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ABSTRACT

Objective Evidence suggests that the medication lists of
patients are often incomplete and could negatively affect
patient outcomes. In this article, the authors propose the
application of collaborative filtering methods to the
medication reconciliation task. Given a current
medication list for a patient, the authors employ
collaborative filtering approaches to predict drugs the
patient could be taking but are missing from their
observed list.

Design The collaborative filtering approach presented in
this paper emerges from the insight that an omission in
a medication list is analogous to an item a consumer
might purchase from a product list. Online retailers use
collaborative filtering to recommend relevant products
using retrospective purchase data. In this article, the
authors argue that patient information in electronic
medical records, combined with artificial intelligence
methods, can enhance medication reconciliation. The
authors formulate the detection of omissions in
medication lists as a collaborative filtering problem.
Detection of omissions is accomplished using several
machine-learning approaches. The effectiveness of these
approaches is evaluated using medication data from
three long-term care centers. The authors also propose
several decision-theoretic extensions to the methodology
for incorporating medical knowledge into
recommendations.

Results Results show that collaborative filtering
identifies the missing drug in the top-10 list about
40—50% of the time and the therapeutic class of the
missing drug 50%—65% of the time at the three clinics
in this study.

Conclusion Results suggest that collaborative filtering
can be a valuable tool for reconciling medication lists,
complementing currently recommended process-driven
approaches. However, a one-size-fits-all approach is not
optimal, and consideration should be given to context
(eg, types of patients and drug regimens) and
consequence (eg, the impact of omission on outcomes).

INTRODUCTION
Proper prescribing of medication depends on inputs
compiled from various sources, such as a patient’s
demographic characteristics, diagnoses, allergies
and their current and past lists of prescription and
non-prescription medications. The physician
incorporates this information with clinical knowl-
edge to arrive at a decision about which drugs will
best address the patient’s condition. A lack of
relevant information, as well as a failure to process
it properly, can negatively affect the prescribing
decision, perhaps resulting in adverse drug events
(ADEs).

Estimates provided in a 2006 Institute of Medi-
cine report indicate that errors in medication
prescription and dispensation cause nearly 1.5
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million preventable adverse drug events each year,
with approximately 800000 in long-term care
facilities, with financial costs reaching upwards of
$3.5 billion per annum.' The failure to reconcile
medications at various transition points including
admission, transfer between units and discharge
has been recognized as contributing to nearly 50%
of these errors.? To remedy these failures, medica-
tion reconciliation, the process of creating the most
accurate list of all medications a patient is taking is
the recommended course of action by the Joint
Commission on the Accreditation of Healthcare
Organizations.

Medication reconciliation consists of three steps:
(1) verification, collecting a patient’s complete and
accurate medication history, including the patient’s
list of active medications; (2) clarification, deter-
mining the appropriateness of medications and
doses; and (3) reconciliation, documenting any
changes in medication orders before further clinical
action is taken.’

In this paper, we focus on the verification step in
the medication reconciliation process. This step is
the foundation for the remainder of the reconcili-
ation process. Recent studies indicate that there are
significant discrepancies between clinic-derived
medication histories, admissions orders, patient
self-reports and claims data, all sources that could
be relied upon when constructing a patient’s
medication history.*”” For instance, a study
comparing self-reported drug consumption against
medical records data found that 80.4% of patients
had discrepancies, with nearly three discrepancies
per patient.® The omission of drugs from a patient’s
list constitutes the majority of discrepancies,
followed by commissions—the presence of drugs
which should, in fact, be absent.” ° The medical
consequences of discrepancies are not trivial by any
means. Discomfort, clinical deterioration or worse
can occur in patients if discrepancies are not
adequately resolved.'* !

Medication reconciliation

A variety of approaches have been proposed for
resolving discrepancies in medication lists."* Most
focus on improving organizational processes with
emphasis on proper assignment of responsibilities,
improving communication and increasing access to
timely and relevant patient information. The most
common approach involves using reconciliation
forms that ask patients about their medication
history, allergies, and other pertinent health infor-
mation at different points in the care-giving
process. Medical staff are then responsible for
ensuring that forms are completed and verified.
Form-based interventions do improve list accuracy;,
and studies evaluating the effectiveness of medica-
tion reconciliation find the rate of medication errors
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is reduced by 70%, and the rate of adverse drug events reduced
by 80%.2 While the results are promising, the quantity and
impact of adverse drug events are still unacceptably high.
Moreover, even well-planned reconciliation efforts are some-
times hindered by inconsistent application and the inability to
sustain processes over time.

Recent advances in information technology have also aided
medication reconciliation efforts on several fronts. Electronic
medical records, prescribing systems, and computerized physi-
cian order entry applications provide a means to store medica-
tion information in a structured and easily accessible format.
Decision-support modules with preprogrammed rules that alert
prescribers about potentially harmful interactions are also being
integrated into these systems to help reduce errors. The effec-
tiveness of these alerts, however, depend critically on the accu-
racy of the stored patient information, which in turn depends on
the robustness of the reconciliation process."*

In addition to traditional healthcare information systems,
technologies and modules have been designed specifically for
the medication reconciliation task.’® For instance, one imple-
mentation of the module electronically incorporates the three-
step reconciliation process. In the first step, the system compiles
a list of medications prescribed by physicians and recorded in the
EMR. The physician or nurse who is conducting the reconcili-
ation is required to query the patient about compliance with the
drug regimen. Next, the system asks the nurse to enter any
medications that the patient is taking, but are not currently
recorded in the EMR’s database, including drugs prescribed
outside the current setting, herbal supplements, and over-the-
counter drugs. This information is obtained through patient self-
report, a mode that has been shown to be prone to significant
errors and discrepancies.® '® 7 After the electronic verification
step, the clinician then clarifies and reconciles the list with
current orders.

Finally, the linking of health information across organizations
could improve medication reconciliation efforts. Healthcare
organizations are currently focusing on connecting databases
between clinical settings, between clinical settings and phar-
macies, and between clinical settings and insurance companies.
This type of networking will undoubtedly improve efforts to
reconcile medications, but these efforts are still limited by
information stored in databases. As such, current approaches to
medication reconciliation focus on procedural and organiza-
tional issues that provide structure within which verification,
clarification, and reconciliation can effectively occur.

