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1. INTRODUCTION
A recent epidemic of opioid overdoses has garnered national
attention in the United States [13]. The CDC estimates that
47,055 overdose deaths occurred in the U.S. in 2014, 61% of
which involved opioids (including heroin, pain relievers such
as oxycodone, and synthetics) [9, 6]. These statistics mo-
tivate public health agencies to identify emerging trends in
overdoses so that they can better target prevention and re-
sponse measures. However, reliable identification of such
trends requires us to solve several challenges. First, to ac-
curately pinpoint the affected spatial area, we must account
for the complex, correlated nature of spatio-temporal data,
modeling these correlations and using them to distinguish
between significant anomalous patterns and fluctuations due
to correlated noise. Second, when a pattern of overdoses dif-
ferentially affects some subpopulation (such as elderly males,
or drug users who combine heroin with alcohol), it is impor-
tant to identify and precisely target that subpopulation. To
do so, we must scan over multiple dimensions of the data
including demographics and behaviors as well as geographic
areas. We expect that this will also increase power to detect
emerging overdose clusters in their early stages, when case
counts are low. Most importantly, we must consider how to
integrate information across space, time, and subpopulation-
level characteristics, since an event of interest may be spread
across all of these features. Though individual anomaly de-
tection methods are commonly used in practice [4, 12], sim-
ply considering the anomalousness of each individual point
loses power to detect subtle or emerging anomalies.

2. METHODS
We consider two recently proposed extensions of the fast
subset scan [5], which detects anomalous patterns by effi-
ciently maximizing a log-likelihood ratio statistic over sub-
sets of data points. These approaches, the Gaussian Pro-
cess Subset Scan (GPSS) and Multidimensional Tensor Scan
(MDTS), are described in more detail in [3] and [6] re-
spectively. For each method, we frame the search as a
log-likelihood ratio (LLR) comparison between a null hy-
pothesis H0, assuming no events of interest, and a set of
alternative hypotheses H1(S), each representing the occur-
rence of an event in some subset S. GPSS monitors data
D = (x, y), where x = {x1, . . . , xn}, xi ∈ RD are covariates,
and y = {y1, . . . , yn}, yi ∈ R is a response variable. For ex-
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ample, each xi could represent the coordinates of a location
in space and time, and the corresponding yi could represent
the number of overdose deaths for that location and time
period. In MDTS, we again monitor data D = (x, y), but
now each xi represents a set of discrete-valued characteris-
tics. For example, each xi could represent the characteristics
of a given overdose victim or set of identical victims (gender
= male, age group = 20-29, etc.) and the corresponding yi
would be the number of individuals with those characteris-
tics (i.e., yi = 1 for a single case). Both approaches follow
the same general framework:

1. Estimate the distribution of the observed re-
sponses y under the null hypothesis H0.

GPSS assumes that points are drawn from a function
with a Gaussian process prior, y = f(x) + ε, where
f(x) ∼ GP (m(x), k(x, x′)) and ε ∼ N (0, σ2

ε I). Pa-
rameters of the Gaussian process are learned from the
entire dataset D. For a given subset S, the yi will fol-
low a multivariate Gaussian distribution, and we con-
dition on D \ S to infer the posterior mean vector µ
and covariance matrix Σ.

Similarly, MDTS performs scalable tensor decomposi-
tion to model D as a sum of rank-one tensors. For a
given subset S, MDTS uses the learned tensor decom-
position to estimate the mean vector µ, and assumes
that each yi is drawn independently from a Poisson
distribution with mean µi.

2. Define a search space of subsets S to consider.

GPSS forms the local k-neighborhoods Sik defined by
each xi and its k − 1 nearest neighbors according to
some distance metric, then considers all S ⊆ Sik. In
other words, GPSS conducts an unconstrained search
within each neighborhood to find the subset which
maximizes the LLR. This provides GPSS with the flex-
ibility to identify highly irregular shapes which still
satisfy the spatial proximity constraint.

