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Abstract

Peer review is the backbone of scholarly research, but it faces a number of challenges pertain-
ing to bias and unfairness. There is an urgent need to improve peer review. This TheWebConf
tutorial (part 2) discusses several problems, empirical studies, proposed solutions, and open
problems in this domain. This document serves to provide a summary and references for the
tutorial.

1 Introduction

Peer review is a cornerstone of academic practice today and also for years to come (Price and Flach,
2017)). The peer review process is highly regarded by the vast majority of researchers and considered
by most to be essential to the communication of scholarly research (Mulligan et al., |2013; Nicholas
et al 2015; Ware|, 2008). However, there is also an overwhelming desire for improvement (Smith,
2006; (Ware, 2008; Mulligan et al.|, 2013)).

The following quote from Rennie| (2016)), in a Nature commentary titled “Lets make peer review
scientific” provides an apt summary of the state of peer review today:

“Peer review is touted as a demonstration of the self-critical nature of science. But it is a human
system. FEwverybody involved brings prejudices, misunderstandings and gaps in knowledge, so no
one should be surprised that peer review is often biased and inefficient. It is occasionally corrupt,
sometimes a charade, an open temptation to plagiarists. Even with the best of intentions, how
and whether peer review identifies high-quality science is unknown. It is, in short, unscientific.”

The need to improve peer review is particularly urgent due to the explosion in the number of
submitted papers in various fields. Conferences in machine learning and artificial intelligence are
experiencing a near-exponential growth in the number of submissions. The increase in number of
submissions is also large in many other fields beyond computer science: according to|McCook] (2006)
“Submissions are up, reviewers are overtazed, and authors are lodging complaint after complaint”.

Peer review is particularly known to hinder novel and interdisciplinary research. Quoting Travis
and Collins (1991): “interdisciplinary research, frontier science, areas of controversy, and risky new
departures are all more likely to suffer from cognitive cronyism than is mainstream research.” See
also |Church| (2005); [Porter and Rossini (1985)); Lamont (2009). Naughton (2010) has makes a



noteworthy point: “Today reviewing is like grading: When grading exams, zero credit goes for
thinking of the question. When grading exams, zero credit goes for a nowvel approach to solution.
(Good) reviewing: acknowledges that the question can be the major contribution. (Good) reviewing:
acknowledges that a novel approach can be more important than the existence of the solution.”

Problems in peer review have consequences much beyond the outcome for a specific paper, par-
ticularly due to the widespread prevalence of the Matthew effect (“rich get richer”) in academia (Merr
ton, [1968). As noted by Triggle and Triggle (2007) “an incompetent review may lead to the rejection
of the submitted paper, or of the grant application, and the ultimate failure of the career of the au-
thor.” (See also [Thorngate and Chowdhuryl, 2014} Squazzoni and Gandelli, 2012.)

Lee| (2015)) thus asks: “In public, scientists and scientific institutions celebrate truth and inno-
vation. In private, they perpetuate peer review biases that thwart these goals... what can be done
about it?”

The importance of peer review and the urgent need for improvements, behooves research on
principled approaches towards addressing problems in peer review, particularly at scale. In this
tutorial, we outline a few directions of research, and emphasize that this is just the tip of the
iceberg.

For concreteness we restrict attention to (conference) peer review of scholarly research, but
emphasize that research on this topic has implications for a wide variety of applications such as
crowdsourcing, A/B testing, peer grading, recommender systems, hiring, college admissions, and
many others. The common thread among these applications and peer review is that they involve
distributed human evaluations—a set of people need to evaluate a set of items, but every item is
evaluated by a small subset of people and every person evaluates only a small subset of items.

In the following sections, we discuss the following issues related to unfairness in peer review:
biases; noise; dishonest behavior; miscalibration; subjectivity; and norms and policies. We draw
conclusions in the final section of this document.