Relationship between EMR and medication reconciliation

Patient data stored in electronic medication records and form-
based reconciliation processes are complementary processes that
can jointly reduce discrepancies. Reconciliation forms allow the
reporting of medications not currently reflected in patient
records. New information from completed forms could be used
to create a more accurate and accessible list of medications for
a patient. The less obvious fact is that there may be a relation-
ship in the opposite direction. An electronic record is a reposi-
tory of medication lists for many patients, with a list, for a given
patient, containing drugs recorded for them in a given clinical
setting. Electronic patient records also generally include patient
demographics, diagnoses, allergies, and other pertinent health
information such as laboratory test results. Even basic infor-
mation, if processed appropriately, could provide insights about
potential discrepancies in a patient’s medication list. As such,
electronic records provide us with the capacity to use medication
information from a large population of patients to increase the
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accuracy of an individual patient’s list. For example, if many
patients in the database who were prescribed drug A were also
prescribed drug B, the occurrence of drug A in a given patient’s
list suggests that drug B may also be present but not recorded.

Collaborative filtering

A class of methods, together identified as collaborative filtering,
is often used for processing information about entities to make
inferences or predictions about the information of other entities.
With the growth of the internet and emergence of large data-
bases of user purchases, online retailers are increasingly using
collaborative filtering to make predictions about products that
an individual may enjoy based on aggregated information from
users with similar observed tastes.'® Successful applications of
collaborative filtering include movie recommendations by
Netflix and product recommendations on http://Amazon.com/.
For instance, http://Amazon.com/ may recommend a product Y
to a customer who has recently bought product X, since many
people who have previously bought product X have also tended
to buy product Y. In this paper, we frame the task of judging
the correctness of an existing medication list analogously.
Often, the clinician has some, possibly incomplete, information
about a patient’s medical history, including medications.
Based on the list of medications observed by the clinician, say
drugs A, we would—analogously to the product recommenda-
tion applications—like to infer what other drugs B that patient
may also be taking.

In the following sections, we outline a framework for using
collaborative filtering as a methodology for the detection of
potential omissions of medications from a patient’s list. Using
five traditional methods for collaborative filtering, we attempt to
answer the following question: if a patient’s medication list is
incomplete, what drugs are most likely to be missing? The
output of each method is an ordered list of drugs considered to
have the highest likelihood of being omitted from a patient’s
record. In practical terms, a subset of the ordered list of poten-
tially omitted drugs (eg, the top 5 or 10) can be used to develop
individualized memory aids shown to improve recall and could
potentially improve reconciliation efforts.*

This article presents a significant expansion of the work
presented in our earlier conference paper.?’ The model formu-
lation of the current paper is extended by incorporating two
additional sets of predictors, demographic data and diagnoses, in
addition to medications. Furthermore, four new models based on
the logistic regression approach to collaborative filtering are
presented. The logistic regression models not only incorporate
the new predictors but also offer two kinds of approaches for
dealing with the high dimensionality of the set of predictors—
dimensionality reduction using principal-component analysis
and a covariate penalization approach using the methodology
developed in Park and Hastie.”’ Two additional detailed case
studies in two new clinics are also added to the article with
a more general analysis of the larger sample of clinics using the
three computationally efficient algorithms—popular, K-nearest
neighbor (KNN), and co-occurrence to examine how character-
istics of clinics affect the effectiveness of these algorithms.

The remainder of the paper is organized as follows. The section
‘Model formulation’ presents our formulation of the verification
step of medication reconciliation as a collaborative filtering
problem using data on patient medications, demographics, and
diagnoses. In the section ‘Collaborative filtering methods,” we
describe five computational and statistical methods for collabo-
rative filtering. The sections ‘Medication data for model valida-
tion’ and ‘Simulation experiment and cross-validation’ provide
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a description of these data and our simulation experiment. In the
sections ‘Discussion and future work’ and ‘Implications and
future work’, we provide a discussion of our results and their
implications for the medication reconciliation process, and
provide a discussion of our contributions, some limitations, and
potential directions for future research.

MODEL FORMULATION

Formal representation of the medication list

The central piece of information in the medication reconciliation
task is a patient’s list of medications. This list is a set of entities,
where each entity represents a drug. The most granular view of
a drug entity is a brand name drug with an associated dose and
route (eg, Tylenol Oral Tablet 325 MG). This same entity can
also be viewed in more general terms, as a brand name drug (eg,
Tylenol), as a generic chemical name (eg, Acetaminophen), or
more generally as a member of a therapeutic class (eg, Non-
Narcotic Analgesics). Our original data (discussed further in the
section ‘Medication data for model validation’) contained only
the branded drug with dose and route. To provide more general
classifications of the drug into generic chemical names or ther-
apeutic classes, we used the Center for Disease Control’s
Ambulatory Care Drug Database System (http://www2.cdc.
gov/drugs) to classify each drug—dose—route entity into its
respective branded drug code, generic code, and therapeutic class
code.

Irrespective of the granularity of the drug entities, we can
represent the complete and accurate medication list of all
patients in a population as a matrix M={my}, for patients
i=1,...,I and drugs j=1,...,], and where:

I { 1 if drug j occurred in medication list of patient i
b0 otherwise

Analogously we can represent the medication list is the set of
lists I;, where ]; constitutes the set of drugs j for a given patient i
and Jel; if and only if my=1.

Knowledge of a patient’s true medication list I; is often
incomplete. Hence, prescribers observe only a partial list of drugs
for a patient, denoted by T. The observed partial list may be
incomplete for several reasons (figure 1). These include the
failure to record a previous prescribing decision or the uninten-
tional or intentional omission of a drug during patient self-
report. The actual probability of omitting a given drug from
a patient’s list depends on a variety of factors. For instance, over-
the-counter drugs or herbal supplements may have a higher
probability of being missing than those prescribed by the current
provider. On the other hand, omission of drugs may occur with
no discernible pattern, that is to say each drug has an equal
chance of being omitted.’

or.X Dr.Y
If Administered
Prescribed Drugs /{ A B C ‘ ‘ D E ‘ * ;rcn.::‘
Patient Compliance Fallure to A B C D F
Document
~ | ] |
\
Prescriber’s observed list A D C (0] D D
|
Fallure to Non-compliant/ Failure to
Salf-raport Fallura to Salf-report

Salf-report

Figure 1 Schematic of how errors may be introduced into a patient’s
medication list. OTC, over the counter drug.
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Distributions notwithstanding, discrepancies could result in
a variety of negative outcomes for the patient, from simple
duplication of medications to severe adverse consequences from
prescribing drugs that negatively interact with drugs the patient
is currently taking but are not recorded in the observed list.

