
 173

The Dangers of Replication and a Solution
Jim Gray (Gray@Microsoft.com)

Pat Helland (PHelland@Microsoft.com)
Patrick O’Neil (POneil@cs.UMB.edu)
Dennis Shasha (Shasha@cs.NYU.edu)

Abstract: Update anywhere-anytime-anyway transactional
replication has unstable behavior as the workload scales up: a
ten-fold increase in nodes and traffic gives a thousand fold
increase in deadlocks or reconciliations. Master copy replica-
tion (primary copy) schemes reduce this problem. A simple
analytic model demonstrates these results. A new two-tier
replication algorithm is proposed that allows mobile
(disconnected) applications to propose tentative update trans-
actions that are later applied to a master copy. Commutative
update transactions avoid the instability of other replication
schemes.

1. Introduction

Data is replicated at multiple network nodes for performance
and availability. Eager replication keeps all replicas exactly
synchronized at all nodes by updating all the replicas as part of
one atomic transaction. Eager replication gives serializable
execution – there are no concurrency anomalies. But, eager
replication reduces update performance and increases transac-
tion response times because extra updates and messages are
added to the transaction.

Eager replication is not an option for mobile applications
where most nodes are normally disconnected. Mobile appli-
cations require lazy replication algorithms that asynchronously
propagate replica updates to other nodes after the updating
transaction commits. Some continuously connected systems
use lazy replication to improve response time.

Lazy replication also has shortcomings, the most serious being
stale data versions. When two transactions read and write data
concurrently, one transaction’s updates should be serialized
after the other’s. This avoids concurrency anomalies. Eager
replication typically uses a locking scheme to detect and regu-
late concurrent execution. Lazy replication schemes typically
use a multi-version concurrency control scheme to detect non-
serializable behavior [Bernstein, Hadzilacos, Goodman],
[Berenson, et. al.]. Most multi-version isolation schemes pro-
vide the transaction with the most recent committed value.
Lazy replication may allow a transaction to see a very old
committed value. Committed updates to a local value may be
“in transit” to this node if the update strategy is “lazy”.

Permission to make digital/hard copy of part or all of this material is
granted provided that copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication, and its date appear, and notice is given that copying is by
permission of the Association of Computing Machinery. To copy oth-
erwise, to republish, requires a fee and/or specific permission.

Eager replication delays or aborts an uncommitted trans-
action if committing it would violate serialization. Lazy
replication has a more difficult task because some replica
updates have already been committed when the serializa-
tion problem is first detected. There is usually no auto-
matic way to reverse the committed replica updates, rather
a program or person must reconcile conflicting transac-
tions.

To make this tangible, consider a joint checking account
you share with your spouse. Suppose it has $1,000 in it.
This account is replicated in three places: your check-
book, your spouse’s checkbook, and the bank’s ledger.

Eager replication assures that all three books have the
same account balance. It prevents you and your spouse
from writing checks totaling more than $1,000. If you try
to overdraw your account, the transaction will fail.

Lazy replication allows both you and your spouse to write
checks totaling $1,000 for a total of $2,000 in withdraw-
als. When these checks arrived at the bank, or when you
communicated with your spouse, someone or something
reconciles the transactions that used the virtual $1,000.

It would be nice to automate this reconciliation. The bank
does that by rejecting updates that cause an overdraft.
This is a master replication scheme: the bank has the
master copy and only the bank’s updates really count.
Unfortunately, this works only for the bank. You, your
spouse, and your creditors are likely to spend considerable
time reconciling the “extra” thousand dollars worth of
transactions. In the meantime, your books will be incon-
sistent with the bank’s books. That makes it difficult for
you to perform further banking operations.

The database for a checking account is a single number,
and a log of updates to that number. It is the simplest
database. In reality, databases are more complex and the
serialization issues are more subtle.

The theme of this paper is that update-anywhere-anytime-
anyway replication is unstable.
1. If the number of checkbooks per account increases by

a factor of ten, the deadlock or reconciliation rates
rises by a factor of a thousand.

2. Disconnected operation and message delays mean
lazy replication has more frequent reconciliation.

 174

Simple replication works well at low loads and with a few
nodes. This creates a scaleup pitfall. A prototype system
demonstrates well. Only a few transactions deadlock or need
reconciliation when running on two connected nodes. But the
system behaves very differently when the application is scaled
up to a large number of nodes, or when nodes are disconnected
more often, or when message propagation delays are longer.
Such systems have higher transaction rates. Suddenly, the
deadlock and reconciliation rate is astronomically higher
(cubic growth is predicted by the model). The database at
each node diverges further and further from the others as rec-
onciliation fails. Each reconciliation failure implies differ-
ences among nodes. Soon, the system suffers system delusion
— the database is inconsistent and there is no obvious way to
repair it [Gray & Reuter, pp. 149-150].

This is a bleak picture, but probably accurate. Simple replica-
tion (transactional update-anywhere-anytime-anyway) cannot
be made to work with global serializability.

In outline, the paper gives a simple model of replication and a
closed-form average-case analysis for the probability of waits,
deadlocks, and reconciliations. For simplicity, the model ig-
nores many issues that would make the predicted behavior
even worse. In particular, it ignores the message propagation
delays needed to broadcast replica updates. It ignores “ true”
serialization, and assumes a weak multi-version form of com-
mitted-read serialization (no read locks) [Berenson]. The pa-
per then considers object master replication. Unrestricted lazy
master replication has many of the instability problems of ea-
ger and group replication.

