Automating Physical Database Design in a Parallel Database

Jun Rao
IBM Almaden Research Center

Jjunrao@almaden.ibm.com

Chun Zhang

University of Wisconsin at Madison

czhang@cs.wisc.edu

Guy Lohman
IBM Almaden Research Center

lohman®@almaden.ibm.com

Nimrod Megiddo
IBM Almaden Research Center

megiddo@almaden.ibm.com

Abstract

Physical database design 1s important for query performance
in a shared-nothing parallel database system, in which
data is horizontally partitioned among multiple independent
nodes. We seek to automate the process of data partitioning.
Given a workload of SQL statements, we seek to determine
automatically how to partition the base data across multiple
nodes to achieve overall optimal (or close to optimal)
performance for that workload. Previous attempts use
heuristic rules to make those decisions. These approaches
fail to consider all of the interdependent aspects of query
performance typically modeled by today’s sophisticated
query optimizers.

We present a comprehensive solution to the problem
that has been tightly integrated with the optimizer of a
commercial shared-nothing parallel database system. Our
approach uses the query optimizer itself both to recommend
candidate partitions for each table that will benefit each
query in the workload, and to evaluate various combinations
of these candidates. We compare a rank-based enumeration
method with a random-based one. Our experimental results
show that the former is more effective.

1 Introduction

Database systems increasingly rely upon parallelism to
achieve high performance and large capacity [DG92].
Most of the major database vendors — such as IBM,
Microsoft, NCR, Oracle, Sybase, etc. — have sup-
port for parallelism. Rather than relying upon a sin-
gle monolithic processor, parallel systems exploit fast
and inexpensive microprocessors to achieve high cost-
effectiveness and improved performance. The popular
shared-memory architecture of symmetric multiproces-
sors 1s relatively easy to parallelize, but cannot scale
to hundreds or thousands of nodes, due to contention

for the shared memory by those nodes. Shared-nothing
parallel systems, on the other hand, interconnect in-
dependent processors via high-speed networks. Each
processor stores a portion of the database locally on its
disk. These systems can scale up to hundreds or even
thousands of nodes, and are the architecture of choice
for today’s data warehouses that typically range from
tens of terabytes to over 100 terabytes of online storage.
High throughput and response times can be achieved
not only from inter-transaction parallelism, but also
from intra-transaction parallelism for complex queries.

Because data is partitioned among the nodes in a
shared-nothing system, and is relatively expensive to
transfer between nodes, selection of the best way to
partition the data becomes a critical physical database
design problem. A suboptimal partitioning of the
data can seriously degrade performance, particularly
of complex, multi-join “business intelligence” queries
common in today’s data warehouses. Selecting the
best way to store the data is complex, since each table
could be partitioned in many different ways to benefit
different queries, or even to benefit different join orders
within the same query. This puts a heavy burden
on database administrators, who have to make many
trade-offs when trying to decide how to partition the
data, based upon a wide variety of complex queries in
a workload whose requirements may conflict.

Previous work in the literature tried to choose parti-
tioning heuristically or to create a performance model
separate from the optimizer. Heuristic rules unfortu-
nately cannot take into consideration the many inter-
dependent aspects of query performance that modern
query optimizers do. We build a tool called partition
advisor to automate the process of partition selection
by exploiting the sophisticated cost model of the query
optimizer itself. We use the optimizer’s cost estimates
to both suggest possible partitionings and to compare
them in a quantitative way that considers the interac-
tions between multiple tables within a given workload.
Our approach therefore avoids redundancy — and pos-
sible inconsistency — between the partition advisor and
the query optimizer. Qur partition advisor has been

developed in IBM Universal Database for Unix, Win-
dows, and OS/2, Enterprise Extended Edition (referred
to as DB2 in the rest of the paper), and has been tested
comprehensively on both benchmark and real customer
data.

The rest of the paper is organized as follows: We
discuss related work in Section 2. Section 3 gives an
overview of our approach. We give some background
information on DB2 in Section 4. We then describe our
optimizer extension, cost estimation, and components
on the client side in Sections b, 6, 7, respectively. Our
experimental results are presented in Section 8. We
discuss usability issues in Section 9 and conclude in
Section 10.

2 Related Work

Physical database design in relational DBMSs has been
studied for decades. How to "horizontally partition”
rows of tables was among that early work. In a shared-
nothing environment, horizontal partitioning takes the
form of declustering (i.e., partitioning) tables across
many nodes to support a high degree of intra-query
parallelism for complex queries, effectively providing a
static form of load balancing [CNW83, SW85, CABKS88,
Gha90, Zil98, SMR00]. However, none of the previous
work used the query optimizer in a database server to
evaluate alternative solutions. Most of the approaches
tried to come up with some cost models of their own to
estimate the benefit of different partitions. Therefore,
the partitioning decision made by these authors might
not be consistent with — or as accurate as — the detailed
cost model used by the optimizer.

A substantial amount of research has been conducted
on dynamic load balancing in parallel shared-nothing
database systems (a lot of the references can be
found in [RM93]). The potential for dynamic load
balancing is limited for operations (such as scans) where
the execution location is statically determined by the
partitioning and the allocation of the database among
processing nodes. As a result, most dynamic load
balancing work focuses on operators such as joins, which
typically work on derived data. Our work complements
that in dynamic load balancing by recommending the
data partitioning for the stored data. All the strategies
used in dynamic load balancing can be applied to
achieve further query improvement.

Database design is one aspect of database manage-
ment, the automation of which has become increasingly
important as the cost of people grows, while the costs
of hardware and software decrease. Work in this area
started as early as 1988 [FST88], in which the authors
proposed to use the optimizer to evaluate the goodness
of index structures. The Comfort automatic tuning
project [WHMZ94] has investigated architectural prin-
ciples of self-tuning database and developed self-tuning

methods for specific performance tuning problems. Mi-
crosoft Research’s AutoAdmin project [CN98, ACNO0O]
has developed wizards that automatically select in-
dexes and materialized views for a given workload.
IBM [VZZ"00], Informix [Cor00b], and Oracle [Cor00c]
have similar projects of building such tools. However,
our work i1s the very first to consider the automatic
selection of table partitioning in parallel shared-nothing
database systems. There 1s a fundamental difference
between partition selection and index/materialized view
selection. Indexes and materialized views are auxiliary
structures that store redundant data, i.e., in addition
to the base table. A table can have as many indexes
(clustered index is an exception) as it needs. However,
a table can only be partitioned in exactly one specific
way. This means that previous algorithms for selecting
auxiliary structures cannot be applied directly to the
selection of optimal partitions.

