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Lecture 9: Anomaly and  
Outlier Detection

Parts of this lecture were adapted from Banerjee et al., Anomaly Detection: A Tutorial, 
presented at SDM 2008.  I recommend viewing their excellent presentation for a more 

detailed discussion of anomaly detection and the current state of the art.



What is detection?
The goal of the detection task is to automatically 

identify relevant patterns in massive, complex data.

Some common detection tasksMain goal: focus the user’s attention on 
a potentially relevant subset of the data.

a) Automatically detect relevant 

Some common detection tasks

Detecting anomalous records or groups

Discovering novelties (e.g. new drugs)) y
individual records, or groups of records. 

b) Characterize and explain patterns: 
pattern type, affected subset,       

Detecting clusters in space or time

Removing noise or errors in data

Detecting specific patterns (e g fraud)

c) Present the pattern to the user.
Detecting emerging events which 

may require rapid responses.

p yp , ,
models of normal/abnormal data.

Detecting specific patterns (e.g. fraud)

Detecting individual records that are anomalous or interesting.
D t ti i t ti tt f d

We will discuss two main topics in this module:

Detecting interesting groups or patterns of records.



Anomaly detection
In anomaly (or outlier) detection, we attempt to detect 

individual data records that are anomalous or unexpected.

Example 1: Given a massive database of financial data whichExample 1: Given a massive database of financial data, which 
transactions are suspicious and likely to be fraudulent? 

Example 2: Given the huge number of container shipmentsExample 2: Given the huge number of container shipments 
arriving at our country’s ports every day, which should be 

opened by customs (to prevent smuggling, terrorism, etc.)?

Example 3: Given a log of all the traffic on our computer 
network, which sessions represent (attempted) intrusions?

Example 4: Given a sky survey of astronomical objects, which 
are novelties that might represent new scientific discoveries?

G l diff ti t Ab l d b R i liGoal: differentiate 
“normal” from 

“abnormal” records.  

Abnormal records may be 
useful (e.g. novelties) or 

harmful (requiring action).

Removing anomalies can 
also improve our models 

of the normal data.



I t i d fi d tt t t b

Intrusion detection
• Intrusions are defined as attempts to bypass 

the security mechanisms of a computer or 
network in order to gain unauthorized access 
or enable unauthorized activities (e g stealingor enable unauthorized activities (e.g. stealing 
personal information). 

• Intrusion detection is the process of 
monitoring the events occurring in a computer g g p
system or network and analyzing them for 
intrusions or attempted intrusions.

• Many challenges:
– Traditional intrusion detection methods are 

based on detecting signatures of known attacks.
– Substantial latency in deployment of newly 

created signatures across the system preventscreated signatures across the system prevents 
rapid responses to emerging attack types.

• Anomaly detection can alleviate these 
limitations by automatically detectinglimitations by automatically detecting 
previously unknown cyber-attacks.

(Adapted from Banerjee et al., Anomaly Detection: A Tutorial)



F d d t ti f t th d t ti f i i l

Fraud detection
• Fraud detection refers to the detection of criminal 

activities occurring in commercial organizations.
– Malicious users might be the actual customers of the organization 

i ht b i t (id tit th ft)or might be posing as a customer (identity theft). 
• Types of fraud

– Credit card fraud
– Insurance claim fraud
– Mobile / cell phone fraud
– Insider tradingg
– Online transaction fraud (eBay)

• Challenges
– Fast and accurate real-time detection– Fast and accurate real-time detection.
– Predicting fraud based on previous transactions.
– Costs of false positives and false negatives can both be high.

(Adapted from Banerjee et al., Anomaly Detection: A Tutorial)



Anomaly detection = classification?
One option is to treat anomaly detection as a binary classification 

problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques fromAdvantage: we can use any of the classification techniques from 
Module I (decision trees, k-nearest neighbor, naïve Bayes, etc.)

How to learn and evaluate classifiers with a skewedHow to learn and evaluate classifiers with a skewed 
class distribution (e.g. 99.9% normal, 0.1% anomalies)? 

Consider tradeoffs between 
Precision = A / C Recall = A / B

Define A = # of anomalies detected
B = total # of anomalies in data Precision  A / C, Recall  A / B.

(Why not just use accuracy?)

