
Standards In Practice

Andrew Eisenberg
Sybase, Burlington, MA 01803
andrew.eisenberg@sybase.com

Jim Melton
Sybase, Sandy, UT 84093
jim.melton@sybase.com

Introductions
Longtime readers of the SIGMOD record will know
that this column was most recently written by Len
Gallagher of the USA’s National Institute of
Standards and Technology (NIST). The nature of
Len’s job at NIST changed some months ago and his
considerable talents are being applied in other areas
than de jure standardization activities. His moving on
has left rather large shoes to fill — which is part of
the reason that you see two of us on the masthead.

Jim Melton has participated in database
standardization activities as his primary job for rather
more than a decade. In that time, he has represented
both Digital Equipment Corporation and Sybase, Inc.
to ANSI Technical Committee X3H2 (now known as
NCITS H2), represented the USA to the
corresponding ISO committee, and has been the
Editor for SQL-92, CLI-95, PSM-96, and all parts of
the emerging next generation of the SQL standard,
SQL3. You may have seen Jim’s regular column,
“SQL Update” in Database Programming & Design
or one of his books: Understanding the New SQL: A
Complete Guide and Understanding SQL’s Stored
Procedures: A Complete Guide to SQL/PSM.

Andrew Eisenberg has been active in
database standardization for even longer. In addition
to representing Digital and Sybase on ANSI X3H2,
Andrew has also attended on behalf of CCA and
Oracle. Andrew participates in several other
standards organizations, including the Object
Management Group and the Transaction Processing
Performance Council. Andrew’s writings have
appeared in these pages before when, in December,
1996, he wrote “New Standard for Stored Procedures
in SQL” [1] while Len Gallagher was the owner of
this column.

We are shocked to realize that, together, we
represent well over a quarter-century of
standardization representation and activity. While
this realization startles us, it allows us to offer you a
long-term perspective about standardization and how
it relates to the database industry.

Our goal is to use this space to keep you
informed about the status of standardization for
various database–related or –influenced standards —
de facto as well as de jure — while adding value

through analysis of the processes used to develop
various standards in and surrounding our industry.
We’ll undoubtedly write many of the columns
ourselves, but we will also call upon the talents of
others in the database standards arena to share their
talents and views with you.

In this column, we’re going to examine the
subject of information technology standards in a
broader sense, look at some recent notable failures
and successes, and attempt to predict how this is
likely to shake out in the next few years. We’ll also
survey a number of relevant standards bodies and the
standards they’re building to see not only their status
but how they’re changing their approach to
standardization.

What Is A Standard?
Most of us use the word “standard” fairly often and
in varying ways. So that you’ll have a better idea of
what our column is going to discuss over the months
ahead, we’re going to give you our take on what the
word means in today’s information technology (IT)
environment. In other words: what is a standard,
anyway?

First of all, there are “de jure standards”.
These are standards that are published by recognized
formal standards organizations. The most prominent
such organization in the United States is the
American National Standards Institute, better known
as ANSI. While ANSI cooperates with other
organizations that develop standards in the USA, it
has the official stamp as the country’s principle
developer of standards, including information
technology standards. In fact, ANSI does not actually
develop standards itself; instead it accredits other
bodies to develop standards while operating under
ANSI’s auspices and rules.

ANSI has published information technology
standards published by several different accredited
SDOs (Standards Developing Organizations),
including the IEEE and a group called NISO
(National Information Standards Organization).
However, the majority of IT-related standards
published by ANSI are developed by a group
formerly known as X3 (which doesn’t stand for
anything). Now known as NCITS — National
Committee for Information Technology

Standardization — this group charters Technical
Committees to develop specific standards arising
from projects assigned to them. For example,
Technical Committee (TC) H2 — formerly known as
X3H2 — has a series of projects in the area of
database technology, including the SQL standard and
related standards like RDA (Remote Database
Access) and SQL/MM (SQL Multimedia and
Application Packages).

Internationally, the principle standards-
setting body is the International Organization for
Standardization, or ISO. Like ANSI, ISO cooperates
with other bodies as well. One primary such body is
IEC, the International Electrotechnical Commission.
A few years ago, ISO recognized that it and IEC were
each developing standards in the IT area, so a
combined effort was established in the form of a Joint
Technical Committee, JTC1.