A restricted form of replication avoids these problems: two-
tier replication has base nodes that are always connected, and
mobile nodes that are usually disconnected.
1. Mobile nodes propose tentative update transactions to

objects owned by other nodes. Each mobile node keeps two
object versions: a local version and a best known master
version.

2. Mobile nodes occasionally connect to base nodes and
propose tentative update transactions to a master node.
These proposed transactions are re-executed and may
succeed or be rejected. To improve the chances of suc-
cess, tentative transactions are designed to commute
with other transactions. After exchanges the mobile
node’ s database is synchronized with the base nodes.
Rejected tentative transactions are reconciled by the
mobile node owner who generated the transaction.

Our analysis shows that this scheme supports lazy replica-
tion and mobile computing but avoids system delusion:
tentative updates may be rejected but the base database
state remains consistent.

2. Replication Models

Figure 1 shows two ways to propagate updates to replicas:
1. Eager: Updates are applied to all replicas of an object

as part of the original transaction.
2. Lazy: One replica is updated by the originating trans-

action. Updates to other replicas propagate asynchro-
nously, typically as a separate transaction for each node.

Figure 2: Updates may be controlled in two ways. Either
all updates emanate from a master copy of the object, or
updates may emanate from any. Group ownership has
many more chances for conflicting updates.

O b jec t M aste r O b jec t G ro u p
 (n o m aster)

Figure 2 shows two ways to regulate replica updates:
1. Group: Any node with a copy of a data item can up-

date it. This is often called update anywhere.
2. Master: Each object has a master node. Only the

master can update the primary copy of the object. All
other replicas are read-only. Other nodes wanting to up-
date the object request the master do the update.

Table 1: A taxonomy of replication strategies contrast-
ing propagation strategy (eager or lazy) with the owner-
ship strategy (master or group).

Propagation
vs.

Ownership
Lazy Eager

Group N transactions
N object owners

one transaction
N object owners

Master N transactions
one object owner

one transaction
one object owner

Two Tier N+1 transactions, one object owner
tentative local updates, eager base updates

Table 2. Variables used in the model and analysis
DB_Size number of distinct objects in the data-

base

Figure 1: When replicated, a simple single-node transaction
may apply its updates remotely either as part of the same
transaction (eager) or as separate transactions (lazy). In either
case, if data is replicated at N nodes, the transaction does N
times as much work

A single-node
Transaction

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

A three-node
Eager Transaction

A three-node
Lazy Transaction

(actually 3 Transactions)
Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit

 175

Nodes number of nodes;
 each node replicates all objects

Transactions number of concurrent transactions at a
node. This is a derived value.

TPS number of transactions per second origi-
nating at this node.

Actions number of updates in a transaction
Action_Time time to perform an action

Time_Between_
Disconnects

mean time between network disconnect
of a node.

Disconnected_
time

mean time node is disconnected from
network

Message_Delay time between update of an object and
update of a replica (ignored)

Message_cpu processing and transmission time needed
to send a replication message or apply a
replica update (ignored)

The analysis below indicates that group and lazy replication
are more prone to serializability violations than master and
eager replication

The model assumes the database consists of a fixed set of ob-
jects. There are a fixed number of nodes, each storing a rep-
lica of all objects. Each node originates a fixed number of
transactions per second. Each transaction updates a fixed
number of objects. Access to objects is equi-probable (there
are no hotspots). Inserts and deletes are modeled as updates.
Reads are ignored. Replica update requests have a transmit
delay and also require processing by the sender and receiver.
These delays and extra processing are ignored; only the work
of sequentially updating the replicas at each node is modeled.
Some nodes are mobile and disconnected most of the time.
When first connected, a mobile node sends and receives de-
ferred replica updates. Table 2 lists the model parameters.

One can imagine many variations of this model. Applying
eager updates in parallel comes to mind. Each design alterna-
tive gives slightly different results. The design here roughly
characterizes the basic alternatives. We believe obvious varia-
tions will not substantially change the results here.

Each node generates TPS transactions per second. Each trans-
action involves a fixed number of actions. Each action requires
a fixed time to execute. So, a transaction’ s duration is Actions
x Action_Time. Given these two observations, the number of
concurrent transactions originating at a node is:

Transactions = TPS x Actions x Action_Time (1)

A more careful analysis would consider that fact that, as sys-
tem load and contention rises, the time to complete an action
increases. In a scaleable server system, this time-dilation is a
second-order effect and is ignored here.

In a system of N nodes, N times as many transactions will be
originating per second. Since each update transaction must
replicate its updates to the other (N-1) nodes, it is easy to see

that the transaction size for eager systems grows by a fac-
tor of N and the node update rate grows by N2. In lazy
systems, each user update transaction generates N-1 lazy
replica updates, so there are N times as many concurrent
transactions, and the node update rate is N2 higher. This
non-linear growth in node update rates leads to unstable
behavior as the system is scaled up.

3. Eager Replication

Eager replication updates all replicas when a transaction
updates any instance of the object. There are no seriali-
zation anomalies (inconsistencies) and no need for recon-
ciliation in eager systems. Locking detects potential
anomalies and converts them to waits or deadlocks.

