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Abstract—In this paper, we present provably-good distributed in groups, where there is a constraint on the number of tasks
task assignment algorithms for a heterogeneous multi-rolfo that a robot can do from each group. Therefore, in this paper,
system where the tasks form disjoint groups and there are e iniroduce and study the multi-robot task allocation fob

constraints on the number of tasks a robot can do (both withirthe ith traint h bots h traint th
overall mission and within each task group). Each robot obtans a with group constraints, where robots have constraints en

payoff (or incurs a cost) for each task and the overall objedve for number of tasks they can perform (both within the whole
task allocation is to maximize (minimize) the total payoff €ost) mission and within each task group).

of the robots. In general, existing algorithms for task all@ation More specifically, the multi-robot (task) assignment pebl
either assume that tasks are independent, or do not provide for grouped tasksMIAP— GT) that we study can be stated as

performance guarantee for the situation where task constrats foll - Gi bot d ntask h the task
exist. We show that our problem can be solved in polynomial the ollows: Given n robots and ptasks, where (a) the tasks are

by a centralized algorithm (by reducing it to a minimum-cost Organized into g disjoint groups, (b) each robot has an upper
network flow problem) and then present a distributed algorithm  bound on the number of tasks that it can perform within the

to provide an almost optimal solution. The key aspect of our whole mission and also within a group, and (c) each robgt, r
distributed algorithm is that the overall objective is (almost) has a payoff, g for each task, t, find the assignment of the

maximized by each robot maximizing its own objective iteratively
(using a modified payoff function based on an auxiliary vatite, robots to tasks such that the sum of the payoffs of all thetsobo

called price of a task) Our distributed algorithm is polynomial IS maximizedFor concreteness, a task group can be thought
in the number of tasks as well as the number of robots. of as acompound taslcomposed of more than one atomic

task where one robot is required for each atomic task. As
an illustrative example, consider the problem of transpgrt
objects from a start location to a goal location where an
object needs to be carried by multiple robots. Such pick and
place tasks are common in many application scenarios like

For autonomous operations of multiple robot systems, tagktomated warehouse, automated ports, and factory fldors. |
allocation is a basic problem that needs to be solved gfiree robots are required to carry an object then the overall
ficiently [1], [2]. The basic version of the task allocationask of carrying the object can be decomposed into three
problem (also known as linear assignment problem in comBjtomic tasks of robots holding the object at three different
natorial optimization) is the followingGiven a set of agents places and moving with it. Thus, the three atomic tasks
(or robots) and a set of tasks, with each robot obtaining SOM@rm a task group where each task in a group has to be
payoff (or incurring some cost) for each task, find a one-tgrerformed by one robot and the robots have to execute the
one assignment of agents to tasks so that the overall paygks simultaneously. The energy costs incurred by thetsobo
of all the agents is maximized (or cost incurred is minim)zeqn transporting an object may be different because the Wg|gh
The basic task assignment problem can be solved (almagil load carrying capabilities of the robots may be differen
optimally in polynomial time by centralized algorithms [3] and the force transmitted from the object to the robots may be
[4] and distributed algorithms with a shared menfof§]. different depending on the holding location. Thus, the peob
Generalizations of the linear assignment problem where theassigning robots to tasks fpick and placeoperations for
number of tasks and agents are different and each agenptigect transport to minimize total energy cost can be matlele
capable of doing multiple tasks can also be solved optimall¢ aMAP— GT with each robot constrained to do at most
by both centralized and distributed algorithms [4], [6]].[7 one task within each task group Our work here focuses on the
However, in all of these WOI'kS, it is assumed that the taSHésign and theoretical ana|ysis of a|gorithms (both céingd
are independent of each other and an agent can do any numgf distributed) for multi-robot task assignment for gredp
of tasks. In practice, robots have limited battery life ahdst t55ks.
there is a limit on the number of tasks that a robot can dO.We first show that the multi-robot assignment pr0b|em for
Furthermore, the tasks may not be independent and may ocgtduped tasks can be reduced to a minimum cost network

1 o o flow problem. ThusMAP— GT can be solved optimally in

In a shared memory model of distributed computation, it suased that

there is a memory accessible to all agents where the reduttsneputation polynomial time by USing standard algorithms fOI’. S(_)lViﬂg
can be stored. network flow problems [4]. We then present a distributed

Index Terms—Multi-robot task assignment, Task allocation,
Auction algorithm, Distributed Algorithm.
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iterative algorithm for solvindMAP— GT where it is assumed (see [12], [13]). There are different variations of the rault
that the robots have access to a shared memory (or thereoisot assignment problem that have been studied in the
a centralized auctioneer). Our algorithm is a generabtizatif literature depending on the assumptions about the tasks and
the auction algorithm developed by Bertsekas [5] for savirthe robots (see [1], [12], [14] for surveys), and there also
linear assignment problems. We prove thatdppropriately exists multi-robot task allocation systems (e.g., Tradefb5],
designing and updating an auxiliary variable for each tasK16], Hoplites [17], MURDOCH [18], ALLIANCE [19]) that
called the price of each task, each robot optimizing its owsuild on different algorithms. One axis of dividing the task
objective function leads to a solution where the overall olassignment problem is as online versus offline. In offlin& tas
jective of all the robots is maximized. Mathematically, thallocation the set of tasks are known beforehand, whereas in
price of a task is the Lagrange multiplier (or dual variable)nline problems the tasks arise dynamically. In this paper,
corresponding to the constraint that each task can be done Will consider the offline task allocation problem and theref
exactly one robotThe shared memory maintains the globake will divide our discussion of the relevant literature der
values of the price of each task. However, assumption iofto the offline and online task allocation problems. Moregv
the availability of such a shared memory may be unrealistitr objective is to design algorithms for task allocatiorihwi
for many deployments of multi-robot systems. Therefore, waovable performance guarantees. Therefore, we will etbo
also present a totally distributed algorithm, where eadioto on algorithms that provide performance guarantees.
maintains a local value of the global price and updates itgusiOffline Task Allocationin offline task allocation, the payoff’s
a maximum consensus algorithm. In our distributed algorjth of a robot for each task is assumed to be known beforehand.
each robot iteratively assigns itself (and informs its hbigrs) In the simplest version of the offline task allocation prable
to the tasks that is most valuable to it based on her payéfiso known as the linear assignment problem), each robot
and local price information. We prove that this algorithnean perform at most one task and the robots are to be
converges to the same solution as the algorithm with theeshaassigned to tasks such that the overall payoff is maximized.
memory assumption. This is analogous to the work in [8],he linear assignment problem is essentially a maximum
where the distributed algorithm with a shared memory by [5}eighted matching problem for bipartite graphs. This peatl
for linear assignment problem was made totally distribdted can be solved in a centralized manner using the Hungarian
combining it with a maximum consensus algorithm. algorithm [3], [4]. Bertsekas [5] gave a distributed algiom

