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Parts of this lecture were adapted from Banerjee et al., Anomaly Detection: A Tutorial,
presented at SDM 2008. | recommend viewing their excellent presentation for a more
detailed discussion of anomaly detection and the current state of the art.



What is detection?

Some common detection tasks

Main goal: focus the user’s attention on

a potentially relevant subset of the data. Detecting anomalous records or groups

a) Automatically detect relevant Discovering novelties (e.g. new drugs)
individual records, or groups of records. Detecting clusters in space or time
b) Characterize and explain patterns: Removing noise or errors in data

pattern type, affected subset,

Detecting specific patterns (e.g. fraud)
models of normal/abnormal data.

Detecting emerging events which
c) Present the pattern to the user. may require rapid responses.

We will discuss two main topics in this module:

Detecting individual records that are anomalous or interesting.
Detecting interesting groups or patterns of records.



Anomaly detection

In anomaly (or outlier) detection, we attempt to detect
individual data records that are anomalous or unexpected.

Example 1: Given a massive database of financial data, which
transactions are suspicious and likely to be fraudulent?

Example 2: Given the huge number of container shipments
arriving at our country’s ports every day, which should be
opened by customs (to prevent smuggling, terrorism, etc.)?

Example 3: Given a log of all the traffic on our computer
network, which sessions represent (attempted) intrusions?

Example 4: Given a sky survey of astronomical objects, which
are novelties that might represent new scientific discoveries?

Goal: differentiate Abnormal records may be Removing anomalies can

“normal” from useful (e.g. novelties) or also improve our models
“abnormal” records. harmful (requiring action). of the normal data.



Intrusion detection

Intrusions are defined as attempts to bypass
the security mechanisms of a computer or
network in order to gain unauthorized access
or enable unauthorized activities (e.g. stealing
personal information).

Intrusion detection is the process of
monitoring the events occurring in a computer
system or network and analyzing them for
intrusions or attempted intrusions.

Many challenges:

— Traditional intrusion detection methods are
based on detecting signatures of known attacks.

— Substantial latency in deployment of newly
created signatures across the system prevents
rapid responses to emerging attack types.

Anomaly detection can alleviate these
limitations by automatically detecting
previously unknown cyber-attacks.

(Adapted from Banerjee et al., Anomaly Detection: A Tutorial)



Fraud detection

* Fraud detection refers to the detection of criminal
activities occurring in commercial organizations.
— Malicious users might be the actual customers of the organization
or might be posing as a customer (identity theft).
« Types of fraud
— Credit card fraud
— Insurance claim fraud
— Mobile / cell phone fraud
— Insider trading
— Online transaction fraud (eBay)

« Challenges
— Fast and accurate real-time detection.

— Predicting fraud based on previous transactions.
— Costs of false positives and false negatives can both be high.

(Adapted from Banerjee et al., Anomaly Detection: A Tutorial)



Anomaly detection = classification?

One option is to treat anomaly detection as a binary classification
problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques from
Module | (decision trees, k-nearest neighbor, naive Bayes, etc.)

How to learn and evaluate classifiers with a skewed
class distribution (e.g. 99.9% normal, 0.1% anomalies)?

Define A = # of anomalies detected Consider tradeoffs between
B = total # of anomalies in data Precision = A/ C, Recall = A/ B.
C = total # of records detected (Why not just use accuracy?)

Typically, anomaly detection systems report potential anomalies to a
human user, who can then decide whether or not to act on each case.

In this case, we want high recall (i.e. if any anomalies are present, we are
very likely to report them). Precision is often less important, but higher
precision means fewer potential anomalies the user has to sift through.



Anomaly detection = classification?

One option is to treat anomaly detection as a binary classification
problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques from
Module | (decision trees, k-nearest neighbor, naive Bayes, etc.)

How to learn and evaluate classifiers with a skewed
class distribution (e.g. 99.9% normal, 0.1% anomalies)?

Define A = # of anomalies detected Consider tradeoffs between
B = total # of anomalies in data Precision = A/ C, Recall = A/ B.
C = total # of records detected (Why not just use accuracy?)

Typically, anomaly detection systems report potential anomalies to a
human user, who can then decide whether or not to act on each case.

Early warning systems: users are willing  Scientific discovery: novelties may
to tolerate the occasional false alarm be very rare (1 / billion), so users
(weekly, monthly, etc.) but may start may be delighted with one true

ignoring the system if it alerts too often. anomaly per thousand reports.




Anomaly detection = classification?

One option is to treat anomaly detection as a binary classification
problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques from
Module | (decision trees, k-nearest neighbor, naive Bayes, etc.)

