting of congestion games (Monderer & Shap-
ley, 1996; Rosenthal, 1973). These games arise in many settings with joint usage of resources
and are isomorphic to exact potential games. They are non-cooperative games in which the
utility of each player depends only on the player’s strategy and the number of other players
that either choose the same strategy, or some strategy that “overlaps” with it.

Formally, a congestion game is defined by the tuple (N; E; (3;)ien; (ce)ecr) where N
is the set of players, E is a set of facilities (also known as edges or bins), and each player
i has a set X; of subsets of F (¥; C 2E). Each pure strategy o; € ¥; is a set of edges (a
path), and ¢, is a cost (negative utility) function associated with facility e. Given a pure
strategy profile ¢ = (01,02, ...,0n), the cost of player i is given by Ci(0) = . ce(ke()),
where k.(o) is the number of players using e in o. For any strategy profile o, we define
the support of o, Supp(c), as the set of congested elements in use by some agents, i.e.
Supp(o) = {e € E k; (o) > 1}. Congestion games admit the following potential function:
(o) = Z eEZ] 1 Ce( ).

In several classes of congestion games, especially the ones modeling routing applications
through transportation networks, agents typically experience higher costs for higher con-
gestion. Such agents are naturally vulnerable to malicious agents that seek to increase the
system congestion. Leveraging Proposition 1 with N? as the set of malicious congestion-
seeking agents, we can establish that a model of malice preserves some of the structure of
the original congestion game, unlike other models with a similar scope (Babaioff, Kleinberg,
& Papadimitriou, 2009).

Definition 2. Given a base congestion game Gpose = (N; E; (X:)ien; (Ce)ecr) with non-
decreasing latency functions c. and a set of allowable malicious strategies Ypmq C 2F, we
define as (N1, N?) malicious congestion-seeking coupling G any game exhibiting the follow-
ing properties:

o For every 0% € % = X;cn2Zmal, Gly2_o2 defines the following congestion subgame
2 . 2
(N1; B; (S ien; (¢2)eer) with ¢ (x) = ce(x + ke(0?)) for all x € N.



e Forevery o' € X1, G|y1_,1 defines a “malicious” subgame G|y1_,,1 with the property
that for any ia € N? if Supp(c)\oi,# 0 then iy can improve his cost by also using
some r € Supp(o)\oiy, i.e. 04, := 0, U{r}.

Next, we will apply Proposition 1 to derive the following characterization of malicious
congestion-seeking couplings.

Corollary 1. Any (N, N?) malicious congestion-seeking coupling with |N?|>2 is a weak
acyclic game.

Proof. Let ®! be a (weak) potential for G|y2._,2 , let m be the total number of resources
in the game and

*(0) = —2m|Supp(c)| — Y ;en2 [{e € 0i : 3" € NLUN?\ {i} with e € o }|

i.e. the negation of 2m times the total number of resources used plus, for each N? agent,
the number of resources he uses together with at least one other agent (in N1 U N?).

We establish that game G|y1._,1 is weakly acyclic with weak potential ®2. Consider a
non-NE profile o. If there exists r € Supp(c) that is not used by some i3 € N? then, by the
malicious subgame definition, io can improve his utility by adding r. Clearly, this implies
that ®2 decreases.

Suppose now that all resources in Supp(c) are used by all agents in N2. We claim that
an agent i € N? can better respond only by using (at least) a new resource e ¢ Supp(o)
while possibly dropping some resources in ;. Indeed, ¢ cannot improve by simply dropping
a single resource ej, i.e. o; := 0; \ {e1}: otherwise, were i to play o; \ {e1}, he would
not benefit from using e; despite being the only one in N? not to do so, contradicting the
definition of the malicious subgames.

We prove by induction on k that ¢ cannot improve by simply dropping k < |o;| resources,
i.e. by letting o; := o;\{e1,...,ex}. We have just established the base case k = 1. For
the inductive step, since ¢ is the only agent in N2 not to use ej ...ey, by the definition of
the malicious subgame there exists some j (assume wlog j = 1) such that ¢ improves over
oi\{e1,...,ex} by oi\{ea,...,ex}, i.e. using e;. But then i can profit from o; by dropping
the k& — 1 resources {es, ..., e}, contradicting the inductive hypothesis.

