Reinforcement Learning

Maria-Florina Balcan
Carnegie Mellon University
04/18/2018

Today: Readings:

. . Mitchell, chapter 13
« Learning of control policies

« Markov Decision Processes » Kaelbling, et al., Reinforcement
« Temporal difference learning Learning: A Survey

 Q learning

Slides courtesy: Tom Mitchell

AAAAAAAAAAAAAAA

rrrrrrrrrr Tom Mitchell, April 2011

Overview

 Different from ML pbs so far:

« Our decisions influence the next example we see.
Decisions we make will be about actions to take (e.qg.,
a robot deciding which way to move next), which will
Influence what we see next.

« Goal will be not just to predict (say, whether there is a
door in front of us or not) but to decide what to do.

« Model: Markov Decision Processes.

MACHINE LEARNING

ssssssssss Tom Mitchell, April 2011

Reinforcement Learning

[Sutton and Barto 1981; Samuel 1957; ...]

Main impact of our actions will not come right away but instead that will
only come later.

A | |
ol ¥ of ¥ 100|
L
-
a0 100 _"'l‘j G
A A A
| | |
a1l 90 gl 10D

V* (S) — E[rt + Y rt+1 + yzrt+2 +]

Tom Mitchell, April 2011

Reinforcement Learning: Backgammon

[Tessauro, 1995]

Learning task:
» chose move at arbitrary board states

Training signal:
« final win or loss at the end of the game

Training:
« played 300,000 games against itself

Algorithm:
« reinforcement learning + neural network

Result:
* World-class Backgammon player

nnnnnnnnnnnnnnn

rrrrrrrrrr Tom Mitchell, April 2011

Outline

« Learning control strategies
— Credit assignment and delayed reward
— Discounted rewards

« Markov Decision Processes
— Solving a known MDP

* Online learning of control strategies
— When next-state function is known: value function V*(s)
— When next-state function unknown: learning Q’(s,a)

* Role in modeling reward learning in animals

MACHINE LEARNING

ssssssssss Tom Mitchell, April 2011

Reinforcement Learning Problem

Agent lives in some
environment; in some

state:
* Robot: where robot Agent

IS, what direction it is

pointing, etc.
« Backgammon, state

of the board (Where State Reward Action

all pieces are).

Environment
[’ 7 o
SO 0 - S] [- 52—2—-- .
"o 1)

Goal: Maximize long
term discounted reward. Goal: Learn to choose actions that maximize
|.e.: want a lot of reward, . +’)’r}+’)’2r2+... , where 0 <y <!

prefer getting it earlier to 0

Ni]Etting it later.

MMMMMM E LEARNING

rrrrrrrrrr Tom Mitchell, April 2011

Markov Decision Process = Reinforcement Learning Setting

Agent

Stan/%eward \ct’lon

Environment

« Set of states S 0 ;o 2

« Set of actions A ’ ! ’

« At each time, agent observes state s, € S, then chooses action a, € A
« Then receives reward r,, and state changes to s,,,

« Markov assumption: P(s.; | Sy @, Siq, @igs --.) = P(Seq | Sp @)

* Also assume reward Markov: P(r,|s, &, S¢1, @.q,...) = P(r; | i, @)

E.qg., if tell robot to move forward one meter, maybe it ends up moving forward 1.5 meters by
mistake, so where the robot is at time t+1 can be a probabilistic function of where it was at
time t and the action taken, but shouldn’t depend on how we got to that state.

The task: learn a policy n: S = A for choosing actions that maximizes
2
Elre+yr4p1+7v 42+ 0<y<1

for every possible starting state s,

MACHINE LEARNING Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent
Execute actions in environment, observe results, and

« Learn control policy n: S=>A that maximizesi ~EE[r]
from every state s € S t=0

Example: Robot grid world, deterministic reward r(s,a)

0 * Actions: move up, down, left, and right
0 - 100 - [except when you are in the top-right you stay there, and say any action that
= — G bumps you into a wall leaves you were you were]]
| . . .
0 reward fns r(s,a) is deterministic with reward 100
0 0 * for entering the top-right and O everywhere else.
0 0 100
0
—~-— —-—
0 0

AAAAAAAAAAAAAAA

nnnnnnnnnn Tom Mitchell, April 2011

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results and

 Learn control policy ©: S=>A that maximizes Z v Ery]
from every states € S t=0

Yikes!!