With eager replication, reads at connected nodes give cur-
rent data. Reads at disconnected nodes may give stale
(out of date) data. Simple eager replication systems pro-
hibit updates if any node is disconnected. For high avail-
ability, eager replication systems allow updates among
members of the quorum or cluster [Gifford], [Garcia-
Molina]. When a node joins the quorum, the quorum
sends the new node all replica updates since the node was
disconnected. We assume here that a quorum or fault
tolerance scheme is used to improve update availability.
Even if all the nodes are connected all the time, updates
may fail due to deadlocks that prevent serialization errors.
The following simple analysis derives the wait and dead-

Partitioning
Two 1 TPS systems

Replication
Two 2 TPS systems

2 TPS server
1 TPS server

100 Users

1 TPS server
100 Users

O
 t

p
s

O
 t

p
s 100 Users

2 TPS server100 Users

1
tp

s

1
tp

s

1 TPS server
100 Users

Base case
a 1 TPS system

2 TPS server200 Users

Scaleup
to a 2 TPS centralized system

Figure 3: Systems can grow by (1) scaleup: buying a
bigger machine, (2) partitioning: dividing the work
between two machines, or (3) replication: placing the
data at two machines and having each machine keep
the data current. This simple idea is key to under-
standing the N2 growth. Notice that each of the repli-
cated servers at the lower right of the illustration is
performing 2 TPS and the aggregate rate is 4 TPS.
Doubling the users increased the total workload by a
factor of four. Read-only transactions need not gener-
ate any additional load on remote nodes.

 176

lock rates of an eager replication system. We start with wait
and deadlock rates for a single-node system.

In a single-node system the “ other” transactions have about
Tranascations Actions×

2
 resources locked (each is about half way

complete). Since objects are chosen uniformly from the data-
base, the chance that a request by one transaction will request
a resource locked by any other transaction is:
Transactions Actions

DB size

×
×2 _

. A transaction makes Actions such re-

quests, so the chance that it will wait sometime in its lifetime is
approximately [Gray et. al.], [Gray & Reuter pp. 428]:

PW
Transactions Actions

DB size

Transactions Actions

DB Size
Acctions≈ − −

×
×

≈
×

×
1 1

2 2

2

(
_

)
_

(2)

A deadlock consists of a cycle of transactions waiting for one
another. The probability a transaction forms a cycle of length
two is PW2 divided by the number of transactions. Cycles of
length j are proportional to PWj and so are even less likely if
PW << 1. Applying equation (1), the probability that the
transaction deadlocks is approximately:

PD
PW

Transactions

Transactions Actions

DB Size

TPS Action Time Actions

DB Size
≈ ×

×
= × ×

×

2 4

2

5

24 4_

_

_
(3)

Equation (3) gives the deadlock hazard for a transaction. The
deadlock rate for a transaction is the probability it deadlock’ s
in the next second. That is PD divided by the transaction life-
time (Actions x Action_Time).

Trans Deadlock rate
TPS Actions

DB Size
_ _

_
≈

×
×

4

24
(4)

Since the node runs Transactions concurrent transactions, the
deadlock rate for the whole node is higher. Multiplying equa-
tion (4) and equation (1), the node deadlock rate is:

Node Deadlock Rate
TPS Action Time Actions

DB Size
_ _

_

_
≈

× ×
×

2 5

24
 (5)

Suppose now that several such systems are replicated using
eager replication — the updates are done immediately as in
Figure 1. Each node will initiate its local load of TPS transac-
tions per second1. The transaction size, duration, and aggre-
gate transaction rate for eager systems is:

Transaction_Size = Actions x Nodes
Transaction_Duration = Actions x Nodes x Action_Time
Total_TPS = TPS x Nodes (6)

Each node is now doing its own work and also applying the
updates generated by other nodes. So each update transaction
actually performs many more actions (Nodes x Actions) and so
has a much longer lifetime — indeed it takes at least Nodes

1 The assumption that transaction arrival rate per node stays constant as
nodes are replicated assumes that nodes are lightly loaded. As the replication
workload increases, the nodes must grow processing and IO power to handle
the increased load. Growing power at an N2 rate is problematic.

times longer2. As a result the total number of transactions
in the system rises quadratically with the number of nodes:

Total_Transactions = TPS x Actions x Action_Time x Nodes2 (7)

This rise in active transactions is due to eager transactions
taking N-Times longer and due to lazy updates generating
N-times more transactions. The action rate also rises very
fast with N. Each node generates work for all other nodes.
The eager work rate, measured in actions per second is:
Action_Rate = Total_TPS x Transaction_Size
 = TPS x Actions x Nodes2 (8)

It is surprising that the action rate and the number of ac-
tive transactions is the same for eager and lazy systems.
Eager systems have fewer-longer transactions. Lazy sys-
tems have more and shorter transactions. So, although
equations (6) are different for lazy systems, equations (7)
and (8) apply to both eager and lazy systems.

