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1 Rademacher Complexity

1.1 Motivation

The ultimate goal of passive supervised machine learning is to find a hypothesis function based on a
set of examples that has small error with respect to some target function. This goal is independent
of most aspects of the learning setting—that is, the same goal applies to both classification and
regression problems in both the realizable and agnostic cases—so it would be nice to have a general
way of dealing with this type of problem.

Often, our attempts to get a handle on the sufficient conditions for learning (most notably in the
PAC model) led us to proving results known as uniform convergence bounds. These bounds stated
that the empirical errors of concepts from a given concept class H converge uniformly to their true
errors. In other words, we bounded the difference between the training error and generalization
error for all functions in H.

Through our discussions of VC theory we have seen that we can improve generalization by
controlling the complexity of the concept class H from which we are choosing a hypothesis. We
saw that the shatter coefficient and VC dimension were useful measures of complexity because we
could bound the performance of a learning algorithm in terms of these quantities and the amount
of data we have.

The bounds we derived based on VC dimension were distribution independent. In some sense,
distribution independence is a nice property because it guarantees the bounds to hold for any data
distribution. On the other hand, the bounds may not be tight for some specific distributions that are
more benign than the worst case. Furthermore, the concepts used in defining VC dimension apply
only to binary classification, but we are often interested in generalization bounds for multiclass
classification and regression as well.

Rademacher complexity is a more modern notion of complexity that is distribution dependent
and defined for any class real-valued functions (not only discrete-valued functions).

1.2 Definitions

Given a space Z and a fixed distribution D|Z , let S = {z1, . . . , zm} be a set of examples drawn
i.i.d. from D|Z . Furthermore, let F be a class of functions f : Z → R.

Definition. The empirical Rademacher complexity of F is defined to be

R̂m(F) = Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σif(zi)

)]
where σ1, . . . , σm are independent random variables uniformly chosen from {−1, 1}. We will refer
to such random variables as Rademacher variables.

Definition. The Rademacher complexity of F is defined as

Rm(F) = ED[R̂m(F)]
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Intuitively, the supremum measures, for a given set S and Rademacher vector σ, the maximum
correlation between f(zi) and σi over all f ∈ F . Taking the expectation over σ, we can then say
that the empirical Rademacher complexity of F measures the ability of functions from F (when
applied to a fixed set S) to fit random noise. The Rademacher complexity of F then measures the
expected noise-fitting-ability of F over all data sets S ∈ Zm that could be drawn according to the
distribution D|Z .

We note that Rademacher complexity can be defined even more generally on sets A ⊆ Rm by
making the supremum over a ∈ A (instead of f ∈ F) and replacing each f(zi) with ai. Taking
A = F(S) = {f(z) | f ∈ F , z ∈ S} recovers the definition above. It will sometimes be convenient
to use the more general definition.

1.3 A General Sample Complexity Result

1.3.1 A useful tail inequality

In deriving generalization bounds using Rademacher complexity, we will make use of the following
concentration bound. The bound, also known as the bounded differences inequality, can be very
useful in other applications as well.

Theorem 1 (McDiarmid Inequality). Let x1, . . . , xn be independent random variables taking on
values in a set A and let c1, . . . , cn be positive real constants. If ϕ : An → R satisfies

sup
x1,...,xn,x′i∈A

|ϕ(x1, . . . , xi, . . . , xn)− ϕ(x1, . . . , x
′
i, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n, then

Pr[ϕ(x1, . . . , xn)− E[ϕ(x1, . . . , xn)] ≥ ε] ≤ e−2ε
2/

∑n
i=1 c

2
i .

1.3.2 Rademacher-based uniform convergence

We now show a uniform convergence result for any class of (bounded) real-valued functions. We
bound the expectation of each function in terms of the empirical average of the function, the
Rademacher complexity of the class, and an error term depending on the confidence parameter and
sample size. We denote the empirical average over a sample S as ÊS [f(z)] = 1

|S|
∑

z∈S f(z).