Our algorithm forMAP — GT provides a solution that is (assuming a shared memory model of computation, i.e., each
almost-optimal namely, within a factor ofO(n;e) of the processor can access a common memory) that can solve the
optimal solution wheren; is the number of tasks and linear assignment probleaimost optimallyIn subsequent pa-
is a parameter to be chosen. This approximation guaranfees, the basic auction algorithm was extended to more gener
is called almost-optimal, since we can choaseo make task assignment problems with different number of tasks and
the solution arbitrarily close to the optimal solution. Theobots and each robot capable of doing multiple tasks [5],
running time of our aI?orlthm for the shared memory mod¢F]. Recently, [8] have combined the auction algorithm with
is O(n nthaX{a'J} min{ai}y Eor the totally distributed model, consensus algorithms in order to remove the shared memory
we will need to mult|ply the complexity by the diameter osssumption and obtain a totally distributed algorithm foe t
the communication network of the robots, which is at mo#@sic task assignment problem. Different from the duaktas
ny. Thus, our algorithm is polynomial in the number of robotgpproach above, primal approach has also been proposed for

and number of tasks. However, it is pseudo-polynomial in th@sk assignment [20], which has recently been adapted to
payoff values. multi-robot domain [21]. However all of this work assume

This paper is organized as follows: In Section 1, wéhat the tasks are independent of each other. For the more
discuss the related literature on multi-robot task alliorat general case, where the tasks are forming disjoint grougis su
In Section Ill, we give a formal definition of the multi-robotthat each robot can be assigned to at most one task from each
assignment problem for groups of tasks with constraintdien tgroup and there is a bound on the number of tasks that a robot
number of tasks that a robot can do. In Section IV, we presei@n do, [9] generalized the auction algorithm of [5] to give a
the assignment algorithm with shared-memory model and ggorithm with almost optimal solution.
Section V, we briefly discuss how to extend the algorithm to In the above discussion, the total payoff of a robot depends
a totally distributed algorithm with consensus techniquas ©n the individual tasks assigned to a robot, but it does not
Section VII, we demonstrate the performance of our algorithdepend on the sequence in which the tasks should be done or
with some examp|e simulations. Fina”y’ in Section VIII, Wéhe combination of tasks that the robots perform. For multi-
present our conclusions and outline future avenues of relsearobot routing problems, where the individual robot payoffs

This work is an extension of our previous work that appearégpend on the sequence in which the tasks are performed,
in [9]. [10] has given different auction algorithms with perforrman

guarantees for different team objectives. When the olecti

is to minimize the total distance traveled by all the robots

they provide a 2-approximation algorithm. For all otherambj
Task allocation is important in many applications of multitives the performance guarantees are linear in the number of

robot systems, e.g., multi-robot routing [10], multi-ralieci- robots and/or tasks. For example, when allocatimgpatially

sion making [11], and other multi-robot coordination peails  distributed tasks ta robots, for minimizing the maximum

II. RELATED WORK



distance traveled by a robot, their algorithm gives a perfor There are other variations of the task allocation problem

mance guarantee @(n). In [13], the task allocation problem studied in the multi-robot task allocation community, adlae

considered is path-dependent (e.g., the payoffs of asgjgnoperation research community that have been shown to be NP-

multiple tasks to one robot depend on the order of assignihgrd, and for many of them there are no algorithms with worst

tasks to the robot), and a distributed algorithms (CBBA) aase approximation guarantees [1]. Therefore, a subskanti

designed by combining consensus techniques with auctiamount of effort has been invested in developing and testing

and bundle algorithms to achieve a conflict-free assignmémuristics for dynamic task allocation [30], [31], [32]. d%e

solution. In [22], [23], CBBA was extended to the situatioralgorithms are based on distributed constraint optinizrati

with asynchronous communication channel among agents gBCOP). Auction-based heuristics for multi-robot tasloal-

large changes in local situational awareness so that eagtt agion in dynamic environments have also been proposed, where

can build bundles and perform consensus locally. Howevéng robots may fail during task execution and the tasks need

constraints among tasks are not considered in the work.tnbe reassigned [33], [34].

[24], a distributed algorithm was designed to solve the task

allocation problem with coupled constraints among tasks (e

assignment relationship, where the value of a task depemds o

whether other tasks have been assigned or not, and temporal 1. PROBLEM STATEMENT

relationship, where the value of a task depends on when it is

performed relative to other tasks). However, no perforreanc

guarantee is achieved in the work. The problem of forming In this section, we give the formal definition of our multi-

coalition of robots to single tasks has been studied to apéim robot task assignment problem with grouped tasks. We will

the total performance of all tasks [25], [26], [27], [25] hadirst introduce some notations. Suppose that theream@bots,

provided heuristics to balance the task allocation of reboR= {ry,...,r, }, andn; tasks,T = {ts,...,tn, }, for the robots.

and avoid disproportionate task load compared to robotset a; € R be the payoff for the assignment pait,t;), i.e.,

capacity. It is assumed that every robot can communicate wibr assigning robot; to taskt;. Without loss of generality,

every other robot, which might not be a realistic assumptiame assume that any robot can be assigned to any task. Each

in some operating scenarios. [27] presented a few efficiaatk must be performed by exactly one robot. Each robot can

heuristics for the problem with inter-task resource caists, perform at most\; tasks (we callN;, the budgetof robotr;).

and analyzed their performance bounds. Since, performing each task needs a single robot, we should
Market-based approaches [12] have been proposed Fhawve 5" N > ny, for all tasks to be performed. Leftj be

multi-robot task allocation based on the inspiration of tel-  the variable that takes a value 1 if tadk, is assigned to

ing markets and their distributed nature, where any robot ceobot, rj, and O otherwise. The task s&tforms ng disjoint

keep exchanging/subcontracting its assigned tasks tomigi groups/subset§Ti, ..., T} so thatu T = T. We assume

profits. Market-based approach has shown good experimenkait each robotr;, can perform at mosi; tasks from task

results in practise, however, there is no general provalgeup Ty, which we call the task group constraints (TGC).

performance guarantee of its solution. Although theretexisMathematically, TGC can be written as

auction procedure in this approach, the market-based metho

is very different from primal-dual based auction algoritfBh .

in how to iteratively set the bidding price for tasks. Y fip<Ne, Vi=1....n, k=1,....ns 1)
Online Task AllocationEven the simplest version of the S €T

online task allocation problem, which is (a variation ofgth

online linear assignment problem is NP-hard [1]. As statethe overall objective is to assign all tasks to robots so

before, this is the online MWBMP where the edge weights atgat the total payoff from the assignment is maximized. The

revealed randomly one at a time, i.e., the tasks arrive rahdo multi-robot task assignment problem with grouped tasks can
and a robot already assigned to a task cannot be reassigi@gnally be stated as follows:

Greedy algorithms for task allocation, wherein the task is

assigned to the best available robot has been used in a nunfty@pblem 1. Given n; robots andn; tasks with the tasks
of multi-robot task allocation systems (e.g., MURDOCH [18]forming ns disjoint groups, maximize the total payoffs of
ALLIANCE [19]) and therefore, have the same competitivéobot-task assignment such that each task is performed by
ratio of £ as [28], if the payoff's are non-negative and satisfgxactly one robot, each robat performs at mosh; tasks in
some technical assumptions. Note that the greedy algorittiae overall mission and at moblk; tasks from a task group
gives a solution that is exponentially worse in the number dk-

robots, when the objective is to minimize the total payo#][2 _ _ )