Ignoring message handling, the probability a transaction
waits can be computed using the argument for equation
(2). The transaction makes Actions requests while the
other Total_Transactions have Actions/2 objects locked.
The result is approximately:

PW eager Total Transactions Actions
Actions

DB Size

TPS Action Time Actions Nodes

DB Size

_ _
_

_

_

≈ × ×
×

=
× × ×

×

2

3 2

2 (9)
This is the probability that one transaction waits. The
wait rate (waits per second) for the entire system is com-
puted as:
Total Eager Wait Rate

PW eager

Transaction Duration
Total Transactions

TPS Action Time Actions Nodes

DB Size

_ _ _

_

_
_

_ ()

_

≈ ×

=
× × ×

×

2 3

2

(10)

As with equation (4), The probability that a particular
transaction deadlocks is approximately:

PD eager
Total Transactions Actions

DB Size

TPS Action Time Actions Nodes

DB Size

_
_

_

_

_

≈
×

×

=
× × ×

×

4

2

5 2

2

4

4

(11)

The equation for a single-transaction deadlock implies the
total deadlock rate. Using the arguments for equations (4)
and (5), and using equations (7) and (11):

2 An alternate model has eager actions broadcast the update to all repli-
cas in one instant. The replicas are updated in parallel and the elapsed
time for each action is constant (independent of N). In our model, we
attempt to capture message handing costs by serializing the individual
updates. If one follows this model, then the processing at each node
rises quadraticly, but the number of concurrent transactions stays con-
stant with scaleup. This model avoids the polynomial explosion of
waits and deadlocks if the total TPS rate is held constant.

 177

Total Eager Deadlock Rate

Total Transactions
PD eager

Transaction Duration

TPS Action Time Actions Nodes

DB Size

_ _ _

_
_

_

_

_

≈ ×

≈ × × ×
×

2 5 3

24

(12)

If message delays were added to the model, then each transac-
tion would last much longer, would hold resources much
longer, and so would be more likely to collide with other
transactions. Equation (12) also ignores the “ second order”
effect of two transactions racing to update the same object at
the same time (it does not distinguish between Master and
Group replication). If DB_Size >> Node, such conflicts will
be rare.

This analysis points to some serious problems with eager rep-
lication. Deadlocks rise as the third power of the number of
nodes in the network, and the fifth power of the transaction
size. Going from one-node to ten nodes increases the deadlock
rate a thousand fold. A ten-fold increase in the transaction size
increases the deadlock rate by a factor of 100,000.

To ameliorate this, one might imagine that the database size
grows with the number of nodes (as in the checkbook example
earlier, or in the TPC-A, TPC-B, and TPC-C benchmarks).
More nodes, and more transactions mean more data. With a
scaled up database size, equation (12) becomes:

Eager Deadlock Rate Scaled DB

TPS Action Time Actions Nodes

DB Size

_ _ _ _

_

_
≈

× × ×
×

2 5

24

(13)

Now a ten-fold growth in the number of nodes creates only a
ten-fold growth in the deadlock rate. This is still an unstable
situation, but it is a big improvement over equation (12)

Having a master for each object helps eager replication avoid
deadlocks. Suppose each object has an owner node. Updates
go to this node first and are then applied to the replicas. If,
each transaction updated a single replica, the object-master
approach would eliminate all deadlocks.

In summary, eager replication has two major problems:
1. Mobile nodes cannot use an eager scheme when discon-

nected.
2. The probability of deadlocks, and consequently failed

transactions rises very quickly with transaction size and
with the number of nodes. A ten-fold increase in nodes
gives a thousand-fold increase in failed transactions
(deadlocks).

We see no solution to this problem. If replica updates were
done concurrently, the action time would not increase with N
then the growth rate would only be quadratic.

4. Lazy Group Replication

Lazy group replication allows any node to update any
local data. When the transaction commits, a transaction is
sent to every other node to apply the root transaction’ s
updates to the replicas at the destination node (see Figure
4). It is possible for two nodes to update the same object
and race each other to install their updates at other nodes.
The replication mechanism must detect this and reconcile
the two transactions so that their updates are not lost.

Timestamps are commonly used to detect and reconcile
lazy-group transactional updates. Each object carries the
timestamp of its most recent update. Each replica update
carries the new value and is tagged with the old object
timestamp. Each node detects incoming replica updates
that would overwrite earlier committed updates. The node
tests if the local replica’ s timestamp and the update’ s old
timestamp are equal. If so, the update is safe. The local
replica’ s timestamp advances to the new transaction’ s
timestamp and the object value is updated. If the current
timestamp of the local replica does not match the old
timestamp seen by the root transaction, then the update
may be “ dangerous” . In such cases, the node rejects the
incoming transaction and submits it for reconciliation.

Write A

Write B

Write C

Commit

Write A

Write B

Write C

Commit

Root
Transaction

Write A

Write B

Write C

Commit

OID, old time, new value
TRID, Timestamp

A Lazy Transaction

Lazy
Transactions

Figure 4: A lazy transaction has a root execution that
updates either master or local copies of data. Then subse-
quent transactions update replicas at remote nodes — one
lazy transaction per remote replica node. The lazy up-
dates carry timestamps of each original object. If the local
object timestamp does not match, the update may be dan-
gerous and some form of reconciliation is needed.