3 Overview of Our Approach

Partitioning Advisor Database Server
get workload
workload
recommend partitions | RECOMMEND
o PARTITION
partitions
expand partitions Query Optimizer
workload
enumerate partitions | EVALUATE
PARTITION
cost
suggest partitions

Figure 1: Architecture of the Partition Advisor

Given a workload of SQL statements and their fre-
quency of occurrence, we want to determine automat-
ically the optimal (or close to optimal) way of parti-
tioning the data so that the overall workload cost is
minimized. We use the cost estimates of the optimizer
as our metrics. Figure 1 shows the architecture of the
partition advisor in DB2. A similar architecture has
been used for other kinds of advisors in DB2.

We first describe the changes we made at the
database server end. Given a query, an optimizer will
normally generate alternative plans based on various
physical properties (partition, indexes, etc) the under-
lying tables have. We refer to this query optimiza-
tion process as the regular mode. We augment DB2’s
optimizer with two additional modes: RECOMMEND
PARTITION and EVALUATE PARTITION. For the
sake of simplicity, we will refer to them as RECOM-
MEND and EVALUATE mode respectively in the rest

of the paper. In RECOMMEND mode, we rely on
the optimizer to recommend good candidate partitions
for each statement. Previous work [FST88] generates
candidate partitions outside the engine, and thus has to
make multiple calls to the optimizer for each candidate.
When evaluating a query in RECOMMEND mode, the
optimizer accumulates a list of partitions for each table
that are potentially beneficial to processing of that
query and generates plans corresponding to each of
these (virtual) partitions. Optimization then proceeds
normally to evaluate all of these alternative plans. Once
the optimizer finds a plan that it considers optimal for
the query, it extracts the partition of each base table
subplan and writes it to a CANDIDATE _PARTITION
table. In EVALUATE mode, the optimizer first
reads from the CANDIDATE_PARTITION table those
“marked” partitions and uses them to replace the real
partition for the corresponding table. After that, the
optimizer optimizes the query, assuming that the tables
are partitioned in the newly-specified way. When a
query is optimized in either RECOMMEND or EVAL-
UATE mode, the query plan is generated without being
executed.

On the client side, the partition advisor is built as an
application tool. After getting a workload, it invokes
the optimizer to evaluate all the statements in the
workload in RECOMMEND mode. The advisor then
collects all the candidate partitions (best for each indi-
vidual statement) from the CANDIDATE _PARTITION
table. Subsequently, it performs partition expansion
to generate additional candidate partitions that might
have been missed by each individual statement. Fi-
nally, an enumeration algorithm will combine candidate
partitions from different tables in certain ways and
evaluate the workload in EVALUATE mode for each
combination. In the end, the advisor will report to the
user the best partition that was chosen for each table
and the corresponding cost for the workload.

Our tool can be used to decide either database design
initially or whenever a major reconfiguration of the
database occurs. The applications of the partition
advisor include (but are not limited to) the following:

e loading a prospective database

e migrating a database to a different platform or a
different vendor

e the workload on a database changes substantially

e new tables are added or the database has been
heavily updated

e database performance has degraded

One important aspect of our partition advisor is our
materialized view support (described in Section 5.1).
Besides base tables, our tool can recommend partitions
for materialized views if they are used by the workload.
This is useful as there are now tools [ACNO0O0] that

help to determine what materialized views to create
for a given workload automatically. Without proper
recommendations for partitioning, those recommended
materialized views will typically use some default
partition, and so won’t be able to achieve their full
benefit.

Our architecture assumes that we have some statistics
on the database for the query optimizer’s cost estima-
tion. Statistics can be collected when data has already
been loaded in the system. If data has not been loaded,
the designer should supply a statistics description file.
DB2 provides a utility that generates such a description
file by scanning through external data. Our technique
also requires that there is already an original (“real”)
partition for each table, but these partitions can be
picked arbitrarily, e.g. the default partitions assigned
by DB2.

4 Background

In this section, we first briefly describe DB2’s parallel
database system. We then introduce the optimizer used
in DB2 and the concept of “interesting” partitions.

DB2 Parallel Database System: DB2 is based
on a shared-nothing architecture. A collection of
processors (nodes) are used to execute queries in
parallel. A given query is broken up into subtasks,
and all the subtasks are executed in parallel. To enable
parallelism, tables are horizontally partitioned across
nodes. The rows of a table are typically assigned
to a node by applying some deterministic partitioning
function to a subset of the columns. These columns
are called the partitioning key of the table. Currently,
DB2 supports hash-based partitioning. DB2 allows
multiple nodegroups to be defined. A nodegroup can
be assigned to any subset of the nodes in a system.
A table can be partitioned among all nodes in a
nodegroup, or can also be replicated across all the
nodes in a nodegroup. A partition of a table is given
by a (nodegroup, partitioning key) pair or just the
nodegroup if the table is chosen to be replicated. When
creating a table, users can specify a partition for the
table. Otherwise, a default partitioning key (the first
column) and default nodegroup (including all nodes in
the system) will be used.

DB2 optimizer: DB2 uses a conventional bottom-
up optimizer that uses dynamic programming to prune
dominated alternatives [SACT79, GLSW93] In a
parallel environment, the optimizer considers several
partitioning alternatives for (equality) joins. If two
tables are both partitioned on the join keys (and are in
the same nodegroup), the join between the two tables
can be performed locally at each node. This kind of join
is called a local join [BFGT95]. Otherwise, at least one
of the participating tables has to be moved. If one of the
tables (call it table A) is partitioned on the join key, we

can dynamically repartition the other table (call it table
B) on the join key to the nodegroup of table A. This
join method is known as a directed join. Alternatively,
the optimizer can replicate data from table B to all
nodes in table A. This join method is known as a
broadcast join. Finally, if neither table is partitioned
on the join column, the optimizer could decide to
repartition both tables over some completely different
set of nodes using the join key as the partitioning key.
This method is known as a repartitioned join. Typically,
local joins are cheaper than directed and broadcast
joins, which are themselves cheaper than repartitioned
joins, as considerable communication cost can be saved.