This is different from the offline linear assignment problem Problem 1 can be written as an integer linear program (ILP)
where both the maximization and minimization problems cdhven below

be solved optimally in polynomial time. For the general case

of online task assignment with grouped tasks, [29] provided -

competitive analysis of greedy auction algorithm devetbpe max aij fij

in [9], and proved an approximation ratio of the algorithm. a=



st. fi = 1, Vi=1,...n, (2) V. ALGORITHM DESIGN AND PERFORMANCEANALYSIS
i= In Section IV, we design algorithms to get the optimal (or
i < N, Vi=1...n, 3) almost-optimal) solution for multi-robot task assignmeith

grouped tasks under assumptions (a) and (b) in Section lll.
First, we show how to reduce the problem to a min-cost
network flow problem, which can be solved in polynomial

i€ {01}, V] ®) time usingcentralizednetwork flow algorithm (Section IV-A).

g o Vh Second, we look at distributedway to find the optimal solu-

In the above formulation, the optimization variables are ttion, where a centralized controller is not required, arstéad
binary assignment variable§;. Equation (2) states that eacteach robot can make deC'?'O”S on its own in a d|str|bgted
task must be assigned to exactly one robot. Equation (35givéy- In Section IV-B, we design a distributed algorithm, ehhi
the budget constraints of each robot. Note that the abog¥€nds the basic auction algorithm for LAP in [5], and prove
problem is a generalization of the linear assignment probldhat the algorithm can achieve an almost-optimal solution.

(LAP). In LAP, Equation (4) is not present and in Equation (3)I "€ algorithm is implemented in each single robot, so the
N = 1. decision-making process is distributed. However, eaclotrob

needs a shared memory (i.e., a centralized component) to
Remark 1. Generally speaking, the assignment paygffcan  access some global information of each task, i.e., the bighe
be considered as the difference between assignment bengfifo-date bidding price of each task from all robots, which
bij and the assignment cosf;, i.e., & = bij —cij. Thus, if are auxiliary variables created and maintained during the
costc;j is the only component to be considered, (il®,= aigorithm implementation. In Section V, we remove the stiare
0), Problem 1 would become an assignment problem in thgamory assumption to make our algorithm totally distribte
form of cost minimization. Note that some papers use the teBY using consensus techniques among networked multi-robot
payoff for the benefity; and the term utility forajj. In the system. Thus robots do not need to know the global price
context of this paper, we will use the terms payoff and Wtilitinformation of each task. Instead, each robot just needs to
interchangeably. get the local task price information through local peepé®r

The MAP— GT problem defined above can be solved igommunication with its neighbors. In this way, we remove the
polynomial time in the number of tasks and number of roboffaréd memory requirement and make the algorithm totally
by a centralized algorithm by reducing it to a network ﬂovgllstrlbuted._ The d|sftr|buted _algonthm can still achievee t
problem. We will then use a dual decomposition-based meth@nost-optimal solution quality.
to design a distributed algorithm f&ddAP— GT and also show
that the algorithm can be made totally distributed. Foriglar A. Centralized Solution: Reduction to network flow problem

of exposition, we .wiII first present the solutionsMAP—GT For anyMAP— GT problem, we can construct a correspond-
under the following assumptions: (&; = 1 for all task g minimum-cost network flow problem, whose solution
groups, i.e., each robot can do at most one task from eggh,id lead to the solution of theéAP — GT problem in
group and (b) each robot has to perform exaddytasks polynomial time. A minimum cost network flow problem is
during the mission. In Section VI, we will show how thesgjefined as follows: Given a flow network, which is a directed
assumptions can be removed. TFMAP—G_T problem with graphG = (V,E) with (a) some nodes iN acting as source
assumptions (a) and (b) above can be written as: nodes and sink nodes respectively, and (b) each edde in
N having a positive capacity, some cost and some non-negative
max Zzajfij (6) flow amount, find a route of the flows from the source to
i=1j= sink nodes such that the total flow cost is minimized, where
the cost of sending a flow along each edge is defined as the
ne product of flow amount and edge cost, while the flows satisfy
st. Z fij = L Vj=1..n (7) the capacity constraints of edges, and conservation contstr
i= for all nodes except source and sink nodes [35].
The MAP— GT problem can be reduced to a network flow

fij < Ngi, Vi=1,...,n,k=1,....ns, (4)

fii = N, Vvi=1....n 8
= . v et ® problem by the following construction (shown in Figure 1).
. We form a directed grapis = (V,E), with a set of nodes
fii < 1, Vvi=1,....n,k=1,...,n 9 )
plen ' s Oy RUTUS and edge& = E; |JE,, where

f; € {01}, vij (10) o Nodes: R={rili=1,...,n;} represent.roboté', ={tj|j =
1,...,n} represent tasksS = {Tixi = 1,....n,k =

Note that the constraints above implicitly imply that (ag th 1,...,ns} are introduced as auxiliary nodes to represent
number of tasks in any subset must be no more than the each task subséf for each robot;.
number of robots (otherwise at least one task in the subset Edges: B = {(ri,Tix)|i = 1,....,n,,k=1,....,ns}, and
cannot be performed), i.e., nfix |T| < n;, and (b) the Ex = {(Tixtj) Vi, j,k, s.t.,tj € Ty}
number of subsets must be no less than ahyotherwise « Source and sink node#ll nodes inR are source nodes
ri cannot be assigned t§ tasks), i.e.ns > ma>{‘;1 Ni. with supplyN; (i.e., the total amount of flow out from a



source node;), and all nodes inT are sink nodes with network flow problem is a classical problem that has been
demand 1 (i.e., the total amount of flow into a sink nodejtudied extensively. Centralized polynomial-time alforis
« Capacity and cost of edge¥he capacity of all edges in exist that can be used to compute the optimal solution [35].
E is 1. The cost for edges i&; is 0, while for edges Therefore, we can directly use the off-the-shelf algorghim
(Tik,tj) In Ez is —aj. solve MAP—GT in a centralized way.
« Flow: the variablefj;, associated with each edge ki To solve theMAP—GT problem as a network flow problem,
betweenT, , andtj, represents the flow from nodgyx a centralized controller is required that knows the payaffd
to nodetj, wheret;j € Ty. Amount of other flows along budgets of all the robots. The controller solves the problem
edges inE; can be determined frorfifij }, according to and then sends back commands to robots prescribing thkir tas
the flow conservation and edge capacity constraints, agsignments. However, in applications of multi-robot ey,
they do not change the objective since the cost of edgekere a centralized controller is usually vulnerable if not
in E; is set to be zero. infeasible, there is often need for distributed algorittsmshat
robots can make decisions by themselves in the field acaprdin
to the information they possess. For ease of exposition sk fir
present the distributed algorithm assuming a shared memory
model. We call this an auction-based algorithm following th
use of the terminology in [5] for LAP. We then present the
totally distributed version of our algorithm.