Transactions that would wait in an eager replication sys-
tem face reconciliation in a lazy-group replication system.
Waits are much more frequent than deadlocks because it
takes two waits to make a deadlock. Indeed, if waits are a
rare event, then deadlocks are very rare (rare2). Eager
replication waits cause delays while deadlocks create ap-
plication faults. With lazy replication, the much more
frequent waits are what determines the reconciliation fre-
quency. So, the system-wide lazy-group reconciliation
rate follows the transaction wait rate equation (Equation
10):

 178

Lazy Group Reconciliation Rate

TPS Action Time Actions Nodes

DB Size

_ _ _

_ ()

_
≈

× × ×
×

2 3

2

(14)

As with eager replication, if message propagation times were
added, the reconciliation rate would rise. Still, having the rec-
onciliation rate rise by a factor of a thousand when the system
scales up by a factor of ten is frightening.

The really bad case arises in mobile computing. Suppose that
the typical node is disconnected most of the time. The node
accepts and applies transactions for a day. Then, at night it
connects and downloads them to the rest of the network. At
that time it also accepts replica updates. It is as though the
message propagation time was 24 hours.

If any two transactions at any two different nodes update the
same data during the disconnection period, then they will need
reconciliation. What is the chance of two disconnected trans-
actions colliding during the Disconnected_Time?

If each node updates a small fraction of the database each day
then the number of distinct outbound pending object updates at
reconnect is approximately:
Outbound Updates Disconnect Time TPS Actions_ _≈ × × (15)

Each of these updates applies to all the replicas of an object.
The pending inbound updates for this node from the rest of the
network is approximately (Nodes-1) times larger than this.

()
Inbound Updates

Nodes Disconnect Time TPS Actions

_

_≈ − × × ×1
(16)

If the inbound and outbound sets overlap, then reconciliation is
needed. The chance of an object being in both sets is approxi-
mately:
P co llis io n

In b o u n d U p d a tes O u tb o u n d U p d a te s

D B S ize

N o d es D isco n n ect T im e T P S A ctio n s

D B S ize

()

_ _

_

(_)

_

≈ ×

≈ × × × 2

(17)

Equation (17) is the chance one node needs reconciliation dur-
ing the Disconnect_Time cycle. The rate for all nodes is:

()

L a zy G ro u p _ R eco n cilia tio n _ R a te

P co llis io n
N o d es

D isco n n ec t T im e

D isco n n ect T im e T P S A ctio n s N o d es

D B S ize

_

()
_

_

_

≈

×

≈
× × × 2

(18)

The quadratic nature of this equation suggests that a system
that performs well on a few nodes with simple transactions
may become unstable as the system scales up.

 5. Lazy Master Replication

Master replication assigns an owner to each object. The owner
stores the object’ s correct current value. Updates are first done

by the owner and then propagated to other replicas. Dif-
ferent objects may have different owners.

When a transaction wants to update an object, it sends an
RPC (remote procedure call) to the node owning the ob-
ject. To get serializability, a read action should send read-
lock RPCs to the masters of any objects it reads.

To simplify the analysis, we assume the node originating
the transaction broadcasts the replica updates to all the
slave replicas after the master transaction commits. The
originating node sends one slave transaction to each slave
node (as in Figure 1). Slave updates are timestamped to
assure that all the replicas converge to the same final state.
If the record timestamp is newer than a replica update
timestamp, the update is “ stale” and can be ignored. Al-
ternatively, each master node sends replica updates to
slaves in sequential commit order.

Lazy-Master replication is not appropriate for mobile ap-
plications. A node wanting to update an object must be
connected to the object owner and participate in an atomic
transaction with the owner.

As with eager systems, lazy-master systems have no rec-
onciliation failures; rather, conflicts are resolved by wait-
ing or deadlock. Ignoring message delays, the deadlock
rate for a lazy-master replication system is similar to a
single node system with much higher transaction rates.
Lazy master transactions operate on master copies of ob-
jects. But, because there are Nodes times more users,
there are Nodes times as many concurrent master transac-
tions and approximately Nodes2 times as many replica
update transactions. The replica update transactions do
not really matter, they are background housekeeping
transactions. They can abort and restart without affecting
the user. So the main issue is how frequently the master
transactions deadlock. Using the logic of equation (5), the
deadlock rate is approximated by:

Lazy Master Deadlock Rate
TPS Nodes Action Time Actions

DB Size
_ _ _

() _

_
≈

× × ×
×

2 5

24
(19)

This is better behavior than lazy-group replication. Lazy-
master replication sends fewer messages during the base
transaction and so completes more quickly. Nevertheless,
all of these replication schemes have troubling deadlock
or reconciliation rates as they grow to many nodes.

In summary, lazy-master replication requires contact with
object masters and so is not useable by mobile applica-
tions. Lazy-master replication is slightly less deadlock
prone than eager-group replication primarily because the
transactions have shorter duration.

6. Non-Transactional Replication
Schemes

The equations in the previous sections are facts of nature
— they help explain another fact of nature. They show

 179

why there are no high-update-traffic replicated databases with
globally serializable transactions.

Certainly, there are replicated databases: bibles, phone books,
check books, mail systems, name servers, and so on. But up-
dates to these databases are managed in interesting ways —
typically in a lazy-master way. Further, updates are not record-
value oriented; rather, updates are expressed as transactional
transformations such as “ Debit the account by $50” instead of
“change account from $200 to $150”.

One strategy is to abandon serializabilty for the convergence
property: if no new transactions arrive, and if all the nodes are
connected together, they will all converge to the same repli-
cated state after exchanging replica updates. The resulting
state contains the committed appends, and the most recent re-
placements, but updates may be lost.

