Model Selection

Maria-Florina (Nina) Balcan 03/19/2018

Two Core Aspects of Machine Learning

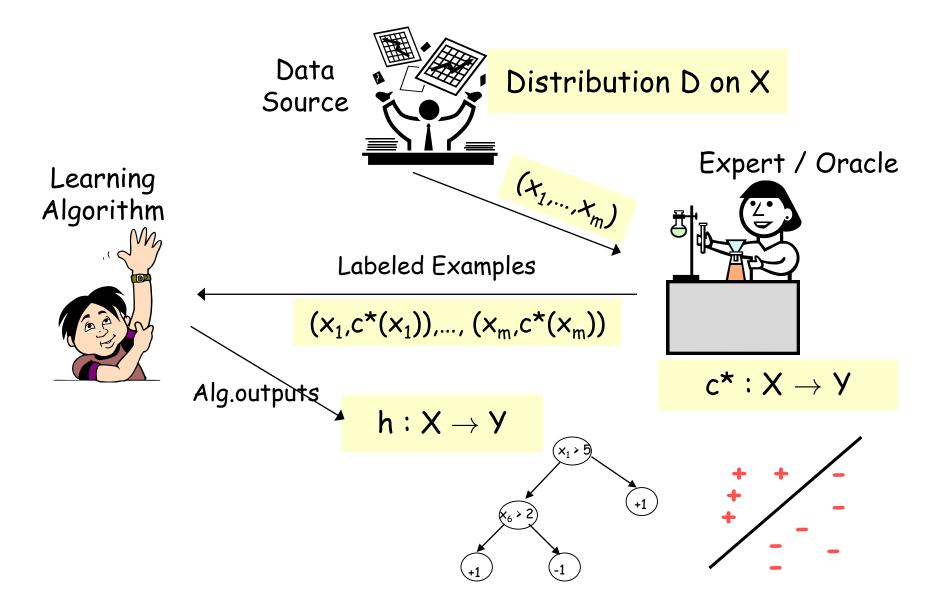
Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

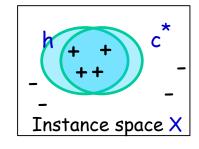
PAC/SLT models for Supervised Learning



PAC/SLT models for Supervised Learning

- X feature/instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples drawn i.i.d. from D and labeled by target c*
 - labels $\in \{-1,1\}$ binary classification
- Algo does optimization over S, find hypothesis h.
- Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$



Bias: fix hypothesis space H [whose complexity is not too large]

- Realizable: $c^* \in H$.
- Agnostic: c^* "close to" H.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

So, if $c^* \in H$ and can find consistent fns, then only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

Agnostic Case

What if there is no perfect h?

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces

Theorem (agnostic case)

$$m = O\left(\frac{1}{\epsilon^2}\left(VCdim(H) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

labeled examples are sufficient s.t. with probability at least $1-\delta$ for all h in H $|err_D(h) - err_S(h)| \le \epsilon$

Statistical Learning Theory Style

With prob at least $1 - \delta$ for all h in H

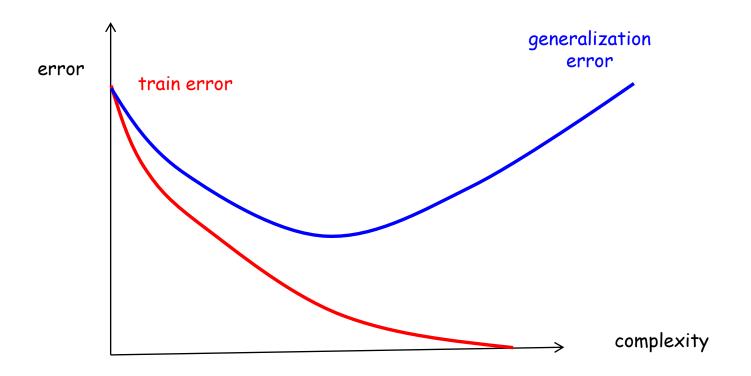
$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{1}{2m} \left(VCdim(H) + \ln\left(\frac{1}{\delta}\right) \right)}.$$

Can we use our bounds for model selection?

True Error, Training Error, Overfitting

Model selection: trade-off between decreasing training error and keeping H simple.