* Function to be learned is t: S2>A

« But training examples are not of the form <s, a>
« They are instead of the form < <s,a>, r >

MACHINE LEARNING

ssssssssss Tom Mitchell, April 2011

Value Function for each Policy J: e (@

Given a policy n: S - A, define - i?

o0
t assuming action sequence chosen
V7T(s) = E[>_ ~'r] Ny g
=0 according to =, starting at state s

expected discounted reward we will get starting from state s if we follow policy .

 Goal: find the optimal policy " where policy whose value function is

" the maximum out of all policies

T = ard max V7T S \V/S simultaneously for all states
gmaxV7™(s), (Vs)

« For any MDP, such a policy exists!
« We’'ll abbreviate V*7(s) as V*(s)

* Note if we have V*(s) and P(s.,,|s,a), we can compute
*(s)
n*(s) = argmaxy[r(s,a) +y Z P(s'|s,a)V*(s)]

MACHINE LEARNING

rrrrrrrrrr Tom Mitchell, April 2011

Value Function — what are the V7*(s) values?
V7i(s) = E[Z 7]

UWOSC /\1/15 shown \O/ Cl*fc\ o{ A cfon ﬁ«em ch)q
5UP?OSC Y 0 7 S’tcd'ﬂ
e o
@‘D *@m (\
0 1[]&(/
— - éh-—

r(s,a) (immediate reward)

uuuuuuuuuuuuuuu

nnnnnnnnnn Tom Mitchell, April 2011

Value Function — what are the V*(s) values?
VT(s) = E[Y_ ~'ri]

t=0
SVVVOSC /ﬁ/ls SL\OWV\ \07/ Cl\fc)ca(G\C“{’IDV\ ‘P

V&M t’qc)q
5(/(7?05(X: 0.9 Stete
00l O/
VRN T GO
0
T
0 10
o e
54 - 70 < OO

uuuuuuuuuuuuuuu

Value Function — what are the V*(s) values?

VT(s) = E[Y_ ']
t=0

-ai—
0
0 0 *
0 0 100
g —a—
0 0

r(s,a) (immediate reward)

AAAAAAAAAAA

rrrrrrrrrr Tom Mitchell, April 2011

) . 0 Immediate rewards r(s,a)
S - —— G .
T State values V*(s)
0 0
OH OH 100*
Ol Ol
T 5

T T G 90 ol 100 _: G
™ T 81 _:I: 90 :: 100
One optimal policy V*(s) values

NNNNNNNNNNNNN

rrrrrrrrrr Tom Mitchell, April 2011

Recursive definition for V*(S)

. e . assuming actions are
Vi(s) = E| Z Y] chosen according to the
t=0 optimal policy, r*

V*(s1) = E[r(s1,a1)]+E[yr(s2, a2)]+E[yr(s3,a3)]+. ..

V*(s1) = Elr(s1,a1)] 4 7By, sy a0 [V*(52)]

Value *(s;) of performing optimal policy from s,, is expected reward of the first action a,
taken plus y times the expected value, over states s, reached by performing action a,
from s,, of the value V*(s,) of performing the optimal policy from then on.

V*(s) = E[r(s, 7" (s))] + VE 1575 () [V*(s))]

optimal value of any state s is the expected reward of performing 7*(s) from s plus
y times the expected value, over states s’ reached by performing that action from state s,
of the optimal value of s’.

MACHINE LEARNING

ssssssssss Tom Mitchell, April 2011

Value lteration for learning V* : assumes P(S.,,|S;, A) known

Initialize V(s) to O [optimal value can get in zero steps]
For t=1, 2, ... [Loop until policy good enough]

Loop forsinS Inductively, if V is optimal discounted reward can get in t-1 steps,
Q(s,a) is value of performing action a from state s and then being
Loop forain A optimal from then on for the next t-1 steps.