How to learn and evaluate classifiers with a skewed
class distribution (e.g. 99.9% normal, 0.1% anomalies)?

Define A = # of anomalies detected Consider tradeoffs between
B = total # of anomalies in data Precision = A/ C, Recall = A/ B.
C = total # of records detected (Why not just use accuracy?)

Cost-sensitive classification: penalize misclassification of
anomalies more than misclassifying normal examples.

Simple example: Naive Bayes For each example, choose the class with
classification gives posterior the highest value of (class probability x cost
probability of each class. of misclassifying an example of that class).



Anomaly detection = classification?

One option is to treat anomaly detection as a binary classification
problem, identifying each record as “anomalous” or “normal”.

Advantage: we can use any of the classification techniques from
Module | (decision trees, k-nearest neighbor, naive Bayes, etc.)

In order to treat anomaly detection Real-world anomaly detection
as (cost-sensitive) classification: often fails to meet these criteria:
1) We need a large training 1) The training dataset may not
dataset, with each record have the anomalies labeled.
labeled “normal” or “anomaly”. 2) Anomalies are rare: few or
2) We need enough data to learn no examples in training data.
accurate models of both the 3) We want to be able to detect
normal and anomaly classes. any anomalies in the data,
3) We can model only previously including anomaly types that
identified types of anomaly. we have never seen before.

Solution: Learn a model of the “normal” class only. Then detect
any data records that are unlikely or unexpected given this model.




Model-based anomaly detection

|deally, we learn the model using “clean” training data (all examples known to be “normal”).
In practice, we often have only an unlabeled dataset (assume anomalies are rare).

Discrete attribute: learn
probability of each value.

Real-valued attribute: learn
u and o, assume Gaussian.

Naive Bayes: assume all attributes independent.

Learn each distribution by maximum likelihood.
Pr(Xy. Xy | C) = [i=4.m Pr(X; | C)

If there are multiple “normal” classes and we have class labels
or clusters, we can learn separate distributions for each class.




Model-based anomaly detection

|deally, we learn the model using “clean” training data (all examples known to be “normal”).
In practice, we often have only an unlabeled dataset (assume anomalies are rare).

Discrete attribute: learn
probability of each value.

Real-valued attribute: learn
u and o, assume Gaussian.

Naive Bayes: assume all attributes independent.

Learn each distribution by maximum likelihood.
Pr(Xy. Xy | C) = [i=4.m Pr(X; | C)
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The model-based approach to anomaly detection is often best
if you can construct an accurate model for the normal data.

It does poorly in two cases: if the model representation is
inadequate to describe the normal data, or if the model is
corrupted by the unlabeled anomalies in the data.



Spatial and temporal anomaly detection

One simple case of model-based anomaly detection is when we
are monitoring a single real-valued quantity over time and/or space.

In this case, we typically want to report any observed value that is
more than k standard deviations above or below its expected value.

Time series data

Time series analysis: the expected
value for time step t is a function of the
values for time steps 1 through t — 1.

Exponentially weighted averaging:
wherei=1...t-1.

Spatially distributed data

°
12 @

.O
1.3 . e
(]

e 10 . @
18 @ 1 o %

0.7 : 09

Spatial regression: the expected
value for location s is a function of
the values for all other locations.

Kernel regression, exponential kernel:
Elx] = (Z wx) / (2 w;), w; = eds: b
where i #s and d is Euclidean distance.

In the next lecture, we will discuss how to find anomalous patterns in space-time data.



Distance-based anomaly detection

Given an unlabeled dataset x,..xy and a distance metric d(x;, x;), we
can use pairwise distances between records to detect anomalies.

Key assumption: normal records are similar to many other records,
while anomalies are very different from most other records.

Approach 1: Choose a threshold distance D. For each record x;,
compute the fraction fp(x;) of other records with d(x;, x;) < D. The
records with the lowest values of f; are most anomalous.

Approach 2: Choose a number of neighbors k. For each record
X;, compute the distance d,(x;) to its kth nearest neighbor. The
records with the highest values of d, are most anomalous.

The advantages and disadvantages of these methods are similar to instance-based learning:

» No assumptions about distribution of the normal data; can model complex distributions.
« Computationally expensive (run time increases quadratically with size of the dataset).

« Difficult to choose a good value of the threshold D or number of neighbors k.

» Curse of dimensionality: distance between points becomes uniform in high dimensions.
» Poor performance when data is of variable density or has underlying cluster structure.



