
Tom Mitchell, April 2011

Reinforcement Learning

Maria-Florina Balcan

Carnegie Mellon University

04/18/2018

Today:

• Learning of control policies

• Markov Decision Processes

• Temporal difference learning

• Q learning

Readings:

• Mitchell, chapter 13

• Kaelbling, et al., Reinforcement

Learning: A Survey

Slides courtesy: Tom Mitchell

Tom Mitchell, April 2011

Overview

• Different from ML pbs so far:

• Our decisions influence the next example we see.

Decisions we make will be about actions to take (e.g.,

a robot deciding which way to move next), which will

influence what we see next.

• Goal will be not just to predict (say, whether there is a

door in front of us or not) but to decide what to do.

• Model: Markov Decision Processes.

Tom Mitchell, April 2011

Reinforcement Learning

...]rγr γE[r(s)V 2t

2

1tt

*  

[Sutton and Barto 1981; Samuel 1957; ...]

Main impact of our actions will not come right away but instead that will

only come later.

Tom Mitchell, April 2011

Reinforcement Learning: Backgammon
[Tessauro, 1995]

Learning task:

• chose move at arbitrary board states

Training signal:

• final win or loss at the end of the game

Training:

• played 300,000 games against itself

Algorithm:

• reinforcement learning + neural network

Result:

• World-class Backgammon player

Tom Mitchell, April 2011

• Learning control strategies

– Credit assignment and delayed reward

– Discounted rewards

• Markov Decision Processes

– Solving a known MDP

• Online learning of control strategies

– When next-state function is known: value function V*(s)

– When next-state function unknown: learning Q*(s,a)

• Role in modeling reward learning in animals

Outline

Tom Mitchell, April 2011

Agent lives in some

environment; in some

state:

• Robot: where robot

is, what direction it is

pointing, etc.

• Backgammon, state

of the board (where

all pieces are).

Goal: Maximize long

term discounted reward.

I.e.: want a lot of reward,

prefer getting it earlier to

getting it later.

Tom Mitchell, April 2011

• Set of states S

• Set of actions A

• At each time, agent observes state st  S, then chooses action at  A

• Then receives reward rt , and state changes to st+1

• Markov assumption: P(st+1 | st, at, st-1, at-1, ...) = P(st+1 | st, at)

• Also assume reward Markov: P(rt | st, at, st-1, at-1,...) = P(rt | st, at)

• The task: learn a policy : S  A for choosing actions that maximizes

Markov Decision Process = Reinforcement Learning Setting

for every possible starting state s0

E.g., if tell robot to move forward one meter, maybe it ends up moving forward 1.5 meters by

mistake, so where the robot is at time t+1 can be a probabilistic function of where it was at

time t and the action taken, but shouldn’t depend on how we got to that state.

Tom Mitchell, April 2011

Execute actions in environment, observe results, and

• Learn control policy : SA that maximizes

from every state s  S

Example: Robot grid world, deterministic reward r(s,a)

Reinforcement Learning Task for Autonomous Agent

• Actions: move up, down, left, and right
[except when you are in the top-right you stay there, and say any action that

bumps you into a wall leaves you were you were]]

• reward fns r(s,a) is deterministic with reward 100

for entering the top-right and 0 everywhere else.

Tom Mitchell, April 2011

Execute actions in environment, observe results, and

• Learn control policy : SA that maximizes

from every state s  S

Yikes!!

• Function to be learned is : SA

• But training examples are not of the form <s, a>

• They are instead of the form < <s,a>, r >

Reinforcement Learning Task for Autonomous Agent

Tom Mitchell, April 2011

• Given a policy  : S  A, define

• Goal: find the optimal policy * where

• For any MDP, such a policy exists!

• We’ll abbreviate V *(s) as V*(s)

• Note if we have V*(s) and P(st+1|st,a), we can compute

*(s)

Value Function for each Policy

assuming action sequence chosen

according to , starting at state s

expected discounted reward we will get starting from state s if we follow policy π.

policy whose value function is

the maximum out of all policies

simultaneously for all states

𝜋∗ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎[𝑟 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗(𝑠′)]

Tom Mitchell, April 2011

Value Function – what are the V(s) values?

Tom Mitchell, April 2011

Value Function – what are the V(s) values?

Tom Mitchell, April 2011

Value Function – what are the V*(s) values?