2 Biases

We begin with a discussion on issues related to biases with respect to certain groups of people.
There is a lot of debate on whether peer review should be single blind (i.e., reviewers know authors’
identities) or double blind (i.e, reviewers do not know authors’ identities), and different communities
follow different approaches. A primary argument against single blind is that it may cause the review
to be biased with respect to the gender/race/fame or other attributes of the authors. For example,
a paper submitted by two women authors to PLOS ONE received a review: “It would probably
be beneficial to find one or two male researchers to work with (or at least obtain internal peer
review from, but better yet as active co-authors)” (Bernstein, |2015). This debate can be made more
informative via experiments and data collection about this topic, which in turn requires the design
of appropriate tools and techniques to do so.

The issue of such biases in peer review is investigated in many prior works (Reinhart, 2009;
Budden et al., 2008; [Webb et al., [2008; |Okike et al., 2016; Bernardl 2018} |Bennett et al., 2018}
Seeber and Bacchelli, 2017} [Snodgrass|, |2006; Madden and DeWitt], 2006} [Tung), 2006} [Swim et al.l
1989; Blank, [1991; Lee et al., 2013)), primarily in journals and in non-computer-science fields.

In computer science, and particularly in the conference-review setting, a remarkable experiment
was conducted at the WSDM 2017 conference by its program chairs (Tomkins et al., [2017)). The
reviewers were split uniformly at random into two groups — a single blind group and a double



blind group — and each paper was assigned two reviewers each from both groups. This allowed
for a direct comparison of single blind and double blind reviews for each paper while requiring a
number of reviews only as much as what would occur in a non-experimental setting. In a nutshell,
their results found a significant bias towards famous authors, top universities, and top companies.
They also found a high effect size but not statistically significant bias against papers with at least
one woman author (a meta-analysis in combination with other studies was statistically significant).
The experiment did not find evidence of bias with respect to papers from the United States, when
reviewers were from the same country as the authors, and for/against academic (versus industrial)
institutions. The WSDM conference moved to double blind from the following year.

A subsequent work (Stelmakh et al.,2019)) offers a note of caution that the peer review process
has a number of peculiar characteristics due to which any experimental setup or statistical test
requires a careful design. It offers a number of possible scenarios which can break the tests used
in the WSDM experiment and designs a new experimental setup and statistical tests with rigorous
guarantees.

Open problems: The tests of [Stelmakh et al.| (2019) have only asymptotic guarantees on its
power, and finite sample guarantees on power for this problem remain open. Moreover, this test
requires a semi-randomized controlled trial; the design of tests (and quantification of needed as-
sumptions) to test for biases from observational data incorporating the idiosyncracies of peer review
remains an important open problem. Finally, there is need for many more such experiments that
can help inform the discourse on peer review and make it more “scientific”.

3 Noise

By noise, here we mean poor reviews due to inappropriate choice of reviewers. Data from people
is often noisy due to lack of expertise. In peer review, the assignment of the reviewers to papers
determines the expertise of the reviewer who will review any paper. Indeed, the importance of the
reviewer-assignment stage of the peer-review process cannot be overstated: quotingRodriguez et al.
(2007), “one of the first and potentially most important stage is the one that attempts to distribute
submitted manuscripts to competent referees.” A survey of researchers McCullough/ (1989) indicated
that the top reason for author dissatisfaction was that “Reviewers or panelists not expert in the
field, poorly chosen, or poorly qualified”.

The assignment of reviewers to papers in most large conferences (such as ICML, NeurIPS,
AAAT and others) is performed in an automated fashion. There are two stages in the assignment
procedure. The first stage involves computing a “similarity score” between every reviewer-paper
pair (Mimno and McCallum, 2007} Liu et al., 2014; |Rodriguez and Bollen, 2008; [Tran et al., [2017;
Charlin and Zemel, 2013). A higher similarity scores means a better envisaged quality of review.
The second stage then uses these similarity scores to assign reviewers to papers in a manner that
maximizes some function of the similarities of the assigned reviewer-paper pairs.