Typically, anomaly detection systems report potential anomalies to a 
h h th d id h th t t t h

B  total # of anomalies in data
C = total # of records detected 

human user, who can then decide whether or not to act on each case.

In this case, we want high recall (i.e. if any anomalies are present, we are 
very likely to report them).  Precision is often less important, but higher y y p ) p , g
precision means fewer potential anomalies the user has to sift through.



Anomaly detection = classification?
One option is to treat anomaly detection as a binary classification 

problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques fromAdvantage: we can use any of the classification techniques from 
Module I (decision trees, k-nearest neighbor, naïve Bayes, etc.)

How to learn and evaluate classifiers with a skewedHow to learn and evaluate classifiers with a skewed 
class distribution (e.g. 99.9% normal, 0.1% anomalies)? 

Consider tradeoffs between 
Precision = A / C Recall = A / B

Define A = # of anomalies detected
B = total # of anomalies in data Precision  A / C, Recall  A / B.

(Why not just use accuracy?)

Typically, anomaly detection systems report potential anomalies to a 
h h th d id h th t t t h

B  total # of anomalies in data
C = total # of records detected 

human user, who can then decide whether or not to act on each case.

Early warning systems: users are willing 
to tolerate the occasional false alarm 

Scientific discovery: novelties may 
be very rare (1 / billion), so users 

(weekly, monthly, etc.) but may start 
ignoring the system if it alerts too often. 

may be delighted with one true 
anomaly per thousand reports.



Anomaly detection = classification?
One option is to treat anomaly detection as a binary classification 

problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques fromAdvantage: we can use any of the classification techniques from 
Module I (decision trees, k-nearest neighbor, naïve Bayes, etc.)

How to learn and evaluate classifiers with a skewedHow to learn and evaluate classifiers with a skewed 
class distribution (e.g. 99.9% normal, 0.1% anomalies)? 

Consider tradeoffs between 
Precision = A / C Recall = A / B

Define A = # of anomalies detected
B = total # of anomalies in data Precision  A / C, Recall  A / B.

(Why not just use accuracy?)

Cost-sensitive classification: penalize misclassification of 
li th i l if i l l

B  total # of anomalies in data
C = total # of records detected 

anomalies more than misclassifying normal examples.

Simple example: Naïve Bayes 
classification gives posterior 

For each example, choose the class with 
the highest value of (class probability x cost 

probability of each class. of misclassifying an example of that class).



Anomaly detection = classification?
One option is to treat anomaly detection as a binary classification 

problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques fromAdvantage: we can use any of the classification techniques from 
Module I (decision trees, k-nearest neighbor, naïve Bayes, etc.)

In order to treat anomaly detection Real-world anomaly detection 

1) We need a large training 
dataset, with each record 

o de o ea a o a y de ec o
as (cost-sensitive) classification:

1) The training dataset may not 
have the anomalies labeled.

ea o d a o a y detect o
often fails to meet these criteria:

,
labeled “normal” or “anomaly”.

2) We need enough data to learn 
accurate models of both the 
normal and anomaly classes

2) Anomalies are rare: few or 
no examples in training data.

3) We want to be able to detect 
any anomalies in the datanormal and anomaly classes.

3) We can model only previously 
identified types of anomaly.

any anomalies in the data, 
including anomaly types that 
we have never seen before.

Solution: Learn a model of the “normal” class only.  Then detect 
any data records that are unlikely or unexpected given this model.



Model-based anomaly detection
Our first step is to learn a model of the “normal” class C from data.

Ideally, we learn the model using “clean” training data (all examples known to be “normal”).  
In practice, we often have only an unlabeled dataset (assume anomalies are rare).p y ( )

Naïve Bayes: assume all attributes independent. 
Learn each distribution by maximum likelihood.

Pr(X X | C) = ∏ Pr(X | C)

Discrete attribute: learn 
probability of each value.

Real-valued attribute: learn Pr(X1..XM | C) = ∏i=1..M Pr(Xi | C) μ and σ, assume Gaussian.

Bayesian network: specify or learn the structure. 
Then learn each attribute’s distribution, conditional

C
Then learn each attribute s distribution, conditional 

on its parents’ values, by maximum likelihood.
Pr(X1..XM | C) = ∏i=1..M Pr(Xi | Parents(Xi)) X1 X2 X3

If th lti l “ l” l d h l l b l

We can now compute the likelihood of each data record’s 

If there are multiple “normal” classes and we have class labels 
or clusters, we can learn separate distributions for each class.

attribute values given the “normal” model(s), and report any 
records with likelihood below some threshold as anomalies.