JTC1 manages the development of IT
standards under ISO’s rules. It creates subcommittees
(SCs) for specific areas of IT standardization; until
about a year ago, SC21 was responsible for standards
related to the upper layers (including the applications
layer) of Open Systems Interconnection, or OSI.
However, OSI was widely viewed as a market
failure, so SC21 was dissolved by JTC1 and its more
mainstream projects, including SQL, were assigned
to other SCs, some new and some already in
existence. SQL was assigned to a new SC32, named
Data Management and Interchange, along with RDA,
SQL/MM, and several other projects.

Not the Only Game In Town
However, OSI’s marketplace failure provides clear
demonstration that standards developed by a de jure
standards organization — even technically superior
standards — are not necessarily meaningful to the IT
industry.

Instead, industry tends to select standards
that are genuinely useful to business. “Useful” has
many components, but we believe the principle ones
(roughly in order of importance) to be:
• Relevant — only those specifications solving

problems that need to be solved by some market
segment are likely to be adopted.

• Timely — meaning that the specification is
available when business needs it and neither
significantly earlier nor too late.

• Good enough — a specification doesn’t have to
be perfect or even necessarily complete in order
to be used by industry.

The standards landscape is littered with
standards that solve problems that nobody realized
were problems, that arrived before the problem was
recognized, or that were completed long after

industry had selected another solution (often in
pursuit of perfection).

Happily, neither ISO nor ANSI (and its
analogs in other countries, like BSI in Great Britain,
AFNOR in France, and JSA in Japan) have a
monopoly on creating standards. Real standards come
from a variety of sources — de facto standards are
those actually in use by the marketplace, whether or
not they are sanctioned by some formal body.

The term “de facto standard” is often
reserved for specifications published by some
consortium (a group of organizations formally
working together towards a common goal). However,
the phrase more accurately means “in reality”, so we
prefer to use “consortium standard” for those de facto
standard published by a consortium.

Examples of consortium standards are very
easy to find today: the Object Management Group
(OMG) has published a number of specifications that
have been adopted by large segments of the IT
business; a collection of specifications for distributed
transaction management published by X/Open (now
part of The Open Group) are widely implemented;
and the Unicode Consortium’s Unicode character set
has been generally accepted as the best character set
for internationalization purposes.

But what about other specifications that are
widely used or implemented, even though they may
come from a single corporation? Microsoft’s
Windows 95 product is often said to be a “standard
operating system”, for example. We mildly disagree
with calling Windows 95 a “standard”, since we
reserve that word for specifications instead of
products, but it’s not unreasonable for the term to be
applied in spite of our reservations. After all, any
product that’s used so widely suggests that a wide
variety of users have standardized on its use.

The point is this: a real standard is a
specification (or perhaps a product) that is widely
accepted at least by some identifiable market
segment. De jure standards aren’t necessarily de
facto standards, and the converse is definitely true as
well.

Standardization’s Changing
Landscape
Formal standards organizations like ISO and ANSI
have long been criticized for operating at what seems
like a glacial pace. The very nature of their processes
appears to inhibit rapid adoption of anything.

In fact, these organizations have adopted
rules that endeavor to guarantee “due process” — to
ensure that every interested party has the opportunity
to be heard and even to participate if they wish. The
theory is that providing this level of access results,

3

not only in fewer disgruntled losers and fewer
lawsuits, but also in standards of higher quality —
more complete, more accurate, and more reflective of
broad industry requirements instead of special
interests only.

In other words, the processes are designed to
be slow and tedious, but thorough.

Unfortunately, the entire IT industry — not
to mention its clients’ businesses — seems to run on
“web time” these days. Slow-moving processes are
often unable to provide the specifications needed by
businesses in the timeframes they need them. The
market needs specifications that are “good enough”
much more quickly…more than it needs excellent
standards “eventually”. This means that ANSI and
ISO cannot be depended on to deliver standards that
take years to develop, cautiously resolving every
objection from every dissentor, carefully dotting
every “i” and crossing every “t”.

But what are the alternatives? Common
wisdom says that consortia can move much faster and
deliver specifications that are good enough and do so
much faster. However, our experience is that
consortia only appear to move faster, because they
often start their work with a nearly-complete
specification provided by one or more members —
and the original developers of the specification may
have spent several years working on it privately. In
other words, the result often takes about as long as
ANSI or ISO would have taken, but the work is done
in private by special interests without the
participation of others (which would result in a need
for unpleasant consensus-building).

Nonetheless, this process is often very
useful for a reason that may be surprising. While
individual companies (or, indeed, individuals)
develop specifications in private, sometimes for
years, the consortium process tends to progress only
those ideas that have the backing of some market
segment, frequently vendors of related products, but
often part of the user community. In other words, the
consortia are formed to progress useful ideas, not
those without market support.