For each new resource e that i starts to use, adding it to Supp(c), ®? decreases by 2m
from 2m|Supp(c)|. For each resource e; dropped, ®? increases by at most 2 — only when
exactly one other agent ', with i’ € N2, was using e; in 0. Since we multiply |Supp(c)| by
2m, ®? is guaranteed to decrease.

Weak acyclicity now follows from Proposition 1: at any PNE o in G|y1._,1, each resource
in Supp(c) is used by at least two N2 agents. Thus Proposition 1’s last assumption, that
better responses in G|y2.,2 does not increase ®2, holds. O

Applications of malicious congestion-seeking agents: In this section, we briefly
discuss settings where the results about the congestion-seeking malicious agents apply.

Load balancing games. There are m machines accepting jobs, each with a distinct latency
function. Each player in N! owns a job (of load 1) and chooses a machine to execute his job
so as to minimize its completion time. On the other hand malicious agents aim to “jam”
the machines with spurious jobs in a denial-of-service attack.



For specific instances of this model, Prop. 2’s statement can be shown to be tight in
the following sense: If we allow only a single malicious agent then we can create a coupled
system with no PNE. For example, a game between a single rational agent and a single
malicious agent who can choose between two congested elements of linear latencies has the
same best response dynamics as a matching pennies games and therefore no PNE exists.

Market-sharing games. In a market-sharing game, there is a set of markets (resources)
T1,...,Tm, where market r; has total available revenue w;. Each player must choose one
market out of a subset available to him and aims to maximize his revenue. Any player
joining market r; has a cost Cj. If n; players choose market r; then each one has revenue
w;/nj and profit w;/n; — C;j. A market-sharing game is an exact potential game and thus
weakly acyclic. Any malicious player can reduce the profit of all other players on a market by
jamming it (we can assume that a malicious player’s cost is low enough such that jamming
is profitable).

We note that a similar result holds for malicious players in facility location games (Vetta,
2002), a game-theoretic distributed counterpart to the classical centralized optimization
problem of facility location.

6. Aggregation via heterogeneity

Convergence guarantees for dynamics are made more relevant by quantitative statements
about the quality of equilibria (or equilibria that such dynamics can reach)?. We will
consider the interplay between such issues and coupling of heterogeneous systems in the class
of aggregation games and show that heterogeneity is not only sufficient but also necessary
condition for combining stability and efficiency in such settings.

Aggregation games (Mol et al., 2011) model populations aiming for high internal connec-
tivity. Specifically, consider an undirected graph Gr = ({1,..., N}, E) without self-loops.
There exist n < N agents. Each must choose a different vertex in 1..IN; denote by H the
set of all n agents’ vertices: |H| = n. Each agent i has a parameter g; € [0, 1], inducing the
utility function® ug, it aims to maximize, where if v; is ¢’s vertex

ug, (vi, H \ {vi}) = By, 1 + BiEy, {1, . NW\H (5)

and Er, 1, = [{e € E : e = (i1,12),41 € I1,i2 € I2}| denotes the number of edges between
vertex sets I; and I. We denote by G(Gr, 1, ..., [Bn) the resulting aggregation game G.

Agents with 3 = 0 are called followers as they maximize ug = E, g i.e. the number of
edges to H (the other agents’ vertices). In contrast, agents with § = 1 are called leaders
because they maximize u; = E,, (1, n} 1.e. the degree of v in the hope that other agents,
in particular followers, will be drawn to the adjacent vertices. An agent with a general
B is called a (-leader; note ug(-) = Bui(-) + (1 — Bup(-). We call an aggregation game
G(Gr, B4, ..., 0Bn) homogeneous if 5; = (3, Vi.

2. Profiles during learning dynamics, even non-convergent ones, may however be much better than any
PNE (Kleinberg et al., 2011).
3. Utilities are more natural than costs for evaluating connectivity.