Model-based anomaly detection
Our first step is to learn a model of the “normal” class C from data.

Ideally, we learn the model using “clean” training data (all examples known to be “normal”).  
In practice, we often have only an unlabeled dataset (assume anomalies are rare).p y ( )

Naïve Bayes: assume all attributes independent. 
Learn each distribution by maximum likelihood.

Pr(X X | C) = ∏ Pr(X | C)

Discrete attribute: learn 
probability of each value.

Real-valued attribute: learn Pr(X1..XM | C) = ∏i=1..M Pr(Xi | C) μ and σ, assume Gaussian.

Bayesian network: specify or learn the structure. 
Then learn each attribute’s distribution, conditional

C
Then learn each attribute s distribution, conditional 

on its parents’ values, by maximum likelihood.
Pr(X1..XM | C) = ∏i=1..M Pr(Xi | Parents(Xi)) X1 X2 X3

The model-based approach to anomaly detection is often best 
if you can construct an accurate model for the normal data.

It does poorly in two cases: if the model representation is 
i d t t d ib th l d t if th d l iinadequate to describe the normal data, or if the model is 

corrupted by the unlabeled anomalies in the data.



Spatial and temporal anomaly detection
One simple case of model-based anomaly detection is when we 

are monitoring a single real-valued quantity over time and/or space. 

In this case we typically want to report any observed value that isIn this case, we typically want to report any observed value that is 
more than k standard deviations above or below its expected value.

Time series data Spatially distributed dataTime series data Spatially distributed data
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Spatial regression: the expected 
value for location s is a function of 
th l f ll th l ti

Time series analysis: the expected 
value for time step t is a function of the 

l f ti t 1 th h t 1

1.30.7 0.9 1.7

the values for all other locations.values for time steps 1 through t – 1.

Exponentially weighted averaging:
E[xt] = (Σ wixi) / (Σ wi), wi = e-(t-i)/b

Kernel regression, exponential kernel:
E[xs] = (Σ wixi) / (Σ wi), wi = e-d(s, i)/b

where i = 1… t – 1. where i ≠ s  and d is Euclidean distance. 

In the next lecture, we will discuss how to find anomalous patterns in space-time data.



Distance-based anomaly detection
Given an unlabeled dataset x1..xN and a distance metric d(xi, xj), we 
can use pairwise distances between records to detect anomalies.

Key assumption: normal records are similar to many other recordsKey assumption: normal records are similar to many other records, 
while anomalies are very different from most other records.

Approach 1: Choose a threshold distance D For each record xiApproach 1: Choose a threshold distance D.  For each record xi, 
compute the fraction fD(xi) of other records with d(xi, xj) < D.  The 

records with the lowest values of fD are most anomalous.

Approach 2: Choose a number of neighbors k.  For each record 
xi, compute the distance dk(xi) to its kth nearest neighbor.  The 

records with the highest values of dk are most anomalous.

• No assumptions about distribution of the normal data; can model complex distributions.
• Computationally expensive (run time increases quadratically with size of the dataset).
• Difficult to choose a good value of the threshold D or number of neighbors k

The advantages and disadvantages of these methods are similar to instance-based learning:

• Difficult to choose a good value of the threshold D or number of neighbors k.
• Curse of dimensionality: distance between points becomes uniform in high dimensions.
• Poor performance when data is of variable density or has underlying cluster structure.



Cluster-based anomaly detection
Given a clustering of an unlabeled dataset (e.g. by k-means), we 

can use the resulting clusters for anomaly detection in various ways.

Key assumption: normal records belong to large dense clustersKey assumption: normal records belong to large, dense clusters.  
Anomalies do not fit the clusters, or form their own tiny clusters.

Approach 1: Given a separate “clean” training set cluster the normal dataApproach 1: Given a separate clean  training set, cluster the normal data, 
and optionally learn a model for each cluster.  If a test record is far from all 
cluster centers (or has low likelihood given any model), label it an anomaly.

Approach 2: Given an unlabeled dataset in which we wish to find anomalies, 
cluster the data, and then report any tiny clusters (# of records ≤ k) as 

anomalies.  Also report any records that are far from all cluster centers.