MDTS considers the subspaces formed by Cartesian
products of subsets of values for each attribute. For
example, given attributes gender and age, one valid
subspace would be “males and females in age groups
10-19 and 20-29”, while the subset of“males aged 10-19
and females aged 20-29” would not be considered.

3. Define the alternative hypothesis H1(S).

GPSS assumes that under H1(S), the values of yi for
xi ∈ S are drawn from a multivariate Gaussian with
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a mean shift of β: y ∼ N (µ + βw,Σ), where w is a
binary vector such that wi = 1{xi ∈ S}.
MDTS assumes that under H1(S), the values of yi for
xi ∈ S are increased by a multiplicative factor of q > 1,
i.e., yi ∼ Poisson(qµi) for xi ∈ S and yi ∼ Poisson(µi)
for xi 6∈ S.

4. Maximize the log-likelihood ratio over subsets.

For both methods, the LLR score of a given subset S

is defined as F (S) = log Pr(Data |H1(S))
Pr(Data |H0)

. The subsets

S∗ = arg maxS F (S) are identified as the most anoma-
lous subsets, and randomization testing is performed
to determine a threshold for statistical significance.

To avoid the exponential time complexity of search-
ing over all 2k subsets for a neighborhood of size k,
GPSS uses a novel approximation technique which ex-
tends [11] to iteratively compute conditionally optimal
subsets. More details are provided in [3].

Similarly, to avoid exhaustively searching over all 2V

subspaces, where V is the sum of the arities of all
discrete-valued attributes in the data, MDTS uses an
iterative conditional optimization technique which uses
the linear-time subset scanning property [5] to effi-
ciently and exactly compute the conditionally optimal
subset of values for a given attribute, given the cur-
rent subsets of values for all other attributes. This
conditional optimization step is repeated until a local
optimum is reached, and multiple restarts are used to
approach the global optimum. More details are pro-
vided in [6].

GPSS and MDTS have multiple, complementary advantages.
GPSS is useful for modeling and accounting for non-iid cor-
relations in real-world systems, such as spatio-temporal ur-
ban data. GPs provide a natural means of learning covari-
ance structure from data, extend to multiple dimensions,
and seamlessly handle missing data. Given case data, MDTS
has high power to detect and characterize emerging trends
which may only affect a subset of the monitored popula-
tion (e.g., specific ages, genders, neighborhoods, or users of
particular drugs or combinations of drugs).

3. RESULTS
We now describe retrospective case studies applying our
surveillance techniques to real-world overdose data from two
different areas of the country. First, we use the Gaussian
Process Subset Scan to detect and localize overdose clusters
in aggregated spatio-temporal data from New York City.
Second, we apply the Multidimensional Tensor Scan to iden-
tify subpopulation-level overdose trends in case data from
western Pennsylvania, and explore the discovered clusters
in collaboration with county public health officials.

3.1 Case study 1: aggregated count data
For our first case study [3], we analyzed monthly opioid
overdose deaths in the New York City metropolitan area
from 1999-2015 [1]. Data are provided at a county level
and include Manhattan, Brooklyn, Queens, the Bronx, Nas-
sau County, and Suffolk County. Data records are miss-
ing for some months in some counties. We compare GPSS
against three competitive baseline algorithms, including GP

anomaly detection [4, 12], one-class SVM [10], and robust
multivariate outlier detection using the Mahalanobis dis-
tance [7, 8]. We apply the GPSS and baseline approaches
jointly to data across all locations and time steps, perform-
ing randomization testing at α = .05 to identify signifi-
cant clusters. GPSS identifies two statistically significant
anomalous patterns in the data, shown in blue circles and
red crosses in Figure 1 (left panel). The baseline anomaly
detection methods (Figure 1, right panel) failed to discover
a coherent anomalous pattern, instead selecting individual
points across space and time.

