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The tutorial is organized into two parts. In the first part,
Zachary Lipton will articulate current and historical think-
ing on the social impacts of applied machine learning. Call-
ing upon the economics literature on statistical discrimina-
tion and the more recent literature on fairness in machine
learning, he will present a critical survey of attempts by
academics to formally analyze and mitigate these problems.
Throughout, technical formulations will be presented along-
side real-world motivations. Technical formulations and so-
lutions will be accompanied by critical discussion, calling
attention to gaps between legal doctrine, ethical principles,
and the reductive technical definitions intended to capture
them, highlighting the ways that purported technical fixes
may themselves have the potential to confer harm, e.g., by
missing the point entirely, by obfuscating the critical ques-
tions, by codifying problematic concept (e.g., race), and by
misleading policy makers with apparent solutions that do not
actually solve the policy problems that they purport to ad-
dress.

Outline of part 1 of the tutorial including references:

1. Historical context: We will discuss conceptions of bias
and fairness broadly as construed in ethical and legal
frameworks. Will address both procedural fairness and
notions of fairness concerning group membership.

2. Economic frameworks: Next, we will introduce the clas-
sic literature on fairness in hiring due to economists,
including the Becker and Phelps models of taste-based
and statistical discrimination respectively (Bec57; Phe72;
AC77; A+73). We will also cover recent extensions from
the ML community to classic economic models (HC18;
CLM19).

3. Automated decisions: To set up a discussion of the ML
fairness work, we will motivate modern issues related to
predictive technology as used in lending, resume screen-
ing, recommender systems, and recidivism prediction
systems used in criminal justice.

4. Fair machine learning: Next, we will discuss attempts by
the machine learning community to formalize notions of
fairness in the context of classification. We will describe
various parity measures that have served as “definitions
of fairness” in rigorous mathematical study, covering
both associative and counterfactual measures (HPS+16;

DHP+12; ZWS+13; Cho17; KR18; LMC18; KLRS17;
KCP+17; NS18).

5. Limitations: The first part of the tutorial will conclude
with a critical discussion of work to date, highlighting the
gaps left between underlying social desiderata and reduc-
tive technical definitions. The discussion will also high-
light some of the perils of a form of overclaiming that
tends to slip past ML peer review: representing to have
made substantial progress on a pressing social problem
without in fact offering a viable solution.

In the second part, Nihar Shah will discuss biases due
to factors such as subjectivity, calibration, strategic behavior
in human-provided data. Applications in focus here include
peer review, hiring, admissions, peer grading, A/B testing,
crowdsourcing, and online ratings.

Specifically, this part will use peer review as a running ex-
ample application because: (i) We envisage that most mem-
bers of the audience at AAAI would be cognizant of peer
review, and a large fraction would have had a first hand ex-
perience. (ii) To the best of our knowledge, no tutorial in
ML/AI in the last several years focuses on this application.

Outline of part 2 of the tutorial including references:

1. Biases: We will make a smooth transition into peer re-
view from part 1, by first discussing biases due to de-
mographics in single-blind peer review. We will discuss
a remarkable randomized controlled trial (TZH17) at the
WSDM 2017 conference, and associated hypothesis test-
ing problems. Auxiliary references: (OHKL16; BTA+08;
WOF08; HJP03; SSS19).

2. Noise: By noise, here we mean poor reviews due to
inappropriate choice of reviewers. We will overview
widely used reviewer assignment algorithms (CZ13),
its shortcomings, and recent research focusing on fair-
ness (SSS18; KSM19). Auxilliary references: (RB-
VdS07; MM07; LSM14; RB08; TCH17; GS07; TTT10;
CZB12; LWPY13; GKK+10; BL01; HWC99; FSR19).

3. Subjectivity: Unfairness due to subjective opinions of in-
dividual evaluators, and using ML + social choice theory
to mitigate it (KTP77; NSP18; Lee15).Will discuss fun-
damental theory and empirical evaluation on IJCAI 2017.

4. Miscalibration: Unfairness due to miscalibrations (e.g.,



strictness, leniency, extremal behavior) of the evalua-
tor (GWG13; WS19), and using ML+information the-
ory to mitigate it. Auxilliary references: (Pau81; BK13;
GWG13; MKLP17; Pau81; RRS11; SBGW17; Sha17;
FSG+10).

5. Strategic behavior: Unfairness if some entities gain ad-
vantage by gaming the system in a zero sum game set-
ting like in peer review, college admissions, and hir-
ing. We will present an experiment from (BGH16) and
overview an algorithmic building block that is com-
mon to (AFPT11; DCMT08; HM13; FK15; KLMP15;
ALM+16; KKK+17; XZSS18).

6. Policy: The presentation will conclude with a discussion
on driving actual policy change.

The presentation will be interspersed with empirical analy-
ses of NeurIPS 2016 peer review (STM+17).
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