Formal representation of diagnoses and demographic factors
In addition to the patient’s list of medications, we observe two
additional patient characteristics which may aid in predicting
omitted drugs. The first is the list of coded diagnoses for that
patient which were provided to us in the form of three-digit
ICD9 codes. We can represent the diagnoses list of all patients in
a population as a matrix D={d;}, for patients i=1,...,] and
diagnoses t=1,...,T, and where:

4 — { 1 if medical record of patient i indicates diagnosis t
0 otherwise

We also observe two demographic variables, age and sex,
represented as a; and S;, respectively. The age variable is calcu-
lated using the patient’s date of birth, and the sex variable is
coded as 1 for males and 0 for females.

COLLABORATIVE FILTERING METHODS

In most applications, the goal of collaborative filtering is to
make predictions about products an individual may enjoy based
on the aggregate tastes of similar individuals. In our case, we
predict whether specific drugs have been omitted from an indi-
vidual’s medication list based on the known medications of
similar individuals and the observed list of medications for that
patient. Many computational and statistical methods for
collaborative filtering exist, each with its advantages. In this
study, we use five methods for ranking the drugs not observed in
the partial list.*” In each case, the algorithm assigns a score p; for
each drug j not observed in the partial list. We then sort the
drugs in decreasing order based on this score. We assume that the
drug with the highest score is the one with the highest proba-
bility of being missing from the partial list. Formal descriptions
of the standard popular, co-occurrence, and KNN approaches
can be found in the review paper by Goldenberg et al.*

Model 1: Drug popularity

The ‘popular’ algorithm considers each drug j not observed in
the partial list T, counts the number of lists I_; which contain
drug j in the training set, and chooses the most commonly
occurring drugs. Given a patient i, the score p; for each drug j is
assigned according to the following equation, where I(x) is the
indicator function, returning 1 if x is true and 0 otherwise:

[jely) jel
pij — score(i]') — {Zl, (]G ) ]?11
0 jel;

The popular algorithm can be expected to perform well if
there are a small number of very common drugs (eg, aspirin)
that occur in many lists. For comparing the performance of
the more complex models to follow, excluding the random
algorithm, the popular algorithm is considered the baseline.

Model 2: co-occurrence counting

The ‘co-occurrence counting’ algorithm scores each drug j not
present in the observed partial list [ according to the number of
times it has co-occurred with drugs g that are observed in the
partial list, gel;. For each patient i, we calculate the score for
each drug as follows:
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The co-occurrence counting algorithm is expected to do well
when there is a strong pairwise structure in the prescribing
patterns (eg, pairs of drugs are regularly prescribed together). For
instance, we may observe a patient taking drugs A, B, and C.
The co-occurrence algorithm would assign a score to a candidate
drug X by counting the number of co-occurrences of A and X, B
and X, and C and X. The candidate drug with the highest
total number of co-occurrences would be recommended first,
and so on.

p; = score(ij) = {ZgéTiZI(geli)XI(jeli) il
o I

Model 3: KNNs

KNN is a memory-based machine learning approach used widely
for the purposes of collaborative filtering.® Given an observed
partial list, we find the K training lists I;...Ix that are closest to
it according to a distance metric. Scores for the missing drugs
are assigned using a vote of the KNN, where each neighbor
votes ‘17 if the missing drug is present and ‘0’ if not present. In
this study, we use the Ochiai Similarity Measure, the binary
form of cosine similarity, to compare the observed partial list |;
with each of the lists I; in the training set. We define a as the
number of drugs that are present in both lists, b as the number
of drugs present inT; but not in1_y, and ¢ as the number of drugs
present in 1_; but not in I. The Ochiai similarity measure is
defined as:

Dist(I7,1;) = (a i b) (a i c)

The nearest-neighbors approach is expected to do well when
there are many patients on similar drug regimens. Because these
data are relatively sparse, we use a smoothed nearest-neighbors
approach, which is a weighted average of base rates and the
votes of the nearest neighbors. We specify the smoothed nearest
neighbor vote as:

rjs + v
PT5TK

In this equation, the parameter s is the strength of the base-
rate information, and 1 is the base rate for drug j, calculated as
the number of patient drug lists containing drug j divided by the
total number of lists I. The smaller the value of s, the less
emphasis is placed on the base rates. The term ij is the number
of occurrences of drug j, where K indexes the number of the
nearest neighbors in list T. We use K=3 and s=1, chosen by
cross-validation, using the training samples, in our evaluation
discussed below.

Models 4a—d: logistic regression

Logistic regression is a statistical approach for estimating the
probability of a binary response given a set of predictors. In the
expression below, p;=Pr(m;=1) is the probability that drug j is
on patient i’s medication list, and x4 ;...xg ; are the predictors for
the probability of that event.*

. Py
logit (Rj) = log |:1 _]p__:| = Bo + Brxui- Brxes
ij

In our scenario, the logistic regression equation models the
probability that drug j is on patient i’s medication list, given that
we observe their binary vector of other drugs m;_j, excluding
drug j, the patient’s vector of diagnoses d;;, and the patient’s age
a; and sex S;.
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Dealing with high dimensionality of predictors: penalization and
regularization

The unknown parameters of the logistic regression model
Bo...Px are generally estimated by maximum likelihood. In our
scenario, these parameters can be estimated using the submatrix
M, _; of drug information excluding drug j, the diagnosis matrix
D, and the vectors of demographic information (age and sex).
The maximum-likelihood approach estimates the set of coeffi-
cients B by satisfying the following criterion, where L is
the likelihood function with respect to the given data {(x;, y;):

i=1,...1}:f = arg max {L(y;B)}

However, the traditional maximum likelihood approach poses
significant difficulty when the number of predictors ] exceeds the
number of observations I, or when there are covariates that that
do not contribute to increasing the predictive accuracy of the
model. We can address the limitations of this approach in several
ways. One option is to impose a complexity penalty on the
coefficients. For our analysis, we impose a penalty on the L; norm
of the coefficients, which is the sum of the absolute values of
the Bs. This approach forces many coefficients to 0 and produces
automatic variable selection.?’ To impose the L; norm, Park and
Hastie?! modify the maximum-likelihood criterion with a regu-
larization penalty to: B(A)=arg min{—log{L(y;B)} + A|IB|;}-
This convex optimization problem can be solved using
a predictor-corrector method as described in Park and Hastie.