B. Distributed Solution: Auction-based Algorithm Design

In this section we present a distributed solution with a
shared memory for MAP-GT. Generally speaking, our solution
approach falls within the class of methods known as dual
decomposition methods in the optimization literature [36]
The intuition for our solution approach can be understood
Fig. 1. Reduction to the minimum-cost network flow probleror Eisplay Dy looking at the dual of the optimization problem given
purrr)]ozﬁ; ejtlsr:)tr)%tzqt%grseCg:éezggaﬂpigogfeﬁgdgdli{@lis arens}hog\(/jn-ezm by Equations (6) - (9). Note that Equation (7) states that
?3?7ﬂ,k)|k:17.4.l7’n5} and (T )1 £ T}, which, are omitied i o0 each task can be assigned to one robot and hence gives a
—1 represent nodes’ supply and demajtii1] shows that the capacity of flow constraint among the robots, i.e., these aredbmplicating
along the edges is 1. constraints All the other constraints are constraints belonging

to each robot. The dual functiog(p) obtained by dualizing
The optimal solution fotMAP— GT can be obtained by the complicating constraints is

solving the minimum-cost network flow problem for the - o N
netwo_rk constructed above. This can be seen by noting theq(p) = maxy, Z aj fij + Z pi(1=$ fi)
following facts: = =1 i&

« Constraint (7) gives the demand constraint at each sink Nt .
node, which is equal to 1 and Constraint (8) gives the st.y fij=N, vi=1...n (1)
supply constraint at each source node, whichlis =1
« The capacity constraints on the edgeEinare identical > fij<l Vvi=1l...nk=1..ns
to constraints (9) that state that the maximum flow from 14 €Tk
anyr; to any task group subs@y is 1. wherep; is the dual variable corresponding to the constraint

« The objective function of the network flow problemihat taskt; can be done by exactly one robot, given by
namely, mirb; 3 ; G fij is equal to the objective function gquation (7). The variable; is called theprice of taskt;.
maxy; 5 ; aj fij, sincecij = —ajj for edges inE; and the The variablep is the ny x 1 vector consisting of the price
cost of edges irE; is 0. of all the tasks. The dual optimization problem can then be

« The constraints of minimum-cost flow problem yield a toyritten as

tally unimodular coefficient matrix. Besides, all the edge nony N oy
capacities in our constructed flow problem are bounded minpjmaxfij Z Z aij fij + Z pj(1— Zlfij)
by integers, which leads to integral optimal solution [35]. i=1j=1 j=1 i=
So Constraints (10) are satisfied. Nt i
Thus our assignment problem can be equivalently expressed st ; fij =N, vi=1...n
as a network flow problem. In the solution of the minimum- =
cost network flow problem, the non-zero (value 1) flowEs
corresponds to the optimal assignmenAP— GT problem
in Section Ill, i.e., if in the optimal solution of minimum-
cost flow problem,fjj = 1, then we construct the optimalFrom the dual problem given by Equation (12), we can deduce
assignment by assigning tagkto robotr;. The minimum-cost that if the price vector of all taskg, is fixed, the objective

fij <1, Vi=1,...n,k=1...,ns
€Ty
(12)



can be maximized by each individual robot, solving the where the operator m&¥ takes in a collection of numbers as
following problem: an argument and returns thigbiggest values of the collection
n and we abuse notation slightly so that
max; (aij — pj) fij () (N
! JZl (MaXk=1,. ne{Vij; } 2 (MaX){vjc[k=1,....ns}.
Nt
=1

st Z fij = N; (13) Therefore the right hand side of Equation (14) gives the sum
of the N; biggest values of the tasks from each group (for
fj <1, Vk=1,...,ns robotr;). When Equation (14) is satisfied, we say robots
jfie T happy If all robots are happy, we say the whole assignment
and the prices at iteration are at equilibrium

.This suggests the.following itergtive approac_:h that we Ose | gyppose we fix a positive scalarWhen each assigned task
this paper. Our solution approach is an extension of theéaucts,, robotr; is within € of being in the set ofi’s maximum
algorithm [5] developed for linear assignment problems. I es that is

each iteration, for a given price vector, each robot solhes t .
optimization problem given by Equation (13) abitis for the {aij — pj(T)]j € I} > (r%gx)kzl (maxaij — pj(1)) — &)
tasks for which it has the most value (subject to the budget TS ETk (15)

constraints and task group constraints). In the bid, theepri

each robot sets for the tasks it selects is according to ailaert(alfter sorting both the left and right sets of (15) above, any

rule. The price vector (or dual variable) gets updated byvglue in the left set is no less than its corresponding vatue i

centralized coordinator by setting the price of each taské¢o the right sef), we say robat is aimost h_appylf all robots )
maximum price in the received bids. Then the biding proce@€ almost happy, we say the whole assignment and the prices
repeats until the bids do not change. The primary challenged! itérationt areaimost at equilibrium
designing such an iterative algorithm is the design of theepr Price Update Rule:In the discussion above, we have
update rule such that it is guaranteed that each robot tryifi§Scribed the procedure by which each robot computes the
to maximize its own value of assignment converges to §ﬁ’_t of tasksJ; for which it bids. We will now descrlb_e the
assignment that satisfies all the constraints and maxintiiees prlce_/update procedure for the tasks for which rohdbids.
overall objective. Note that, in the above iterative schetme L€t Jk be the index of the task with second best value from
budget constraints and the task group constraints are alwiSk 9roupTk, i.e.,
satisfied during the iterations. The bidding process also@s
that the assignments are always integral{pe {0,1}, i.e., a
robot is not assigned to a fraction of a task). However, mpidgti Let j;; be the index of thgN; 4 1)-th highest value task in
robots may want the same tasks (i.e., there may be conflidfs The new price of each task < J; is
in the assignment). The price update rule has to ensure that
the bidding process converges and there are no assignmer‘?ﬂ'
conflicts at the end. . . . (16)

We will now introduce some notation to rewrite Equaln words, the new price of a task is the old price plus the value

tion (13) compactly and also introduce some terminology th%rgat would have been lost if the robot could not be assigned to
y task inJ; but were instead assigned to the next best candidate

we will be using in the proofs of convergence and (almos ; ;
L 9 P . °r9 ( : task. The new task price guarantees that even after pricateipd
optimality of our method. In the discussion below we will use : . .
: . L . In the iteration, the selected tasks still halenostthe most

the terms time and iteration interchangeably. Let the pfiace

) . . value for the robot with relaxation value The terme is a
taskt; at time (or iterationy be pj(7). The net value of a task X .
. ) . . parameter of choice and it needs to be added to ensure that
tj to robotr; at time 7 is vjj(T) = &;j — p;(1). The iterative

bidding from robots leads to the evolution pf(). the value of a task whose price has changed increases by at

For robotri, let j; be the index of the task with maximumleasw' This parameter is introduced to avoid the algorithm

value from task groupiy andv;;. be the value of this task, from cyc_llng when the value of a task is gqual for two ropots.
i k We will now present the overall auction-based algorithm

for task allocation for grouped tasks. We denoted?yr), the
Viji = max en{aj — pi(T)}- price for taskt; held by robotr;. During any given iteration,
Let J* be the index setji}i_1..n. Let J C J* be the any subset of robots may take part in the bidding (one extreme

index set of the tasks assigned to roboat any time (we being that one robot bids in every iteration and the other
omit the explicit dependence df andJ on  for notational extreme being that all robots bid in every iteration). Foseea

simplicity). From Equation (13), every robof wants to be of exposition, we will present the algorithm and proofs of
assigned to a task sef; — {t;] ] ,GJi} with maximum value performance of the algorithm assuming that the robots bid
while satisfying its consltraint|Jsli| — N and 75 O T < 1,vk = sequentially in a pre-specified order (with one robot biddin
1 ns. Mathematically ! - in every iteration). The algorithm consists of the follogin
o ’ steps:
(N 1) Initialization: Sett = 0, and initialize the price variables
aj — pj(1)) = § (max), _ Vi 14 ) : ' P '
> (@ -pi(m) = Fman o (ug) (9 e o aach ok

J

i/ .
Jk = argma)[(JeTk’#j;V” .