The social welfare (the counterpart of social cost) is the number Ey := 3 Y. E,, g of
internal edges, for any (i, ..., 3,. Price of anarchy is defined as:
PoA = —n,laXH* i .
ming pNg Eg

We now consider issues regarding PNE, PoA and convergence of dynamics in aggregation
games. For n=0(N) agents there exist (Mol et al., 2011) graphs Gr for which any uniform
[ leads to high PoA = O(N). A balanced mix of -leaders and followers has constant PoA
for constant G, but existence of PNE had only been established for =1.

Theorem 2. (Mol et al., 2011) There exist connected graphs Gr such that for any 5 and
homogeneous aggregation game G = G(Gr,[3,...,3), PoA(G)>

For any graph Gr and aggregation game G(Gr,0,...,0,0,... ,ﬁ) with An (3-leaders (3>
L) and (1= X)n followers, we have PoA = O(125 min(n, ﬁ)) Hence, PoA is constant for
constant \ (i.e. a balanced mix) and constant (3.

Any homogeneous aggregation game has an exact potential (implicitly shown in (Mol
et al., 2011)). The form of the potential implies that Nash dynamics converge to PNE in
polynomial time.

Theorem 3. A homogeneous aggregation game G, i.e. 3;=[(¢€[0,1]Vi has exact potential
Os(H) = (14 B)Ex + BEp (1, NW\H

In contrast, the only known structural result for a heterogeneous population is that
when all 3; are either 0 or 1, i.e. a mix of leaders and followers, the game has an ordinal
potential. Structural results are however critical to Theorem 2 since it bounds the quality
of PNE without proving that they exist.

We significantly generalize these results by using a coupling argument that proves the
existence of a weighted potential function. This is always an ordinal potential and it is an
exact potential if and only if all weights are 1. Formally, a game has a weighted potential
function (Monderer & Shapley, 1996) ® : x? ;| ¥; — R with (positive) weights wy, ..., wy, if
wi(oi,0-;) — ui(oh,0-;) = w; - (®(04,0-;) — ®(0},0_;)) for any agent i and any strategies
O'Z',O'g €2;,0_; €Y 5.

Next, we show this section’s main result: any set of agents, with arbitrary §; < 1
parameters, leads to a weighted potential function. The weighted potential is an explicit
mapping of potentials in each sub-game. An analogous result when some 3’s equal 1 follows
easily. Thus Nash dynamics converge (and PNE exist) in any aggregation game.

Theorem 4. Fiz an aggregation game G with H = H' U ... U H’ where H7 are vertices
occupied by all 37 -leaders, then G exhibits a weighted potential (with weights 1 — 37 > 0 for
each agent i € HY)

P HJ H\H]) FEy
@J
EH+Z] L 1—ﬂj

where ®g;(HI, H \ HY) = (1 + B)Ey + ﬁjEHj7{17_._7N}\H is an exact potential of the group
over the (homogeneous) H? given fized vertices of others (in H\ H7).




Proof. By expanding ® in theorem (4), we get

_ Bi Bir pi
®(H) = Zl§i<i’§n(1 1o ﬁz 1- ﬁz B + ZKK" 1 —p Bt (0)

Consider agent i that updates its vertex from v; to v,. We consider the resulting state
H = {Ul, ey Ui,l,vg,le, e ,'Ut}. We have that:

Z Bi B Z Bp By
@(U;,U ’L) = ‘/-(,U/ v,,)GE(l + 11— /B Jﬁ ) + (1 + 1 /8 + 1 _ ﬁ ) VpUyt
PR ! I 1<p<p'<n, iZ¢{p,p'} v

Bi B
15 By g1, Np\H T ZP# 1 _pﬁp(Evp,vi + By, (1, N\ (H'Ufv,})) and

Bi ﬁj By By
q)('l)i,Ufi) = Zj:(l)iﬂ)j)GE(l + 1— ﬁ /8 ) + Z (1 + 1— /8 + 1— ﬁ ) UpUpt
! T 1<p<p/ <n,ig{p.p'} v

Bi B
+ 1 o ﬂ 'Uzv{la ,N}\H + Z 751 1 _p/Bp (EUP7 + EUP7{17“'7N}\(HU{’U7IL}))

where we emphasized v; as not in H' and v as not in H in the sums in the second and
fourth line. After canceling common terms and using E, s = > /o5 Ey . we get

1
(I)(U;,U l) - (I)(’L)Z',Ufi) = 1— ﬁ Ev JHY +

-(—=

Bi
qEv;,{l,...,N}\H/—

1 0G;
5 Ey.b0+ 7Evi,{l,...,N}\H)

, 1
= (U/Bi (Uiv v—i) — Uug; (vi7 U—i)) 1- 3

i.e. @ is a weighted potential with weights 1 — 3;, V. O

In a homogeneous aggregation game (J =1, i.e. same 3 for all), this weighted potential
reduces to the exact one in Theorem 3.

