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Model Selection 



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.



Labeled Examples  

PAC/SLT models for Supervised Learning
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• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification
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• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

What if there is no perfect h? 

Agnostic Case

So, if c∗ ∈ H and can find consistent fns, then only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case



Sample Complexity: Infinite Hypothesis Spaces

errD h ≤ errS h +
1

2m
𝑉𝐶𝑑𝑖𝑚 𝐻 + ln

1

𝛿
.

Statistical Learning Theory Style

𝑚 = O
1

𝜖2
𝑉𝐶𝑑𝑖𝑚 𝐻 + log

1

𝛿

labeled examples are sufficient s.t. with probability at least 1 − 𝛿

for all h in H 𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ) ≤ 𝜖

With prob at least 1 − 𝛿 for all h in H

Theorem (agnostic case)



Can we use our bounds for 
model selection?



True Error, Training Error, Overfitting

error

complexity

train error

generalization
error

errD h ≤ errS h +
𝑉𝐶𝑑𝑖𝑚(𝐻)

𝑚
+…

Model selection: trade-off between decreasing training error and 
keeping H simple.



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

(E.g., 𝐻𝑖= decision trees of depth i)



What happens if we increase m?

Black curve will stay close to the red curve for 
longer, everything shift to the right…



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 



Structural Risk Minimization (SRM)

As k increases, errS ෠hk goes down but complex. term goes up.

• 𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

• ෠hk = argminh∈Hk
{errS h }

• ෠𝑘 = argmink≥1{errS ෠hk + complexity(Hk)}

Output ෠ℎ = ෠ℎ෠𝑘

Claim: W.h.p., errD ෠h ≤ mink∗minh∗∈Hk∗
errD h∗ + 2complexity Hk∗



Techniques to Handle Overfitting

• Cross Validation: 

• Structural Risk Minimization (SRM).

• Regularization:

Minimize gener. bound:

• minimizes expressions of the form: errS h + λ h
2

• E.g., SVM, regularized logistic regression, etc.

• Hold out part of the training data and use it as a proxy for the 
generalization error

෠ℎ = argmink≥1{errS ෠hk + complexity(Hk)}

𝐻1 ⊆ 𝐻2 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

general family closely related to SRM

• Often computationally hard….

• Nice case where it is possible: M. Kearns, Y. Mansour, ICML’98, “A Fast, Bottom-Up 
Decision Tree Pruning Algorithm with Near-Optimal Generalization” 



What you should know

• Shattering, VC dimension as measure of complexity, 
form of the VC bounds.

• The importance of sample complexity in Machine 
Learning.

• Understand meaning of PAC bounds (what PAC stands 
for, meaning of parameters 𝜖 and δ).

• Model Selection, Structural Risk Minimization.