While the de jure groups are supposed to
have process steps to rule out those proposals without
adequate industry support, the need to be inclusive
frequently results in approval of projects with support
only from an isolated group having the political
know-how to manipulate the rules. Of course, the
same can happen with consortia, but the costs of
forming, joining, and running a consortium are
significantly higher than joining a standards
committee, so companies are likely to be more
selective in what they support.

The same can be said of single-company
“standards”, like Java (or Windows). Such

specifications are not born full-grown, but are
developed over sometimes lengthy periods. The
public doesn’t see their development period, but only
becomes aware of the existence of the “standard”
when it has been sufficiently completed and
publicized. Not that this is bad: again, the good ideas
are usually the ones that see the light of day and the
bad ones wither away — although we’re all aware of
good ideas that withered because of a lack of
marketing prowess…still, those aren’t standards
because they’re not widely enough in use.

A word of caution, however: Standards
developed by special interest groups — whether
consortia or individual organizations — are often not
very “open”, meaning that they may satisfy primarily
the needs of their creator instead of the industry as a
whole. You may be aware that ISO approved
JavaSoft as a submitter of “publicly-available
specifications” (PAS) related to Java — more on this
below. This was a major coup for Sun and JavaSoft
because it was the first time that an individual
company was so approved (previously, only consortia
had gotten that privilege). In return, ISO member
countries wanted an agreement that JavaSoft would
agree to allow ISO to take responsibility for
maintenance (read “enhancement”) of any standard
resulting from one of their submissions. This was
supposed to ensure that future changes to Java would
be determined in an open process rather than behind
closed doors. Unfortunately, we have recently
learned that Sun made some significant
enhancements — related to two-dimensional class
libraries — in the Java Development Kit at the
request of a major customer, but without any public
commentary process…much less an ISO process.
While this might seem like a minor issue, it certainly
reflects the proprietary nature of such privately-
developed “standards” and the dangers of thinking of
them as “open standards”. This might not adversely
affect you at all — you might be quite happy with the
results. Still, what about the next set of
changes…will they help or hurt your application
development efforts?

Bottom line: caveat emptor. You gets what
you pays for. (Well, you certainly don’t get what you
don’t pay for!) Always examine the process by which
a standard comes into existence and is maintained,
not just the technical content.

Now, a quick word on publicly-available
specifications and fast-track processing: Standards
groups like ISO — de jure organizations — have
recognized that they aren’t the only viable source of
standards. As a result, they have instituted processes
that allow a published specification that is widely
available and accepted (which they call a PAS, or
publicly available specification) to be turned into a de

jure standard using a process that involves a single
review-and-vote cycle. This process is being used to
turn ANSI and other national standards into ISO
standards, X/Open specifications into de jure
standards, and now the Java specification into an ISO
standard.

Status of Relevant Standards
and Standards Groups
Now we’ll segue into something of more immediate
interest: a discussion of several standards
organizations (de jure and consortia) whose work is
relevant to the IT industry today. Perhaps we will
devote an entire column to some of them in the
future.

“The nice thing about standards is that
there are so many of them to choose from.”
-- sometimes attributed to Grace Hopper and
sometimes to Andrew S. Tanenbaum

NCITS H2 and ISO/IEC
JTC1/SC32/WG3
NCITS H2 is the US Technical Committee on
Database. SC32 is the Data Management and
Interchange Subcommittee of JTC1. WG3 is the
Database Languages Working Group of JTC1/SC32.
Together, these committees have produced several
SQL Standards over the years. SQL-86 and SQL-89
have been superceded by SQL-92. These standards
define the SQL data model, DDL and DML
statements, embedding in host programming
languages, and dynamic execution of statements.

SQL/92 CLI
In 1995 an addendum for a Call-level Interface, SQL-
92/CLI (sometimes called CLI-95), was adopted.
CLI-95 is a subset of the popular (de facto standard)
ODBC interface from Microsoft and others; it
functions as a callable interface to an SQL database
system, providing a highly dynamic capability by
contrast with the relatively static facility provided by
embedded SQL. CLI (and ODBC, of course) is
primarily used by ad hoc applications, like decision
support applications, whereas embedded SQL is more
likely to be used by “glass house” applications that
are considerably less dynamic in their function.