Dealing with high dimensionality of predictors: dimensionality
reduction via principal-component analysis

A second approach to dealing with the large number of predic-
tors is through some form of statistical dimensionality reduc-
tion. Principal-component analysis (PCA) is one such approach
that reduces multidimensional data into lower dimensions for
analysis purposes.”> The PCA approach uses Eigenvalue
decomposition to find d orthogonal linear combinations of the
original data, which explain the most variance in the data. Here,
d is assumed to be less than or equal to the original number of
dimensions of the data. The first principal component would
explain the most variance in the data, with the second principal
component explaining the second most variance, and the last
principal component explaining the least.

Model 4a: drugs with regularization

The first model we estimate using the logistic regression
framework is one where we model the probability p;; of a given
drug j occurring in a patient’s list given the other drugs they are
taking m; ;. For this estimation, for each of the J drugs, we use
the Park and Hastie?' regularization approach to calculate the
logistic regression coefficients from the matrix M;_j of all

patients’ drug information excluding drug j. Using the Park and

Table 1 Summary statistics for clinics used in the case study
Statistics Clinic 01 Clinic 02 Clinic 03
# of Patients 182 153 84

# of Unique drugs 177 140 128

# of Unique therapeutic classes 64 59 56

Median drugs/patient (Q1, Q3) 14 (7, 21) 14 (9, 19) 16 (12, 18)
Median # of drugs prescribed (Q1, Q3) 9 (6, 15) 9 (5, 16) 7 (5, 12)
Median diagnoses/patient (Q1, Q3) 8 (4, 11) 13 (11, 16) 14 (8, 18)
Median age of patients (Q1, Q3) 82 (65, 89) 82 (76, 87) 82 (75, 88)
Proportion of females 51% 50% 2%

Gini coefficient of drug distribution 0.47 0.53 0.43

Gini coefficient of diagnosis distribution ~ 0.87 0.91 0.88
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Table 2 Most commonly prescribed drugs for each clinic

Clinic 01
Drug Code—Drug Name

Clinic 02

Drug Code—Drug Name

Clinic 03
Drug Code—Drug Name

32905—Tylenol (101)
10575—Dulcolax (100)
19375—Magnesium Antacid (98)
12620—Fleet Enema (96)
32695—Tubersol (79)

10575—Dulcolax (145)
12620—Fleet Enema (144)
19375—Magnesium Antacid (144)
98126—Fluvirin (101)
32905—Tylenol (95)

10575—Dulcolax (68)
19375—Magnesium Antacid (65)
12620—Fleet Enema (64)
32905—Tylenol (62)
34520—Vitamin C (35)

Hastie? estimation procedure, even if we have fewer observa-
tions than the number of predictors, we are still able to estimate
the logistic regression coefficients, since many of the coefficients
will be forced to zero by the penalty term.

Model 4b: drugs with PCA

Model 4b does not use the matrix of all other drugs M; _; directly
as predictors. Instead, we use the first k principal components of
M, _; which we denote as P]ij. To estimate this model, we use
a Bayesian estimate of the logistic regression parameters.”> We
specify Cauchy priors on the constant coefficient centered at
0 and with a scale parameter of 10, and on the other coefficients
centered at 0 and with a scale parameter of 2.5. This approach
helps prevent complete separation in the data, which is often
a problem if there are many more zeros than ones in the data or
vice versa. This often seems to be a problem in our analysis,
since certain classes of drugs are rarely prescribed, and therefore
traditional logistic regression estimation invariably forces the
probability of their occurrence to zero.

Model 4c: drugs, diagnoses, and demographics

The third model we estimate using the logistic regression
framework is one where we model the probability of a given
drug j occurring in patient i’s medication list given their
observed diagnoses dj, which other drugs they are taking m;
and their age a; and sex S;. For this estimation, we again use the
Park and Hastie’! regularization approach to compute the
logistic regression model for each drug J.

Model 4d: dimensionality reduced drugs and diagnoses

The final logistic regression model does not use the matrices of
all other drugs M;_; or diagnoses D, directly as predictors.
Instead, we use the first k principal components of M; _j and D,
which we denote as P*, and G as our predictors respectively, in
addition to the two demographic variables. We again use
a Bayesian estimate of the logistic regression coefficients by
specifying Cauchy priors on the constant coefficient centered at
0 and with a scale parameter of 10. Cauchy priors on the
remaining coefficients are centered at 0 with scale parameters set
to 2.5.

Model 5: random

Finally, to establish a single baseline for comparison of these
methods, we use the random algorithm, which uses no information

Table 3 Most common diagnoses for each clinic

from the patient database. For each drug not observed in the
partial list, the algorithm assigns a score p; = [0,1] uniformly at
random.

MEDICATION DATA FOR MODEL VALIDATION

To evaluate the effectiveness of the model formulation presented
in this paper, we obtained medication data from an online
pharmacy that serves long-term care clinics in the eastern USA.
Human Subjects approval for conducting the empirical case
studies was granted by the Institutional Review Board of our
institution, and all patient data were anonymized before being
provided to the researchers. Three clinics from a population of
61 were selected as case studies for evaluating the efficacy of the
model formulation. Two fundamental points should be made
regarding the case studies presented in this article. First, the
generalizability of the statistical results is not a purpose of the
case studies, but rather a demonstration of the framework’s
applicability in accurately predicting missing drugs. The
performance of any given algorithm should be expected to vary
by clinical care setting depending on the distribution of the
underlying data. For instance, see Goldenberg er al*? for
the differential performance of each algorithm depending on the
data set used. Thus, any institution applying the framework
should thoroughly evaluate the effectiveness of the algorithms
on their data before implementation. Second, the three clinics
were selected to demonstrate precisely that a one-size-fits-all
approach may not be appropriate, and algorithms with different
properties may work better in certain settings, while not
performing well in other settings. For purposes of brevity, we
also conducted an analysis on all clinics available to us using
three of the efficient algorithms (popular, co-occurrence
and KNN) in an attempt to determine the characteristics that
would allow algorithms that use a focal patient’s information
(co-occurrence and KNN) to perform better than base rates
alone (popular).