Theorem 2. Fix distribution D|Z and parameter δ ∈ (0, 1). If F ⊆ {f : Z → [a, a + 1]} and
S = {z1, . . . , zn} is drawn i.i.d. from D|Z then with probability ≥ 1 − δ over the draw of S, for
every function f ∈ F ,

ED[f(z)] ≤ ÊS [f(z)] + 2Rm(F) +

√
ln (1/δ)

m
. (1)

In addition, with probability ≥ 1− δ, for every function f ∈ F ,

ED[f(z)] ≤ ÊS [f(z)] + 2R̂m(F) + 3

√
ln (2/δ)

m
. (2)
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Proof. For a fixed function f , the definition of supremum leads us directly to

ED[f(z)] ≤ ÊS [f(z)] + sup
h∈F

(
ED[h(z)]− ÊS [h(z)]

)
which is already in a form similar to the statement we wish to prove. The supremum term is a
random variable that depends on the draw of S. Denoting

ϕ(S) = sup
h∈F

(
ED[h(z)]− ÊS [h(z)]

)
, (3)

we would like to bound ϕ with high probability in terms of its expectation, and we will do this by
using the McDiarmid Inequality. Later, we will bound its expectation in terms of the Rademacher
complexity of F , and this will complete the proof.

In order to satisfy the conditions of Theorem 1, we need the following lemma.

Lemma 1. The function ϕ defined in (3) satisfies

sup
z1,...,zn,z′i∈Z

|ϕ(z1, . . . , zi, . . . , zn)− ϕ(z1, . . . , z
′
i, . . . , zn)| ≤ 1

m

A formal proof of this lemma is left to the appendix. An intuitive justification follows from the
fact that the image of every function h ∈ F is a subset of [a, a+ 1], so the maximum change in the
value of h(z) is 1. This change is occurring within an empirical average, so its effect on the value
of ϕ(S) is scaled down by a factor of 1/m.

Now that we have determined that ϕ satisfies the proper conditions, we can apply the McDi-
armid Inequality to find

Pr[ϕ(S)− E[ϕ(S)] ≥ t] ≤ e−t
2/

∑m
i=1

1
m2 = e−t

2m.

Setting the above probability to be less than δ and solving for t, we find that this probability is

less than δ if and only if t ≥
√

ln(1/δ)
m . Since

Pr[ϕ(S) ≤ E[ϕ(S)] + t] = 1− Pr[ϕ(S)− E[ϕ(S)] ≥ t],

we have determined that with probability at least 1− δ,

ED[f(z)] ≤ ÊS [f(z)] + ES

[
sup
h∈F

(
ED[h(z)]− ÊS [h(z)]

)]
+

√
ln(1/δ)

m
. (4)

The final step is to bound the expectation of ϕ(S) in terms of the Rademacher complexity of
F . In order to do this, we introduce a “ghost sample” S̃ = {z̃1, . . . , z̃m} independently drawn
identically to S. Since ES̃ [ÊS̃ [h(z)] |S] = ED[h(z)] and ES̃ [ÊS [h(z)] |S] = ÊS [h(z)] we can rewrite
the expectation

ES

[
sup
h∈F

(
ED[h(z)]− ÊS [h(z)]

)]
= ES

[
sup
h∈F

ES̃

[
ÊS̃ [h(z)]− ÊS [h(z)]

∣∣S]]
= ES

[
sup
h∈F

ES̃

[
1

m

m∑
i=1

h(z̃i)−
1

m

m∑
i=1

h(zi)
∣∣S]]

= ES

[
sup
h∈F

ES̃

[
1

m

m∑
i=1

(
h(z̃i)− h(zi)

) ∣∣S]]
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Since sup is a convex function, we can apply Jensen’s Inequality to move the sup inside the expec-
tation:

ES

[
sup
h∈F

ES̃

[
1

m

m∑
i=1

(
h(z̃i)− h(zi)

) ∣∣S]] ≤ ES,S̃

[
sup
h∈F

1

m

m∑
i=1

(
h(z̃i)− h(zi)

)]
Multiplying each term in the summation by a Rademacher variable σi will not change the expecta-
tion since E[σi] = 0. Furthermore, negating a Rademacher variable does not change its distribution.
Combining these two facts,

ES,S̃

[
sup
h∈F

1

m

m∑
i=1

(
h(z̃i)− h(zi)

)]
= Eσ,S,S̃

[
sup
h∈F

1

m

m∑
i=1

σi
(
h(z̃i)− h(zi)

)]

≤ Eσ,S,S̃

[
sup
h∈F

(
1

m

m∑
i=1

σih(zi)

)
+ sup
h∈F

(
1

m

m∑
i=1

−σih(z̃i)

)]

= Eσ,S

[
sup
h∈F

1

m

m∑
i=1

σih(zi)

]
+ Eσ,S̃

[
sup
h∈F

1

m

m∑
i=1

σih(z̃i)

]
= 2Rm(F)

Substituting this bound into (4) gives us exactly the desired result (1).
To obtain (2), we only need to notice that R̂m(F) satisfies the precondition for McDiarmid’s

Inequality with constant 1
m . A second application of McDiarmid’s Inequality (now using confidence

δ/2 for each) bounds R̂m(F) in terms of its expectation Rm(F) and completes the proof.