SQL-92/PSM
In 1996 an addendum for Stored Procedures, SQL-
92/PSM (Persistent Stored Modules, sometimes
called PSM-96), was adopted. SQL-92/PSM added
the following types of features:

• Multi-statement Procedures: groups of SQL
statements can be executed together; flow-of-
control statements, local variables, and condition
handlers are provided

• Stored routines and modules: procedures,
functions, and modules can be stored in an SQL-
Server

• External routines: functions and procedures
written in host programming languages can be
invoked from SQL statement

SQL-92/PSM was discussed in this column
in December 1996 [1].

SQL3
The two committees are currently working on SQL3,
which will replace SQL-92 when it is adopted. SQL3
began its final CD ballot in October 1997. An editing
meeting took place in March 1998. Additional editing
meetings are scheduled for June 1998 and November
1998. If these meetings are successful, then SQL3
could be adopted in early 1999.

SQL3 extends the data types of SQL-92
significantly. It adds some predefined data types, like
BOOLEAN, CHARACTER LARGE OBJECT, and
ROW. It adds the collection type of ARRAY.

The single largest addition to SQL3 is user-
defined data types (UDT’s). Users will be able to
define their own data types, each with a concrete
representation, methods, and ordering properties.
These UDT’s can be used anywhere that a predefined
data type can be used (as the data type of a column,
for example).

A UDT can also be used in a new way. It
can be associated with a base table, so that each
attribute of the UDT maps to a column of the base
table. A new data type, REF, can be used to refer to
rows in such a table. Inheritance is supported for both
base tables and UDT’s. It remains to be seen whether
it is single inheritance or multiple inheritance that is
finally adopted.

Some of the other features that are provided
by SQL3 are:
• Recursive Query – creates a result table from the

traversal of rows that form a directed graph
• Similar Predicate – an extension of the LIKE

predicate that allows regular expressions
• Roles – authorization may be granted to a role,

and users may then take on different roles at
different times

• Triggers – statements may be defined to execute
each time insert, update, or delete statements are
executed on a particular table. The statements
may execute once for the statement, or
individually for each row that is affected.

5

• Holdable Cursors – cursors may be defined to
stay open after a transaction commit

SQL3 will have a set of features that are
required for conformance to the standard; this is
being termed Core SQL3. Additional packages of
features will also be defined that require features in
addition to those in Core SQL3.

It is likely that we will devote a column to
SQL3 when it nears the end of its adoption process
and has become more stable.

Object Data Management Group
(ODMG)
ODMG is a non-profit consortium that was formed in
1991 to “develop and promote standards for object
storage”.

ODMG’s latest publication is “Object
Database Standard: ODMG 2.0” [2]. This
specification contains an Object Model, an Object
Definition Language (ODL), an Object Query
Language (OQL), and language bindings to Java,
C++, and Smalltalk. The Object Model is a superset
of the OMG object model, adding relationships,
extents, collection classes and concurrency control.
The language bindings allow a programmer to do
both application and database programming in the
same environment.

ODMG 2.0 has extended previous versions
of the standard with:
• a Java language binding
• a standard external form for both metadata and

data

Transaction Performance Processing
Council (TPC)
TPC is a non-profit corporation formed to “define
transaction processing and database benchmarks and
to disseminate objective, verifiable TPC performance
data to the industry”. TPC has published a number of
benchmarks over time. Vendors run the benchmarks,
certified auditors review the tests and results, and the
results are submitted to TPC, after which they can
then be published. There is a Technical Advisory
Board (TAB) that reviews benchmark compliance
challenges.

TPC-C
TPC-C is the current OLTP benchmark. It contains a
mixture of read-only and update transactions to
simulate a complex OLTP application environment.
The metrics for TPC-C are transactions-per-minute-C
(tpmC) and price-per-tpm-C ($/tpmC).

The current version of TPC-C is 3.3.2. V4.0,
currently under development, might have the
following changes:
• Increased cost for some of the transaction types
• Enforcement of referential integrity constraints

TPC-D
TPC-D is a benchmark for a complex decision
support environment. The queries in the benchmark
involve multi-table joins, sorting, and aggregation.
TPC-D benchmarks may be run with one of a
specified set of database sizes that range from 1GB to
10,000GB.

The current TPC-D benchmark is V1.3.1. A
query stream contains 17 queries. The benchmark
contains two metrics. The Power metric
(QppD@size) is based on a single-stream Power test .
The Throughput metric (QthD@size) may be based
on an actual multi-stream run, or it may be calculated
from the single-stream results.