Basic statistics about patients, drugs, and diagnoses for these
three clinics are presented in tables 1—3, respectively. As we can
see in table 1, the patient populations for the first two clinics are
evenly split between males and females, with a median age at
82 years. The third clinic has a much higher proportion of
females at 72%, but an age distribution that is similar to the first
two clinics. We also see that the Gini coefficient for the drug
distribution is highest for Clinic 2. This suggests that there is

Clinic 01 Clinic 02
Diagnosis Code—Diagnosis

Diagnosis Code—Diagnosis

Clinic 03
Diagnosis Code—Diagnosis

401—Hypertension (74)
311—Depression (62)
414—Heart Disease (44)
428—Heart Failure (41)
520—Tooth problems (40)

311—Depression (92)

298—Nonorganic Psychoses (126)
443—Vascular Disease (106)
401—Hypertension (97)

331—Cerebral degenerations (84)

401—Hypertension (63)
311—Depression (45)

788—Urinary system symptoms (44)
530—Disease of Esophagus (42)
272—Disease of lipoid metabolism (34)

J Am Med Inform Assoc 2011;18:449—458. doi:10.1136/amiajnl-2011-000106
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Input: Drug matrix M, Diagnoses matrix D, age vector a, sex vector s, K= §
Subset data M, D, a, and 5 into K, approximately equal, random chunks
ForK=1...5 {

Remove k™ chunk as test data, use remaining chunks as training data

Foriin Test {

Estimate Mod ds 1-4d using training data

Take true list of patient { and randomly remove one drug, transforming /; —>'f;

Use Models 1-4d with :‘;lo create an ordered list of eJ. el

of the randoml: d drug in the ordered list of jz?' for each model

Determine the positi

H
}

Figure 2 Summary of the algorithm for simulation experiment
examining the effectiveness of the algorithms for the automatic 5
detection of omissions in medication lists.

more inequality in the prescribing of drugs in Clinic 2 versus
Clinic 1 or 3, namely that there are fewer drugs that make up
most of the prescriptions.

For our analysis, we also removed drugs that were prescribed
to fewer than two patients, since they would be difficult to
predict based on data-driven methods alone. This resulted in 20
patient exclusions in clinic 1, 0 in clinic 2, and 1 in clinic 3. We
find that the most commonly prescribed drugs in all three clinics
are quite similar. Table 2 presents the top five drugs for each
clinic. For the most part, these are quite similar across the clinics,
with Tylenol, Dulcolax, Fleet Enema, and a magnesium antacid
being highly prescribed in all clinics.

Analysis of the patient diagnoses, in the form of ICD9 codes,
also indicates relative uniformity in the types of diagnoses
present in these three clinics. The most common diagnoses
across the three clinics are presented in table 3. These include
hypertension, depression, heart disease, and vascular disease.

SIMULATION EXPERIMENT AND CROSS-VALIDATION

We use a cross-validation approach to test how well each of the
collaborative filtering methods described earlier performs in
predicting omitted drugs. We begin by randomly dividing these
data into K=>5 segments of approximately the same size.?® In the
first iteration of our simulation, we delete the first segment from
the data and use it as test data. We construct our training data
with the remaining records, and use this training data to
compute Models 1—4d. Then, for each patient i in our test data,
we randomly remove one drug from their list |; to construct our
observed list Tl Next, we use the output of Models 1—4d in
conjunction with information in Tj to rank the list of drugs j &I
that have not been observed for patient i. We then use the
ranked candidate drug list to determine the position of the drug
that we removed from the true list I; to evaluate how well each
of the models performed. The higher the rank of the omitted
drug, the better the model performed. We repeat the outer loop

an additional four times removing each of the remaining
segments to create our test and training samples. Figure 2
provides the pseudo-code for our simulation experiment.

RESULTS
In this section, we present the results of our simulation
experiment for the three clinics.

Case study clinic 1

Our experiments compared Models 1—4d described in the
previous section. We attempted to predict the correct branded
drug that was missing from a patient’s record (without dose and
route information). Table 4 summarizes these results for the first
of the three clinics we evaluated. Columns headed 1, 10, 25, 50,
and 100 present the proportion of patients whose missing drug
is ranked at or better than 1, 10, 25, 50, and 100 in the ordered
list of candidate drugs generated by each of the algorithms. For
instance, the value of 21% for the KNN algorithm in Column
labeled ‘1" indicates that 21% of the time, the KNN algorithm
was able to predict the missing drug correctly on the first guess.
A value of 42% for the KNN algorithm in Column labeled ‘10’
indicates that the algorithm was able to predict correctly the
missing drug within the top 10 guesses, and so on. Asterisks
next to the algorithm name indicate that the result was signif-
icantly better than the popular algorithm at ***a=0.01,
**0=0.05, or *a=0.1 respectively, using the Friedman Rank-sum
test. The Friedman rank-sum test is the recommended test when
comparing the predictive quality of competing algorithms in
machine-learning tasks.”’ "% The median and mean columns
indicate the median and mean rank of the omitted drugs in the
ordered list generated by the algorithms.

The popular algorithm, which used only the base rates, was
able to guess the missing drug within the first 10 guesses 31% of
the time and required a median of 24.5 and a mean of 47.94
guesses to identify correctly the omitted drug. The modified
KNN (with K=3 and s=1, selected using cross-validation on the
training data sets) performed better than the popular algorithm,
significantly improving the percentage correct 42% and
improving the median and mean number of guesses to 17.5 and
34.48, respectively. The co-occurrence algorithm as well as the
logistic regression models 4b—d also performed significantly
better than the popular algorithm. This suggests that using
information about the patient, particularly about the drugs we
observe for them I, as well as their diagnoses, d;, can be useful in
predicting missing drugs. We, however, did find evidence that
the more computationally intensive logistic regression models
4b performed better than co-occurrence (Friedman test: p<0.01,
change in median: 3.5), but model 4d did not (Friedman test:
p=0.37, change in median: 1.99).