The only aggregation games not covered by Theorem 4 are ones containing leaders
(8 = 1). Dealing with all leaders separately, one can easily identify an ordinal potential®.
Hence, we have that:

Corollary 2. FEach aggregation game has an ordinal potential and thus a PNE.

7.Price of Anarchy within Groups

In this section, we will argue more generally about efficiency in coupled systems. A game
is said to have a low price of anarchy (Koutsoupias & Papadimitriou, 1999) if the perfor-
mance of the worst (Nash) equilibrium state is comparable to that of the socially optimal

4. The utility of a leader depends only on her actions alone. So, given any improving move of any leader
their social utility will increase. As a result, a weighted sum of the social cost of the leaders and of the
weighted potential function identified suffices to give an ordinal potential for any aggregation game.



state. In the case of coupled games/systems the notion of efficiency is more involved and
nuanced. The success of any coupling between technological or socioeconomic systems, such
as the Internet or the European Union, depends both on the performance of the system as
a whole as well as on the performance of each individual subsystem. If high overall perfor-
mance is achieved at the expense of some subsystem then system stability will eventually
be compromised. The challenge here is to design systems that behave almost optimally at
different levels of granularity. We will address such questions by generalizing the notion of
(A, p)-smoothness (Roughgarden, 2009; Nadav & Roughgarden, 2010). A cost-minimization
game with minimum-cost outcome o’ is (\, p)-smooth (Nadav & Roughgarden, 2010) if for
all ;e

ZCO’ o_i)) <A-C(d")+p-C(o)

If G is (A, p)-smooth (with )\20 and p€(0,1)), then (Roughgarden, 2009) each of G’s PNE
has cost at most A\/(1 — p) times that of a socially optimal outcome, i.e. PoA < A\/(1 — p).

Price of anarchy bounds based on (A, u)-smoothness extend (Roughgarden, 2009) to
three other standard equilibrium concepts that we review now. A mixed Nash equilibrium
(MNE) is a product probability distribution in A(X) in which each agent minimizes its
(expected) cost given others’ strategies. For any correlated equilibrium (CE) 7 € A(Y),
if a mediator draws ¢ from a publicly known distribution 7 and reveals to each agent @
only its strategy o; then ¢ minimizes her expected cost by playing o;, assuming others
also follow o_;. A coarse correlated equilibrium (CCE or equivalently Hannan-consistent
strategy (Cesa-Bianchi & Lugosi, 2006)) is more general than a CE. A CCE, like a Nash
equilibrium, is a probability distribution over outcomes such that no agent can improve
her expected cost by deviating to a fixed strategy. Unlike Nash equilibria, a CCE can not
generally be expressed as a product of agent (mixed) strategies. Average coarse correlated
equilibria with respect to a socially optimal 0* €Y (ACCE* (Nadav & Roughgarden, 2010))
comprise the class of distributions for which the (expected) social cost is lower than the
sum of costs when each agent 7 unilaterally deviated to o;. The best PoA bounds derived
via (A, p)-smoothness arguments are tight for ACCE" in every game.

Formally, a correlated equilibrium (CE) m€ A(X)is a distribution such that Vi, Vo;, 0, €

Ziu
Z Ci(oi,0_i)m(0i,0-;) < Z Ci(ol,o_)m(0i,0-4).

