

Robust Heuristics: Packet job size estimation with provable guarantees against DoS attacks

Erica Chiang (eschiang@andrew.cmu.edu), Nirav Atre, Hugo Sadok, Weina Wang, Justine Sherry

Background

Algorithmic complexity attacks: class of DoS attack that targets a system's worst-case behavior to induce significant harm with little resource investment

Packet scheduling policies affect which packets are dropped in overload (implications for network performance, security, robustness to attacks)

Weighted Shortest Job First (WSJF)

- Serves packets in increasing job size $\underline{c(p)}$ to packet size $\underline{s(p)}$ ratio
- Leads to **powerful bounds on displaced traffic** relative to resource investment [1]

Displacement Factor (DF) = $\frac{\text{Innocent traffic displaced (Gbps)}}{\text{Attack bandwidth used (Gbps)}} \leq 1$ (# of innocent bits dropped per bit of attack data transmitted)

 Relies on job size heuristics – often not perfect in practice

Can we **maintain theoretical guarantees** in the presence of imperfect heuristics?

[1] Atre et al. 2022. SurgeProtector. (SIGCOMM '22).

Methods

- Design heuristics $\tilde{c}(p)$ that map packets of certain job size to same estimate
 - Assumptions: static time, adversary knows innocent packet distribution
 - Analysis: consider optimal adversarial attack, analyze heuristic for DF bounds, generalize to robust heuristic properties
- Analyze DF bounds in system preempts jobs when they exceed estimated runtime

Results

1. Strictly Increasing Heuristics Maintain Perfect Scheduling

It is possible to maintain protection guarantees with heuristics that estimate ratios monotonically increasing with true ratios

Perfect scheduling \Rightarrow DF \leq 1

2. Step Functions Preserve a Constant Bound

We can **preserve weaker guarantees** with heuristics that classify packets into job size categories

$$\tilde{c}(p) = a \cdot k^{\lfloor \log_k c(p) \rfloor}$$

Adversarial packet cannot displace innocent packets with ratio more than a factor of k smaller \Rightarrow DF $\leq k$

3. Preemption Cannot Maintain Bounds (Negative Result)

Preempting incorrectly estimated jobs introduces new vulnerabilities

Weaponize innocent traffic ⇒ unbounded DF

Discussion

Novel theoretical findings on provable protection against DoS attacks:

Theorem 1 (**DF of Monotonic Heuristic**). Under WSJF, a heuristic \tilde{c} is perfect if and only if $\frac{\tilde{c}(p)}{s(p)}$ is strictly monotonically increasing relative to $\frac{c(p)}{s(p)}$; such heuristics result in the DF being upper-bounded by 1.

Theorem 2 (**DF of Step Function Heuristic**). A heuristic of the form $\tilde{c}(p) = a \cdot k^{\lfloor \log_k c(p) \rfloor}$, where a is some arbitrary constant, results in the DF being upper-bounded by k.

Theorem 3 (**DF of Preemptive Model**). Under WSJF with preemption but without heuristics, there exist regimes of system parameters for which the DF is lower bounded by $\frac{\rho}{1-\rho}$, where $\rho \leq 1$ is the load on the system due to innocent traffic.

Next Steps

- Design data structures and corresponding heuristics that possess these properties, examine performance in practice
- Examine preemption performance when paired with stronger heuristics

Conclusion

- Certain heuristic properties provably maintain generalizable robustness against DoS attacks in WSJF systems
- Other methods of protection (i.e. preemption) can introduce new system weaknesses

Scan for abstract and proofs