Lotus Notes gives a good example of convergence [Kawell].
Notes is a lazy group replication design (update anywhere,
anytime, anyhow). Notes provides convergence rather than an
ACID transaction execution model. The database state may
not reflect any particular serial execution, but all the states will
be identical. As explained below, timestamp schemes have the
lost-update problem.

Lotus Notes achieves convergence by offering lazy-group rep-
lication at the transaction level. It provides two forms of up-
date transaction:
1. Append adds data to a Notes file. Every appended note

has a timestamp. Notes are stored in timestamp order. If all
nodes are in contact with all others, then they will all con-
verge on the same state.

2. Timestamped replace a value replaces a value with a
newer value. If the current value of the object already has a
timestamp greater than this update’ s timestamp, the incom-
ing update is discarded.

If convergence were the only goal, the timestamp method
would be sufficient. But, the timestamp scheme may lose the
effects of some transactions because it just applies the most
recent updates. Applying a timestamp scheme to the check-
book example, if there are two concurrent updates to a check-
book balance, the highest timestamp value wins and the other
update is discarded as a “ stale” value. Concurrency control
theory calls this the lost update problem. Timestamp schemes
are vulnerable to lost updates.

Convergence is desirable, but the converged state should re-
flect the effects of all committed transactions. In general this
is not possible unless global serialization techniques are used.

In certain cases transactions can be designed to commute, so
that the database ends up in the same state no matter what
transaction execution order is chosen. Timestamped Append is
a kind of commutative update but there are others (e.g., adding
and subtracting constants from an integer value). It would be
possible for Notes to support a third form of transaction:

3. Commutative updates that are incremental transfor-
mations of a value that can be applied in any order.

Lotus Notes, the Internet name service, mail systems, Mi-
crosoft Access, and many other applications use some of
these techniques to achieve convergence and avoid delu-
sion.

Microsoft Access offers convergence as follows. It has a
single design master node that controls all schema updates
to a replicated database. It offers update-anywhere for
record instances. Each node keeps a version vector with
each replicated record. These version vectors are ex-
changed on demand or periodically. The most recent up-
date wins each pairwise exchange. Rejected updates are
reported [Hammond].

The examples contrast with a simple update-anywhere-
anytime-anyhow lazy-group replication offered by some
systems. If the transaction profiles are not constrained,
lazy-group schemes suffer from unstable reconciliation
described in earlier sections. Such systems degenerate
into system delusion as they scale up.

Lazy group replication schemes are emerging with spe-
cialized reconciliation rules. Oracle 7 provides a choice
of twelve reconciliation rules to merge conflicting updates
[Oracle]. In addition, users can program their own recon-
ciliation rules. These rules give priority certain sites, or
time priority, or value priority, or they merge commutative
updates. The rules make some transactions commutative.
A similar, transaction-level approach is followed in the
two-tier scheme described next.

7. Two-Tier Replication

An ideal replication scheme would achieve four goals:
Availability and scaleability: Provide high availability

and scaleability through replication, while avoiding in-
stability.

Mobility: Allow mobile nodes to read and update the da-
tabase while disconnected from the network.

Serializability: Provide single-copy serializable transac-
tion execution.

Convergence: Provide convergence to avoid system delu-
sion.

The safest transactional replication schemes, (ones that
avoid system delusion) are the eager systems and lazy
master systems. They have no reconciliation problems
(they have no reconciliation). But these systems have
other problems. As shown earlier:
1. Mastered objects cannot accept updates if the master

node is not accessible. This makes it difficult to use
master replication for mobile applications.

2. Master systems are unstable under increasing load.
Deadlocks rise quickly as nodes are added.

 180

3. Only eager systems and lazy master (where reads go to the
master) give ACID serializability.

Circumventing these problems requires changing the way the
system is used. We believe a scaleable replication system
must function more like the check books, phone books, Lotus
Notes, Access, and other replication systems we see about us.

Lazy-group replication systems are prone to reconciliation
problems as they scale up. Manually reconciling conflicting
transactions is unworkable. One approach is to undo all the
work of any transaction that needs reconciliation — backing
out all the updates of the transaction. This makes transactions
atomic, consistent, and isolated, but not durable — or at least
not durable until the updates are propagated to each node. In
such a lazy group system, every transaction is tentative until all
its replica updates have been propagated. If some mobile rep-
lica node is disconnected for a very long time, all transactions
will be tentative until the missing node reconnects. So, an
undo-oriented lazy-group replication scheme is untenable for
mobile applications.

The solution seems to require a modified mastered replication
scheme. To avoid reconciliation, each object is mastered by a
node — much as the bank owns your checking account and
your mail server owns your mailbox. Mobile agents can make
tentative updates, then connect to the base nodes and immedi-
ately learn if the tentative update is acceptable.

The two-tier replication scheme begins by assuming there are
two kinds of nodes:
Mobile nodes are disconnected much of the time. They store a

replica of the database and may originate tentative trans-
actions. A mobile node may be the master of some data
items.

Base nodes are always connected. They store a replica of the
database. Most items are mastered at base nodes.

Replicated data items have two versions at mobile nodes:
Master Version: The most recent value received from the ob-

ject master. The version at the object master is the master
version, but disconnected or lazy replica nodes may have
older versions.