U*iez—i 1627
At a coarse correlated equilibrium (CCE) me A(X), Vi, Vo, eX,,
ZCi(ai,U_i)ﬂ'(ai,a_i)g Z Ci(a},o_i)mi(o_;),
gEY o_;EX_;

where 7;(0_;) = Zﬂ_ s, 7(7i,0—;) is the marginal probability that vector o_; € ¥_; will be
played. At an ACCE* 7 for some socially optimal o* (i.e. C’(U*) SC(U) Vo € ¥) we have

ZZC oi,0_i)T(04, 0 <Z Z Ci(o mi(0—4)
i OoEX i O_;€EX_;

We presented these equilibrium notions in increasing order of generality.

PNECMNECCECCCE C ACCE~



We denote the ratio of the social cost® of the worst equilibrium in class C C A(Y) to the
supyec C(0)
ming«eyx, C(0*)’

For any cost-minimization game G, as shown in (Roughgarden, 2009; Nadav & Rough-
garden, 2010)), PoA := PoApng < PoAune < PoAcp < PoAccp 8 < PoA,qaps =
inf{li\u : G is (A, pu)-smooth}.

We present localized (A, 1)-smoothness arguments for game couplings. Analogously to
the social cost, we define group j’s total cost at o € ¥ by €V (o) = > ieni Ci(o).

optimum o* € ¥ by® PoA, =

Definition 3. [group (M, p?)-smoothness] A coupling is (M, pu?)-smooth with respect to
o' € X if for group N7, for all 07 €%7 and for all c=7 €X77:

> Cilohol o T) N CIe g )+ - (o0

We define the local PoA for a class of probability distributions C by comparing the worst
possible group j’s cost at some s € C against its cost at a benchmark state o’ € ¥7.

Definition 4. The local price of anarchy of group j in G for a given equilibrium concept
CCA(X) with respect to benchmark o' € 37 is PoA% (') =sup,ec %

PoA’ -(0) tests the worst-case performance of an equilibrium concept C (e.g. NE) from
the perspective of group N7 against that of a benchmark group action ¢’ € 7. For a single
group (J=1), if we denote argmin, ), Cj(c) as OPT, the classic notion of price of anarchy
corresponds to PoA}(OPT).

7.1 Dual Equilibrium Notions

We use LP duality to characterize the distributions for which POAé(U’ ) bounds derived via
local smoothness arguments are tight. For some target group-j benchmark action profile
o’ €% we can express bounds on POAJC (¢') using linear fractional problem representations:

Minimize N / (1 — p?) (7)
s.t. ZC (ol,0_5) S NCi (o' o77) + ! Ci(0),YoeX
i€ENJ
uj <1
Introducing p’/ = TR and 2/ = ljuj yields the linear program (LP)
Minimize p’
s.t. p O (o o79) + 2(CY (o ZC’ )) >C (o), Voex

i€NJ
22 >0

5. For randomized outcomes, i.e. distributions m, we abuse notation C(m) to express the expected cost
Eonr[C(0)]

6. Linearity of expectations implies that it suffices to examine only pure (i.e. deterministic) strategy
outcomes.

7. Analogous results can be shown for utility-maximization games

8. Blum et al. (Blum et al., 2008) call PoAccg the price of total anarchy of game G.



the corresponding dual to which is as follows:
. . ]
Maximize ZJEE 56C7 (o)

s.t. ZUGE 5¢C (0", 077) <1 and s, >0, Vo € X

ZUGE % (ZiENJ' Ci(o},0-1) = C?(0)) > 0

Since the social costs are positive, we can replace the first inequality with an equality.
Furthermore, since this quantity is a constant (and equal to 1), we can divide the objective
by it without having any effects on the system:

imi J J —J
Maximize Zoe seC (o /Z s0C? (0’ 077)
G
s.t. ZUEE s¢C7(c’,077) =1 and s, >0, Vo € ¥

ZUEE 8o (ZieNj Ci(O'g, U—i) - C](J)) >0

Finally, due to scaling invariance the normalization ) .y, 50C9(0’,077) = 1 can be replaced
by > ,ex 5o = 1, leading to:

. . ] ]
Maximize Zoe sCI (o) / Z ) (8)
s.t. ZJEE S =1 and s; >0, VoeX

ZUEE SU(ZZ’GNJ Ci(o},0-1) = C?(0)) 2 0

We wish to identify classes of distributions for which the worst case performance guar-
antees (for group j) match the upper bounds derived from smoothness arguments. The
optimizing function of (8) has a form similar to a price of anarchy definition, hence, by
defining a class of distributions based on the feasibility constraints we can achieve our goal
of having equilibrium classes for which smoothness arguments are tight. Specifically, we can
define group j’s average coarse correlated equilibria with respect to o' € ¥J (ACCEL’(0"))
as distributions for which local PoA7 bounds via (M, y/)-smoothness are always tight.