Interesting Partitions: Interesting orders [SAC79]
are row orders that are beneficial in evaluating a query.
The optimizer retains the cheapest subplan that pro-
duces rows in each “interesting” order and the cheapest
“unordered” subplan. Those subplans with interesting
orders could make later operations such as merge join,
aggregation, and ordering cheaper. In a parallel envi-
ronment, DB2 also pre-computes beneficial partitions
for a query as its “interesting” partitions. Similar to
interesting orders, subplans having interesting parti-
tions could make the whole plan cheaper. In DB2, the
optimizer retains the best subplan for each interesting
partition, in addition to each interesting order.

DB2 considers the following partitioning keys to
be interesting: (a) columns referenced in equality
join predicates, (b) any subset of grouping columns.
Join columns are interesting because they make local
and directed joins possible. Grouping columns are
interesting because aggregations can be done locally at
each node and then concatenated. These interesting
partitions are generated before plan generation starts,
and are accumulated and mapped to each participating
base table in the query.

5 Optimizer Extension

In this section, we describe in detail the extensions we
have made to the optimizer. In RECOMMEND mode,
our goal is to determine good candidate partitions for
each table in each individual statement. For a given
SQL statement, our approach only recommends one
best candidate partition for each table referenced by
the query. By doing so, it’s possible that we will miss
the overall best partition for the workload. However,
keeping the top K (K > 1) best candidates can
be quite expensive, as we have to keep at least the
top K subplans for every possible join combination.
Additionally, the optimizer’s infrastructure would need
to be changed significantly. Instead, we try to
recover some of the missing candidate partitions on
the client side through partition expansion (described
in Section 7.1).

In the following section, we first describe our ap-

proach to generating candidate partitions in RECOM-
MEND mode. We also discuss our support for mate-
rialized views and candidate partition reduction. We

describe EVALUATE mode in Section 5.2.

5.1 Recommend Partitions

The goal in RECOMMEND mode is to find the optimal
partition for each base table for a given query. One
possible way is to generate a base table plan (a table
scan plan or an index plan) for each possible partition.
However, since the number of possible partitions can
be large (every subset of columns can be used as
partitioning keys), this approach is prohibitive. We
observe that not every possible partition of a table is
beneficial for a query. So, we first compute for each
base table a list of candidate partitions, each of which
can help reduce the cost of the query.

Interesting partitions (as described in Section 4) are
certainly candidate partitions for each base table, as
each might benefit some operations in that query. How-
ever, there are more candidate partitions than interest-
ing partitions. Consider a local equality predicate of
the form col = constant. If the table i1s partitioned
on col, then all the rows satisfying this predicate are
stored on a single node. Although this concentrates all
the processing on a single node rather than spreading
it out, it reduces communication cost and can be a
winning partition. This partition will not be considered
as interesting since local predicates are always applied
before join predicates. So in RECOMMEND mode
we will generate candidate partitions for every column
bound to a constant by an equality predicate. Note
that for systems supporting range partitioning, columns
referenced in non-equality predicates might also be ben-
eficial partitioning keys.

Another kind of candidate partition is replication.
Replicating a table across all nodes reduces commu-
nication cost and can potentially improve query per-
formance. However, since replication has storage over-
head, it’s probably not a good idea to replicate very
large tables. Thus, for each table, we add to its
candidate partition list a replicated partition only if the
table size is smaller than a threshold.

We also have to consider another factor that deter-
mines a partition—the nodegroup. For each candidate
partitioning key generated, we have to decide which
nodegroup to use. One possibility is to use the default
nodegroup for the query. However, the best nodegroup
for the query could be different, depending on factors
such as table size and communication bandwidth. A
more aggressive approach is to automatically create
some additional nodegroups and consider a partition in
each of them. The problem is that this will significantly
increase the plan search space for the optimizer — the
number of partitions compound with the search space

of joins, which could already be exponential in the
number of participating tables [OL90]. The approach
we take 1s a compromise between the two. We consider
all nodegroups that have already been created in the
database system, and pair them with the candidate
partitioning keys.

Once the candidate partition lists have been gen-
erated, we augment the optimizer so that instead of
always generating base table plans using the real par-
tition, the optimizer will in addition generate a plan
corresponding to each candidate (virtual) partition.
The optimizer then continues its usual join enumeration
process (with more choices on base table plans). When
the optimizer returns the best overall query plan, it
writes to a CANDIDATE _PARTITION table the best
partition chosen for each table in that plan.

One subtle issue arises when a table is referenced
multiple times in a query. When generating subplans,
each table reference is considered independently. This
means that a plan can have two table scans referencing
the same table with conflicting partitions. Such a
plan is clearly invalid, as any table can in reality be
partitioned in only one way. However, it is expensive to
solve this problem completely. This is because we would
have to traverse the plan tree all the way down to the
leaves to compare partition information of base tables.
On the other hand, it is not crucial that we recommend
exactly one partition for a table. Those partitions are
just candidates themselves, and are subject to further
evaluations (we will elaborate on this in subsequent
sections). So, our implementation allows the optimizer
to recommend different partitions for a single table
within a single query.

Support for Materialized Views: Materialized
views are cached query results and can be used to
improve query performance dramatically. As for base
tables, finding the right partitions for materialized
views 1s essential for query performance.

We can assemble candidate partitions for a materi-
alized view by collecting all candidate partitions from
each table referenced in the materialized view. How-
ever, some of the candidate partitions may no longer
be interesting because the predicates that induce them
have already been retired by that materialized view.
For example, suppose we have a materialized view and
a query defined as follows:

Materialized View M1:

SELECT * FROM T1, T2 WHERE Tl.a = T2.a
Query Q1:

SELECT * FROM T1, T2, T3

WHERE T1l.a = T2.a AND T2.b = T3.b

Note that M1 can be used to answer Q1 by joining it
to table T'3. A partition with 72.a as the partitioning
key 1s a candidate partition for table T2. However,

such a partition is not useful for M1 as the join
predicate T'l.a = T2.a has already been applied within
the materialized view. As a result, this partition
shouldn’t be considered as a candidate partition for
M1. On the other hand, a partition with 72.b as
the partitioning key should be a candidate partition
for M1 since the predicate T2.b = T3.b has yet to
be applied. So for materialized views, we make sure
that each candidate partition is still useful for some
predicates not yet applied by the materialized view or
useful for aggregation and ordering. In the rest of the
paper, we treat materialized views in the same way as
base tables.