Approach 1 is similar to model-based 
detection, but does not assume that 

different “normal” classes are labeled. 

Approach 2 is similar to distance-based 
anomaly detection, but uses a metric 

that takes cluster structure into account.

When will this work better (or worse) 
than distance-based detection?



Density-based anomaly detection
Density-based anomaly detection approaches perform 

density estimation at each data point, and identify 
records in low-density regions as potential anomalies.

“Global” approaches compare 
each point’s density to the 

densities of all other points, and 

“Local” approaches compare 
each point’s density to the 

densities of nearby points, and p
report points xi with lowest density.

y p
report points xi with lowest ratio:

)NN(x-k ofdensity  avg
)x(density

i

i

Distance-based and “global” density-based 
methods would consider points in the upper 
right corner to be more anomalous (lower 

In this example, the density of 
points is high in the lower left 

density, larger distance between points).

“Local” density-based methods 
would not consider these points 

corner, lower in the upper right 
corner, and very low in between.

as more anomalous, since their 
neighbors also have low density.



Density-based anomaly detection
Density-based anomaly detection approaches perform 

density estimation at each data point, and identify 
records in low-density regions as potential anomalies.

“Global” approaches compare 
each point’s density to the 

densities of all other points, and 

“Local” approaches compare 
each point’s density to the 

densities of nearby points, and p
report points xi with lowest density.

y p
report points xi with lowest ratio.

There are many ways to compute the density at a point xi.

Kernel density estimation
Consider a probability density 
function f(x), e.g. Gaussian, 

t d t h d t i t N

),x|x(f
)x(density N..1j

ji

i

∑
=

=
=

σμ

centered at each data point xj.



Density-based anomaly detection
Density-based anomaly detection approaches perform 

density estimation at each data point, and identify 
records in low-density regions as potential anomalies.

“Global” approaches compare 
each point’s density to the 

densities of all other points, and 

“Local” approaches compare 
each point’s density to the 

densities of nearby points, and p
report points xi with lowest density.

y p
report points xi with lowest ratio.

There are many ways to compute the density at a point xi.

Kernel density estimation
Consider a probability density 
function f(x), e.g. Gaussian, 

t d t h d t i t N

),x|x(f
)x(density N..1j

ji

i

∑
=

=
=

σμ

centered at each data point xj.

Many simpler density estimators also exist, for example 
the inverse of the distance to the kth nearest neighbor, g ,

or the inverse of the average distance to the k-NN.



Comparison of detection methods
Let us assume that we have 
an unlabeled dataset with 
two real-valued attributes.  
Which anomaly detection

p3
p5

p4x
x

x

Which anomaly detection 
methods will classify each 
point pi as an anomaly? p2

x p1
x

For global density-based 
anomaly detection, point p2 is 

For distance-based anomaly 
detection using 1-nearest 

For two or more neighbors For local density based

less anomalous than points in 
C1 since its density is higher.  

neighbor, p1 and p3 are the  
two most anomalous points. 

For two or more neighbors, 
points p1, p4, and p5 are most 

anomalous.  p2 is close to 
many points in C2, so it is less 

For local density-based
detection, p2 is more anomalous 
than points in C1.  p2 has lower 
density than its neighbors, while 2

anomalous than points in C1. C1 has nearly uniform density.



Comparison of detection methods
Let us assume that we have 
an unlabeled dataset with 
two real-valued attributes.  
Which anomaly detection

p3
p5

p4x
x

x

Which anomaly detection 
methods will classify each 
point pi as an anomaly? p2

x p1
x

Most cluster-based anomaly detection methods, assuming k = 2 
clusters, would form clusters roughly corresponding to C1 and C2. 

Points p1, p4, and p5 are far from the clusters, and would be 
detected as anomalies.  Point p2 would probably be detected if  
we modeled each cluster’s standard deviation while it wouldwe modeled each cluster’s standard deviation σ, while it would  
not be detected if we measured distance to the cluster center.

If we used k > 2 clusters point p and points p -p might formIf we used k > 2 clusters, point p1 and points p4-p5 might form 
separate clusters.  This is why we also detect small clusters!



Summary of anomaly detection
Gi i d t t l d t ti b• Given a massive dataset, anomaly detection can be 
used to find individual records with surprising 
combinations of attribute values.

• Common applications include security (detection of 
intrusions, fraud, smuggling, etc.), scientific discovery, 
and data cleaningand data cleaning.

