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Today:
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• Temporal difference learning
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Readings:
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Overview

• Different from ML pbs so far:  

• Our decisions influence the next example we see. 

Decisions we make will be about actions to take (e.g., 

a robot deciding which way to move next), which will 

influence what we see next. 

• Goal will be not just to predict (say, whether there is a 

door in front of us or not) but to decide what to do. 

• Model: Markov Decision Processes. 
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Reinforcement Learning
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[Sutton and Barto 1981; Samuel 1957; ...]

Main impact of our actions will not come right away but instead that will 

only come later. 
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Reinforcement Learning: Backgammon
[Tessauro, 1995]

Learning task: 

• chose move at arbitrary board states

Training signal: 

• final win or loss at the end of the game

Training:

• played 300,000 games against itself

Algorithm:

• reinforcement learning + neural network

Result:

• World-class Backgammon player
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• Learning control strategies

– Credit assignment and delayed reward

– Discounted rewards

• Markov Decision Processes

– Solving a known MDP

• Online learning of control strategies

– When next-state function is known: value function V*(s)

– When next-state function unknown: learning Q*(s,a)

• Role in modeling reward learning in animals

Outline
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Agent lives in some 

environment; in some 

state: 

• Robot: where robot 

is, what direction it is 

pointing, etc.  

• Backgammon, state 

of the board (where 

all pieces are).

Goal: Maximize long 

term discounted reward.

I.e.: want a lot of reward, 

prefer getting it earlier to 

getting it later.
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• Set of states S

• Set of actions A

• At each time, agent observes state st  S, then chooses action at  A

• Then receives reward rt , and state changes to st+1

• Markov assumption: P(st+1 | st, at, st-1, at-1, ...) = P(st+1 | st, at)

• Also assume reward Markov:  P(rt | st, at, st-1, at-1,...) = P(rt | st, at)

• The task: learn a policy : S  A for choosing actions that maximizes

Markov Decision Process = Reinforcement Learning Setting

for every possible starting state s0

E.g., if tell robot to move forward one meter, maybe it ends up moving forward 1.5 meters by 

mistake, so where the robot is at time t+1 can be a probabilistic function of where it was at 

time t and the action taken, but shouldn’t depend on how we got to that state.
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Execute actions in environment, observe results, and

• Learn control policy : SA that maximizes                

from every state s  S

Example: Robot grid world, deterministic reward r(s,a)

Reinforcement Learning Task for Autonomous Agent

• Actions: move up, down, left, and right 
[except when you are in the top-right you stay there, and say any action that 

bumps you into a wall leaves you were you were]] 

• reward fns r(s,a) is deterministic with reward 100 

for entering the top-right and 0 everywhere else.



Tom Mitchell, April 2011

Execute actions in environment, observe results, and

• Learn control policy : SA that maximizes                

from every state s  S

Yikes!!

• Function to be learned is : SA 

• But training examples are not of the form <s, a>

• They are instead of the form < <s,a>, r >

Reinforcement Learning Task for Autonomous Agent
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• Given a policy  : S  A, define 

• Goal: find the optimal policy * where

• For any MDP, such a policy exists!

• We’ll abbreviate V *(s) as V*(s)

• Note if we have V*(s) and P(st+1|st,a), we can compute 

*(s)    

Value Function for each Policy

assuming action sequence chosen 

according to , starting at state s

expected discounted reward we will get starting from state s if we follow policy π. 

policy whose value function is 

the maximum out of all policies 

simultaneously for all states

𝜋∗ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎[𝑟 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗(𝑠′)]
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Value Function – what are the V(s) values?
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Value Function – what are the V(s) values?