We also used these algorithms to predict the therapeutic class
of the missing drug, by first predicting the drug and then

Table 4 Results of collaborative filtering simulation for Clinic 1 with prediction of brand drug

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 14 31 51 64 81 47.94 245 7 84 175
(2) Co-Occurrence*** 18 40 53 71 84 39.27 19.5 4.75 58.2 173
(3) K-Nearest Neighbors*** 21 42 58 74 89 34.48 175 2 51.2 167
(4a) Logit—Penalized (Drugs)* 22 36 49 69 86 42.10 26.5 2.75 61.8 175
(4b) Logit—PCA (Drugs)*** 22 39 56 n 85 40.64 19 2 68.8 168
(4c) Logit—Penalized (D, D, D) 19 37 52 n 86 40.56 25 3 63.2 168
(4d) Logit—PCA (D, D, D)*** 16 39 57 69 83 39.73 18 4 67.8 162
(5) Random 1 7 19 32 62 82.29 81 41.8 124 172

Results statistically different from Popular at ***p<0.01, **p<0.05, and *p<0.1 using the Friedman rank-sum test.
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Table 5 Results of collaborative filtering simulation for Clinic 1 with prediction of therapeutic class

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 16 46 79 92 100 16.52 12 3.75 23 60
(2) Co-Occurrence** 21 54 77 95 100 14.64 9 3 215 64
(3) K-Nearest Neighbors*** 23 53 81 96 100 13.94 8 2 20 58
(4a) Logit—Penalized (Drugs) 23 49 76 96 100 15.52 1" 2 25 62
(4b) Logit—PCA (Drugs)*** 24 53 81 97 100 14.34 9 2 22 61
(4c) Logit—Penalized (D, D, D) 22 50 79 95 100 15.39 10.5 2 23.2 61
(4d) Logit—PCA (D, D, D)*** 19 54 79 98 100 14.34 10 2.75 20 63
(5) Random 1 26 49 91 100 25.95 26.5 10 4 62

Results statistically different from Popular at ***p<0.01, **p<0.05, and *p<0.1 using the Friedman rank-sum test.

choosing the corresponding therapeutic class. For instance, if the
prediction was ‘Allegra,” then we generalize the result to the
therapeutic class ‘Antihistamines.’

Table 5 presents the results when we generalized the algo-
rithms’ predictions to the therapeutic class. Our results
improved for two reasons: (1) the number of therapeutic classes
was 64 versus 177 brand name drugs, and (2) one drug from
a therapeutic class is often substituted for another. The thera-
peutic class is therefore easier to predict than the brand name.
The KNN algorithm guessed the missing drug class within the
first 10 guesses 53% of the time. The KNNs, co-occurrence
counting, and logistic regression models 4b and 4d performed
significantly better than the popular algorithm.

Case study clinic 2
Tables 6 and 7 summarize these results for the second clinic.
The popular algorithm, which used only the base rates, was
able to guess the missing drug on within the top 10 guesses 53%
of the time and required a median of 8 and a mean of 27 gues-
ses to correctly guess the omitted drug. This is significantly
better than the first clinic (Wilcoxon test: p<0.01, change in
median: 9.99). This may have to do with differences in the
nature of drug prescribing in Clinic 2 versus Clinic 1, particularly
the inequality of the drug distribution. Furthermore, we find
that models 3—4c perform significantly better than the popular
algorithm, at least at the p<0.05 level. For the second phase of
the simulation, we also used these algorithms to predict thera-
peutic class of the missing drug, by first predicting the drug and
then choosing the corresponding therapeutic class. The only
algorithm that performed significantly better than the popular
algorithm was model 4b, the Logic-PCA (drugs) model at the
p<0.01 level, with improvements particularly at the high end of
the distribution, reducing the third quartile from 18 to 16
guesses. Overall, the popular algorithm scenario requires
a median of four guesses to correctly identify the correct ther-
apeutic class of the drug and a mean of approximately 12 guesses
(table 7).

Case study clinic 3

The popular algorithm, which used only the base rates, was able
to guess correctly the missing drug within the first 10 guesses
46% of the time and required a median of 13 and a mean of 27
guesses to guess correctly the omitted drug. This, again, is
significantly better than the first clinic (Wilcoxon test: p<0.01,
change in median: 8.99) and may have to do with differences
between clinics in the nature of drug prescribing. We also do not
find that any other algorithms perform significantly better than
the popular algorithm in this scenario, either for predicting drugs
or for predicting therapeutic classes, although we see that the
Bayesian logistic regression with the principal components did
qualitatively better, reducing the median guesses from 13 to 10.5
(tables 8 and 9).

Combined analysis

We conducted two additional kinds of analyses. First, we
conducted an analysis to examine how algorithms would
perform if data from clinics 1, 2, and 3 were combined into
a single data set. A similar pattern of results appears with the
co-occurrence algorithm performing significantly better than the
popular algorithm  (Friedman test: p<0.01, change in
median=>5.5). We also find that the two logistic regression
models that use the PCA dimensionality reduction, 4b
(Friedman test: p<0.01, change in median: 2.499) and 4d
(Friedman test: p<0.01, change in median: 6.5), also perform
significantly better than the popular algorithm. However, there
is evidence that the simple co-occurrence algorithm performs
better than the more complex logistic regression model 4d
(Friedman test: p<0.05, change in median: (1). A similar pattern
of results hold for the therapeutic class analysis; we do not
present these results for purposes of brevity.

The detailed analysis of these three clinics suggests that
simple algorithms such as popular or co-occurrence may perform
as well as or significantly better than more computationally
intensive models such as logistic regression. We also conducted
supplementary analysis to examine when algorithms such as

Table 6 Results of collaborative filtering simulation for Clinic 2 with prediction of brand drug

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 39 53 66 71 95 27.08 8 1 48.8 134
(2) Co-Occurrence 37 55 65 79 95 26.35 7 1 42 129
(3) K-Nearest Neighbors** 38 53 68 81 96 24.21 6.5 1 425 116
(4a) Logit—Penalized (Drugs)*** 37 49 60 71 95 28.12 " 1 43.8 135
(4b) Logit—PCA (Drugs)** 38 53 67 80 93 25.94 8 1 40.8 130
(4c) Logit—Penalized (D, D, D)** 39 52 67 79 99 23.75 15 1 37 104
(4d) Logit—PCA (D, D, D) 37 54 64 71 93 21.25 7 1 46 128
(5) Random 1 8 17 35 79 67.25 70 395 95.5 133
Results statistically different from Popular at ***p<0.01, **p<0.05, and *p<0.1 using the Friedman rank-sum test.
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Table 7 Results of collaborative filtering simulation for Clinic 2 with prediction of therapeutic class