(T+1) = pji (1) + (vji (1) —max{vy (1), vj, (T)}) + €.

J



2) Bidding step Robot, r;, using the price vectop;(1),

Algorithm 1 Bidding Procedure For Robot

computes the set of taskisthat it will bid for and com-
putes the updated pricep%(r+ 1),Vj € J, if required.
It communicatespij to the auctioneer.
3) Price Agglomeration Stefsetp;(1+1) = max{p‘j (T+
1)}, Vj=1,...,nr. Communicate;(7r+1) to all robots.
4) Convergence Conditionlf pj(t+ 1) = p;j(1), Vj =
1,...,n, stop; otherwiser = 1+ 1 and go to step 2.

The key step in the above algorithm is the bidding step fof:

each robot which is described in Algorithm 1. In the above®:
blOZ

discussion, for ease of exposition, we have assumed thatso

bid sequentially during any iteration round. This is knowr!:
as Gauss-Siedel iteration [7]. However, for convergence wé
do not need the robots to bid sequentially. In fact, as w&*

will discuss later, the robots can bid simultaneously (Baco

iteration) or asynchronously and can converge to an (ajmost*
optimal solution as long as there is a bound on the number bf
iterations within which a robot makes a bid. We compare tht:

performance of the Jacobi iteration versus the Gauss-Siedé&
18:

iteration in Section VII.
Algorithm 1 describes in detail the bidding procedure that®

each robot uses to compute its own bids. As before, P

Algorithm 1, let Ji(1) be the index set of tasks that robot

i bids for at timet. Let Ki(T) be the index of the task 21

1:
2
3
4:
5
6

7.

Input: &j,vj; p(1); Ty,vk; Ji(T—1), Ki(1-1), p'(1).
: Output: J(1), Ki(1), p(T+1).
: Il Update the assignment information:
for je€J do
if pl(1) < pj(1) then
/I another robot has bid higher than's previous bid
J =3\ {i}; K =Ki\ {kltj € T};
end if
end for
N/ = |Ji| // Number of tasks still assigned to robet r
/I Collect information for new bids
Vi (T) = ajj — pj (1) /I Value of task, it to robot, .
/I Select the best and second best candidate task from each

subset [
for k=1,...,ns do
if k¢ K then

jx = argmaxcT, Vij (1) // Best candidate task
end if
Jik = argmaxcr, j«j: Vij (1) //Second best candidate task
: end for
: lISelect the N- N/ best candidate tasks from task groups
not in K )
)= argma%ZENi)vj;(r); K={Kltj € T,j € J};

groups (or subsets) from which the tasks have been assigriéd// Store the index ofN; + 1)-th best candidate task

to the robots at timer. The bid prices for robot; at time 23
T before agglomeration is denoted Ipy(1) (p' is amgx1 24
vector) andp is an; x 1 vector denoting the prices of all the 25
tasks after agglomeration. As before, we will yseto denote 26
the j-th component ofp, i.e., the price of the tasl after
agglomeration.

During the first part of Algorithm 1 (from Lines 3 to 9), 29

robot r; updates its assignment information from its previous

iteration. Since other robots may have bid higher price fao:
its assigned tasks a robot first checks for tasks whose prige

is greater than the price set by the robot (Line 5). For taslkg
whose price is greater than the bid of the robots in the ptesvio33

27:
28:

Dl = argmaxg k) Vi (1); K = {Kitj;, € Tu };
: /I Update price and assignment im‘kormgtion
(1) =3 (1—-1)Ud; Ki(T) =Ki(T—-1) UK;
cfor j=1,....n, do

if j€Jthen
k=1 _
Pt + 1) = P+ v -
k k
max{vij;/(r),vij/k(r)}+£:
else
p;(T+1) = pj(1);
. end if
: end for

iteration, the previous assignments are broken and new bids

are computed. On the other hand, if none of the previously
assigned tasks have higher bids than the bids of mpbodbot ite
ri does not compute any new bids.

ration. This is because a robot potentially removes R tas

from its list only when the task price is higher than the price

During the bidding part of Algorithm 1 (from Lines 11 toit bid for. Thus, there is another robot that is also assigoed
33), robotr; keeps theN’ assigned tasks since its previoushe task and removing the task from one robot’s list does not

iteration, and computes thg — N/ tasks (Line 21) with the ch
best values from different subsets (which do not contain aon

ange the assignment status. Also, there has to be at least
e robot that is the highest bidder, so, it does not remase th

of N/ already assigned tasks). Lines 15 to 17 and line 2ask from its task list if no other robot placed a higher bid.

guarantees that after the iteration, all constraints féota;
are satisfied, namely, (a) robot is assigned to exactlN;
tasks [/ previously assigned tasks plhis— N/ newly assigned
tasks); (b)ri is assigned to at most one task in each subs
The price for each newly assigned task is updated, using
price update rule in Equation (16) in Lines 26 to 31 using tr]g
information in Line 18.

an
ite
t

Remark 2. At the end of every iteration a task may be

assigned or unassigned and further, a task may be assigne

Remark 3. The price of an assigned task is strictly positive

d non-decreasing. In other words, at the end of every
ration, either the price of a task remains the same or

‘increases. This is evident from the price update rule in
8uation (16) which ensures that the price increases by at
ast &, whenever a robot submits a new bid on the task.
Mathematically,

Pip(T+ D =Py (1) = Vi (1) —max{v;, (1), vy (D)} + e > €.

multiple robots. However, if a task is assigned at the bagmn Thus if a task receives infinite number of bids, its price will
of the iteration, it never becomes unassigned at the endeof tiecome+. The price of an unassigned task is zero.



Remark 4. In the sequential (Gauss-Siedel) implementatiotasks in the task groups wheredoes not have fixed assigned
two robots cannot possibly bid the same price for a task. Thasks will receive infinite number of bids.
reason is that the robot, which bid later for the same taslstmu

strictly increase the bidding price by at leastiowever, in the task should receive receive infinite number of bids for a tobo

simultaneous (Jacobi) implementation, multiple robotgfini 0 bid infinite times. In any task groufy, if there exists one

bid the same highest price for a task at certain iteration. En . R o X
T : : ask, tj, which receive finite number of bids, its price would
this situation, when those robots receive task price froen th

auctioneer at the end of the iteration, any of them wouldkthi be finite, and its value for, must be bigger than those tasks in

that the task has been assigned to itself since the price F]Sreceiving infinite number of bids. This would imply that

the same as its own bidding price, which could potentiaIIEA ould receive more bids than other task3inwhich leads to
I
I

Proof: Since there are finite number of tasks, at least one

) ! e contradiction. So all tasks ifx receive infinite number of
cause assignment conflicts. One easy way to resolve t Ss and thus have the price efo (according to Remark 4
issue is to add a robot identifier to the bidding price for any

task. When the auctioneer receives same bids for a task from

different robots, it can assign the task to one robot acogrdiTheorem 1. If there is at least one feasible solution for
to certain rule, e.g., giving robots with larger identifieglier Problem 1, Algorithm 1 for all robots will terminate in a firit
priority, and communicate the new price as well as assignadmber of iterations.

robot identifier to all robots. In this way, robots can know ) : . o
whether the task has been assigned to it or not even Wher[?roof. If the algorithm continues infinitely, there must be

multiple robots bid the same price for that task. Beside>"© subsetdTylk € K"} where all tasks havetco price

in the distributed setting without a centralized aucticrnee"’“k’Cordlng to Lemma 2 above. Dendt® = Uyek» Tk Suppose

when robots update their maintained local task price ligt a r%meTrogqu dea:re}sr':iflilsb?(ljrdeiidyfgr?iet}g ?esrilgizie:’\‘]‘? :Zitz
associated robot identifiers, they can use similar comgist \ T, 9 b

[ © __ N N* H
predefined rule to determine the robots’ priority to breadk bi rom T ([?Igase nqte, hemi_ =N — N does not nmecessanly
ties equal toN/ in Algorithm 1 since all those tasks ii* are not

stably assigned to any robot). Dend®®8 = {ri|i € 1*}.