Tentative Version: The local object may be updated by tenta-
tive transactions. The most recent value due to local up-
dates is maintained as a tentative value.

Similarly, there are two kinds of transactions:
Base Transaction: Base transactions work only on master

data, and they produce new master data. They involve at
most one connected-mobile node and may involve several
base nodes.

Tentative Transaction: Tentative transactions work on local
tentative data. They produce new tentative versions.
They also produce a base transaction to be run at a later
time on the base nodes.

Tentative transactions must follow a scope rule: they may
involve objects mastered on base nodes and mastered at
the mobile node originating the transaction (call this the
transaction’ s scope). The idea is that the mobile node and
all the base nodes will be in contact when the tentative
transaction is processed as a “ real” base transaction — so
the real transaction will be able to read the master copy of
each item in the scope.

Local transactions that read and write only local data can
be designed in any way you like. They cannot read-or
write any tentative data because that would make them
tentative.

Figure 5: The two-tier-replication scheme. Base nodes
store replicas of the database. Each object is mastered at
some node. Mobile nodes store a replica of the database,
but are usually disconnected. Mobile nodes accumulate
tentative transactions that run against the tentative data-
base stored at the node. Tentative transactions are reproc-
essed as base transactions when the mobile node recon-
nects to the base. Tentative transactions may fail when
reprocessed.

Base Nodes

tentative transactions

base updates &
failed base transactions

Mobile

The base transaction generated by a tentative transaction
may fail or it may produce different results. The base
transaction has an acceptance criterion: a test the result-
ing outputs must pass for the slightly different base trans-
action results to be acceptable. To give some sample ac-
ceptance criteria:
• The bank balance must not go negative.
• The price quote can not exceed the tentative quote.
• The seats must be aisle seats.
If a tentative transaction fails, the originating node and
person who generated the transaction are informed it
failed and why it failed. Acceptance failure is equivalent
to the reconciliation mechanism of the lazy-group replica-
tion schemes. The differences are (1) the master database
is always converged — there is no system delusion, and
(2) the originating node need only contact a base node in
order to discover if a tentative transaction is acceptable.

To continue the checking account analogy, the bank’ s
version of the account is the master version. In writing
checks, you and your spouse are creating tentative trans-
actions which result in tentative versions of the account.
The bank runs a base transaction when it clears the check.

 181

If you contact your bank and it clears the check, then you
know the tentative transaction is a real transaction.

Consider the two-tier replication scheme’ s behavior during
connected operation. In this environment, a two-tier system
operates much like a lazy-master system with the additional
restriction that no transaction can update data mastered at
more than one mobile node. This restriction is not really
needed in the connected case.

Now consider the disconnected case. Imagine that a mobile
node disconnected a day ago. It has a copy of the base data as
of yesterday. It has generated tentative transactions on that
base data and on the local data mastered by the mobile node.
These transactions generated tentative data versions at the mo-
bile node. If the mobile node queries this data it sees the ten-
tative values. For example, if it updated documents, produced
contracts, and sent mail messages, those tentative updates are
all visible at the mobile node.

When a mobile node connects to a base node, the mobile node:
1. Discards its tentative object versions since they will soon

be refreshed from the masters,
2. Sends replica updates for any objects mastered at the mo-

bile node to the base node “hosting” the mobile node,
3. Sends all its tentative transactions (and all their input pa-

rameters) to the base node to be executed in the order in
which they committed on the mobile node,

4. Accepts replica updates from the base node (this is stan-
dard lazy-master replication), and

5. Accepts notice of the success or failure of each tentative
transaction.

The “ host” base node is the other tier of the two tiers. When
contacted by a mobile note, the host base node:
1. Sends delayed replica update transactions to the mobile

node.
2. Accepts delayed update transactions for mobile-mastered

objects from the mobile node.
3. Accepts the list of tentative transactions, their input mes-

sages, and their acceptance criteria. Reruns each tentative
transaction in the order it committed on the mobile node.
During this reprocessing, the base transaction reads and
writes object master copies using a lazy-master execution
model. The scope-rule assures that the base transaction
only accesses data mastered by the originating mobile
node and base nodes. So master copies of all data in the
transaction’ s scope are available to the base transaction.
If the base transaction fails its acceptance criteria, the base
transaction is aborted and a diagnostic message is returned
to the mobile node. If the acceptance criteria requires the
base and tentative transaction have identical outputs, then
subsequent transactions reading tentative results written
by T will fail too. On the other hand, weaker acceptance
criteria are possible.

4. After the base node commits a base transaction, it propa-
gates the lazy replica updates as transactions sent to all the
other replica nodes. This is standard lazy-master.

5. When all the tentative transactions have been reproc-
essed as base transactions, the mobile node’ s state is
converged with the base state.

The key properties of the two-tier replication scheme are:
1. Mobile nodes may make tentative database updates.
2. Base transactions execute with single-copy serializa-

bility so the master base system state is the result of a
serializable execution.

3. A transaction becomes durable when the base trans-
action completes.

4. Replicas at all connected nodes converge to the base
system state.

5. If all transactions commute, there are no reconcilia-
tions.

This comes close to meeting the four goals outlined at the
start of this section.

When executing a base transaction, the two-tier scheme is
a lazy-master scheme. So, the deadlock rate for base
transactions is given by equation (19). This is still an N2

deadlock rate. If a base transaction deadlocks, it is re-
submitted and reprocessed until it succeeds, much as the
replica update transactions are resubmitted in case of
deadlock.