• Which anomaly detection method to use depends on the 
type of data available, and also how we expect yp , p
anomalies to differ from normal data.
– Given sufficient labeled data for each possible class of 

anomalies use cost-sensitive classificationanomalies use cost sensitive classification.
– Given a separate “clean” dataset representing normal data 

behavior use model-based anomaly detection.
Detecting anomalies in an unlabeled dataset use distance– Detecting anomalies in an unlabeled dataset use distance-
based, density-based, or cluster-based anomaly detection.
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Anomalous pattern detection
Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records 

that differ from the rest of the data in an interesting way.

Question 1: Are any relevant 
patterns present in the data, or 
is the entire dataset “normal”?

Question 2: If there are any 
patterns, identify the pattern 
type and the affected subset yp

of data records for each.

Example: outbreak detection
Are there any emerging

Example: intelligence analysis
Can we deduce the membershipAre there any emerging 

outbreaks of disease?  If so, 
what type of outbreak, and 
what areas are affected?

Can we deduce the membership 
and structure of terrorist groups 
based on known links between 

suspected individuals?

$$$



Anomalous pattern detection
Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records 

that differ from the rest of the data in an interesting way.

What makes a group 
of records “relevant”?

Group detection: given a 
social network, find highly 

connected sets of individuals.
1. Matching some known 

pattern or structure.

Many efficient algorithms have been 
developed to find dense subgraphsdeveloped to find dense subgraphs 
or other structures in network data.



Anomalous pattern detection
Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records 

that differ from the rest of the data in an interesting way.

Fraud detection: look for 
individuals with a history   

of suspicious transactions.

What makes a group 
of records “relevant”?

p
1. Matching some known 

pattern or structure.

2. Multiple related records that    

Network intrusion detection: 
look for suspicious combinations 
of activities (e g port scanning)p

are individually anomalous.
of activities (e.g. port scanning).

In these domains, multiple 
“slightly anomalous” behaviors g y
may together provide evidence 

of a major deviation from normal.



Anomalous pattern detection
Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records 

that differ from the rest of the data in an interesting way.

Cluster detection: find spatial 
areas or periods of time with 
more records than expected.

What makes a group 
of records “relevant”?

Event detection: is the 
recent data differently 

distributed than the past?

p
1. Matching some known 

pattern or structure.

2. Multiple related records that distributed than the past?p
are individually anomalous.

3. Higher (or lower) than expected 
number of records with some 

Key concept: A group of 
records may be highly 

combination of attributes.

4. Change in data distribution as 
compared to the rest of the dataset.

anomalous or interesting 
even if none of the individual 
records is itself anomalous.



Pattern detection = classification?
“ ? “ ff ?“Does the dataset contain a pattern?”

This question could be treated as     
a problem of classifying datasets.

“Which records are affected?”     
This question could be treated as 

classification or anomaly detection.

Record xi {normal, is part of a pattern}
Or xi {normal, pattern 1, pattern 2, …}

Dataset D {normal, contains a pattern}
Or D {normal, pattern 1, pattern 2, …}

For the first approach what features of the dataset should we use?For the first approach, what features of the dataset should we use?

Most relevant patterns only affect a small proportion of the dataset, 
and would not be visible looking only at summary statistics.

On the other hand, data sparsity prevents using each record-
attribute combination as a different attribute of the dataset.

F th d h h bi d t f lti l d ?For the second approach, how can we combine data from multiple records?

This is essential since none of the records may be 
individually sufficient to detect the anomalous pattern.

Both “top-down” and “bottom-up” greedy approaches to detection fail.



Subset scanning
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.



What’s Strange About Recent Events?
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

I th WSARE th d (“Wh t’ St Ab t R t E t ”)In the WSARE method (“What’s Strange About Recent Events”), we 
consider the subsets of the data defined by a one- or two-component rule R,  
and find rules where the current data is significantly different than the past.

F h l t 2 2 ti t bl i t d t d tFor each rule, we create a 2x2 contingency table comparing current and past data:

Current Past
# records satisfying R 48 45

Compute p-value using 
a statistical test (Χ2 or # records satisfying R

# records satisfying ~R
48
86

45
220 Fisher’s Exact).  Lower 

p-value = higher score.