We will now answer the following questions about the per- Each taskj € T® remains assigned (according to Remark 3).
formance of task allocation algorithm presented abov&Wi) Each robotr; € R® needs to be stably assigned M more
the algorithm terminate with a feasible assignment satuio  tasks, but all tasks iff  cannot fill up ally ;<= N positions.

a finite number of iterations? (b) How good is the solutio8o
when the task allocation algorithm terminates? For questio IT®| < N>
(a) above, we will first show that when the task allocation i&

algorithm terminates, the solution will be a feasible solut gte that the above inequality is strict, since there musatbe
We will then show that the algorithm will terminate in a finitga45t one robot; € R® that has remaining tasks unassigned
number of iterations. (otherwise the algorithm terminates).

Lemma 1. When the task allocation algorithm terminates, i.e., On the other hand, each robot must already be assigned
the convergence condition is satisfied, the achieved asgigh t0 exactly one task in each subsktk ¢ K (according to
must be a feasible solution for Problem 1, i.e., Equatiff)s Lemma 2 above). We have

to (10) are satisfied. N=S N+ 5 N

Proof: During every iteration, when each robot computes ic ic ic

its bids by Algorithm 1 it is ensured that each robot bids foéuppose in any feasible assignméﬁt,andl\f“ are the number
N; tasks and there is at most one task from each task 9r%Passigned tasks far in T\ T anld T, rlespectiverNi _
(i.e., Equations (8), (9), and (10) are always satisfiedraftﬁ_“r,\lfm' It is easy to see that eaddf (i € 1 ) has reached
every iteration). When the algorithm terminates, it im;alieth'e biglgest possible valug;- N* > 5 - N*. So

that a robotri, has been assigned t4 tasks and no other ACI® TR = 21el® T

robot has bid higher forj’s assigned tasks. Furthermore, Ne > § N° > (T

since the total number of tasks and the sum of the budget of ic ic

the robots are same, all tasks are assigned (i.e., thereecantbmeans that in any feasible assignment, the number of
no task with price zero) and each task is assigned to exacibsigned tasks iT® for R® is bigger than the number of
one robot. Therefore, Equation (7) is also satisflid. tasks inT®. By contradiction, we know that Algorithm 1

must terminate in a finite number of iterations if there exist
Lemma 1 implies Algorithm 1 is sound, i.e., when it outputg feasible solution for Problem H

a solution, the solution is feasible. The next result asstbgt According to the proof of Theorem 1, the running
Algorithm 1 always terminates in finite number of iteration§me of our algorithm for the shared memory model is
assuming the existence of at least one feasible assignmentcg(nrntz max{a@j}fmin{a@j}) whereO(ny) is the running time of
the problem. The proof relies on the conlcusions in Remarks . £ max{aj }—min{aj} .
A'Z)’Igorlthm 1 for each robot, andy——"——- is the

4 and the following lemma. maximum number of rounds for all robots to run Algo-
Lemma 2. If a robot r; bids for infinite number of times, all rithm 1 (since the upper bound of total task price increase is



ni(max{ajj } —min{a;;}). Lemma 1 and Theorem 1 togethewhich means (6) is satisfied.
prove that Algorithm 1 is both sound and complete. Second, we prove that the unchanged tasks assigned to
Infeasibility check:In the case when there does not existincer;’s previous iteration, must still be in the new assignment
any feasible solution, the robots can detect that situaition of r;. That is, those tasks are still among tasks, which nrake
a distributed way during the bidding procedure. The biddirgmost happy after the iteration. Denote the index set adeho
procedure itself would guarantee that task group const{@)n tasks agy . Since these tasks did not receive any bid from other
is always satisfied since each robot would bid for at most ongbots since;’s previous iteration, their prices (and hence their
task from each group. Constraint (7) might be violated duglues) tor; do not change. Meanwhile any other tasks’ price
to the fact thaty; N < ry. In that case, Algorithm 1 would either remain the same or increase after receiving bids, so
output an almost-optimal solution given the budget constisa their values tor; reduce. So tasks itk must still be in the
of robots, and leave some tasks unassigned. Moreover, tgav assignment to makg almost happy. Since the bidding
robots can detect that situation after the algorithm teat@is process to get newly assigned tasks is the same, the newly
by checking whether there still exist tasks with initial @erassigned tasks must also be in the new assignment to make
price. almost happy (due to similar proof for the first iteration).
The infeasibility caused by budget constraint (8) can be So the conclusion is true for each iteratioaf ri, i.e., after
detected whenever a robot start continuing bidding for & tagach iteratiort of r;, ri’s newly assigned tasks together with
with negative values to it. At that time, the robot can chedke task pricepj(t+1) keepr; almost happy

the price of other tasks: if all tasks have non-zero price, th gjnce Theorem 2 holds true for all robots, we get the
robot can detect that there does not exist any feasibleisplutcorollary below.

since it implies thaty; N; < ry; if the number of tasks with
zZero price (tasks which have not received any b|dsmd§ COfO”ary 1. When Algorlthm 1 for all robots terminates, the
the robot can detect the infeasibility if it continues biugli achieved assignment and price are almost at equilibrium.
for tasks with negative values far,, rounds since it implies
that the structure of task groups prevents a feasible soluti
satisfying task group constraint as well as budget comgtrai
In this case, the robot detecting the infeasibility coulddse Theorem 3. When Algorithm 1 for all robots terminates, the
out a message to its neighbors to stop the bidding procedwaehieved assignmer((i, (Ii1,...,lin,))|i = 1,...,n;} must be
Please note that this infeasibility mainly comes from thietst within Z?Ll Nie of an optimal solution.
budget constraint that each rolspmust be assigned to exactly ) . .
N; tasks. When we relax this budget constraint in Section VI S%ITroof. Denote (i, (liy,...,lin))li = 1,...,ny}) as any fea-
that each robot can perform at magttasks, this infeasibility sible assignment, i.e.,
would not exist. N

We now want to prove the performance of Algorithm 1. The (U t,) N Tm<LVim:i=1...n;m=1...n;
result relies on the following theorem. k=1

Theorem 3 below gives performance guarantee for Algo-
rithm 1.

. . ’ Ni NJ
Theorem 2. After each iterationt of robot r, r's newly P

assigned tasks together with the task pricgérp-1) keep (kL_Jlt'ik) n (kL_Jlt'ik) =0ifi#] (7)
ri almost happy, i.e., (15) is satisfied. B B

Proof: First, let us prove it holds true for the first iteration.DenOte {Pjlj =1,...,n} as the set of task prices when

At the beginning of the first iteratiorr; does not have any Algorithm 1 terminates for all robots anfipj|j = 1,...,n}
assigned tasks. According to Algorithm 1, bids for task set &5 @y set of task prices. _

tc = {tj; [k e K*} (using the task prices at the beginning of the First, we want to give an upper bound for the optimal
iteration) that makes; happy, i.e., solution.