The anomalies detected by GPSS correspond to important
public health events. The blue circles at the end of 2015
indicate a surge in opioid deaths corresponding to a well
known plague of fentanyl-related deaths in NYC [2]. The
anomaly denoted by red crosses in 2006 is particularly inter-
esting since it indicates a spike in opioid deaths immediately
preceding the introduction of community training programs
to administer a lifesaving naloxone drug. This may indicate
a surge in fatalities that was cut short by making naloxone
more widely available and educating communities in its use.

3.2 Case study 2: victim-level case data
For our second case study [6], we used the MDTS approach
described above to analyze a publicly available dataset from
the Allegheny County, PA medical examiner’s office and to
detect emerging overdose patterns and trends. The data
consists of approximately 2000 fatal accidental drug over-
doses between 2008 and 2015. For each overdose victim,
we have date, location (zip code), age decile, gender, race,
and the presence or absence of 27 commonly abused drugs
in their system. The highest-scoring clusters discovered by
MDTS were shared with Allegheny County’s Department of
Human Services and their feedback obtained.

One set of potentially relevant findings from our analysis in-
volved fentanyl, a dangerous and potent opioid which has
been a serious problem in western PA. In addition to identi-
fying two well-known, large clusters of overdoses (14 deaths
in Jan 2014 and 26 deaths in Mar-Apr 2015), MDTS was
able to provide additional, valuable information about each
cluster. For example, the first cluster was likely due to
fentanyl-laced heroin, while the second was more likely due
to fentanyl disguised as heroin (only 11 of the 26 victims
had heroin in their system). Moreover, the second clus-
ter was initially confined to the Pittsburgh suburb of McK-
eesport and the typical overdose demographic of white males
ages 20-49, before spreading across the county. Our analy-
sis demonstrated that prospective surveillance using MDTS
would have identified the cluster as early as March 29th,
enabling more targeted prevention efforts.

MDTS also discovered a previously unidentified, highly lo-
calized cluster of fentanyl-related overdoses affecting an un-
usual and underserved demographic (elderly black males
near downtown Pittsburgh). This cluster occurred in Jan-
Feb 2015, and may have been related to the larger cluster of
fentanyl-related overdoses that occurred two months later.
Finally, we identified multiple overdose clusters involving
combinations of methadone, commonly used to treat heroin
addiction, and the prescription drug Xanax between 2008
and 2012. We observed dramatic reductions in these clusters
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Figure 1: Monthly opioid overdose deaths in the NYC metropolitan area from 1999-2015. In the left panel,
the two statistically significant anomalies detected by GPSS are depicted as red crosses and blue circles. The
right panel shows significant anomalies detected by the one-class SVM.

after 2012, corresponding to the passage of the Methadone
Death and Incident Review Act, which increased state over-
sight of methadone clinics and prescribing physicians.

4. CONCLUSIONS
Taken together, these two case studies suggest high poten-
tial utility for prospective surveillance of overdose data us-
ing subset scan methods. Detected clusters of overdoses
which are geographically, demographically, and/or behav-
iorally similar can suggest details of the underlying process
causing these deaths, and can help local public health agen-
cies to target their prevention and response efforts to spe-
cific neighborhoods and subpopulations. These efforts can
include outreach to increase the proportion of opioid addicts
receiving Medication-Assisted Treatment such as methadone
and suboxone, as well as patients’ compliance with their
treatment regimes. Additionally, increased supplies of the
overdose treatment drug naloxone can be directed to poten-
tial overdose victims and their local communities. In addi-
tion to facilitating targeted and effective health interventions
by prospective surveillance, these approaches can also be
used on retrospective data to better understand the effects
of drug legislation and other policy changes. Our ongoing
work will integrate these two methods to better handle mul-
tidimensional, correlated space-time data, and apply them
to new overdose-related data sources, including data from
the state of Kansas’s prescription drug monitoring program,
in collaboration with public health partners.
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