Principal Component Analysis (PCA)

Learning Representations.
Dimensionality Reduction.

Maria-Florina Balcan
04/11/2018



« Big & High-Dimensional Data.

» Useful to learn lower dimensional
representations of the data.



Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

Useful for:
e Visualization

« More efficient use of resources
(e.g., time, memory, communication)

 Statistical: fewer dimensions > better generalization
 Noise removal (improving data quality)

« Further processing by machine learning algorithms



Principal Component Analysis (PCA)

What is PCA: Unsupervised technique for extracting
variance structure from high dimensional datasets.

Nt

PCA is an orthogonal projection or transformation of the data
into a (possibly lower dimensional) subspace so that the variance
of the projected data is maximized.



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions
that capture most of the variance in the data.

« 1st PC - direction of greatest variability in data.

« 2ndPC - Next orthogonal (uncorrelated) direction
of greatest variability

(remove all variability in first direction, then find next direction of
greatest variability)

e Andsoon ..



Principal Component Analysis (PCA)

Let vy, vy, ..., vq denote the d principal components.
vi-vi =0,i#j andvi-v; =1, i=j

Assume data is centered (we extracted the sample mean).|

Let X = [xq, X3, ..., Xn] (columns are the datapoints)

Find vector that maximizes sample variance of projected data
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_ Wrap constraints into the
Lagrangian: maxy v/ XX'v —avly objective function

0/0v =0 (XXT — A)v = 0 = (XXT)v = Av




Principal Component Analysis (PCA)

(XXT)v =2Av, so v (the first PC) is the eigenvector
of sample correlation/covariance matrix X X'

Sample variance of projection v X X'v = Aviv =1

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Eigenvalues 1, = 1, = 15 > -+

* The 15 PC v, is the the eigenvector of the sample covariance matrix
X X" associated with the largest eigenvalue

« The 2nd PC v, is the the eigenvector of the sample covariance
matrix X X" associated with the second largest eigenvalue

e Andsoon ..



Principal Component Analysis (PCA)

« So, the new axes are the eigenvectors of the matrix of sample
correlations X X" of the data.

« Transformed features are uncorrelated.

X2 +¢)

% X1

Geometrically: centering followed by rotation.

- Linear transformation

Key computation: eigendecomposition of XX” (closely related
to SVD of X).



Two Interpretations

So far: Maximum Variance Subspace. PCA finds vectors v such that
projections on to the vectors capture maximum variance in the data

n
Z (VTXz')Q = vIxXxTy

1
=1

Alternative viewpoint: Minimum Reconstruction Error. PCA
finds vectors v such that projection on to the vectors yields
minimum MSE reconstruction



Two Interpretations
E.g., for the first component.

Maximum Variance Direction: 15t PC a vector v such that projection
on to this vector capture maximum variance in the data (out of all
possible one dimensional projections)

1 n
— Z vix)? = vIXXTy
n,—

Minimum Reconstruction Error: 15t PC a vector v such that
projection on to this vector yields minimum MSE reconstruction
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Why? Pythagorean Theorem

E.g., for the first component.

Maximum Variance Direction: 15t PC a vector v such that projection
on to this vector capture maximum variance in the data (out of all
possible one dimensional projections)

1 & g TxxTy 1 >
EZ Vv Xz) =v XX ; Z ||X’L (V Xz)VH

Minimum Reconstruction Error: 15t PC a vector v such that
projection on to this vector yields minimum MSE reconstruction

blue? + green? = black? Xj
black? is fixed (it's just the data)

So, maximizing blue? is
equivalent to minimizing green?



Dimensionality Reduction using PCA

The eigenvalue 1 denotes the amount of variability captured along
that dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directi

ons =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with [/
non-zero eigenvalues, say vy, ..., vi,, where k=rank(X X")

Original representation Transformed representation

Data point projection |
x; = (xf, ., x7) (Vg - x4, o, vg - XY

D-dimensional vector d-dimensional vector




Dimensionality Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues

Can ignore the components of smaller significance.
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Might lose some info, but if eigenvalues are small, do not lose much



Example: faces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)

Can represent a face image using just 15 numbers!



PCA provably useful before doing k-means clustering and also
empirically useful. E.g.,

> Performance: cost increase < 5%; x10 to x100 speedup

> k-Means Clustering: k-means cost/time vs dimension
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PCA Discussion

Strengths

Eigenvector method
No ftuning of the parameters

No local optima

Weaknesses

Limited to second order statistics

Limited to linear projections
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What You Should Know

* Principal Component Analysis (PCA)
« What PCA is, what is useful for.

* Both the maximum variance subspace and the
minimum reconstruction error viewpoint.