. (N N (N)
{aij; — P (T)[ke K"} = (maX>k:1,...,ns(rjg$kx(aj = pi(1))). k;(anik — i) < (maX)kzl,...,ns(rog:(au - pj))

( = by = pp(n) + vi(1) - LR LIS o
max{vj. (1), vy (1)} + ¢, andvj(1 +1) = vj(1),Vj & {jilk € = i;k;(adik —Py) < _;(max)kzl,...,ns('}fg:(% - i)

i
no N

< < ()
aj; — P (1+1) = max{v. (1),v; (1)} — € = i;k;(ailik) < ,;pj +i;(max)k:1,...,ns(52§z<aij —pj)

= max{vj;/ (T+1), vy (T+ 1} —e.
) o Since it holds true for any set of price and any feasible
maximum value of any task in its own subset and other subsgig offs of any feasible E\ssignment.
{Tlk ¢ K"}, so
n N

(Ni) *
* . A= m "
{aij; —pj; (T+1)[ke K™} > (1 'ax)k::l.,...,nSOjGI?:(aU pi(T))—¢), lik satigyx(ﬂ) i;kgl(a”'k)



B = min B Modification of Algorithm 1 to form a distributed algorithm:
PiI=1....m . ] As stated before, suppose at iteratiorihe price of task; that
- = (N ri maintains isp! (1), then the vector of prices thatmaintains
= min i + max), _ maxaj; — Pj ! . I ;
pj:j:l,---,nt(];pJ i;( >k’l""’”S(J€TkX( i=Pi)) is that [p(7), p5(T),. .., Pn (T)], wheren; is the number of
tasks. At the beginning of Algorithm 1, we can add a part
wherer; updates its price information of each tagk p'j(r),
) nr using Equation 18. A robot;, may use underestimated price
21 > @, - P2 .Zl(k:r?axn W,—T;?‘(au -7 __ZlNig for bidding during some iterations due to two factors: (a)
i=1k=1 i= reolls k i= S . . . .
maintains the price of all tasks using local maximum instefad

On the other hand, according to Corollary 1, we have

e N ny (N

no N 1 ny ! Ny . . . .
(N) .
21 >an, = > P+ ( max j(maxaj—pj)) - ZNig global maximum; (b) the price of each task at each iteration
“a& =1 &1 k=1...ns" " j€T = may increase (due to new bids). However, the current true
ne ne price information will eventually propagate tpin at mostn,
> B" =Y Ne>A"—-3 Ne iterations (given the network is connected). So after comlyi

i= = with consensus techniques, the performance of Algorithm 1
zin;lzwi:la“_ik is the total payoffs of the achieved assignmeritoes not change except that the convergence time may be

by Algorithm 1, and delayed by a factor of\, whereA < n, is the diameter of
o N o the robot network.
AF > z a; >A -5 Ne The price update and bidding procedure can be implemented
_i;kzl lic = i; either in synchronous or asynchronous way. During each

bidding iteration, each robot needs to communicate with its
direct neighbors to update the local maximum task price. The
size of a message that each robot needs to communicate with
its neighbor isO(n;), the order of the number of tasks.
Almost-optimality of the modified algorithr@imilar proof
V. TOTALLY DISTRIBUTED ASSIGNMENTALGORITHM as for Theorem 1 can be used to prove that the new algorithm
In this Section, we combine our algorithm with distributeavith consensus technique would also terminate in finite num-
algorithms for maximum consensus in multiagent systems lver of iterations at a feasible solution if there exist astemne
make the algorithm totally distributed. In Algorithm 1, &ac such solution. Theorem 2 also holds true if we change the pric
robotr; can compute its own bid, however, it needs to obtain the theorem from true values to robots’ estimate fromlloca
the global price informatiop(7) from an agent that has maximum, i.e., all robots are almost happy with respectgo it
access to the price information of all the other agents. Foraintained task price each time after its bidding iteratjon
linear assignment problems, the auction algorithm in [3t thsince we assume the robots form a connected network, the
required a shared memory has been combined with distribusssturate task price information at iteration(i.e., the global
maximum consensus algorithm in [8] so that the algorithm keghest bid price of the tasks at that time), would evenyuall
totally distributed. We follow a similar procedure. propagate to the whole network within at mdstiterations.
Consider a connected networ®, where the nodes of the When the algorithm terminates, the price information store
network represent the robots and there exists a link betwdsnall robots does not change and must reach the true values
two robots if they can communicate with each other. Idue to propagation, so Theorem 2 holds true for the true price
maximum-consensus [37], each robot R has a price for task values. Thus Theorem 3 also holds true.
tj aspj, and the goal is to obtain the highest price of task held Thus in the ditributed algorithm, a near-optimal task allo-
among all robots for each task, i.@;, = max,cr p'j (denoter* cation can be performed by the robots with private knowledge
the robot which has the prigej). The maximum initial value about their own payoffs and budgets without sharing it with
pj can propagate to the whole connected network, if eveogher robots. Each robot in a connected network can make
robot keeps updating its value using the local maximum valgecisions based on updated local price information from its
among its neighbors. own neighbors. The task allocation algorithm becomesliotal
Suppose that at iteration, each robot; has the value of distributed for both the decision process and the inforomati
task j as pij(r). Starting from initial valuepij (0), the robot collecting process.
needs to update its value:

p\(T+1) = max p‘f(r) (18) V1. EXTENSIONS
ket . . . . .
In this section, we discuss a few extensions to the basic

where #* = {i}U.#, and.4 is the set ofri’s neighbors in  MAP-GT problem formulation, including the relaxation of
network G. Eventually, each robot can get the true maximumnudget constraint (8) and task group constraint (9).
value of tasktj, and the number of iterations taken for robot
ri to get the true pricep; is the length of the shortest path ) )
fromrj to r*, which is at most the number of robais Thus, A. Relaxation of budget constraint
each robot can obtain the global price information, based onln the basic problem we assumed that the number of tasks
repeated local interaction with its neighbors. robotr; can perform is exactli;. In this subsection, we relax

So it is within 3" ; Nie of an optimal solutiorll
Please note, if all the payoffs are integers, and weeset
E”'l_N' the achieved assignment will be optimal.

