Problem 1

Consider a finite discounted MDP $M=(S,A,P,R,\gamma)$. In this problem, we study some properties of value iteration. The Bellman optimality equation for the optimal value function $V^*:S\to\mathbb{R}$, which we also write $V^*\in\mathbb{R}^S$, is

$$V^*(s) = \max_{a \in A} \left(\sum_{s' \in S} P(s'|s, a) \left(R(s, a, s') + \gamma V^*(s') \right) \right).$$

Define the Bellman optimality operator $\mathcal{F}^*: \mathbb{R}^S \to \mathbb{R}^S$ as

$$\mathcal{F}^*V(s) = \max_{a \in A} \left(\sum_{s' \in S} P(s'|s, a) \left(R(s, a, s') + \gamma V(s') \right) \right),$$

where $\mathcal{F}^*V(s)$ is shorthand for $(\mathcal{F}^*(V))(s)$. Note that S is finite so value functions are vectors in $\mathbb{R}^{|S|}$. The operator \mathcal{F}^* maps vectors in $\mathbb{R}^{|S|}$ to vectors in $\mathbb{R}^{|S|}$.

Value iteration amounts to the repeated application of \mathcal{F}^* to an arbitrary initial value function $V_0 \in \mathbb{R}^{|S|}$.

- a) Prove that V^* is an unique fixed point of \mathcal{F}^* , i.e, $\mathcal{F}^*V^*=V^*$ and that if $\mathcal{F}^*V=V$ and $\mathcal{F}^*V'=V'$ for two value functions $V,V'\in\mathbb{R}^S$, then V=V', i.e., V(s)=V'(s) for all $s\in S$.
- b) Prove that $(\mathcal{F}^*)^k V_0$ converges to V^* as $k \to \infty$ for any $V_0 \in \mathbb{R}^{|S|}$. Consider convergence in max-norm. The max-norm of a vector $u \in \mathbb{R}^d$ is defined as $||u||_{\infty} = \max_{i \in \{1,...,d\}} |u_i|$.
- c) Given the optimal value function V^* write down the expression that recovers the optimal policy π^* as a function of V^* and the parameters of M.

Actually, such a procedure works for any value function $V \in \mathbb{R}^S$. This procedure is called policy extraction.