Candidate Partition Reduction: When a query is
compiled in regular mode, plans with different partition
properties are limited. However, in RECOMMEND
mode, the optimizer will create plans having a partition
property for each candidate partition. This can intro-
duce an explosion in the number of plans generated,
and thus increase both the compilation time and space
consumption (to keep those plans).

We aim to reduce the search space in RECOMMEND
mode by limiting the number of candidate partitions
considered, without sacrificing the quality of plans too
much. First of all, we observe that if two nodegroups
have the same set of nodes, then for the same set
of partitioning keys, we only need to consider one
of those nodegroups. Similar nodegroups can exist
in a system, because customers often define a new
nodegroup including all the nodes in the system, the
same as the default nodegroup. Thus, we check
if there 1s a user-defined nodegroup identical to the
default nodegroup. If so, we won’t generate candidate
partitions in the default nodegroup. Second, we notice
that for a single-node nodegroup, it doesn’t matter what
the partitioning key is, as all the data will reside on one
node. So, we make sure that for such nodegroups, we
only consider one candidate partition for each table.
Last, we realize that for very small tables, different
partitions only slightly affect the final plan cost. As
a result, we can just use the original partition for such
tables. We show in our experimental results in Section 8
that, by doing all the above, the compilation time in
RECOMMEND mode is reduced significantly, without
appreciable loss of plan quality.

5.2 Evaluate Partitions

Before compiling a query in EVALUATE mode, certain
partitions in the CANDIDATE _PARTITION table are
already marked by our enumeration methods in the
client utility (described in Section 7). Our enumeration
methods guarantee that only one partition is marked
for each table. In EVALUATE mode, the optimizer
then reads in those marked partitions from the CAN-
DIDATE _PARTITION table and uses it to replace the

original partition of the corresponding table before opti-
mization starts. The optimization then continues under
the assumption that those replaced partitions are the
real partitions for tables referenced in the query.

The compilation time for a query in EVALUATE
mode is comparable to that in regular mode, as each
base table can still generate only one possible partition.
The overhead of injecting virtual partitions for each
table 1s very little.

6 Cost Estimation

An important issue we haven’t talked about so far is
how to estimate the cost of plans when we change the
real partition of a table to a virtual one. In this section,
we first introduce the cost model used in DB2 and
then describe our approach to ensuring consistent cost
estimation when changing partitions.

DB2 Cost Model: DB2 uses a detailed cost model
to estimate query cost. The overall cost is a linear
combination of I/O cost, CPU cost, and communication
cost, but also assumes that there is some overlap among
the three components. DB2 collects various kinds of
statistics on the database, including table cardinality,
column cardinality (number of distinct values in a
column), number of data pages in a table, index
statistics, and optionally, distribution statistics such as
histograms and a list of the most frequent values.

There are two kinds of statistics, one at the table
level and one at a single node level (we refer to them
as per-table and per-node statistics, respectively). Both
sets of statistics are needed for cost estimation. For
example, when estimating the I/O cost of a scan, the
per-node level information (such as number of disk
pages) is used. This is based on the assumption
that the scan i1s performed in parallel across all the
nodes and 1s the way that DB2 employs to encourage
parallelism (other commercial systems will need similar
mechanisms). On the other hand, when collecting join
results from all the nodes (for further operations such
as aggregation), DB2 uses the per-table cardinality and
join selectivity to estimate the number of rows to be
received. This guarantees that we get consistent join
cardinality estimates independent of how the data is
partitioned. After repartitioning, DB2 will derive per-
node statistics from the per-table ones based on how
the data is partitioned.

Estimating Cost Under New Partitions: Ob-
serve that while per-table statistics are independent of
partitions, per-node statistics will change if the un-
derlying partition changes. In this section, we will
discuss how to adjust per-node statistics with new table
partitions in both RECOMMEND and EVALUATE
mode.

There are basically two options: (a) use sampling,
and (b) derive from the old statistics. There are trade-

offs between the two. Sampling provides more accurate
information, however, it can be very expensive given
the number of candidate partitions that we want to
simulate (even after partition reduction). Deriving new
statistics always requires some assumptions that can be
different from reality. Nevertheless, deriving statistics
1s much cheaper. Additionally, the optimizer itself has
to derive some statistics when repartitioning for joins
and aggregations anyway. So, in the first phase of the
partition advisor, we opt for deriving statistics.

We are only interested in adjusting statistics that
affect base table plans. We distinguish between
statistics associated with a table (we call them table
statistics) or an index structure (we call them index
statistics). We illustrate our approach to adjusting
these two kinds of statistics.

Table statistics that need to be adjusted include
cardinality and number of pages. We make the
assumption that data is uniformly distributed across
all the nodes (consistent with the reason for using
hash partitioning). We calculate the ratio between the
number of nodes in the old and new partitions, and
scale the statistics accordingly.

Typical index statistics include number of leaf pages
and number of levels. An index leaf page contains
a sequence of (unique) keys, each of which has one
or more row IDs (RID). Both of these can change
given a new table partition. The number of RIDs
per node can be adjusted in a fashion similar to the
per-node cardinality that was described earlier. We
use a standard distinct values estimator (Cardenas’ and
Inverse Cardenas’ formula [Car75]) to first get the per-
table key count and then scale it down to per-node
under the new partition. Once we have obtained the
new per-node key and RID counts, we use them to
estimate the new number of leaf pages assuming that
the key size and page occupancy rate are still the same.
The number of index levels can be adjusted based on
the new number of leaf pages assuming the same fanout.
A detailed description of our adjustment is beyond the
scope of this paper.

Avoid Data Skew: When estimating new statis-
tics, one of the assumptions we made is a uniform
distribution. Clearly, such an assumption won’t hold
if data is skewed. We observe that there are two
cases where skew can exist: (a) when there are very
few key values in the partitioning key, and (b) when
hash buckets are not distributed evenly by the mapping
function. The latter is alleviated by the ability in DB2
to define alternative mappings from the hash buckets
to nodes (a level of indirection) [Cor00a]. To avoid (a),
in RECOMMEND mode, we check the key count of
each candidate partition and only consider partitions
having enough key values (more than a threshold). The
threshold is proportional to the number of nodes in the

system.