1.3.3 Connection to loss functions and error

Example 1. Let X = Rd, Y = {−1, 1}, and Z = X×Y . For a concept class H ⊆ {h : X → Y } we
can let L(H) = {`h | h ∈ H} where `h : Z → R is a loss funtion corresponding to the classifier h.
This allows us to use Theorem 2 to obtain bounds on the misclassification rate of any hypothesis
from H. In particular, if we let H be the class of linear separators and L(H) be the corresponding

class of 0-1 loss functions, i.e. `h(z) = `h(x, y) = 1h(x)6=y = 1−yh(x)
2 for each h ∈ H, then

ED[`h(z)] = ED[1h(x)6=y] = errD(h)

and

ÊS [`h(z)] =
1

m

m∑
i=1

1h(xi)6=yi = êrrS(h).

Taking F = L(H), Theorem 2 states that

errD(h) ≤ êrrS(h) + 2Rm(L(H)) +

√
ln (1/δ)

m

which means we can bound the generalization error of a hypothesis in terms of its empirical error
and the Rademacher complexity of the class of loss functions. In fact, Property 1 tells us that
Rm(L(H)) = 1

2Rm(H), so we can ignore the loss function and write

errD(h) ≤ êrrS(h) +Rm(H) +

√
ln (1/δ)

m
.
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1.4 Recovering the VC Bound

Our next result will show how the general sample complexity result shown in the previous section
can be used to recover the VC generalization bound shown earlier in the course. To do this, we
will first need to prove two more facts: a basic property of Rademacher complexity regarding
scalar multiplication and translation of function classes and another standard inequality known as
Hoeffding’s Inequality.

1.4.1 Preliminaries

Property 1. Given any function class F and constants a, b ∈ R, denote the function class
{g | g(x) = af(x) + b} by aF + b. Then

R̂m(aF + b) = |a|R̂m(F)

and
Rm(aF + b) = |a|Rm(F)

Proof. By definition, the empirical Rademacher complexity of aF + b is given by

R̂m(aF + b) = Eσ

[
sup

g∈aF+b

(
1

m

m∑
i=1

σig(zi)

)]

= Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σi(af(zi) + b)

)]

= Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σiaf(zi) +
1

m

m∑
i=1

σib

)]

= |a|Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σif(zi)

)]
= |a|R̂m(F)

and the analogous statement for Rm(aF + b) follows immediately by linearity of expectation.

Theorem 3 (Hoeffding’s Inequality). If X is a random variable with E[X] = 0 and a ≤ X ≤ b,
then for any real s > 0,

E[esX ] ≤ es
2(b−a)2/8

Proof. Since esx is convex, we can write

esx ≤ x− a
b− a

esb +
b− x
b− a

esa.

Letting p = − a
b−a and ϕ(u) = −pu+ ln(1− p+ peu), we have

E[esX ] ≤ b

b− a
esa − a

b− a
esb

= (1− p)e−ps(b−a) + pes(b−a)e−ps(b−a)

=
(

(1− p) + pes(b−a)
)
e−ps(b−a)

= eϕ(s(b−a))
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To complete the proof, we only need to obtain an upper bound for ϕ(u), which we will do using a
Taylor expansion. We compute

ϕ′(u) = −p+
peu

1− p+ peu
= −p+

p

p+ (1− p)e−u

and

ϕ′′(u) =
p(1− p)e−u

(p+ (1− p)e−u)2
≤ 1

4
,

and then for some t ∈ [0, u],

ϕ(u) = ϕ(0) + uϕ′(0) +
u2

2
ϕ′′(t)

≤ 0 + 0 +
u2

2

(
1

4

)
≤ u2

8

This gives us ϕ(s(b− a)) ≤ s2(b−a)2
8 , which yields the desired result.

1.4.2 Bounding the Rademacher complexity

Now we have the tools needed to prove the following theorem.