Definition 5. ACCEL (0/)={s€A(X): 3, cx: C?(0)s(0) <Yy ess DoieniCilot, o-i)s(o)}.

Clearly, ACCEL?(0’) is nonempty for any (coupled) game G and any o' € ¥J since it
includes all of its coarse correlated equilibria (i.e. CCE C ACCEL’(0")). It also captures
exactly the feasibility constraints of (8). Tightness of PoA’ bounds follows:

Theorem 5. For C ACCEL/ (o),
PoAl(o")=inf {2

70 G s (M, pi?)-locally smooth for group N7 with respect to o’ € ¥7}.

Proof. By deﬁnition, the local price of anarchy of group j in G for any set of (random-
CJ

ized) outcomes C C A(Z) is PoAL(d) = itégcj(a/f?j).

domized) outcomes C C A(X), we can find a sequence of distributions o, € C, such that

i . Ci(or
PoA’ (o) =lim, o ﬁ We have that POAACCELJ( /)( o')

Given any such set of (ran-

can be expressed as a limit



of solutions of linear programs of the form (8). LP duality implies that any l)‘—J] for which
G is locally (M, p/)-smooth with respect to o’ is an upper bound on PoA’ (. (0,)(0’ )

as a valid solution to the corresponding dual linear fractional program (7). The theorem
J

follows immediately, since by strong LP duality both PoA’

(o) (¢") and | inf{li‘—iﬂ :
C?(or) 0

G is (M, ) — locally smooth with respect to o’} capture the limit lim, Gt o)

7.2 Coupled Games and Learning via Public Advertising

So far, we have mainly been focusing on different classes of equilibrium behavior, either
establishing their existence and the convergence of simple (e.g best-response) dynamics to
them, or arguing about their efficiency. We will finish our exposition of coupled game-
theoretic environments by considering families of online learning dynamics in this setting.

A coupled game essentially establishes a hierarchical environment. A group defines a
higher level of organization that consists of several self-interested entities/units. At the same
time, as we have argued in the previous section, an organization is also a goal driven entity
that strives for (approximate) optimality of its collective performance. Along those lines, it
makes sense to consider online learning paradigms that infuse sophisticated learning behav-
ior both at the level of each group as well as at the level of individual agents. At the core of
our approach lie ideas from regret-minimizing online learning (Appendix A, (Cesa-Bianchi &
Lugosi, 2006; Young, 2004) for more detailed presentation). These are practical algorithms
that provide strong performance guarantees and at the same time enjoy connections to equi-
librium notions such as coarse correlated equilibria. Specifically, when each agent updates
her strategy according to a regret-minimizing dynamic then the long term average of action
profiles converges weakly to the set of coarse correlated equilibria (CCE) (Young, 2004).
We will explore analogous connections between learning dynamics in coupled games and
our ACCEL/local smoothness arguments to provide insights about the possible outcomes
of sophisticated learning behavior in the setting of coupled games.

We introduce a novel learning procedure that incorporates public advertising and which
allows for provable welfare guarantees both on the level of groups as well as globally. In-
tuitively, the setting is as follows: Within each group j there exists a broadcasting center
that can broadcast to all agents in the group. On each day ¢t = 1...T, the center of group j
computes a strategy vector ADVY (t) for the group and advertises to each agent i his respec-
tive strategy ADVY(¢). There exist two high level issues in any such model: first, how does
the center decide on which vector to advertise and second, how do the individual agents
respond to the recommendations?