7 Advisor on the Client Side

Given a workload, our partition advisor will evaluate
each query in RECOMMEND mode. After reading
all the partitions from the CANDIDATE _PARTITION
table, it assembles a list of candidate partitions for each
table referenced in the workload. In this section, we
first describe how to generate additional candidate par-
titions through partition expansion and then describe
our enumeration methods.

7.1 Partition Expansion

Each partition in the CANDIDATE PARTITION table
1s the best partition for at least one statement in the
workload. However, a partition that’s not the best of
any query could be the overall best partition for the
workload. Consider a simple example. Suppose that
the partitioning key of the best partition for table T is
< T.a,T.b > for query 1 and < T.a,T.c > for query
2 (in the same nodegroup). < T.a > could be the
best partitioning key for query 1 and 2 together, as
it can benefit both queries, but neither query chooses
that partition.

We say that a partition P1 subsumes P2 if P1 and
P2 are in the same nodegroup and the partitioning key
of P1 is a superset of P2. In general, if partition
P1 subsumes P2, P2 will benefit at least as many
queries as Pl does. The only exception is if P2 has
too few key values, which will introduce potential skew.
During partition expansion, we will generate additional
candidate partitions for each table with partitioning
keys that are a common subset from two or more
candidate partitions from the same table, as long as the
number of key values is greater than the threshold. We
will also include the original partition in the candidate
partition list if it wasn’t recommended for any query in

RECOMMEND mode.

7.2 Enumerating Algorithms

The combinations of partitions from all the tables
form a search space. Suppose that we have n tables,
each with p; (i = 1 to n) candidate partitions. We
define a configuration C = (c1,¢3,...cn), where ¢; is
one of the p; candidate partitions from table 7. For
a statement ¢, let Costy(C) be the cost of g under
partition configuration C'. Given a workload), we want
to find Coptimar such that quQ Costy(Coptimal) =
min quQ Costy(C), over all p1*py...*p, possible C.
Given a configuration C, we can mark all the candi-
date partitions in C' in the CANDIDATE _PARTITION
table and compile the workload in EVALUATE mode.
The cost estimation returned by the optimizer will
be the cost of that configuration. Our goal is to
quickly find the optimal configuration, so that the entire

(weighted) workload cost is minimized. Each evaluation
of a configuration is expensive, so unguided enumera-
tion of all configurations won’t scale with respect to the
number of tables and workload size.

To facilitate our search, we first calculate a benefit
value for each candidate partition in each query, which
equals the difference between the estimated cost of the
query evaluated in regular mode and in RECOMMEND
mode. We then accumulate over all queries in the work-
load the total benefit for each distinct candidate parti-
tion. Subsumed partitions (including those additional
partitions generated during expansion) will inherit the
benefit of all the subsuming partitions. Observe that
the benefit we have accumulated is not the real benefit
each candidate partition will bring. This 1s because we
assign the benefit for the whole query to the underlying
partitions of all tables in that query, while in fact,
some partitions may contribute more to the benefit than
others. Trying to figure out the exact benefit of each
candidate partition is difficult because the benefit of one
partition may not show up unless another partition is
present. Nevertheless, our experimental results show
that our simplified benefit estimation provides good
search guidance. With the help of benefit values, we
consider two kinds of enumeration methods: rank-based
and random-based enumeration.

7.3 Rank-based Enumeration

The rank-based method models the problem as a gen-
eral searching problem. Each configuration corresponds
to a node in the search tree. We start with the root
node, which corresponds to the configuration with each
table using the partition having the highest benefit
value among its candidate partitions. To expand a node
C, we consider all the configurations (referred to as
child configurations) that differ from C in exactly one
partition. The different partition has the next highest
benefit value. Observe that if the benefit values are
reliable, a parent configuration should always be better
than a child configuration for the workload and thus
should be considered earlier than its children during
the search. All the expanded nodes will be ranked and
kept in an ordered queue. The first configuration (with
the highest rank) in the queue will be the next search
point. The enumeration process stops when we reach a
user specified time limit. The key issue here is to design
a good ranking function to guide our search.

A simple ranking function (referred to as rank_benefit)
will be the sum of the benefit of each partition in
the configuration. However, it doesn’t perform well
in our experiments. The problem is illustrated in the
example in Table 1. In this example, a configuration
with partitions (P1, P3) will be considered first. How-
ever, a configuration with partitions (P2, P3) will be
considered better than that with (P1, P4) as the former

has a higher total benefit value. However, P4 carries a
much higher benefit value than P2 and 1s likely to be
more important.

T1 | Partition | Benefit T2 | Partition | Benefit
P1 10 P3 1000
P2 9 P4 900

Table 1: Example

To overcome the above problem, we take into account
three factors when designing our ranking function: (1)
the cost of its parent configuration (2) the benefit of the
partition that’s different from its parent, and (3) the size
of the table from which the different partition comes.
(1) is important because child configurations share a lot
of partitions with their parents. So the cost of a parent
should have some influence on its children. Note that
the cost of a parent configuration is accurate in the sense
that it’s the optimizer’s estimation. (3) is important as
partitions from bigger tables tend to contribute more to
the workload than smaller ones. Through experiments,
we choose the following ranking function (referred to
as rank_best). We assign the cost of a configuration to
be the cost of its parent less the benefit of the changed
partition, weighted by the relative table size. Since a
configuration can be derived from multiple parents, we
are being optimistic and always pick the higher rank for
the configuration.

rank_best(C) =

—(Cost(C') — P.benefit x w/%), where C’

1s the parent configuration of C, P is the partition
in C different from C’ and maz_tblcard is the size
of the largest table in the workload.

To evaluate a configuration, we have to compile each
statement in the workload in EVALUATE mode. If
the number of statements in the workload is large,
evaluating a configuration can be quite expensive.
Observe that a query may not reference all the tables
in the workload. We define partitions in a configuration
used by a query its footprint. The cost of a query
@ will be the same in EVALUATE mode under two
configurations C'1 and C2, if the footprints of @ in C1
and C2 are the same. To avoid reevaluating statements
with the same footprint, we cache the cost of each query
under each of its unique footprints. Before evaluating
a query under a certain configuration C, we first check
if the query with its footprint in C' can be found in
the cache. If so, we can use the cached cost directly.
Otherwise, we will send the query to the server and
evaluate its cost.