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 40 61 83 98 100 11.78 4 1 18 57
(2) Co-Occurrence 39 63 86 97 100 11.39 4 1 18.8 57
(3) K-Nearest Neighbors* 39 65 85 99 100 10.75 4 1 16.8 54
(4a) Logit—Penalized (Drugs) 38 61 85 98 100 11.60 45 1 19.8 57
(4b) Logit—PCA (Drugs)*** 38 67 84 99 100 10.60 4 1 16 56
(4c) Logit—Penalized (D, D, D) 4 65 86 100 100 10.73 5 1 15.8 50
(4a) Logit—PCA (D, D, D) 37 65 85 99 100 10.76 4 1 16.8 56
(5) Random 1 29 65 93 100 21.84 17.5 9 33.8 57

Results statistically different from Popular at ***p<0.01, **p<0.05 and *p<0.1 using the Friedman rank-sum test.

KNN or co-occurrence perform better than the simple popular
algorithm using 60 clinics out of the larger sample of 61 (one
clinic was excluded because it had fewer than five patients).
These results suggest that KNN and co-occurrence tend to work
better than popular when there is diversity in the age of the
patients, and patients are prescribed approximately equal
number of drugs (eg, there are not only a few patients who are
taking most of the drugs). This suggests that algorithms that
use more information about patients perform better when there
is greater heterogeneity in the patient population.

Overall, our results suggest that simple collaborative filtering
approaches such as the popular algorithm, co-occurrence
counting, and KNN may work as well as or better than more
complex models such as logistic regression. Table 10 provides
a summary of each algorithm, the sample running times from
clinic 1 (run on a MacMini with OS X version 10.4.11 with
a 1.83 GHz Intel Core Duo and 1 GB of RAM) and several pros
and cons of each approach. Since the logistic regression
approaches do not currently have published computational
complexity defined, we use running time for onefold on clinic 1
as a metric for comparing between the computational require-
ments of each algorithm for both training and prediction
purposes.’’ The results lead us to believe that it may be
worthwhile to begin implementation of collaborative filtering
systems for medication reconciliation with simple algorithms
such as popular, co-occurrence, or KNN; as they have performed
better in our case studies than the more computationally
intensive logistic regression models. Furthermore, the Logit—
PCA models may be initially more appropriate when incorpo-
rating larger amounts of information since they predict as well
as or better than the Logit—Penalized models and require
significantly less time for model estimation and training.

DISCUSSION AND FUTURE WORK

Medical data are increasingly being structured, stored, and linked
across organizational boundaries. Although this phenomenon
will improve efforts to reduce medication errors, better access to
information alone cannot fully address the problem. There will

always be occasions where important information is not stored
in any available database. Using a collaborative filtering
approach, we are able to look beyond what is recorded for
a particular patient, using information from many other
patients’ records to predict omissions and improve the accuracy
of each individual patient’s medication list.

Contributions

The contributions of this article beyond the earlier work
presented in Hasan et a/*® are threefold. First, we present
a general formulation of the verification step in the medication
reconciliation process as a collaborative filtering problem which
can potentially include information about three kinds of patient
characteristics: drugs, diagnoses, and demographics. Second, we
describe and implement several algorithms ranging in
complexity, from simple models, such as the popular algorithm
that uses only base rates, to more complex logistic regression
models that use information about a patient’s known medica-
tion histories, diagnoses, and demographic characteristics to
predict the likelihood that drugs are missing from their record.
Finally, we evaluate the effectiveness of these algorithms in the
context of three long-term care clinics, in detail, and 60 clinics
with the computationally efficient algorithms. We find that
simple algorithms such as popular perform relatively well
compared with more computationally intensive algorithms such
as KNN or logistic regression. Algorithms such as co-occurrence
counting and KNNs do well in clinics that have a greater
diversity of patients in terms of age and where the number of
drugs per patient are more equally distributed.

Limitations

One limitation of our current research is that it assumes a fixed
set of drugs, drawn only from a limited set of long-term care
centers. A second limitation is the implicit assumptions about
the accuracy of the training data—including medication,
demographic, and diagnosis data. In real-life situations, the
training data may also be of uncertain quality. However,
addressing this is beyond the scope of the current article. In
future work, we plan to evaluate how robust the predictions are

Table 8 Results of collaborative filtering simulation for Clinic 3 with prediction of brand drug

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 31 46 61 80 95 21.06 13 1 42.8 116
(2) Co-Occurrence 31 46 64 78 94 27.54 125 1 39.8 124
(3) K-Nearest Neighbors 28 48 65 79 96 25.53 14 1 32.2 109
(4a) Logit—Penalized (Drugs) 30 40 61 79 96 28.16 17.5 1 43 115
(4b) Logit—PCA (Drugs) 26 50 61 78 98 21.05 10.5 1 48.2 108
(4c) Logit—Penalized (D, D, D) 34 49 70 83 99 2248 12.5 1 31.5 109
(4d) Logit—PCA (D, D, D) 28 43 58 80 99 21.25 16.5 1 44.2 107
(5) Random 0 8 24 44 91 59.43 63 29 90 124

Results statistically different from Popular at ***p <0.01, **p <0.05, and *p <0.1 using the Friedman rank-sum test.
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Table 9 Results of collaborative filtering simulation for Clinic 3 with prediction of therapeutic class

Algorithm 1 (%) 10 (%) 25 (%) 50 (%) 100 (%) Mean Median 1st quartile 3rd quartile Max
(1) Popular 31 60 81 100 100 12.64 6 1 18 49
(2) Co-Occurrence 33 61 84 100 100 11.70 6 1 17.8 50
(3) K-Nearest Neighbors 28 60 88 99 100 11.53 5.5 1 20 51
(4a) Logit—Penalized (Drugs) 34 50 86 99 100 12.60 1 1 17.2 51
(4b) Logit—PCA (Drugs) 28 65 80 100 100 12.51 6.5 1 21 48
(4c) Logit — Penalized (D, D, D) 35 59 86 99 100 11.99 1.5 1 17 51
(4d) Logit—PCA (D, D, D) 28 59 79 100 100 12.81 1.5 1 19.2 44
(5) Random 4 30 60 98 100 22.05 18.5 9.75 35.2 54

Results statistically different from Popular at ***p<0.01, **p<0.05, and *p<0.1 using the Friedman rank-sum test.

to relaxation of these assumptions. Furthermore, the results of
this study, although providing evidence about the usefulness of
the collaborative filtering methods, are not necessarily general-
izable to other clinical settings. The patients in a long-term care
setting are relatively homogenous in terms of their demo-
graphics, drug regimens, and their diagnoses. In other care
settings, such as an ambulatory clinic or a general hospital, the
patient population would be significantly more diverse. In such
situations, we expect that the heterogeneity among patients
may make the reconciliation task more difficult but also will
allow more complex prediction methods to improve upon the
results of the popular algorithm. Finally, it should be noted that
the data sets are small, and further work should examine
how the methods scale to significantly larger data sets. Never-
theless, the methodology and general approach proposed in this
study are applicable in many other care-delivery environments.

