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Nash Equilibria in General Sum Games

In this lecture we study basic solution concepts in game theory, namely the notion of dom-
inant strategy and Nash equilibrium. We consider rational players in a competitive envi-
ronment. A rational player is a player with priorities (or utility) that tries to maximize the
utility (or minimize cost) while considering that other players are also rational. A competi-
tive environment is an environment with multiple rational players.

An Example: The Prisoner’s Dilemma

There are two prisoners that committed a crime. If they both do not confess, they get a
low punishment. If they both confess, they get a more severe punishment. If one confesses
and the other does not, then the one that confesses gets a low punishment and the other
gets a very severe punishment. The game can be formalized in the following matrix, each
entry includes a pair, the first is the cost to the first player and the second is the cost to the
second player.

Table 1: Cost Matrix for Prisoner Dilemma

Confess Silent
Confess (4, 4) (1, 5)
Silent (5, 1) (2, 2)

Game theory predicts the case where both prisoners confess (4,4): player i doesn’t know
what the other player chooses. Should the other player confess, then player i can either
confess (4 years imprisonment) or not confess (5 years). Should the other player choose to
remain silent, then player i can confess (1 year) or keep silent (2 years). Thus, in both cases
it is better to confess. This is an example of a strong dominant strategy.

Strategic Games

A strategic game is a model for decision making where there are N players, each choosing
an action. A player’s action is chosen once and cannot be changed afterwards.
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Each player i can choose an action ai from a set of actions Ai. Let A be the set of all possible
action vectors ×j∈NAj. Each player has either a utility function ui : A → R which is to be
maximized or alternatively, a cost function ci : A → R which should be minimized.

Model A Strategic Game is a triplet ⟨N, (Ai)
N
i=1, (ui)

N
i=1⟩ where N = {1...n} is the set of

n players, Ai is the finite set of actions for player i, and ui is the utility function of player i.

Several player behaviors are assumed in a strategic game:

• The game is played only once.

• Each player “knows” the game (each player knows all the actions and the possible
outcomes of the game).

• The players are rational. A rational player is a player that plays selfishly, wanting to
maximize her own benefit of the game (the utility function).

• All the players choose their actions simultaneously (but do not know the other players
current choices).

We now define a dominating action. An action is dominating if it is better than any other
action, regardless of the action of the other players.

Definition 1 Action ai is a Weak Dominant Strategy for player i if

∀b−i ∈ A−i.∀bi ∈ Ai : ui(b−i, bi) ≤ ui(b−i, ai)

Action ai is a Strong Dominant Strategy for player i if

∀b−i ∈ A−i.∀bi ∈ Ai : ui(b−i, bi) < ui(b−i, ai)

Where (a−i) = (a1, a2, ..., ai−1, ai+1, ..., an).

However, not all games have dominant strategies.

An Example: Battle of the Sexes

In this game, two players (of different gender) need to coordinate on an event (sports or
opera). They both prefer to go to the same event together(gaining a value of 2 each if they
go to the same event, or 0 if not), but they have a different preference between the events
(value 2 for preferred event and 1 for the other).

This game does not have a dominating action for any of the player. It has two pure Nash
Equilibria points: (Sports, Sports) and (Opera, Opera).
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Table 2: Utility Matrix for the Battle of the Sexes Game

Sports Opera
Sports (4, 3) (2, 2)
Opera (1, 1) (3, 4)

Nash Equilibria

Definition 2 A pure Nash equilibrium is a joint action a ∈ A such that:

1. ∀i ∈ N, ∀bi ∈ Ai : ui(ai, a−i) ≥ ui(bi, a−i) or alternatively,

2. ∀i ∈ N : ai ∈ BR(a−i).

Namely, no player can unilateraly improve his payoff.

However, not all games have a pure Nash equilibrium.

An Example: Matching Pennies

In this game each player select Head or Tails. The row player wins if they match, and the
column player wins if they mismatch (Matching Pennies).

Table 3: Utility Matrix for the Matching Pennies Game

Head Tail
Head (1,−1) (−1, 1)
Tail (−1, 1) (1,−1)

It is easy to verify that there is no pure Nash Equilibrium point in this game. Also, this is
a zero sum game (the sum of the profits of the player for each possible outcome is 0).

If we allow each player to randomly choose an outcome with a pre-defined probability the
game will be an example of a mixed strategy game. Let us assume that player 1 chooses
”Head” with probability p and ”Tail” with probability 1 − p and that player 2 chooses
”Head” with probability q and ”Tail” with probability 1− q. In this case each player wants
to maximize its expected utility.

Assume that player 2 plays ”Head” with probability q and ”Tail” with probability 1 − q.
If player 1 plays ”Head” the outcome will be −1 with probability q and 1 with probability
1− q thus the expected utility is 2q−1. If player 1 plays ”Tail” the outcome will be −1 with
probability 1− q and 1 with probability q thus the expected utility is 1− 2q. So if q = 1/2,
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these two quantities are both equal to 0. So, if the second player plays with q = 1/2, the
first player has no incentive to deviate from (1/2, 1/2) (in fact he has no incentive to deviate
from any strategy).

Similarly, assume that player 1 plays ”Head” with probability p and ”Tail” with probability
1−p. If player 2 plays ”Head” his the expected utility is 1−2p and if player 2 plays ”Head”
his the expected utility 2p− 1. So if p = 1/2, these two quantities are both equal to 0. So,
if the first player plays with p = 1/2, the second player has no incentive to deviate from
(1/2, 1/2) (in fact he has no incentive to deviate from any strategy).