7.4 Randomized Enumeration

We also considered using randomized search algorithms.
Simulated annealing [KGV83] has been used in data

clustering in centralized database systems [HLL94] and
query optimization [IK91]. However, we chose to use
Genetic Algorithms [Gol89], as they have some good
searching features (such as avoiding local optima) and
can be mapped to our problem easily.

Genetic algorithms are search algorithms based on
the mechanics of genetics and natural selection. The
whole search space is modeled as a set of genes, with
each gene having some number of gene types. Each
search point is then modeled as a species with all the
genes set to specific gene types. The algorithm starts
with an wnitial population consisting of a set of species
and tries to derive better search points by evolving next
generations. There are typically two ways to evolve—
crossover and mutation. Crossover takes two species
from the population and randomly recombines their
genes to form two descendants. The intuition here is
that good parents are likely to provide better children.
Mutation picks a species at random and randomly
changes some of its genes to derive a descendant.
Descendants are compared with their parents and will
replace the parents if they are better.

In order for the genetic algorithm to perform well,
we need to set up a good initial population. Through
experiments, we used the best partitions from queries
with large improvement (for those tables not referenced
by the query, partitions with the highest accumulated
benefit are used). We also include the root configuration
in our initial population. However, our experiments
showed that the genetic algorithm is always dominated
by our rank-based method.

8 Experimental Results

We developed our partition advisor under DB2. All
the tests were run on a machine with two 400 MHz
processors and 1GB of RAM. DB2 allows us to create
multiple virtual nodes, all running on the same machine.

We have performed comprehensive tests of the par-
tition advisor on several workloads. However, due to
space limitations, we only present our experimental
results on a 100GB TPC-H [TPC] database and one
customer database. We simulated an environment with
8 nodes, each with a 1.4 GHz processor, a 500MB
buffer pool, and a 100MB/second communication band-
width. In both databases, there were two additional
nodegroups besides the default nodegroup: one with
all nodes and another with a single node. We omit-
ted update statements in the workload, since shared-
nothing parallel systems are typically used for large
data warehouses in which costs are dominated by com-
plex queries. To avoid a small number of expensive
queries dominating the workload cost, we adjusted the
frequency of each statement such that the weighted
(initial) cost of each statement is roughly equal. The
threshold of small table size for partition reduction,

maximal table size for replication and minimal number
of key values necessary for a candidate partition are set
to be 2,000 (rows), 5 million (rows) and 5,000 respec-
tively. Because of the size of the databases we used,
1t’s difficult to create a local copy of the real data. DB2
provides a tool that can collect the catalog and statistics
in a real database and generate a description file. By
running those SQL statements from the description file
in an empty database, we can re-create the metadata of
the real database without populating the actual data.

Compilation Time in RECOMMEND mode:
We first present the results of RECOMMEND mode.
We selected the 10 most complicated queries (with up
to hundreds of joins in multiple query blocks and lots
of aggregation) from a set of our customer queries.
We compared the compilation time in RECOMMEND
mode with (referred to as improved) and without doing
partition reduction (referred to as naive) as described
in Section 5.1. We report the ratio of compilation time
in RECOMMEND mode to that in regular mode in
Figure 2(a).
techniques cut the average compilation time by more
than half. Yet Figure 2(b) shows that partition
reduction doesn’t significantly affect the quality of the
plans we got in RECOMMEND mode: only one of the
ten queries has a plan with slightly higher cost after
partition reduction.

As we can see, our partition reduction

Plan Cost Ratio in Recommend Mode

Compilation Time Ratio (improvediNaive)
mode)

T improved
B Naive

10 1108400

105400

100400 —

gsoeor H |

oot H T H

ssoeor H |

sooeor H T H

AT I O O
70001

9l @2 @ @ ¢ g o7 g8 q9 ql0 ag A @ @ @ s 6 @ B ag

(a) (b)

Figure 2: Compilation Time Ratio (a) and Plan Cost
Ratio (b) in RECOMMEND Mode

TPC-H: We then present our results on the TPC-
H database with 22 TPC-H queries. The limited
number of tables and statements in the workload don’t
adequately test our enumeration methods, as there are
not that many configurations. On the other hand,
because of its simplicity, we can perform a more
thorough analysis and gain some insights.

Table 2(a) shows the initial partition for each table,
as determined by a skilled human. Most of the tables

are partitioned on their primary keys and are spread
across all 8 nodes. The two smallest tables are created
on a single node.

table partition key | nodegroup | # of nodes
region r_regionkey 2 1
nation r_nationkey 2 1
part p-partkey 1 8
partsupp | ps_partkey 1 8
lineitem | l_orderkey 1 8
orders o_orderkey 1 8
supplier | s_suppkey 1 8
customer | c_custkey 1 8

(a) Initial partitions

Ql [Q2 | Q3 | Q4 | Qb | Q6 Q7 | Q8
00 |80 (00 |00 |-04 0.0 -0.4 | 0.0
Q9 | Q10| Q11 | Q12 | Q13 | Q14 | Q15 | Q16
-0.4 {-02 |00 |00 |80 |O0.0 0.0 |-0.4
QL7 | Q18 | Q19 | Q20 | Q21 | Q22
314100 |00 |00 |-06|577.0
(b) Query Speedup(%)
table benefit | NG | R | partition key
lineitemn 68,489.57 | 1 N | Lpartkey
-3,667.18 1 N | lorderkey X
-7,163.52 1 N | lsuppkey
nation 23,393.15 | 2 N X
region 32,257.48 | 2 | N X
orders 124,350.79 1 N | o_custkey X
-8,268.93 1 N | o_orderkey
partsupp 15,570.06 1 N | ps_partkey X
10,798.27 | 1 N | ps_suppkey
part 49,947.60 1 N | p_partkey X
supplier 24,307.95 1 N | s_suppkey X
customer | 123,743.82 1 N | c_custkey X
48403 | 1 |Y

(c) Candidate Partition List
Table 2: Results on TPC-H

Table 2(b) shows the speedup as a percentage (=
mm”;ﬁ‘;ﬁ;&iﬁfﬁ;’;i?dio“ * 100) for each individual
query in RECOMMEND mode. Some of the queries
had little or no improvement, because the underlying
tables were already partitioned in the optimal way.
Query 22 had the biggest improvement. Most of the
cost in the query comes from a join between the orders
table and the customer table. By choosing to partition
orders on o_custkey instead of o_orderkey, the join
can be performed locally and thus its cost is reduced
significantly. Query 17 also had significant speedup.
This query contains a join between lineitem and
part. In RECOMMEND mode, the optimizer chose
to partition table lineitem on 1_partkey so that a
local join could be used instead of a directed join. A