Cluster-based anomaly detection

Key assumption: normal records belong to large, dense clusters.
Anomalies do not fit the clusters, or form their own tiny clusters.

Approach 2: Given an unlabeled dataset in which we wish to find anomalies,

cluster the data, and then report any tiny clusters (# of records < k) as
anomalies. Also report any records that are far from all cluster centers.

Approach 1 is similar to model-based Approach 2 is similar to distance-based
detection, but does not assume that anomaly detection, but uses a metric
different “normal” classes are labeled. that takes cluster structure into account.

When will this work better (or worse)
than distance-based detection?



Density-based anomaly detection

Density-based anomaly detection approaches perform
density estimation at each data point, and identify
records in low-density regions as potential anomalies.

“Global” approaches compare “Local” approaches compare
each point’s density to the each point’s density to the
densities of all other points, and densities of nearby points, and

report points x; with lowest density.  report points x; with lowest ratio:
density(x;)
avg density of k -NN(x;)

Distance-based and “global” density-based
methods would consider points in the upper
right corner to be more anomalous (lower

. density, larger distance between points).
In this example, the density of “Local” density-based methods
points is high in the lower left would not consider these points
corner, lower in the upper right as more anomalous, since their

corner, and very low in between. neighbors also have low density.



Density-based anomaly detection

Density-based anomaly detection approaches perform
density estimation at each data point, and identify
records in low-density regions as potential anomalies.

“Global” approaches compare “Local” approaches compare
each point’s density to the each point’s density to the
densities of all other points, and densities of nearby points, and

report points x; with lowest density.  report points x; with lowest ratio.
There are many ways to compute the density at a point x..

Kernel density estimation
Consider a probability density _Zf(xi | =X;,0)
function f(x), e.g. Gaussian, density(x;) = ==
centered at each data point x;.
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Density-based anomaly detection

Density-based anomaly detection approaches perform
density estimation at each data point, and identify
records in low-density regions as potential anomalies.

“Global” approaches compare “Local” approaches compare
each point’s density to the each point’s density to the
densities of all other points, and densities of nearby points, and

report points x; with lowest density.  report points x; with lowest ratio.
There are many ways to compute the density at a point x..

Kernel density estimation
Consider a probability density _Zf(xi | =X;,0)
function f(x), e.g. Gaussian, density(x;) = == N
centered at each data point x;.

Many simpler density estimators also exist, for example
the inverse of the distance to the kth nearest neighbor,
or the inverse of the average distance to the k-NN.



Comparison of detection methods

Let us assume that we have
an unlabeled dataset with
two real-valued attributes.
Which anomaly detection
methods will classify each

point p, as an anomaly?

For two or more neighbors,
points p4, p4, and ps are most
anomalous. p, is close to
many points in C,, so it is less
anomalous than points in C,.

"~ .

For local density-based
detection, p, is more anomalous
than points in C,. p, has lower
density than its neighbors, while
C, has nearly uniform density.



Comparison of detection methods
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Let us assume that we have
an unlabeled dataset with LT
two real-valued attributes. Ps P ™ 7
Which anomaly detection
methods will classify each |
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Most cluster-based anomaly detection methods, assuming k = 2
clusters, would form clusters roughly corresponding to C, and C..

Points p,, p,, and p5 are far from the clusters, and would be
detected as anomalies. Point p, would probably be detected if
we modeled each cluster’s standard deviation o, while it would
not be detected if we measured distance to the cluster center.

If we used k > 2 clusters, point p, and points p,-ps might form
separate clusters. This is why we also detect small clusters!



Summary of anomaly detection

« Given a massive dataset, anomaly detection can be
used to find individual records with surprising
combinations of attribute values.

« Common applications include security (detection of
intrusions, fraud, smuggling, etc.), scientific discovery,
and data cleaning.

* Which anomaly detection method to use depends on the
type of data available, and also how we expect
anomalies to differ from normal data.

— Given sufficient labeled data for each possible class of
anomalies - use cost-sensitive classification.

— Given a separate “clean” dataset representing normal data
behavior = use model-based anomaly detection.

— Detecting anomalies in an unlabeled dataset - use distance-
based, density-based, or cluster-based anomaly detection.
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Anomalous pattern detection

Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records
that differ from the rest of the data in an interesting way.

Question 1: Are any relevant Question 2: If there are any
patterns present in the data, or patterns, identify the pattern
is the entire dataset “normal”? type and the affected subset

of data records for each.

Example: outbreak detection Example: intelligence analysis
Are there any emerging Can we deduce the membership
outbreaks of disease? If so, and structure of terrorist groups
what type of outbreak, and based on known links between

what areas are affected? suspected individuals?