In terms of center actions, prior public advertising models (Balcan et al., 2009, 2010,
2012) assumed that there exists a single center with full information over the whole game
that is able to broadcast to all agents. In such settings the center can easily broadcast a
global optimum solution or the best Nash equilibrium. In contrast, we are moving towards
a more restricted and realistic model where each center only controls a local neighborhood
of agents. Many real life settings share this structure (e.g. competing Internet autonomous
systems, or more generally competing institutions/organizations). In such settings, the
managing centers have a high incentive in employing sophisticated online algorithms in
order to effectively calibrate their predictions. Here, we will analyze centers whose adver-



tised behaviors exhibits vanishing average regret with hindsight. This is a rather natural
benchmark, since several simple learning algorithms can offer such guarantees®.

On the side of the individual agents, we make a similarly weak assumption. We assume
that the average performance of each agent i (of group j) will eventually be (almost) as
high as that of his advertised strategy ADV? (¢). Any dummy agent can meet this benchmark
merely by following the recommended strategy. A more realistic agent could still achieve
such guarantees by interpolating between his innate learning strategy and the provided
advice. We will show that advertising-guided learning offers guarantees analogous to those
of the ACCEL framework. We start by bounding the possible negative effects of agents’
experimentation. We will use a slightly stronger local smoothness property:

Definition 6 (strong(x, fi)-smoothness). A coupling is X, i)-smooth if for each group N7,
for all o’ € X7, for all 07 €%7 and for all 0= €X 7

—17
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This definition has a stronger flavor than the one in Definition 3, since here the deviating
condition must hold for all possible group responses and not only for target benchmarks.
This definition is more reminiscent of the original (A, u)-smoothness definition in (Rough-
garden, 2009), which is slightly different than the one in (Nadav & Roughgarden, 2010).
When we are referring to (X, /i)-smoothness in this section, we will be working with this
slightly stronger definition.

Lemma 2. If in group j the time-average'® cost of each i is (almost) as low as that of i’s
advertised strategies ADV?,

72, Cilo() < 7, Ci(apv(t),0-i(1)) + (1)

then advertising-guided learning only incurs a N /(1 — p?) overhead when compared to the
advertised strategy.

F3Co) < 2254 ST O (apvi(1), 07 (1) + o(1)

Proof.
>, o) =12 ., Cilo®)
<F D22 (Glavv ). 040) +0(1))
<7, (NC (apvI(t),077()) + 1/ C7 (o (1)) +-o(1)
Rearranging terms leads to the desired form. O

9. A policy (sequence of strategies) satisfies the no-regret property if its average payoff is almost as good
as that of the best fixed (time-invariant) strategy given the history of play. CCE are limit points of
time-averages of no-regret policies. Generally, no-regret algorithms offer guarantees in expectation over
their randomized strategies. For ease of notation, we consider pure strategy outcomes. The analysis
trivially extends to the case of randomized strategies.

10. In this section, whenever we write 3,, we mean 3.



Given a history of play o(1),...,0(T), we denote the best group response of group j
with hindsight as opPT/(T):

opT/(T) = argming v 7 Zt CI(s7,077(t))

Given a game coupling (N, N2,...,N”), we define its super-game as follows: it is a
game with J agents, the available strategies to each super-agent j correspond to strategy
tuples for all agents in group j, i.e. 0/ € x;cn;%;. Finally, the cost of the super-agent j is
the group cost for all agents in group j, i.e. CV(c) = 3.y, Ci(0). We also assume that
super-game is (AYP, ;1*"P)-smooth'!. Finally, we define a socially optimal strategy vector
as global _.OPT € argmin, C'(o).

We now prove cost bounds for advertising-guided learning.

Theorem 6. If in each group j the time-average cost of each i is (almost) as low as that
of i’s advertised strategies ADV?,

4 Zt Ci(o(t)) < % Zt C; (apVI (1), 07" (1)) + o(1),
and the advertised strategy for each group j has vanishing time-average regret,
%Ztcj(ADVj (), 079(t)) < %Ztcj(omj (T), 07 (t)) +o(1)
then for advertising-guided learning, the group cost satisfies

UTE. o)

. . . -+ o(1
/Ty, Ci(oPTI(T),079(t)) — 1 — (1)
and for min; 1;;” > u®vP ) the social cost satisfies
1/T>, Clo(t ASUP
/miEt CE /())) = 1—p su +o(1)
o Ulo min; —5= — p5P