9.5e+11 T T T T T

initial cost ——
L breadth first —— |
e+1l rank_benefit ——
@
Q rank_best —+—
S 8.5e+11 genetic_15 -]
8 ' lower bound -----
=
S 8e+ll [.
=2
7.5e+11 B
7e+11 1 1 1 1 1
20 40 60 80 100

number of iterations

(a) All Methods

7.9e+11 w] T T T T T
i genetic_10 -*--
| genetic_15 -4
7.85e+11 ‘= genetic_zo R
|
z .
8 7.8e+11 | B E TE T E TE ey
he]
[58]
S . .
=7.75e+11 .
; N
P - SEEEE B e e B e @
7.7e+11 | B
7.65e+11 L L L L L

20 40 60 80 100
number of iterations

(b) Genetic Algorithm

Figure 3: Cost Improvement as a Function of Number of Iterations

few queries had slightly higher costs when evaluated
in RECOMMEND mode (negative speedup). This is
caused by the heuristic rules of DB2’s query optimizer
that favors local and directed joins over repartitioned
joins. If two subplans can be joined through local
or directed joins, the optimizer won’t even try the
repartitioned joins. While such heuristic rules are
justified in most cases, occasionally repartitioned joins
can be slightly cheaper. When using the real partitions,
these queries are forced to consider repartitioned join
plans. When evaluated in RECOMMEND mode, since
the optimizer has more partition choices, it picks up
partitions that can form local or directed joins (which
are in fact a little bit more expensive). However, the
degradation is relatively small (no more than 0.6%),
and all the configurations are subject to evaluation in
EVALUATE mode to verify the workload cost.

In Table 2(c), we show the candidate partition list
for each table (each row indicating the benefit of a
partition, its nodegroup, whether it’s replicated and
its partitioning key). As we can see, most of the
dimension tables have only one candidate partition,
with the primary key as the partitioning key. For fact
tables, there are more candidate partitions, each of
which has one of the foreign keys as the partitioning key.
Note that for the customer table, one of the candidate
partitions is to replicate the table on all nodes. So
replication does help in certain cases. Since there are
only 24 possible configurations, it’s possible for us to
enumerate them all. The best configuration (partitions
marked with Xx) chosen by the partition advisor uses
the original partition for all the tables except for one—
orders, which i1s now recommended to be partitioned
on o_custkey across all nodes. This reduces the cost
of queries consisting of a join between table orders
and table customer. Observe that the benefit value we
calculated for each candidate partition is a relatively
good indicator of its goodness. Every best partition
except for one has the highest benefit value among

candidate partitions of its corresponding table. Only
the best partition of table lineitem has the second
highest benefit value. The overall improvement of the
workload is about 4%. This shows that the original
partitions chosen by human beings are fairly good for
this relatively simple workload.

Customer Database: We now present the results
of applying the partition advisor to one of our customer
databases. @~ We used a workload consisting of 50
queries. There are 15 tables referenced in the workload.
After partition recommendation, each table had from
1 to b candidate partitions. The total number of
configurations is around 500. We compared the rank-
based method with the genetic algorithm on this larger
workload. For the rank-based method, we tested the
two ranking functions rank_benefit and rank_best, as
described in Section 7.3. We also tested a breadth_first
method, where configurations with lower depth are
considered earlier. For genetic algorithm, we tested
three variants with an initial population size of 10,
15 and 20. We alternate the process of crossover and
mutation. The mutation rate (the percentage of genes
to be changed) is set to be 0.5.

The results are shown in Figure 3(a).
represents the number of configurations (iterations)
considered by each algorithm, and the y-axis measures
the best workload cost found after a certain number
of iterations have been performed. The line marked as
“Initial cost” represents the estimated cost of the entire
workload under the original (real) partitions. We added
up the cost of each query in RECOMMEND mode and
used 1t as the “lower bound”, since this is the lowest cost
the workload could theoretically achieve, but may never
actually be achievable in a bona fide configuration. We
only show the best genetic variant in this picture. For
a fair comparison, we allowed each method to consider
100 configurations.

The x-axis

As we can see, rank_best converges the fastest among
all the methods. It is able to find a very good solution

fafo
0

Figure 4: Relative Time per Iteration

at the 10th iteration and the optimal solution (verified
after we tried all configurations) after only 26 iterations.
The speedup is more than 22% on a system already
tuned by human beings. rank_benefit doesn’t improve
upon the root configuration within 100 iterations. This
1s because it tends to try partitions with relatively
small benefit values first. Genetical algorithm converges
faster than rank_benefit and breadth_first. The initial
population we chose is relatively good, as it consists of
a configuration much better than the root configuration.
However, of all the genetic methods, none of them
outperformed rank_best.

In Figure 3(b), we compare three variants of the
genetic algorithm. As we can see, increasing the
size of initial population doesn’t necessarily mean
better performance. Only two variants of the genetic
algorithm obtained further improvement later on. In
both cases, the improvement was obtained through
mutation. We observe that the most important feature
of genetic algorithm is that good genes can be carried
around in the population. On the other hand, rank_best
does something similar by taking into account the cost
of the parent configuration while calculating the rank of
1ts children. Since the cost of the parent configuration is
actually obtained from the optimizer’s estimation, this
provides more accurate information as which partitions
are important.

In the optimal configuration returned by the partition
advisor, the partition of 11 out of 15 tables doesn’t
change. Among the four tables whose partition does
change, two of them (relatively small) chose to replicate
themselves across all the nodes and the other two
(two largest tables used in the workload) changed
their partitioning keys. Among the 50 queries in the
workload, 66% gained performance while the rest 34%
either lose ground or had no improvement.

In Figure 4, we show the normalized time taken for
each iteration for rank_best (figures for other methods
are similar). After a few iterations, the time spent on
each iteration is reduced significantly. This shows the
effectiveness of our caching mechanism (described in

Section 7.3). Subsequent iterations can benefit a lot
from cached queries with an identical footprint.