Anomalous pattern detection

What makes a group Group detection: given a
of records “relevant’? social network, find hlghly
connected sets of individuals.

1. Matching some known
pattern or structure.

Many efficient algorithms have been
developed to find dense subgraphs
or other structures in network data.



Anomalous pattern detection

Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records
that differ from the rest of the data in an interesting way.

What makes a group Fraud detection: look for

of suspicious transactions.

1. Matching some known

pattern or structure. Network intrusion detection:

look for suspicious combinations

2. Multlple related records that of activities (eg port Scanning)_
are individually anomalous.

In these domains, multiple
“slightly anomalous” behaviors
may together provide evidence

of a major deviation from normal.



Anomalous pattern detection

Main goal of pattern detection: to identify and characterize
relevant subsets of a massive dataset, i.e. groups of records
that differ from the rest of the data in an interesting way.

What makes a group
of records “relevant”?

1. Matching some known
pattern or structure.

2. Multiple related records that
are individually anomalous.

3. Higher (or lower) than expected
number of records with some
combination of attributes.

4. Change in data distribution as

compared to the rest of the dataset.

Cluster detection: find spatial

areas or periods of time with
more records than expected.

Event detection: is the
recent data differently
distributed than the past?

Key concept: A group of
records may be highly
anomalous or interesting
even if none of the individual
records is itself anomalous.




Pattern detection = classification?

“Does the dataset contain a pattern?” “Which records are affected?”
This question could be treated as This question could be treated as
a problem of classifying datasets. classification or anomaly detection.

Dataset D - {normal, contains a pattern} Record x; = {normal, is part of a pattern}

Or D - {normal, pattern 1, pattern 2, ...} Or x; = {normal, pattern 1, pattern 2, ...}

For the first approach, what features of the dataset should we use?

Most relevant patterns only affect a small proportion of the dataset,
and would not be visible looking only at summary statistics.

On the other hand, data sparsity prevents using each record-
attribute combination as a different attribute of the dataset.

For the second approach, how can we combine data from multiple records?

This is essential since none of the records may be
individually sufficient to detect the anomalous pattern.

Both “top-down” and “bottom-up” greedy approaches to detection fail.



Subset scanning

Step 1: Compute score F(S, P) for
each subset S = {x;} and for each

pattern type P, where higher score
means more likely to be a pattern.




What's Strange About Recent Events?

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

In the WSARE method (“What's Strange About Recent Events”), we
consider the subsets of the data defined by a one- or two-component rule R,
and find rules where the current data is significantly different than the past.

For each rule, we create a 2x2 contingency table comparing current and past data:

Current Past Compute p-value using

- )
# records satisfying R 48 45 I:> a statistical test (X* or

# records satisfying ~R 86 220 Fisher's Ex_act). Lower
p-value = higher score.




What's Strange About Recent Events?

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

In the WSARE method (“What's Strange About Recent Events”), we
consider the subsets of the data defined by a one- or two-component rule R,
and find rules where the current data is significantly different than the past.

For example, using WSARE for

radt Rule 3 Wed 00-06-2000 (daynum 36774, dayindex 131)

hospital Emergency Department SCORE = -0.00000000 PVALUE = 0 00000000
surveillance resulted in finding 17.16% { 23/134) of today's cases have Prodrome = Respiratory
the following significant rule, SRR oo a0

4 5% [ 120285 ol other cases have Prodome = Respiratory

corresponding to an outbreak of and ageR bess than 40
respiratory illness on 9/6/2000.



Anomaly pattern detection

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

If we do not have access to past data, but we have access to the output
of an anomaly detector, we can modify WSARE to detect rules R that
correspond to a higher than expected number of anomalous records.

Now we create tables comparing the numbers of anomalous and normal records:

Anomalous Normal Compute p-value using
e tatistical test (X2 or

# records satisfying R~ 17 5 > 2l
# records satisfying ~R 93 400 Fisher's Exact). Lower

p-value = higher score.



Model-based pattern detection

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

In the model-based anomalous pattern detection approach, we model
the effects of each pattern type P on the affected subset of the data S.

We then compute the likelihood ratio statistic
Pr(Data | H4(S, P)) / Pr(Data | H,) for each (S, P).

In event detection, we model the Each pattern P is assumed to
null hypothesis H, by estimating increase the counts for some
expected counts for each data data streams in the affected
stream assuming no events. set of spatial locations S.



Anomalous group detection

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

In the model-based anomalous pattern detection approach, we model
the effects of each pattern type P on the affected subset of the data S.