Proof. By applying Lemma 2, we have for each group j:

J

72, CM) < 7512, 0 (aov/ (), 07 (1) +o(1)

=] i]'uj T Zt C7 (0Pt (T), 077 (t)) + o(1) (9)
<9 i\]/ﬂ > Zt C7 (global_opT? 077 (t)) + o(1) (10)

From Eq. (9), we have for each group j:

YTy, Cio(t) N
1/T Y, Ci(oPTd(T),073(t)) — 1 —pl

+o(1)

11. This is the standard notion of (non-coupled) game smoothness



We know that the (super)-game is (A*“P, u*"P)-smooth, therefore:

+ Zt Zj c? (global,OPTj, o (t) <
1 Zt A C (global OPT) + = Zt pC ()

Combining this with Eq. (10), we have for min; L T

BYi
1 AZUP . /
thc("(t)) < — - ml/nC(a ) +o(1)
min; 54 — psup o

8. Concluding remarks

Modern engineering systems (such as the Internet), as well as social systems, exhibit in-
ternal hierarchical structure. Indeed, such systems can intuitively be viewed as a coupling
between subsystems of increased internal homogeneity. In fact, for some applications, such
a design paradigm is highly desirable since it allows for maximum flexibility and scalability.
Naturally, however, questions about the stability and the long-term performance of such
systems arise. Nevertheless, despite the ubiquitous nature of such systems and inquiries, few
formal tools have been developed that allow us to argue about the degradation (or possible
enhancement) of their local properties as we move towards larger coupled and increasingly
heterogeneous systems.

In this work, we have introduced and studied game couplings, a concept that encap-
sulates globally heterogeneous populations exhibiting local homogeneity. We gave several
applications of this framework in terms of learning in games, quality of equilibria (PoA)
and structural properties. Specifically, we have shed light on the nature of local properties
that allow us to argue about the evolution and performance of the global system. Further-
more, we have studied the stresses between local subsystem optimality and global system
performance. Finally, we have identified specific settings where the coupling of heteroge-
neous systems is not only an elegant design solution but actually necessary for global system
optimality.

An interesting direction for future work would be the principled study of heterogeneity
itself. Specifically, it would be rather enticing to identify novel measures of heterogeneity of
structure that capture the reality of real world coupled systems and which are theoretically
tractable. Finally, our work here focuses mainly on systems with two levels of hierarchy
(individual subsystems and coupled global system). A natural extension of these models
would include more intricate hierarchical structures such as rooted trees, or directed acyclic
graphs.
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grant N00014-09-1-0751, by AFOSR grant FA9550-09-1-0538, and by a Microsoft Research
Faculty Fellowship.
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Appendix A. Regret minimization

We will give a formal definition of having no-regret in an online sequential problem.

Definition 7. An online sequential problem consists of a feasible set F € R™, and an
infinite sequence of functions {f', f2,...,} where ft : R™ — R.

At each time step ¢, an online algorithm selects a vector ! € R™. After the vector
is selected, the algorithm receives f!, and collects a payoff of ff(x!). All decisions must
be made online, in the sense that an algorithm does not know f! before selecting x?, i.e.,
at each time ¢, a (possibly randomized) algorithm can be thought of as a mapping from a
history of functions up to time ¢, f1,..., ff=! to the set F.

Given an algorithm A and an online sequential problem (F, {f! f2,...}), if {z!, 2%, ...}
are the vectors selected by A, then the payoff of A until time T is Z?zl ft(z*). The payoff
of a static feasible vector x € F, is Zthl ft(z). Regret compares the performance of an
algorithm with the best static action in hindsight:

Definition 8. The external regret of algorithm A, at time T is defined as
T T
R(T) = t _ t(,.t
(7) =310 = 3 '

An algorithm is said to have no-external regret, if for every online sequential problem,
its regret at time T is o(T).

The definition of regret minimization in the case of cost optimization (negative payoffs)
is completely analogous. More detailed definitions and examples can be found here (Cesa-
Bianchi & Lugosi, 2006; Young, 2004).