So, (1/2, 1/2), (1/2, 1/2) is a mixed Nash equilibrium. This is in fact the only Nash equilib-
rium of the game. Assume by contradiction that q > 1/2. Note that if p ̸= 1 we cannot be
at an equilibrium since the first player would rather play heads to what he is doing now. On
the other hand if p = 1, the column payer would prefer q = 0 , contradiction.

Mixed Nash Equilibria

Recall that a finite strategic game consists of the following:

• A finite set of players, namely N = {1, . . . , n}.

• For every player i, a set of actions Ai = {ai1, . . . , aim}.

• The set A = ⊗n
i=1Ai of joint actions.

• For every player i, a utility function ui : A → ℜ.

A mixed strategy for player i is a random variable over his actions. The set of such strategies
is denoted △(Ai). Letting every player have his own mixed strategy (independent of the
others) leads to the set of joint mixed strategies, denoted △(A) = ⊗n

i=1△(Ai).

Every joint mixed strategy p ∈ △(A) consists of n vectors p⃗1, . . . , p⃗n, where p⃗i defines the
distribution played by player i. Taking the expectation over the given distribution, we define
the utility for player i by

ui(p) = Ea∼p [ui(a)] =
∑
a∈A

p(a)ui(a) =
∑
a∈A

(
n∏

i=1

p⃗i(ai)

)
ui(a)

We can now define a Nash Equilibrium (NE) as a joint strategy where no player profits from
unilaterally changing his strategy:

Definition 3 A joint mixed strategy p∗ ∈ △(A) is NE, if for every player 1 ≤ i ≤ n it holds
that

∀qi ∈ △(Ai) ui(p
∗) ≥ ui(p

∗
−i, qi)

or equivalently
∀ai ∈ Ai ui(p

∗) ≥ ui(p
∗
−i, ai)
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Existence Theorem

Theorem 1 Every finite game has a (mixed-strategy) Nash Equilibrium.

This section shall outline a proof of this theorem. We begin with a statement of Brouwer’s
Lemma and conclude with the proof.

Lemma 1 (Brouwer) Let f : B → B be a continuous function from a non-empty, compact,
convex set B ⊂ ℜn to itself. Then there is x∗ ∈ S such that x∗ = f(x∗) (i.e. x∗ is a fixed
point of f).

To demonstrate that the conditions are necessary, we show a few examples:

When B is not bounded: Consider f(x) = x + 1 for x ∈ ℜ. Then, there is obviously no
fixed point.

When B is not closed: Consider f(x) = x/2 for x ∈ (0, 1]. Then, although x = 0 is a fixed
point, it is not in the domain.

When B is not convex: Consider a circle in 2D with a hole in its center (i.e. a ring). Let
f rotate the ring by some angle. Then, there is obviously no fixed point.

Proof of Existence of Nash Equilibrium

For 1 ≤ i ≤ n, j ∈ Ai, p ∈ △(A) we define

gij(p) = max{ui(p−i, aij)− ui(p), 0}

to be the gain for player i from switching to the deterministic action aij, when p is the joint
strategy (if this switch is indeed profitable). We can now define a continuous map between
mixed strategies y : △(A) → △(A) by

yij(p) =
pij + gij(p)

1 +
∑m

j′=1 gij′(p)
.

Observe that:

• For every player i and action aij, the mapping yij(p) is continuous (w.r.t. p). This
is due to the fact that ui(p) is obviously continuous, making gij(p) and consequently
yij(p) continuous.

• For every player i, the vector (yij(p))
m
j=1 is a distribution, i.e. it is in △(Ai). This is

due to the fact that the denominator of yij(p) is a normalizing constant for any given
i.
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Therefore y fulfills the conditions of Brouwer’s Lemma. Using the lemma, we conclude that
there is a fixed point p for y. This point satisfies

pij =
pij + gij(p)

1 +
∑m

j′=1 gij′(p)
.

This is possible only in one of the following cases. Either gij(p) = 0 for every i and j, in
which case we have an equilibrium (since no one can profit from changing his strategy).
Otherwise, assume there is a player i s.t.

∑m
j′=1 gij′(p) > 0. Then,

pij

1 + m∑
j=1

gij′(p)

 = pij + gij(p)

or

pij

 m∑
j′=1

gij′(p)

 = gij(p).

This means that gij(p) = 0 iff pij = 0, and therefore pij > 0 ⇒ gij(p) > 0. However, this is
impossible by the definition of gij(p): gij(p) ̸= 0 =⇒ ui(p−i, aij) > ui(p) for every j in pi’s
support. Taking the mean of these inequalities we get∑

j

pijui(p−i, aij) >
∑
j

pijui(p).

But both sides are equal since∑
j

pijui(p) = ui(p)
∑
j

pij = ui(p)

and by definition ∑
j

pijui(p−i, aij) = ui(p)

so we get the contradiction ui(p) < ui(p). Therefore, it cannot be that player i can profit
from every pure action in p⃗i’s support (with respect to the mean).

We are therefore left with the former possibility, i.e. gij(p) = 0 for all i and j, implying a
NE.

Acknowledgment: This lecture is based on lecture notes by Yishay Mansour.
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