Tom Mitchell, April 2011

Value Function – what are the V*(s) values?
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Immediate rewards r(s,a)

State values V*(s)
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Recursive definition for V*(S)

assuming actions are 

chosen according to the 

optimal policy, *

Value 𝑉∗(𝑠1) of performing optimal policy from 𝑠1, is expected reward of the first action 𝑎1
taken plus 𝛾 times the expected value, over states 𝑠2 reached by performing action 𝑎1
from 𝑠1, of the value 𝑉∗(𝑠2) of performing the optimal policy from then on. 

optimal value of any state s is the expected reward of performing 𝜋∗(𝑠) from s plus 

𝛾 times the expected value, over states s’ reached by performing that action from state s, 

of the optimal value of s’.
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Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

V(s) converges to V*(s)

Dynamic programming

[optimal value can get in zero steps]

Inductively, if V is optimal discounted reward can get in t-1 steps, 

Q(s,a) is value of performing action a from state s and then being 

optimal from then on for the next t-1 steps. 

Optimal expected discounted reward can 

get by taking an action and then being 

optimal for t-1 steps= optimal expected 

discounted reward can get in t steps.
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Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

V(s) converges to V*(s)

Dynamic programming

[optimal value can get in zero steps]

each round we are computing the value of performing the optimal t-step policy starting 

from t=0, then t=1, t=2, etc, and since 𝛾𝑡 goes to 0, once t is large enough this will be 

close to the optimal value 𝑉∗ for the infinite-horizon case.
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Value Iteration for learning V* : assumes P(St+1|St, A) known

Initialize V(s) to 0

For t=1, 2, … [Loop until policy good enough]

Loop for s in S

Loop for a in A

•

End loop

End loop

[optimal value can get in zero steps]

• Round t=0 we have V(s)=0 for all s. 

• After round t=1, a top-row of 0, 100, 0 and a 

bottom-row of 0, 0, 100. 

• After the next round (t=2), a top row of 90, 100, 

0 and a bottom row of 0, 90, 100. 

• After the next round (t=3) we will have a top-row 

of 90, 100, 0 and a bottom row of 81, 90, 100, 

and it will then stay there forever
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Interestingly, value iteration works even if we randomly traverse the 

environment instead of looping through each state and action 

methodically 

• but we must still visit each state infinitely often on an infinite run

• For details: [Bertsekas 1989]

• Implications: online learning as agent randomly roams

If for our DP,  max (over states) difference between two successive 

value function estimates is less than , then the value of the greedy 

policy differs from the optimal policy by no more than 

Value Iteration

So far, in our DP, each round we cycled through each state exactly once.
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So far: learning optimal policy when we 

know P(st | st-1, at-1)

What if we don’t?
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Q learning
Define new function, closely related to V*

If agent knows Q(s,a), it can choose optimal action 

without knowing P(st+1|st,a)  !

And, it can learn Q without knowing P(st+1|st,a)

V*(s) is the expected discounted reward of following the optimal policy from time 0 onward. 

Q(s,a) is the expected discounted reward of first doing action a and then following the optimal 

policy from the next step onward. 

Just chose the action that maximizes the Q value

using something very much like the dynamic programming algorithm we used to compute V*.
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Immediate rewards r(s,a)

State values V*(s)

State-action values Q*(s,a)

Bellman equation.  

Consider first the case where 

P(s’| s,a) is deterministic
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[simplicity assume the transitions and rewards are deterministic. ]

Optimal value of a state s is the 

maximum, over actions a’ of Q(s,a’). 

Given current approx ෠𝑄 to Q, if we are 

in state s and perform action a and get 

to state s’, update our estimate ෠𝑄(𝑠, 𝑎)
to the reward r we got plus gamma 

times the maximum over a’ of ෠𝑄(𝑠′, 𝑎′)
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Use general fact:
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Rather than replacing the old estimate with the new estimate, you want to compute a weighted average of 

them: (1 − α𝑛) times your old estimate plus α𝑛 times your new estimate.   This way you average out the 

probabilistic fluctuations, and one can show that this still converges.
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• Learning to choose optimal actions A

• From delayed reward

• By learning evaluation functions like V(S), Q(S,A)

Key ideas:

• If next state function St x At  St+1 is known

– can use dynamic programming to learn V(S)

– once learned, choose action At that maximizes V(St+1)

• If next state function St x At  St+1 unknown

– learn Q(St,At) = E[V(St+1)]

– to learn, sample St x At  St+1 in actual world

– once learned, choose action At that maximizes Q(St,At)

MDP’s and RL: What You Should Know