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Recursive definition for V*(S)

assuming actions are

chosen according to the

optimal policy, *

Value 𝑉∗(𝑠1) of performing optimal policy from 𝑠1, is expected reward of the first action 𝑎1
taken plus 𝛾 times the expected value, over states 𝑠2 reached by performing action 𝑎1
from 𝑠1, of the value 𝑉∗(𝑠2) of performing the optimal policy from then on.

optimal value of any state s is the expected reward of performing 𝜋∗(𝑠) from s plus

𝛾 times the expected value, over states s’ reached by performing that action from state s,

of the optimal value of s’.

Tom Mitchell, April 2011

Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

V(s) converges to V*(s)

Dynamic programming

[optimal value can get in zero steps]

Inductively, if V is optimal discounted reward can get in t-1 steps,

Q(s,a) is value of performing action a from state s and then being

optimal from then on for the next t-1 steps.

Optimal expected discounted reward can

get by taking an action and then being

optimal for t-1 steps= optimal expected

discounted reward can get in t steps.

Tom Mitchell, April 2011

Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

V(s) converges to V*(s)

Dynamic programming

[optimal value can get in zero steps]

each round we are computing the value of performing the optimal t-step policy starting

from t=0, then t=1, t=2, etc, and since 𝛾𝑡 goes to 0, once t is large enough this will be

close to the optimal value 𝑉∗ for the infinite-horizon case.

Tom Mitchell, April 2011

Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

[optimal value can get in zero steps]

• Round t=0 we have V(s)=0 for all s.

• After round t=1, a top-row of 0, 100, 0 and a

bottom-row of 0, 0, 100.

• After the next round (t=2), a top row of 90, 100,

0 and a bottom row of 0, 90, 100.

• After the next round (t=3) we will have a top-row

of 90, 100, 0 and a bottom row of 81, 90, 100,

and it will then stay there forever

Tom Mitchell, April 2011

Interestingly, value iteration works even if we randomly traverse the

environment instead of looping through each state and action

methodically

• but we must still visit each state infinitely often on an infinite run

• For details: [Bertsekas 1989]

• Implications: online learning as agent randomly roams

If for our DP, max (over states) difference between two successive

value function estimates is less than , then the value of the greedy

policy differs from the optimal policy by no more than

Value Iteration

So far, in our DP, each round we cycled through each state exactly once.

Tom Mitchell, April 2011

So far: learning optimal policy when we

know P(st | st-1, at-1)

What if we don’t?

Tom Mitchell, April 2011

Q learning
Define new function, closely related to V*

If agent knows Q(s,a), it can choose optimal action

without knowing P(st+1|st,a) !

And, it can learn Q without knowing P(st+1|st,a)

V*(s) is the expected discounted reward of following the optimal policy from time 0 onward.

Q(s,a) is the expected discounted reward of first doing action a and then following the optimal

policy from the next step onward.

Just chose the action that maximizes the Q value

using something very much like the dynamic programming algorithm we used to compute V*.

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

State-action values Q*(s,a)

Bellman equation.

Consider first the case where

P(s’| s,a) is deterministic

Tom Mitchell, April 2011

[simplicity assume the transitions and rewards are deterministic.]

Optimal value of a state s is the

maximum, over actions a’ of Q(s,a’).

Given current approx ෠𝑄 to Q, if we are

in state s and perform action a and get

to state s’, update our estimate ෠𝑄(𝑠, 𝑎)
to the reward r we got plus gamma

times the maximum over a’ of ෠𝑄(𝑠′, 𝑎′)

Tom Mitchell, April 2011

Tom Mitchell, April 2011

Tom Mitchell, April 2011

Use general fact:

Tom Mitchell, April 2011

Rather than replacing the old estimate with the new estimate, you want to compute a weighted average of

them: (1 − α𝑛) times your old estimate plus α𝑛 times your new estimate. This way you average out the

probabilistic fluctuations, and one can show that this still converges.

Tom Mitchell, April 2011

• Learning to choose optimal actions A

• From delayed reward

• By learning evaluation functions like V(S), Q(S,A)

Key ideas:

• If next state function St x At  St+1 is known

– can use dynamic programming to learn V(S)

– once learned, choose action At that maximizes V(St+1)

• If next state function St x At  St+1 unknown

– learn Q(St,At) = E[V(St+1)]

– to learn, sample St x At  St+1 in actual world

– once learned, choose action At that maximizes Q(St,At)

MDP’s and RL: What You Should Know