The most popular assignment method is to maximize the total sum of the similarities of all as-
signed reviewer-paper pairs (Goldsmith and Sloan,, 2007; [Tang et al., 2010; |Charlin et al.l 2012; Long
et al.; 2013]). This method is followed in the Toronto Paper Matching System (Charlin and Zemel,
2013)) which is widely used in many conferences and is also followed in conference management
systems such as EasyChair (https://easychair.org) and HotCRP (https://hotcrp.com/).

The aforementioned approach of maximizing total sum of similarities, however, can result in
unfairness to certain papers (see Stelmakh et al., 2018| for an example). An alternative approach
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is to optimize for the paper with the minimum sum similarity, and subject to that, optimize for
the paper with the next smallest sum similarity and so on (Stelmakh et all |2018} see also |Garg
et al., |2010; Benferhat and Lang) 2001; Hartvigsen et al.l [1999)). Empirical evaluations for such an
approach in three major conferences are available in [Kobren et al.| (2019).

Open problems: Among the assignment algorithms in the literature, there is a tradeoff between
the fairness guarantees and the computational complexity of the assignment algorithm (Stelmakh
et al., 2019; Kobren et al., 2019)), and designing assignment algorithms that are computationally
faster and have strong fairness guarantees is an important open problem. The second direction
pertains to a better computation of the similarity scores, taking into account the various aspects of
peer review, or furthermore jointly compute the similarity and assignment (Mimno and McCallum,,
2007; Rodriguez and Bollen), 2008; (Charlin and Zemel, 2013; Liu et all 2014} Tran et al., 2017).
Third, many conferences adopt a “bidding” procedure before the assignment stage, in which re-
viewers can bid for the papers they wish or don’t wish to review. The bidding procedure is one of
the most under-studied phases of the review process, and there is much to be done to make it more
fair and efficient (Fiez et al., [2019).

4 Dishonest behavior

Peer-review is susceptible to strategic manipulations. A reviewer may be able to increase the chances
of acceptance of their own submissions by manipulating the reviews (e.g., providing lower scores)
for other papers. A recent empirical study Balietti et al.| (2016) examined the strategic behavior
of people in competitive peer review, and concluded that “..competition incentivizes reviewers to
behave strategically, which reduces the fairness of evaluations and the consensus among referees.”
See |Akst| (2010)); |Anderson et al. (2007)); Langford| (2008]) for more anecdotes. As [Thurner and
Hanel (2011) posit, even a small number of selfish, strategic reviewers can drastically reduce the
quality of scientific standard.

It is thus highly important to protect peer review from any possible strategic manipulations. We
define strategyproofness in terms of a “conflict graph”, which is a fixed graph given to us. A conflict
graph is a bipartite graph with all reviewers and papers as its vertices, and has an edge between
a reviewer vertex and a paper vertex if the reviewer has a conflict with the paper. Examples of
conflicts include authorship conflicts (e.g., the reviewer is an author of that paper), institutional
conflicts, etc. Then strategyproofness means that no reviewer must be able to influence the final
ranking of her /his conflicted papers by manipulating the reviews that she/he provides.

A number of past works (Alon et al., [2011; [Holzman and Moulin) 2013 Bousquet et al., 2014}
Fischer and Klimm, [2015; Kurokawa et al., |2015; Kahng et al., 2017) consider designing strate-
gyproof procedures of “peer grading” in MOOCs and classrooms. There are two key differences
between these peer-grading settings and the peer-review setting. First, the peer grading setting
involves conflict graphs of degree at most 1, that is, every reviewer conflicts with at most one
paper and every paper has at most one author. On the other hand, even if one considers only
authorship conflicts in conference peer review, every author may submit multiple papers and any
paper may have multiple authors, thus requiring strategyproofness with respect to more general
graphs. Second, these prior works do not account for “heterogeneity” in the papers and reviewers
with the motivation that all students in peer grading take the same course. On the other hand,
conference papers and reviewers are more diverse in terms of their expertise and subject matter.
Hence any peer-review framework must have significant flexibility to accommodate the various in-



tricacies. These differences make the peer-review setting strictly more general and significantly
more challenging.