i=1""



this constraint so that each robot can do at nigstasks as selecting the best candidate task from each subgetve
indicated in Equation (3). select the besN; tasks fromT, to form a candidate task
To solve the extended problem in a centralized or distributeetJ;; second, instead of storing the index of the second best
way, we modify the input instances in the following way: ginccandidate task from each grodp, we store the index of the
the total budgets of robots must be no less than the number(&i; + 1)-th best candidate task,, for future bid price update.
tasks, i.e..5;N > ny, we addy;N; —n; virtual tasks (denote The rest of the algorithm remains the same.
the set of virtual tasks ak/) to the original tasks. Every single  The proof of soundness, completeness, and optimality of the
virtual task forms a separate task group. The payoffs betwemodified algorithm is similar to the proof for Algorithm 1. h
any virtual task and any robot is set to be identical, Bgj,= difference is that in the optimality proof, instead of showi
ai,j, v two robotsiy, iz, and taskij € Ty. Then we can apply that the besN; candidate tasks are selected from different task
the same algorithms described in Section IV-A and IV-B. Thgroup to satisfy the basic task group constraint (9), we need
virtual tasks are auxiliary and only exist in the input to théo show that the selected tasks are the best candidate tasks
algorithm, and get removed in the output assignment salpticatisfying the extended task group constraint (4).
i.e., if arobot is assigned tovirtual tasks after the algorithms
terminate, the robot would haweremaining unused budgets.
The soundness and completeness of the method above
comes directly from the soundness and completeness of thén Section IV, we designed Algorithm 1 for tidAP— GT
algorithms in Section IV. The optimality of the method camproblem, and proved the performance guarantee of the de-
be proved as follows. According to Theorem 3, for the negigned algorithm. In this section, we use simulations with

VII. SIMULATION RESULTS

input instance with virtual tasks, we have randomly generated test cases to check the influence of the
' B o _ control parametee and robot network diameted on the
A= Z _GZJ,a” = A —IZN'S’ algorithm’s solution quality and running time. According t
IS

Theorem 3, we know that is a key control parameter of

whereJ/ is the set of tasks assigned to robgtincluding the the algorithm, which directly influences its solution qtali

possibly assigned virtual tasks. Since the virtual taskse haAccording to the complexity analysis, we know that the

the same payoffs for any robot, we can cancel their payoffenvergence time of the algorithm dependssass well as the

in our assignment solutioA’ and the optimal solutiolA*’, robot network diameter. We will use the number of rounds as

which leads to a measure of the convergence time. One round is completed
- . . when all robots have bid once. Thus for sequential bidding,

A= Zje ia” A - IZN"S’ each round consists @f iterations.
. . . Considern, = 20 robots, where each robet performs
whereJ; is the set of tasks assigned to rolbgtexcluding the N = 3 tasks from a set ofy = 60 tasks. The task seF

po_ls_siblylassiﬁned VirtléaldtaSka'l ) distributed forms ng = 20 disjoint subsets, with 3 tasks in each subset.
0 solve the extended problem In a distribute - way, Wg, randomly generate payofég from a uniform distribution
cannot directly use the method above. The reason is that e?r?( 20). We tested different values afvarying between (1

robot does not anW other robots budg_et, and thu_s. dogs Nl 10. Initially, we assume that each robot can communicate
know how many virtual tasks there are in the modified INPYSith all other robots, i.e.) = 1. Later we perform simulations

instance. The way to resolve this issue is to change thermddi . |/~ ious network diametera. For eache, we generated

pr_ocedure: e‘?‘.Ch time a r_obot detects th_at i_t is bidding fas t 15 samples with different payoffs drawn from the uniform
with non-positive value, it should stop bidding for thaiikand distribution, and we compared the mean and standard dawiati

mearr]lwhne r:cafduc]ie .|ts blljdgit by gne. Th(_a rehasoE is that ';\H performance ratio of our solution to the optimal solution
set the payoffs of virtual tasks to be zero in the above met well as the convergence time of the algorithm.

a robot would bid for virtual task if and only if the values o Figure 2 shows the change in solution performance with the

solution and the optimal solution is increased, but ourtsmiu

) ) is still very close to the optimal solution (within 95% of the

B. Relaxation of task group constraint optimal solution). Figure 3 shows the change in convergence
In the basic problem we assumed that each robot ctime of our algorithm withe. The number of rounds decreases

be assigned to at most one task from each group. In thidth increasinge, which means with higheg, Algorithm 1

subsection, we relax this constraint so that each ropoan converges faster. In Figure 2 and Figure 3, we show the gesult

be assigned to multiple tasks in each grdupbut the number of both sequential implementation (Gauss-Seidel itenqémd

of tasks it can be assigned to in each group is boundddby simultaneous implementation (Jacobi iteration). As shdmwn

as indicated in Equation (4). Figure 2, although the two implementations might conveoge t
To address this extension, we need to modify the proceduliferent solutions, their solution quality is close. A®gm in

for selecting tasks that should be bid upon (line 16 and 18&jigure 3, simultaneous implementation needs more number of

in the bidding procedure of Algorithm 1. First, instead ofounds to converge, however, since robots bid simultagous



instead of one by one in one round, its actual converge
time is shorter than sequential implementation.

From Figure 2 and 3, we can see that there is a trade
between the solution quality and the convergence time, twh
can be adjusted by. With biggere, the algorithm converges
faster but solution quality degrades while with smaberthe
algorithm solution is better at the cost of slower conveoger
time. In this exampleg = 1 can achieve a good balance

between the above two performance indicators. Fig. 4.  Total payoffs of assignment by our algorithm as a fionc of
parametera, which is the up-bound of the uniform distribution where we
draw payoffs. We fixe = 0.5, and generate 100 samples for each different

a€{1,2,...,10,20,...,100}.
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Fig. 5. Convergence time of our algorithm as a function ofpaetera.

Fig. 2. Total payoffs of assignment by our algorithm as a fiamc of
parametei, which is the minimum possible price increase during thelioi
procedure. The optimal solution can be achieved when we setﬂﬂr%

S .. . . N depend on the robot network diameterFurther examination
where min_dif f is the minimum difference between any two |né|V|duaI

reveals that the slower convergence time in networks with

payoffs a;. . : ) . X .
larger diameter is mainly due to the final price propagation
even after most robots have converged to their assigned.task

400 The total number of effective bids from all robots do not
2 e enon change too much, as shown in Figure 8.
g¢ 1
f'?if 7 1..\__-‘_ ‘ — _ _ j
g“a ] 0.95- T T
3
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Fig. 3. Convergence time of our algorithm as a function ofapaeter o8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
€. The solid (dashed) line shows the number of rounds for thpiedial o 1 2 3 7 8 9 10
(simultaneous) implementation of our algorithm to terngna
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Fig. 6. Total payoffs of assignment by our algorithm for eiifnt robot

To test the effect of mae; — mina;j, we fixed &, and network diameterA. We fix € = 0.5, and generate 100 samples for each
adjusted the payoff distribution bounds, i.e., we draw faydiferente.
values from a uniform distribution ovef0,a), where a is
adjustable for different samples. Figure 4 and 5 show the
results of performance ratio as well as the convergence til
Actually the effect of adjustin@ is equivalent of adjusting
€, i.e., when we increasa by 8 times, it is equivalent to
decreasing by B times, because it is just the scale chan
of aande.

In the simulation results above, we assume the rol
connection network is a complete graph, i.e., each rol
can communicate with all other robots. Next we will check _ _ _
how the robot network diametey influences the algorithm's F19 7. Convergence time of our algorithm for different robwtwork
solution quality and convergence time. Figure 6 and Figure 7 '
compare the results of complete netwdsk{ 1), line network
(A =n; —1), circle network & = |n;/2]), and network with
diameterA = 5. From Figure 6, we can see that the solution
performance is almost the same for different robot networkIn this paper we introduced a class of multi-robot task
structure. Figure 7 shows that the convergence time damssignment problems called task assignment with grouped

—Line network (A = 19)

== Circle network (A =10) |

---Random network (A = 5)
Complete network (A = 1)

Number of bidding
rounds of our algorithm

4 5 6
Control parameter €
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