. Q(s,a) —r(s,a) +~ Z P(s'|s,a)V (s)
s'eS
V(s) «— max Q(s,a)

End |00p Optimal expected di.scounted rewar.d can 5
get by taking an action and then being

End |OOp optimal for t-1 steps= optimal expected O - 1[:&.-... G
discounted reward can get in t steps.
Q

* | 0 0
V(s) converges to V*(s) 0 DH 10 o*

Dynamic programming

MACHINE LEARNING
nnnnnnnnnn

Value lteration for learning V* : assumes P(S.,,|S;, A) known

Initialize V(s) to O [optimal value can get in zero steps]
For t=1, 2, ... [Loop until policy good enough]

LOOp fO[’ S in S each round we are computing the value of performing the optimal t-step policy starting
from t=0, then t=1, t=2, etc, and since y*¢ goes to 0, once t is large enough this will be
close to the optimal value V* for the infinite-horizon case.

Loop forain A
. Q(s,a) —r(s,a) +~ Z P(s'|s,a)V (s)

'eS
V(s) «— maxQ(s,a) S
End loop 0
NN - 1%.-...
End loop . G

* | 0 0
V(s) converges to V*(s) 0 DH 10 o*

Dynamic programming

AAAAAAAAAAAAAAA
zzzzzzzzzz

Value lteration for learning V* : assumes P(S.,,|S;, A) known

Initialize V(s) to O [optimal value can get in zero steps]
For t=1, 2, ... [Loop until policy good enough]
Loop forsin S

Loop forain A
. Q(s,a) —r(s,a) +~ Z P(s'|s,a)V (s)

s'eS
V(s) «— maxQ(s,a)
a
End loop 0
0 100
End loop G
~ai—
* Round t=0 we have V(s)=0 for all s. 0
« After round t=1, a top-row of 0, 100, 0 and a 0 Q
bottom-row of 0, 0, 100.
« After the next round (t=2), a top row of 90, 100, & 0 100
0 and a bottom row of 0, 90, 100. 0 0
« After the next round (t=3) we will have a top-row — —{—
of 90, 100, 0 and a bottom row of 81, 90, 100, ~—
MLand it will then stay there forever 0 0]

AAAAAAAAAAAAAAA
zzzzzzzzzz

Value lteration

So far, in our DP, each round we cycled through each state exactly once.

Interestingly, value iteration works even if we randomly traverse the

environment instead of looping through each state and action
methodically

* but we must still visit each state infinitely often on an infinite run
* For details: [Bertsekas 1989]

* Implications: online learning as agent randomly roams

If for our DP, max (over states) difference between two successive
value function estimates is less than g, then the value of the greedy
policy differs from the optimal policy by no more than

ey /(1 =)

MACHINE LEARNING
nnnnnnnn

Tom Mitchell, April 2011

So far: learning optimal policy when we
know P(s, | S, &.4)

What if we don’t?

NNNNNNNNNNNNNNN

rrrrrrrrrr Tom Mitchell, April 2011

Q learning
Define new function, closely related to V*

Vi(s) = JE:[I(“ I*{"}H { 'H.‘JE.‘:"hr'{.afl[i’“"::#("";:]]
V*(s) is the expected discounted reward of following the optimal policy from time 0 onward.
Q(s,a) = Elr(s.a)] + vEq [V (s")]

Q(s,a) is the expected discounted reward of first doing action a and then following the optimal
policy from the next step onward.

If agent knows Q(s,a), it can choose optimal action
without knowing P(s,,,|s.,a) !
7 (s) = arg max Q(s,a) V*(s) = max Q(s, a)

Just chose the action that maximizes the Q value

And, it can learn Q without knowing P(s,,,|s;,a)
using something very much like the dynamic programming algorithm we used to compute V*.

MACHINE LEARNING

ssssssssss Tom Mitchell, April 2011

Immediate rewards r(s,a)
State values V*(s)

State-action values Q*(s,a)

V*(s) = Elr(s, 7 ()] + 7By s () [V ()]

Bellman equation.