The partitioning-based method is used for the peer review setting by Xu et al. (2019)). In
addition to theoretical guarantees, Xu et al.| (2019) also perform an empirical analysis on data from
ICLR 2017 and 2018.

Open problems: Is strategyproofing possible when conflict graph cannot be partitioned (Xu
et al., 2019; |Aziz et al.l [2019)7 What is the maximum efficiency under strategyproofness, where
efficiency may be defined as the quality of the reviewer-paper assignment (Xu et al., [2019)? Finally,
how can one detect and/or prevent other forms of dishonest behavior (Ferguson et al., 2014; |Gao
and Zhoul, 2017; [Langford, [2012a))?

5 Miscalibration

There are many applications which ask people to provide ratings. However, it is well known (Mitliagkas
et al., |2011; |Ammar and Shahl 2012 |Griffin and Brenner], 2008} [Freund et al., [2003; [Harzing et al.,
2009) that the same rating score may have different meanings for different individuals. For instance,
if reviewers are asked to provide scores in the interval [0, 1], some reviewers may be lenient and
always provide scores greater than 0.5 whereas some others may be strict and rarely give scores
above 0.5. Or some reviewers are more moderate whereas others provide scores at the extremes of
the allowed interval. Such mismatches cause additional difficulty in the final acceptance decisions
as well as lead to unfairness, as noted by |Siegelman| (1991)): “the existence of disparate categories
of reviewers creates the potential for unfair treatment of authors. Those whose papers are sent by
chance to assassins/demoters are at an unfair disadvantage, while zealots/pushovers give authors
an unfair advantage.” Miscalibration may also be due to mismatched expectations of the “bar” for
acceptance. In NeurIPS 2016, there was a significant difference between the expected scores and
the scores given by reviewers (Shah et al., 2018).

In the literature, there are two popular approaches towards this problem miscalibration. The
first approach (Paul, |[1981}; [Flach et al., [2010; |Roos et al., |2011; |Ge et al., 2013; [Baba and Kashima;,
2013; MacKay et al., [2017)) is to make simplifying assumptions on the nature of the miscalibration,
for instance, assuming that these miscalibration is linear or affine. The research following this
approach designs algorithms to learn “parameters” of the miscalibration.

The simplistic assumptions described above are known to be frequently violated (see Brenner
et all |2005; |Griffin and Brenner, 2008| and references therein). These algorithms based on these
assumptions can then be “significantly harmful” in practice (Langford}, 2012b). With this motiva-
tion, a second approach (Rokeach) |[1968; [Freund et al. |2003; Harzing et al., 2009; Mitliagkas et al.,
2011; Ammar and Shah) 2012; Negahban et al., 2012)) towards handling miscalibrations is to either
directly elicit rankings from reviewers or convert the scores into rankings. This approach is often
believed to be the only resort when the underlying miscalibration may be arbitrary. However, it is
shown in [Wang and Shah (2019b) that in contrast to this folklore belief, even if the miscalibration
is arbitrary or adversarially chosen, ratings can yield better results than rankings. The estimators
proposed in this work, however, are randomized and tailored for the worst case.

Open problems: An important open problem is to design practically useful calibration algorithms
that accommodate non-parametric, non-linear models (i.e., weaker than parametric assumptions of
some past literature) but not as weak as the adversarial assumptions of Wang and Shah| (2019b)),
e.g., using permutation-based models which have several benefits as compared to traditional models



in various applications (Shah et al., 2017, |2019bl 2016, 2019a; Shah and Wainwright, 2018} Heckel
et al., 2016]). Moreover, we need the designed algorithms to be amenable to the small sample sizes
that are typical of peer review, perhaps achieved via different means of data elicitation or a more
relaxed space for outcomes (e.g., not necessarily outputting a total ranking or parameter values).