 $\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{\operatorname{VCdim}(H)}{m}} + \dots$



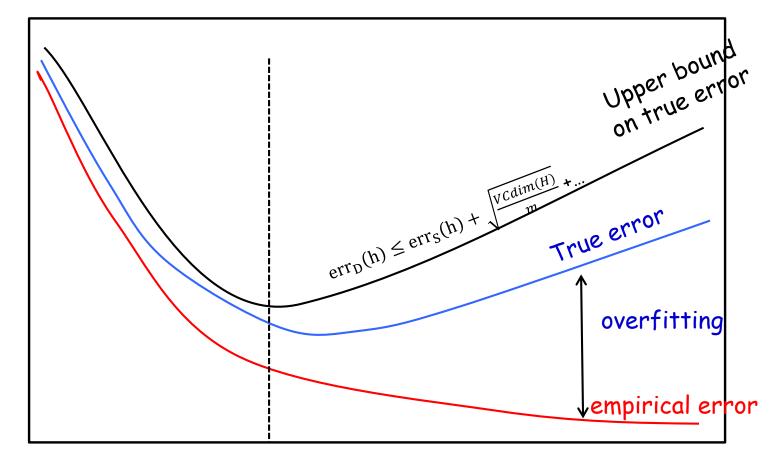
Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$

error

rate

(E.g., H_i = decision trees of depth i)



Hypothesis complexity

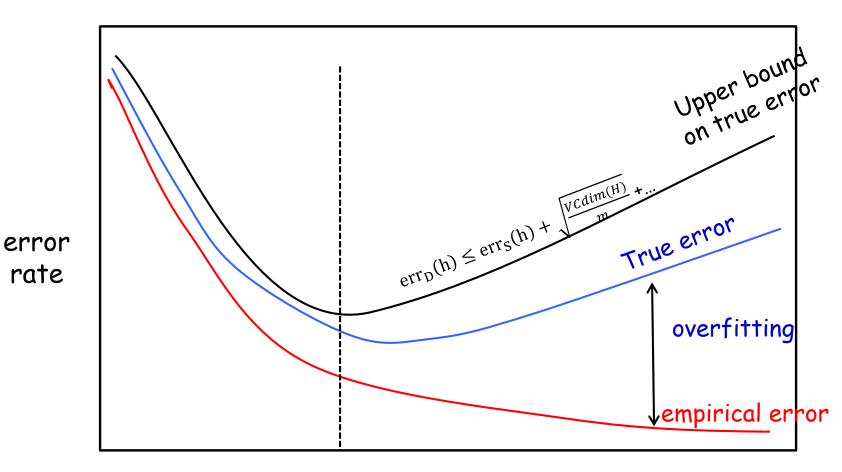
What happens if we increase m?

Black curve will stay close to the red curve for longer, everything shift to the right...

Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$

rate



Hypothesis complexity

Structural Risk Minimization (SRM)

- $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$
- $\hat{h}_k = argmin_{h \in H_k} \{err_S(h)\}$ As k increases, $err_S(\hat{h}_k)$ goes down but complex. term goes up.
- $\hat{k} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_{k}) + \operatorname{complexity}(H_{k}) \}$ Output $\hat{h} = \hat{h}_{\hat{k}}$

Claim: W.h.p., $err_D(\hat{h}) \leq min_{k^*} min_{h^* \in H_{L^*}} [err_D(h^*) + 2complexity(H_{k^*})]$

Techniques to Handle Overfitting

- Structural Risk Minimization (SRM). $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \cdots$ Minimize gener. bound: $\hat{h} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_k) + \operatorname{complexity}(H_k) \}$
 - Often computationally hard....
 - Nice case where it is possible: M. Kearns, Y. Mansour, ICML'98, "A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization"
- Regularization: general family closely related to SRM
 - E.g., SVM, regularized logistic regression, etc.
 - minimizes expressions of the form: $err_S(h) + \lambda ||h||^2$

Cross Validation:

 Hold out part of the training data and use it as a proxy for the generalization error

What you should know

- The importance of sample complexity in Machine Learning.
- Understand meaning of PAC bounds (what PAC stands for, meaning of parameters ϵ and δ).
- Shattering, VC dimension as measure of complexity, form of the VC bounds.

Model Selection, Structural Risk Minimization.