(2(‘: U:I = _E[-‘;—{,g__ EL)] | '“.f-E_.,-f r:“"”:f;.‘ir}]

Consider first the case where
P(s’| s,a) is deterministic

AAAAAAAAAAAAAAA
zzzzzzzzzz

79
100*

-

0

r(s,a) (immediate reward) values

90 ;l' 100 |

N EE -1

H

8l o 90

H

Q(s,a) values

V*(s) values

One optimal policy

Tom Mitchell, April 2011

nnnnnnnnnnnnnnn
zzzzzzzzzz

Training Rule to Learn @

[simplicity assume the transitions and rewards are deterministic.]

Note @ and V* closely related: Optimal value of a state s is the

maximum, over actions a’ of Q(s,a’).
/
V¥i(s) = max Q(s,a’)

Which allows us to write) recursively as

Q(st,ar) = r(st,a:) + vV (0(s4,a1)))
= (s, @) +ymax Q(syy1, @)

Nice! Let @ denote learner’s current approximation
to Q COHSidBI’ training rule Given current approx Q to Q, if we are
in state s and perform action a and get
A Y to state s’, update our estimate Q(s, a)
Q(S, (l) —r+v IIlE;lXQ(S ,) to the reward r we got plus gamma
a

times the maximum over a’ of Q(s’,a’)

where s’ is the state resulting from applying action
a 1n state s

Tom Mitchell, April 2011

@ Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for @(3, a) as follows:

Q(s,a) <1+~ mﬂ@x@(s’? a')

03%3’

uuuuuuuuuuuuu

nnnnnnnnnn Tom Mitchell, April 2011

Updating Q

72 100 50 moL
R [™ & R
53 53
+31 +31
—
arigkt
initial state: SI next state: 32

e

Q(51, Qright) < T+ ’ymaqx@(sz,a’)
~ 0+ 0.9 max{63,81,100}
+ 90

notice if rewards non-negative, then

(V'Svavn) @71+1(37a) > @ﬂ(sva’)

and ,\
(VS,CL,TL) 0 E Qn(sva’) E Q(S,CE)

nnnnnnnnnnnnnnn

rrrrrrrrrr Tom Mitchell, April 2011

Q converges to Q. Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a full interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of v

Let @n be table after n updates, and A, be the
maximum error in (),; that is

n — H}%'X |Qn(3aa’) T Q(S?G;)'

For any table entry Q,(s,a) updated on iteration
n + 1, the error in the revised estimate @, 1(s,a) is

Qni1(s,a) — Q(s,a)| = |(r+ Y max Q.(s,a") Use general fact:
(Y max (s) g o) g 0 <

ol max Q.(s', d) — IHGE}XQ(S!? G’V max | fi(a) — f>(a)|
max Q.(s',d') — Q(s',)

ymax |Qu(s",a') = Q(s",a)|

,},A;

IA

IA

Qu+1(s,a) — Q(s,)|

IA

nnnnnnnnnn Tom Mitchell, April 2011

nnnnnnnnnnnnnnn
zzzzzzzzzz

Nondeterministic Case

() learning generalizes to nondeterministic worlds
Alter training rule to

@71 (39 GL) — (l_an)Qn—l (37 CL) +O—".'1 [?"-{-IHE}X Qn—l (3": (}LI)]
where

_ 1

1+ visits,(s, a)

aﬂ

Can still prove convergence of Q to @ [Watkins and
Dayan, 1992]

Rather than replacing the old estimate with the new estimate, you want to compute a weighted average of
them: (1 — a,,) times your old estimate plus a,, times your new estimate. This way you average out the
probabilistic fluctuations, and one can show that this still converges.

Tom Mitchell, April 2011

MDP’s and RL: What You Should Know

« Learning to choose optimal actions A
 From delayed reward
« By learning evaluation functions like V(S), Q(S,A)

Key ideas:
« If next state function S, x A, 2 S, is known

— can use dynamic programming to learn V(S)

— once learned, choose action A, that maximizes V(S,,,)
« If next state function S; x A, 2 S;;; unknown

— learn Q(S.A) = E[V(S;41)]

— tolearn, sample S, x A, = S,,; in actual world

— once learned, choose action A, that maximizes Q(S,,A,)

MACHINE LEARNING
nnnnnnnn

Tom Mitchell, April 2011