The reconciliation rate for base transactions will be zero if
all the transactions commute. The reconciliation rate is
driven by the rate at which the base transactions fail their
acceptance criteria.

Processing the base transaction may produce results dif-
ferent from the tentative results. This is acceptable for
some applications. It is fine if the checking account bal-
ance is different when the transaction is reprocessed.
Other transactions from other nodes may have affected the
account while the mobile node was disconnected. But,
there are cases where the changes may not be acceptable.
If the price of an item has increased by a large amount, if
the item is out of stock, or if aisle seats are no longer
available, then the salesman’ s price or delivery quote must
be reconciled with the customer.

These acceptance criteria are application specific. The
replication system can do no more than detect that there is
a difference between the tentative and base transaction.
This is probably too pessimistic a test. So, the replication
system will simply run the tentative transaction. If the
tentative transaction completes successfully and passes the
acceptance test, then the replication system assumes all is
well and propagates the replica updates as usual.
Users are aware that all updates are tentative until the
transaction becomes a base transaction. If the base trans-
action fails, the user may have to revise and resubmit a
transaction. The programmer must design the transactions
to be commutative and to have acceptance criteria to de-

 182

tect whether the tentative transaction agrees with the base
transaction effects.

Updates & RejectsUpdates & Rejects

send Tentative Xacts Transactions
from OthersTentative

Transactions
at Mobile Node

Figure 6: Executing tentative and base transactions in two-tier
replication.

Thinking again of the checkbook example of an earlier section.
The check is in fact a tentative update being sent to the bank.
The bank either honors the check or rejects it. Analogous
mechanisms are found in forms flow systems ranging from tax
filing, applying for a job, or subscribing to a magazine. It is an
approach widely used in human commerce.

This approach is similar to, but more general than the Data
Cycle architecture [Herman] which has a single master node
for all objects.

The approach can be used to obtain pure serializability if the
base transaction only reads and writes master objects (current
versions).

8. Summary

Replicating data at many nodes and letting anyone update the
data is problematic. Security is one issue, performance is an-
other. When the standard transaction model is applied to a
replicated database, the size of each transaction rises by the
degree of replication. This, combined with higher transaction
rates means dramatically higher deadlock rates.

It might seem at first that a lazy replication scheme will solve
this problem. Unfortunately, lazy-group replication just con-
verts waits and deadlocks into reconciliations. Lazy-master
replication has slightly better behavior than eager-master repli-
cation. Both suffer from dramatically increased deadlock as
the replication degree rises. None of the master schemes allow
mobile computers to update the database while disconnected
from the system.

The solution appears to be to use semantic tricks (timestamps,
and commutative transactions), combined with a two-tier rep-
lication scheme. Two-tier replication supports mobile nodes
and combines the benefits of an eager-master-replication
scheme and a local update scheme.

9. Acknowledgments

Tanj (John G.) Bennett of Microsoft and Alex Thomasian
of IBM gave some very helpful advice on an earlier ver-
sion of this paper. The anonymous referees made several
helpful suggestions to improve the presentation. Dwight
Joe pointed out a mistake in the published version of
equation 19.

10. References

Bernstein, P.A., V. Hadzilacos, N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison Wesley,
Reading MA., 1987.

Berenson, H., Bernstein, P.A., Gray, J., Jim Melton, J., O’Neil,
E., O'Neil, P., “A Critique of ANSI SQL Isolation Levels,”
Proc. ACM SIGMOD 95, pp. 1-10, San Jose CA, June 1995.

Garcia Molina, H. “ Performance of Update Algorithms for Rep-
licated Data in a Distributed Database,” TR STAN-CS-79-
744, CS Dept., Stanford U., Stanford, CA., June 1979.

Garcia Molina, H., Barbara, D., “ How to Assign Votes in a Dis-
tributed System,” J. ACM, 32(4). Pp. 841-860, October,
1985.

Gifford, D. K., “ Weighted Voting for Replicated Data,” Proc.
ACM SIGOPS SOSP, pp: 150-159, Pacific Grove, CA, De-
cember 1979.

Gray, J., Reuter, A., Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, San Francisco, CA. 1993.

Gray, J., Homan, P, Korth, H., Obermarck, R., “ A Strawman
Analysis of the Probability of Deadlock,” IBM RJ 2131, IBM
Research, San Jose, CA., 1981.

Hammond, Brad, “Wingman, A Replication Service for Micr o-
soft Access and Visual Basic”, Microsoft White Paper,
bradha@microsoft.com

Herman, G., Gopal, G, Lee, K., Weinrib, A., “ The Datacycle
Architecture for Very High Throughput Database Systems,”
Proc. ACM SIGMOD, San Francisco, CA. May 1987.

Kawell, L.., Beckhardt, S., Halvorsen, T., Raymond Ozzie, R.,
Greif, I.,"Replicated Document Management in a Group
Communication System," Proc. Second Conference on Com-
puter Supported Cooperative Work, Sept. 1988.

Oracle, "Oracle7 Server Distributed Systems: Replicated Data,"
Oracle part number A21903.March 1994, Oracle, Redwood
Shores, CA. Or http://www.oracle.com/products/oracle7/
server/whitepapers/replication/html/index