What’s Strange About Recent Events?
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

I th WSARE th d (“Wh t’ St Ab t R t E t ”)In the WSARE method (“What’s Strange About Recent Events”), we 
consider the subsets of the data defined by a one- or two-component rule R,  
and find rules where the current data is significantly different than the past.

For example, using WSARE for 
hospital Emergency Department 
surveillance resulted in finding 
the following significant rule, g g ,

corresponding to an outbreak of 
respiratory illness on 9/6/2000.



Anomaly pattern detection
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

If d t h t t d t b t h t th t tIf we do not have access to past data, but we have access to the output 
of an anomaly detector, we can modify WSARE to detect rules R that 
correspond to a higher than expected number of anomalous records.

N t t bl i th b f l d l dNow we create tables comparing the numbers of anomalous and normal records:

Anomalous Normal
# records satisfying R 17 5

Compute p-value using 
a statistical test (Χ2 or # records satisfying R

# records satisfying ~R
17
93

5
400 Fisher’s Exact).  Lower 

p-value = higher score.



Model-based pattern detection
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

I th d l b d l tt d t ti h d lIn the model-based anomalous pattern detection approach, we model 
the effects of each pattern type P on the affected subset of the data S.

We then compute the likelihood ratio statistic
P (D t | H (S P)) / P (D t | H ) f h (S P)Pr(Data | H1(S, P)) / Pr(Data | H0) for each (S, P).

In event detection, we model the 
null hypothesis H0 by estimating 

Each pattern P is assumed to 
increase the counts for some yp 0 y g

expected counts for each data 
stream assuming no events.  

data streams in the affected 
set of spatial locations S.



Anomalous group detection
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

I th d l b d l tt d t ti h d l

We then compute the likelihood ratio statistic
P (D t | H (S P)) / P (D t | H ) f h (S P)

In the model-based anomalous pattern detection approach, we model 
the effects of each pattern type P on the affected subset of the data S.

Pr(Data | H1(S, P)) / Pr(Data | H0) for each (S, P).

In our AGD (“Anomalous Group 
Detection”) approach, we model 

Under the alternative 
hypothesis H1(S), we assume ) pp ,

the null hypothesis by learning a 
Bayes Net from training data.

yp 1( ),
that records in S are drawn 
from a different Bayes Net.



Conditional pattern detection
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

There are many options for computing the score of a subset S.

I th d l b d l tt d t ti h d l

We then compute the likelihood ratio statistic
P (D t | H (S P)) / P (D t | H ) f h (S P)

In the model-based anomalous pattern detection approach, we model 
the effects of each pattern type P on the affected subset of the data S.

Pr(Data | H1(S, P)) / Pr(Data | H0) for each (S, P).

Finally, rather than computing the entire 
data likelihood, we can compute the 

If we don’t know the input and 
output attributes, we can scan , p

likelihood of some “output attributes” 
conditional on other “input attributes”.

p ,
over subsets of input and 
output attributes as well!



Which patterns to report?
We can scan over subsets of the dataset in order to find 

those groups of records that correspond to a pattern. 

Step 1: Compute score F(S P) for Step 2: Consider the highestStep 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.

Option 1: Report the k highest scoring subsets, ordered by score.

y p y

The disadvantage of this approach is that the user is not informedThe disadvantage of this approach is that the user is not informed 
whether any of the discovered patterns are likely to be relevant.

However, this may be acceptable in monitoring systems 
or scientific discovery applications where the user is y pp

willing to evaluate a fixed number of potential patterns.



Which patterns to report?

Step 1: Compute score F(S P) for Step 2: Consider the highest

We can scan over subsets of the dataset in order to find 
those groups of records that correspond to a pattern. 

Step 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.y p y

Option 2: Perform hypothesis tests, and report all significant patterns (S, P).

In the hypothesis testing framework, we must adjust for the fact that we’reIn the hypothesis testing framework, we must adjust for the fact that we re 
performing so many tests.  Otherwise we will report too many false positives!

In model-based approaches, one way to do this is randomization: 
we generate a large number of simulated datasets assuming the g g g

null model, and compare the scores of the potential patterns in the 
real dataset to the highest scoring patterns in the simulated data.

An alternative is to adjust the p-value threshold for each test based onAn alternative is to adjust the p value threshold for each test based on 
the number of tests performed (e.g. Bonferroni threshold = .05 / # tests)



Which patterns to report?