6 Subjectivity

It is known that different reviewers have different, subjective opinions about the relative importance
of various criteria in judging papers (Church, 2005; Lamont, [2009; Bakanic et al., 1987; Hojat et al.,
2003; Mahoney, [1977)). On the other hand, in order to ensure fairness, every paper should ideally be
judged by the same yardstick. For instance, suppose three reviewers consider “improvement of at
least 10%” as most important, whereas most members of the community have a high emphasis on
“novelty”. Then a highly novel paper that yields a 5% improvement over the state of the art may
be rejected if reviewed by these three reviewers but would have been accepted by any other set of
reviewers. Indeed, as revealed in the survey by Kerr et al.| (1977), more than 50% of reviewers say
that even if the community thinks a certain characteristic of a manuscript is good, if the reviewer’s
own opinion is negative about that characteristic, it will count against the paper; about 18% say
this can also lead them to reject the paper. [Lee (2015) calls this issue “commensuration bias.”

Noothigattu et al.| (2018) propose an approach to alleviate this problem. They model the
problem as that of “learning” a mapping from individual criteria to a final score, that is common
to the set of all reviewers. Marrying machine learning with social choice theory, they take an
axiomatic approach towards designing the learning algorithm in a principled manner. They also
present an analysis on peer-review data from [JCAI 2017.

Open problems: What are the statistical properties of the above problem and the algorithm
of [Noothigattu et al.| (2018)7 How can one evaluate the performance of any peer review systems
or algorithms, particularly since there is no ground truth in terms of which papers are actually
of higher quality than others? How can the the various aforementioned issues — biases, noise,
dishonest behavior, miscalibration, and subjectivity — which may not be separable in the data be
handled together?

7 Norms and policies

Issues of biases and unfairness also arise due to the norms and policies followed by certain commu-
nities or conferences.

(a) Biases due to alphabetical ordering: [Einav and Yariv| (2006 study biases due to alpha-
betical ordering in the field of Economics, where they find a significant bias towards researchers
with last names earlier in the alphabet. Economics follows the norm of listing authors in papers
in alphabetical order of their last names. In contrast, they find no such bias in the related field
of Psychology where the ordering is typically done in terms of the authors’ contributions. (See
also Hilmer and Hilmer| |2005; |Van Praag and Van Praag, |2008.)

Ordering authors alphabetically results in biases due to several reasons. First, primacy effects
imply that the reader will tend to remember the authors listed earlier in the ordering. Moreover,
many communities use the “first author et al.” citation format that puts a significantly greater
emphasis on the first author. For instance, more than half the papers in STOC, FOCS and EC



conferences — which follow the norm of ordering authors alphabetically — used the “first author
et al.” citation format (Wang and Shah, 2018)).

A related application is the lists of people on websites, for instance, lists of students and/or
faculty on the websites of universities. These lists are also often ordered alphabetically, resulting
in biases due to serial position effects.

A proposed solution to this problem is to randomize the lists of authors on papers (Ray and
Robson, 2018) or (dynamically) randomize the ordering of people on websites. Following outreach
by [Wang and Shah (2018), the Machine Learning Department at Carnegie Mellon University ran-
domizes the lists of people on its website (https://www.ml.cmu.edu/people/) since October 24,
2019.

(b) Gender distribution in paper awards and need for transparency: The gender dis-
tribution of paper awardees in top computer science conferences is quite skewed (Wang and Shah,
2019al). At the least, this suggests the need for greater transparency in the award processes, for
instance, publishing whether the process was double or single blind, or the criteria that was used.
This data has stated conversations in a number of research communities (e.g., |[Erkipl [2019), and
the hope is that such data and outreach will stimulate some much-needed changes in the norms
and policies adopted by various communities.

8 Conclusions

There are many sources of biases and unfairness in peer review. The need to improve peer review is
important and urgent for scholarly research to thrive. There is a lot at stake beyond an individual
paper: careers of researchers and the progress of science. The current research on peer review has
only scratched the surface of this important and urgent problem domain. There are lots of open
problems which are exciting, challenging, impactful, and allow for an entire spectrum of theoretical,
applied, and conceptual contributions.
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