IMPLICATIONS AND FUTURE WORK

Decision theoretic approach for list ordering

Applying collaborative filtering methods to the observed partial
lists produces a list of all drugs j&l;, and their respective
probabilities of being contained in ] —jGETi. However, just
using probabilities to order drugs may ignore information
regarding the clinical value that drugs provide to patients, their
risks, and other potential costs and benefits. There are three
potential ways to order this list of entities, depending on the
decision-making task. The first way is to order the list by each
drug’s estimated probability of membership in the true list.
This approach places primacy on ensuring that all drugs in
I, —Ti, irrespective of potential consequence, are predicted
correctly. The second approach is to order the list based on the
probability weighted by the unconditional expected conse-
quence 1j = p;XE[gj]. This approach places emphasis on
ensuring that drugs with the highest potential for future harm

are included in the list and could potentially emphasize drugs
with high potential benefits. For instance, common drugs such
as Accutane, Ovide, and Lariam are commonly prescribed
drugs that may pose significant risks, and physicians should
know about them when they are making their prescribing
decisions.

We anticipate that the final approach for sorting and using the
results of the collaborative filtering methods occurs within the
context of a specific prescribing decision. In this decision task,
the physician is about to prescribe a specific drug p. According to
an electronic prescribing system’s drug-interaction database,
drug p negatively interacts with the set of drugs in je R, none of
which are contained in 1. Thus, we can construct a list of drugs
sorted on a measure that is a function of estimated probability p;
weighted by conditional consequence E[cj|p] as:

= piXE[cj ‘p] VieR,

All three tasks are important to keep in mind. However,
because the focus of this paper is on accurately estimating the
probabilities and scores, we evaluate the collaborative filtering
approaches using the probability measure alone.

Decision aids

Currently, the verification step of medication reconciliation
relies primarily on information stored in a patient’s medication
records, and on patient self-reports. Research suggests that self-
reports are flawed, and patients regularly do not report all the
drugs they are taking and may often provide incorrect infor-
mation. However, research also suggests that decision aids can
help improve patients’ recall of drugs. The result of our frame-
work, particularly the ordered list of the top k drugs (by prob-
abilities and/or consequence-weighted probabilities) can be used
to enhance the verification process. In addition to providing
a patient with a blank form where they can enter their

Table 10 Comparison of algorithms used for detection of omissions in medication lists

Algorithm Running time Pros Cons
Popular T: 0.00 Fast and uses only basic data about the base rate of drugs Does not use any information about the patient for
P: 0.046 being prescribed in clinics whom the prediction is being made
Co-occurrence T: 0.096 Fast and uses only basic information about the co-occurrence Assumes independence of all pairwise co-occurrences
P: 0.029 of pairs of drugs. Uses information about patient for whom the
prediction is being made.
K-Nearest Neighbor T: 0.00 Does not require potentially computationally intensive model Computationally intensive since approach is not
P: 0.034 estimation as does logistic regression. Able to incorporate model-based. It requires a search of nearest neighbors
information about patient data. at every prediction event.
Logit—PCA T:11.8 Model based with clear theoretical interpretations about Computationally intensive for training and may require
P: 0.050 probability that a given drug is omitted. Is able to incorporate a significant amount of data before feasible for
significant amount of patient information. prediction purposes
Logit—Penalized T 2417 Model based with clear theoretical interpretations about Very computationally intensive for training and may
P: 0.11 probability that a given drug is omitted. Is able to incorporate require a significant amount of data before feasible

a significant amount of patient information.

for prediction purposes

P, prediction time (s); T, training time (s).
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medications, the clinician could also print out a list of these top
k drugs and give them to the patients as a decision aid that may
help them recall drugs that are likely to be not only missing from
their record but also of significant consequence.

As subsequent steps, we hope to test this methodology on data
from a diverse set of care delivery settings. Furthermore, the
methodology currently uses only data-driven methods, and in
two cases (Models 4b and 4d) only nominally Bayesian estima-
tion of logistic regression (with uninformative priors) is used. In
the future, we hope to be able to take into account the vast
amount of medical evidence and information about clinical
protocols within a clinical setting to set informative priors. For
instance, order sets are increasingly becoming common in
hospitals and other clinical settings. Order sets are a set of
commonly prescribed medications, laboratory tests, and proce-
dures which are prescribed to a patient for a condition or
a combination of conditions. Knowing which drugs are generally
prescribed together can help inform the assignment of priors
specifying the relationship between two or more drugs. These
priors can subsequently be updated based on available data from
the clinical setting. In our current work, we only considered
information from within a clinic for predicting missing drugs. In
future work, we plan to incorporate more global information
from other clinics to inform not only base rates for drugs, but also
relationships between drugs which might exist and are globally
visible but difficult to observe in individual clinics. Finally, other
information such as a patient’s allergies, the prescribing prefer-
ences of their physicians, and other relevant information from
their medical history may also help to predict missing drugs.

Our current experiments suggest that the collaborative
filtering approach to medication reconciliation holds promise.
We anticipate improvements as additional information is used
and as more and diverse clinical settings are evaluated using this
methodology. We do not envision a one-size-fits-all solution to
this problem, since clinical settings are heterogeneous, and
different collaborative filtering approaches may work better in
different scenarios. We also hypothesize that a collaborative
filtering approach may be beneficial in dealing with other
types of discrepancies in medical data, such as laboratory tests,
diagnoses, and allergies.
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