Theorem 4. For any A ⊆ Rm, let R = supa∈A
(∑m

i=1 a
2
i

)1/2
. Then

R̂m(A) = Eσ

[
sup
a∈A

(
1

m

m∑
i=1

σiai

)]
≤

R
√

2 ln |A|
m

Proof. To set up the use of Hoeffding’s Inequality, we start by taking the exponential of the empirical
Rademacher complexity multiplied by some positive real constant s. By Jensen’s Inequality,

exp

(
sEσ

[
sup
a∈A

m∑
i=1

σiai

])
≤ Eσ

[
exp

(
s sup
a∈A

m∑
i=1

σiai

)]

= Eσ

[
sup
a∈A

(
exp

(
s
m∑
i=1

σiai

))]

≤
∑
a∈A

Eσ

[
exp

(
s
m∑
i=1

σiai

)]

=
∑
a∈A

Eσ

[
m∏
i=1

exp(sσiai)

]

=
∑
a∈A

m∏
i=1

Eσ[exp(sσiai)]
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where the last step uses the fact that the σi are independent. Now we can apply Hoeffding’s
Inequality since Eσ[σiai] = 0 and σiai ∈ [α, β] where β − α = 2ai. This gives us

exp

(
sEσ

[
sup
a∈A

m∑
i=1

σiai

])
≤
∑
a∈A

m∏
i=1

exp

(
s2(2ai)

2

8

)

=
∑
a∈A

exp

(
s2

2

m∑
i=1

a2i

)

≤ |A| exp

(
s2R2

2

)
which means that

Eσ

[
sup
a∈A

m∑
i=1

σiai

]
≤ ln |A|

s
+
sR2

2
.

Denote the right-hand side by w(s). We would like to find the s that minimizes w(s). Taking
its derivative and setting it equal to zero, we find

w′(s) = − ln |A|
s2

+
R2

2
= 0 ⇒ s =

√
2 ln |A|
R

.

Substituting this quantity back into the previous bound gives us

Eσ

[
sup
a∈A

m∑
i=1

σiai

]
≤ R ln |A|√

2 ln |A|
+
R2
√

2 ln |A|
2R

= R
√

2 ln |A|

Dividing both sides by m yields the result stated in the theorem.

1.4.3 Connection to VC theory

Example 2. For any finite concept classH ⊆ {h : X → {−1, 1}} and example set S = {x1, . . . , xm},
we can take A = {(h(x1), . . . , h(xm)) | h ∈ H}. Then |A| = |H| and R =

√
m. From Theorem 4,

this means that

R̂m(H) ≤
√

2 ln |H|
m

.

In general, (whether H is finite or not), we can take A = H[S], the set of distinct labelings of points
in S using concepts from H. Then |A| = H[m], the shatter coefficient of H on m points, and

R̂m(H) ≤
√

2 lnH[m]

m
.

By Sauer’s Lemma, H[m] ≤ md where d is the VC dimension of H, so we can further simplify this
result to

R̂m(H) ≤
√

2d lnm

m
.
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A Additional Proofs

Proof of Lemma 1. Let S = {z1, . . . , zm} and S′ = {z1, . . . , z′j , . . . , zm}. Then by definition,

|ϕ(S)− ϕ(S′)| =

∣∣∣∣sup
h∈F

(
ED[h(z)]− ÊS [h(z)]

)
− sup
h∈F

(
ED[h(z)]− ÊS′ [h(z)]

)∣∣∣∣ .
Letting h∗ ∈ F be the maximizing function for the supremum in ϕ(S), this becomes

|ϕ(S)− ϕ(S′)| =

∣∣∣∣ED[h∗(z)]− ÊS [h∗(z)]− sup
h∈F

(
ED[h(z)]− ÊS′ [h(z)]

)∣∣∣∣ ,
and by definition of supremum, h∗ can at best maximize the ϕ(S′) term as well, so we have

|ϕ(S)− ϕ(S′)| ≤
∣∣∣ED[h∗(z)]− ÊS [h∗(z)]− ED[h∗(z)] + ÊS′ [h∗(z)]

∣∣∣
=
∣∣∣ÊS′ [h∗(z)]− ÊS [h∗(z)]

∣∣∣
=

∣∣∣∣∣ 1

m

∑
z∈S

h∗(z)− 1

m

∑
z∈S′

h∗(zi)

∣∣∣∣∣
Since S and S′ differ in only one element, this becomes

|ϕ(S)− ϕ(S′)| ≤ 1

m

∣∣∣∣∣∣
∑
i 6=j

h∗(zi)−
∑
i 6=j

h∗(zi) + h∗(zj)− h∗(z′j)

∣∣∣∣∣∣
=

1

m

∣∣h∗(zj)− h∗(z′j)∣∣
≤ 1

m

where the last step follows from fact that h∗ : Z → [a, a+ 1] so sup
zj ,z′j∈Z

|h∗(zj)− h∗(z′j)| = 1.
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