We then compute the likelihood ratio statistic
Pr(Data | H4(S, P)) / Pr(Data | H,) for each (S, P).

In our AGD (“Anomalous Group Under the alternative
Detection”) approach, we model hypothesis H,(S), we assume
the null hypothesis by learning a that records in S are drawn

Bayes Net from training data. from a different Bayes Net.



Conditional pattern detection

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

There are many options for computing the score of a subset S.

In the model-based anomalous pattern detection approach, we model
the effects of each pattern type P on the affected subset of the data S.

We then compute the likelihood ratio statistic
Pr(Data | H4(S, P)) / Pr(Data | H,) for each (S, P).

Finally, rather than computing the entire  If we don’t know the input and
data likelihood, we can compute the output attributes, we can scan
likelihood of some “output attributes” over subsets of input and
conditional on other “input attributes”. output attributes as well!



Which patterns to report?

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for
each subset S = {x;} and for each

pattern type P, where higher score
means more likely to be a pattern.

Step 2: Consider the highest
scoring potential patterns (S, P)
and decide whether each
actually represents a pattern.

Option 1: Report the k highest scoring subsets, ordered by score.

The disadvantage of this approach is that the user is not informed
whether any of the discovered patterns are likely to be relevant.

However, this may be acceptable in monitoring systems
or scientific discovery applications where the user is
willing to evaluate a fixed number of potential patterns.




Which patterns to report?

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each scoring potential patterns (S, P)
pattern type P, where higher score and decide whether each
means more likely to be a pattern. actually represents a pattern.

Option 2: Perform hypothesis tests, and report all significant patterns (S, P).

In the hypothesis testing framework, we must adjust for the fact that we're
performing so many tests. Otherwise we will report too many false positives!

In model-based approaches, one way to do this is randomization:
we generate a large number of simulated datasets assuming the
null model, and compare the scores of the potential patterns in the
real dataset to the highest scoring patterns in the simulated data.

An alternative is to adjust the p-value threshold for each test based on
the number of tests performed (e.g. Bonferroni threshold = .05 / # tests)



Which patterns to report?

We can scan over subsets of the dataset in order to find
those groups of records that correspond to a pattern.

Step 1: Compute score F(S, P) for Step 2: Consider the highest
each subset S = {x;} and for each

scoring potential patterns (S, P)
pattern type P, where higher score

and decide whether each
means more likely to be a pattern. actually represents a pattern.

Option 3: Compute the posterior probability of each hypothesis H,(S, P).

In a Bayesian framework, we must spread the prior probability
of a pattern over all possible hypotheses H,(S, P).

We then compute the likelihood of the data given each hypothesis
H,(S, P), as well as the null hypothesis of no patterns, H,.

We can then compute the posterior probability
of each hypothesis by Bayes’ Theorem:

Best for known Pr(H | D) = Pr(D | H) Pr(H) / Pr(D) Option 2 better
pattern types! for anomalies!



Which subsets to scan?

Since there are exponentially many subsets of the data,
it is often computationally infeasible to search all of them.

The most common approach is to use domain knowledge to
restrict our search space: for example, in spatial cluster detection,
we assume that a pattern will affect a spatially localized group of

records, and often further restrict the cluster size and shape.

e.g. “search over circular regions centered at a data point” = only N? regions instead of 2N.

Another common approach is to perform a greedy search. For
example, we grow subsets starting from each record, repeatedly
adding the additional record that gives the highest scoring subset.

Tradeoff: much more efficient than naive search, but not guaranteed to find highest scoring region.

In some cases, we can find the highest-scoring subsets
without actually computing the scores of all possible subsets!



Example: fast spatial scan

In spatial cluster detection, we search over sets of adjacent locations
and find spatial regions with significantly higher than expected counts.

We restrict our search to rectangular regions for computational efficiency. This
gives us high detection power for both compact and elongated clusters.

For massive datasets (e.g. disease surveillance for nationwide health data),
we have to search over billions of possible regions, which could take weeks.

We can find the highest scoring clusters without an exhaustive search
using branch and bound: we keep track of the highest region score that
we have found so far, and prune sets of regions with provably lower scores.

A new multi-resolution data structure,
the overlap-kd tree, enables us to
make this search efficient.

We can now monitor nationwide
health data in 20 minutes (vs. 1 week).




Linear-time subset scanning

We can also incorporate relevant constraints
such as spatial proximity, temporal consistency,
or graph connectivity into the detection process.




Linear-time subset scanning

LTSS allows us to solve problems in
milliseconds that would previously have
required hundreds of millions of years!
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