Step 1: Compute score F(S P) for Step 2: Consider the highest

We can scan over subsets of the dataset in order to find 
those groups of records that correspond to a pattern. 

Step 1: Compute score F(S, P) for 
each subset S = {xi} and for each 
pattern type P, where higher score 
means more likely to be a pattern.

Step 2: Consider the highest 
scoring potential patterns (S, P) 

and decide whether each 
actually represents a pattern.

Option 3: Compute the posterior probability of each hypothesis H1(S, P).

y p y

In a Bayesian framework, we must spread the prior probabilityIn a Bayesian framework, we must spread the prior probability 
of a pattern over all possible hypotheses H1(S, P).

We then compute the likelihood of the data given each hypothesis 
H1(S, P), as well as the null hypothesis of no patterns, H0.1( , ), yp p , 0

We can then compute the posterior probability 
of each hypothesis by Bayes’ Theorem: 

P (H | D) P (D | H) P (H) / P (D)Pr(H | D) = Pr(D | H) Pr(H) / Pr(D) Best for known 
pattern types!

Option 2 better 
for anomalies!



Which subsets to scan?
Since there are exponentially many subsets of the data,      

it is often computationally infeasible to search all of them.

Th t h i t d i k l d tThe most common approach is to use domain knowledge to 
restrict our search space: for example, in spatial cluster detection, 
we assume that a pattern will affect a spatially localized group of 

records, and often further restrict the cluster size and shape., p

e.g. “search over circular regions centered at a data point” only N2 regions instead of 2N.

Another common approach is to perform a greedy search.  For pp p g y
example, we grow subsets starting from each record, repeatedly 

adding the additional record that gives the highest scoring subset.

Tradeoff: much more efficient than naïve search, but not guaranteed to find highest scoring region., g g g g

In some cases, we can find the highest-scoring subsets         
without actually computing the scores of all possible subsets!



f

Example: fast spatial scan
In spatial cluster detection, we search over sets of adjacent locations      
and find spatial regions with significantly higher than expected counts.

We restrict our search to rectangular regions for computational efficiency This

For massive datasets (e.g. disease surveillance for nationwide health data), 

We restrict our search to rectangular regions for computational efficiency. This 
gives us high detection power for both compact and elongated clusters.

we have to search over billions of possible regions, which could take weeks.

We can find the highest scoring clusters without an exhaustive search     
using branch and bound: we keep track of the highest region score thatusing branch and bound: we keep track of the highest region score that     

we have found so far, and prune sets of regions with provably lower scores.

A new multi-resolution data structure, 

We can now monitor nationwide 

the overlap-kd tree, enables us to 
make this search efficient.

health data in 20 minutes (vs. 1 week).
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Linear-time subset scanning
Given a score function F(S) which satisfies the linear-time subset scanning
property, we can optimize F(S) over the exponentially many subsets of data 

records, while evaluating only O(N) regions instead of O(2N).

Just sort the locations from highest to lowest priority according to some 
function, then search over groups consisting of the top-k highest priority 

locations (k = 1..N).  The highest scoring subset will be one of these!

Many useful score functions satisfy the LTSS property.  In the spatial cluster 
detection setting, we can efficiently optimize a spatial scan statistic over 

subsets of locations to find the most interesting spatial region.subsets of locations to find the most interesting spatial region.  

This works both for univariate data, monitoring a single data stream across 
time and space, and multivariate data, monitoring multiple data streams.

We can also incorporate relevant constraints 
such as spatial proximity, temporal consistency, 
or graph connectivity into the detection process.
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Linear-time subset scanning
Given a score function F(S) which satisfies the linear-time subset scanning
property, we can optimize F(S) over the exponentially many subsets of data 

records, while evaluating only O(N) regions instead of O(2N).

Just sort the locations from highest to lowest priority according to some 
function, then search over groups consisting of the top-k highest priority 

locations (k = 1..N).  The highest scoring subset will be one of these!

Many useful score functions satisfy the LTSS property.  In the spatial cluster 
detection setting, we can efficiently optimize a spatial scan statistic over 

subsets of locations to find the most interesting spatial region.subsets of locations to find the most interesting spatial region.  

This works both for univariate data, monitoring a single data stream across 
time and space, and multivariate data, monitoring multiple data streams.

LTSS allows us to solve problems in 
milliseconds that would previously have 
required hundreds of millions of years!
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