V2.0 may be approved in the beginning of
1999. Some of the changes being considered for V2.0
are:
• 6 new queries (including left outer join, use of

the SUBSTRING function)
• A required multi-stream throughput test, with a

minimum number of streams for each database
size

TPC-W
TPC-W is a benchmark for a retail eCommerce
environment on the web. It is currently under
development, with possible approval in early 1999.

The benchmark models a storefront on the
web. The benchmark may be run with one of a set of
database sizes that range from 1K items to 1M items.
The benchmark measures interactions seen by a
browser, allowing for some user-interrupted transfers.
The primary metrics will be Web Interactions Per
Second (WIPS@size) and price-per-WIPS
($/WIPS@size).

SQLJ
SQLJ is an informal group of companies that has
been investigating the ways that SQL and Java can be
used together. This effort has spawned three
documents that are about to be submitted to formal
standards bodies for consideration.

SQLJ Part 0 - SQL Embedded in Java
SQL-92 defines the embedding of SQL statements in
programming languages such as C or COBOL. This
part of SQLJ defines the embedding of static SQL
statements in a Java program. The expression of a

user’s queries in SQLJ will usually be more compact
and readable than their expression in JDBC.

The SQLJ statements are introduced in Java
programs by “#sql”, which is not a valid token in the
Java language. Variables and expressions from the
Java language can be used to provide values to SQL
and to retrieve values from SQL. The variables and
expressions are prefixed with “:” to distinguish them
from SQL identifiers. The JDBC mapping of Java
data types to SQL data types has been used by SQLJ.

A SQLJ program may then be passed to a
SQLJ translator which can generate a pure Java
program that might contain JDBC calls, or it might
contain other Java statements that communicate with
a SQL database.

The SQLJ translator is able to perform some
validation of the SQL statements. The translator may
be given the actual schema that will be used at
runtime or an “exemplar” schema (one that is the
same as the schema that will be used at runtime), in
which case additional validation of the SQL
statements can be done.

SQLJ Part 0 has just been submitted to
NCITS H2 [3] for adoption as a new part of SQL,
SQL/OLB (Object Language Bindings).

SQLJ Part 1 – Java Stored Procedures
SQLJ Part 1 [4] allows SQL users to invoke Java
static methods. It defines the sqlj.install_jar
procedure that allows a Jar file containing Java
programs to be made known to SQL. SQL procedures
and functions can then be defined that use the Java
static methods contained in these programs as their
bodies (this process may be automated by
deployment descriptors in the Jar file). As in part 0,
the JDBC mapping of Java data types and SQL data
types has been used.

An SQL user can invoke these procedures
and functions without the knowledge of whether the
body contains SQL statements or a Java method.

SQLJ Part 2 – Java Data Types
SQLJ Part 2 [5] allows SQL3 User-defined Data
Types (UDT’s) to be defined that use Java classes for
their definition. As we stated earlier, SQL3 UTD’s
may be used in variable, parameter, or column
definitions.

As with Part 1, the sqlj.install_jar procedure
makes the contents of a Jar file known to SQL. An
SQL3 UDT may then be defined, where the UDT is
mapped to a class, and the UDT attributes and
methods are mapped to the class attributes and
methods. The Java class must implement
java.io.Serializable.

When a value is stored in such a UDT
column the serialized form of the Java instance is
physically stored. When the value is later used in a
method invocation the stored value is deserialized
and the method is then invoked.

Parts 1 and 2 of SQLJ will shortly be
considered by NCITS, perhaps processed according
to their Fast-Track rules.

References
[1] New Standard for Stored Procedures in SQL,

Andrew Eisenberg, SIGMOD Record, Dec.
1996.

[2] Object Database Standard: ODMG 2.0, Rick
Cattell and Douglas Barry, Morgan Kaufmann
Publishers, Inc. 1997.

[3] SQLJ: Embedded SQL for JAVA Part 0:
Translator Specification, Dan Coyle, H2-98-227,
May 15, 1998.

[4] SQLJ Part 1: Java Stored Procedures, Working
Draft, Phil Shaw, June 10, 1998.

[5] SQLJ Part 2: Java Data Types, Working Draft,
Phil Shaw, June 10, 1998.

Web References
American National Standards Institute (ANSI)

http://www.ansi.org

National Committee for Information Technology
Standards (NCITS)

http://www.ncits.org

JTC 1 Information technology
http://www.iso.ch/meme/JTC1.html

Object Data Management Group
http://www.odmg.org/

Transaction Processing Performance Council
http://www.tpc.org/