To summarize, our experimental results validate
that the partition advisor i1s able to recommend good
candidate partitions for individual statement in the
workload in a reasonable amount of time. Significant
amount of time can be saved in RECOMMEND mode
by employing our partition reduction technique without
much plan quality degradation. We demonstrated
the effectiveness of our rank-based method, which can
quickly converge to an (close to) optimal solution. Our
caching mechanism significantly reduces the cost of
evaluating each configuration. Note that the databases
we used have already been tuned by human beings over
time. Nevertheless, further improvement can still be
made by our tool over human experts. For applications
with less reasonable initial partitions (e.g., materialized
views with default partitions), the improvement would
be even greater.

9 Usability Issues

Cost models in commercial systems have become quite
sophisticated and have undergone comprehensive tun-
ing. Thus, they are likely to be more accurate than any
estimates from external tools. However, it’s impossible
to model every aspect that affects execution time, so
cost estimates may not always be proportional to real
execution time. We therefore give users the option
to review all the partitioning recommendations given
by our tool and to make necessary adjustments based
on considerations that may not have been completely
modeled by the tool. While human intervention is still
necessary, our tool can reduce significant amount of
work of database designers.

Repartitioning is an expensive process and is not
expected to be run frequently. On the other hand, as
observed from our experiments, new configurations may
not require the complete dataset to be repartitioned.
So a database designer has to balance the potential
gain from the new configuration and the amount of
migration work that needs to be done in order to make
the appropriate decision.

Our partition advisor can be plugged in materialized
view selection tools in a parallel database system to find
out their optimal partition. We observe that there are
possible interactions between materialized view selec-
tion and partition configuration, i.e., a partition config-
uration can change the materialized views selected for a
workload and vice versa. We'd like to investigate such
interaction in our future work.

Although this paper focuses on a shared-nothing
database system, our work can be extended to a shared-
disk system, where a partition is primarily defined by
the partitioning keys and the concept of a nodegroup is
less relevant.

10 Conclusion

In this paper, we described DB2’s partition advisor,
a tool that can automate the process of choosing the
optimal way to partition data stored in a shared-
nothing parallel system. For a given workload, our
tool exploits the cost-based query optimizer to both
recommend likely candidates and to evaluate complete
solutions in detail. Our rank-based method converges to
the optimal solution quickly with the ranking function
we carefully designed. We exploit various techniques
to reduce the amount of time considering alternative
solutions while maintaining the quality of solutions.
Our tool can recommend partitions for both base tables
and materialized views. We have demonstrated through
experiments the effectiveness of the tool.

We plan to investigate in the future the self-managing
process of other kinds of database design problems,
and the interactions among different database design
aspects.

References

[ACNO00] Sanjay Agrawal, et al. Automated selection of
materialized views and indexes in SQL databases.

In Proceedings of VLDB, 2000.

[BFG195] C. Baru, et al. DB2 parallel edition database
systems: The future of high performance database
systems. IBM Systems Journal, 34(2), 1995.

[CABKS88] G. Copeland, et al. Data placement in
Bubba. In Proceedings of the ACM SIGMOD
Conference, pages 99-108, 1988.

[Car75] A. Cardenas. Analysis and performance of
inverted data base structures. Communications of

ACM, 18(5):253-263, 1975.
[CN98] Surajit Chaudhuri and Vivek R. Narasayya.

Microsoft index tuning wizard for SQL server 7.0.

In Proceedings SIGMOD, 1998.

[CNW83] Stefano Ceri, et al. Distribution design of
logical database schemas. TSE, 9(4), 1983.

[Cor00a] IBM Corporation. DB2 Universal Database
enterprise extended edition Version 7.0. 2000.

[Cor00b] Informix Corp. http://www.informix.com/
informix/solutions/dw/redbrick /vista. 2000.

[Cor00c] Oracle Corporation. Oracle 9i database. 2000.

[DG92] David DeWitt and Jim Gray. Parallel database
systems: The future of high performance database
systems. Communications of ACM, 35(6), 1992.

[FST88] S. Finkelstein, et al. Physical database design
for relational databases. ACM Transactions of
Database Systems, 13(1), 1988.

[Gha90] S. Ghandeharizadeh. Physical Database De-
sign in Multi-processor Systems. PhD thesis, Uni-
versity of Wisconsin-Madison, 1990.

[GLSW93] Peter Gassner, et al. Query Optimization
in the DB2 Family. Bulletin of the IEEE Technical
Committee on Data Engineering, 16(4), 1993.

[Gol89] David E. Goldberg. Genetic Algorithms
in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company, INC, 1989.

[HLL94] Kien A. Hua, et al. A decomposition-based
simulated annealing technique for data clustering.

In Proceedings of PODS, 1994.

[IK91] Yannis E. Ioannidis and Younkyung Cha Kang.
Left-deep vs. bushy trees: An analysis of strategy
spaces and its implications for query optimization.

In Proceedings of SIGMOD, 1991.

[KGV83] S. Kirkpatrick, et al. Optimization by
simulated annealing. Science, 220(4598), 1983.

[OL90] Kiyoshi Ono and Guy M. Lohman. Measuring
the complexity of join enumeration in query opti-
mization. In Proceedings of VLDB, 1990.

[RM93] Erhand Rahm and Rober Marek. Analysis
of dynamic load balancing strategies for parallel
shared nothing database systems. In VLDB, 1993.

[SAC*79] Patricia G. Selinger, et al. Access path
selection in a relational database management
system. In Proceedings of SIGMOD, 1979.

[SMROO] Thomas Stohr, et al. Multi-Dimensional
Database Allocation for Parallel Data Warehouses.

In Proceedings of VLDB, 2000.
[SW85] Domenico Sacca and Gio Wiederhold.

Database partitioning in a cluster of processors.
ACM Transactions of Database Systems, 10(1),
1985.

[TPC] TPC benchmark H (decision support) revision
1.1.0. http://www.tpc.org/.

[VZZ100] Gary Valentin, et al. DB2 Advisor: An
optimizer smart enough to recommend its own
indexes. In Proceedings of ICDE, 2000.

[WHMZ94] Gerhard Weikum, et al. The COMFORT
automatic tuning project, invited project review.
Information Systems, 19(5), 1994.

[Zil98] Daniel C. Zilio. Physical Database Design De-
cision Algorithms and Concurrent Reorganization
for Parallel Database Systems. PhD thesis, Dept.
of Computer Science, University of Toronto, 1998.

