A Super Scalar Sort Algorithm for RISC Processors

Ramesh C. Agarwal
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

agarwal@watson.ibm.com

Abstract

The compare and branch sequences required in a traditional
sort algorithm can not efficiently exploit multiple execution
units present in currently available high performance RISC
processors. This is because of the long latency of the
compare instructions and the sequential algorithm used in
sorting. With the increased level of integration on a chip,
this trend is expected to continue. We have developed new
sort algorithms which eliminate almost all the compares,
provide functional parallelism which can be exploited by
multiple execution units, significantly reduce the number of
passes through keys, and improve data locality. These new
algorithms outperform traditional sort algorithms by a large
factor.

For the Datamation disk to disk sort benchmark (one
million 100-byte records), at SIGMOD’94, Chris Nyberg et
al presented several new performance records wsing DEC
alpha processor based systems.

We have implemented the Datamation sort benchmark
using our new sort algorithm on a desktop IBM RS/6000
model 39H (66.6 MHz) with 8 IBM SSA 7133 disk drives
(total cost $73K). The total elapsed time for the 100 MB
sort was 5.1 seconds (vs the old uni-processor record of 9.1
seconds). We have also established a new price performance
record (0.2¢ vs the old record of 0.9¢, as the cost of the sort).
The entire sort processing was overlapped with I/0O. During
the read phase, we achieved a sustained BW of 47 MB /sec
and during the write phase, we achieved a sustained BW of
39 MB/sec. Key extraction and sorting of one million 10-
byte keys took only 0.6 second of CPU time. The rest of the
CPU time was used in moving records, servicing I/0, and
other overheads.

Algorithmic details leading to this level of performance
are described in this paper. A detailed analysis of the CPU
time spent during various phases of the sort algorithm and
I/0 is also provided.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are nhot made
or distributed for profit or commercial advantage, the copyright notics, the

title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee.

SIGMOD '96 6/96 Montreal, Canada
© 1996 ACM 0-89791-794-4/96/0006...$3.50

240

1 Introduction

In 1985 [1], a group of database experts defined three
basic benchmarks to measure the transaction processing
performance of computer systems. One of these
benchmarks does a disk to disk sort of one million
records of 100 bytes each. The relevant measures are
elapsed time and cost. The following is a direct quote
from {1].

“The sort benchmark measures the performance
possible with the best programmers using all the mean
tricks in the system. It is an excellent test of the
input/output architecture of a computer system and its
operating system.

The definition of the sort benchmark is simple. The
input is 1 million records stored in a sequential disk file.
The first 10 bytes of each record are the key. The keys
of the input file are in random order. The sort program
produces an output file containing the input sorted in
key order. The sort may use as many scratch disks and
as much memory as it likes.”

The elapsed time is the time from start to the end
of the sort program and cost is the time-weighted cost
of the hardware and software packages used in the sort.
The article uses a five year cost averaging and a second
costs about 6.3E-9 of the five year capital cost. Thus if
a workstation costing $100K takes 10 seconds to do the
benchmark, then cost of 100 MB sort is 0.63¢.

2 Prior work on the sort benchmark

Over last ten years, several authors [2]-[10] have
presented their results on this sort benchmark. Nyberg
et al. [9]-[10] have given an excellent summary of prior
work. During these ten years, the time required to do
this benchmark has reduced from an hour to just a few
seconds, an improvement by three orders of magnitude
or roughly by a factor of two every year. The cost of
sort has also reduced from $4.61 to under a penny which
is roughly a 2x improvement every year.

At SIGMOD’94, Nyberg et al. [10] presented
several results which established new records in many
categories. The best single processor performance of

9.1 seconds was obtained on a 200 MHz DEC-7000-AXP
system using 16 disk drives. The system cost was $247K
resulting in a cost of 1.4¢ for the 100 MB sort. The best
price/performance record of 0.9¢ was obtained on a 150
MHz DEC-3000-AXP using 10 disk drives. The system
cost was $97K and the benchmark took 13.7 seconds.
Our results significantly improve on both these numbers
using a 66.6 MHz RS/6000 desktop workstation model
39H with 256 MB of memory, 128 KB of L1 cache, no
L2 cache, and 8 IBM 7133 1.1 GB SSA disk drives.
The sort application needed only 160 MB of memory
to run. Therefore, for the same system cost, we could
sort a bigger file (approximately 180 MB or so). The
base cost of the system with 64 MB of memory is $31K.
The overall system cost including all the hardware and
software is $73K. On this system, the benchmark ran
in 5.1 seconds, resulting in the sort cost of about 0.2¢.
This is more than a factor of four cheaper compared to
the previous best result.

In the same paper, they also presented results on
shared memory systems. They created a new record
time of 7.0 seconds on a 200 MHz, 3-CPU DEC-7000-
AXP gystem using 28 disk drives. The cost of this
system was $312K. Our results have improved on this
time by a factor of 1.37 on a system costing five times
less. However, our results are not the fastest ever
reported. That distinction goes to SGI. At SIGMOD’95
they [11] reported a time of 3.5 seconds on a 12-CPU
Challenge XL system using 96 disk drives. SGI did
not report the system cost. Chris Nyberg of Ordinal
Technology provided the sort software. At that time,
SGI also announced a new record of 1.6 GB for the
minute sort benchmark [9]-[10] on the same system. The
estimated system cost of this machine is $700K (could
be off by 2x either way). This was the system cost to
do the 1.6 GB sort. Clearly, to do just the 100 MB
Datamation sort benchmark will require less memory
and therefore a somewhat cheaper system. For the
purpose of this paper, we will ignore the system cost
for the SGI machine. The table below summarizes the
results reported at SIGMOD’94, SIGMOD’95, and our
results.

3 Overview

Because memory is cheap, 1t is reasonable to implement
a one-pass sorting for a 100 MB file. All recent
implementations of the benchmark have used a one-pass
approach to sorting. This requires a main memory of
slightly over 100 MB. Our implementation required 116
MB to run the benchmark and some additional memory
for the operating system for a total of 160 MB. There
are two distinct phases of the sort benchmark. During
the first phase (also called the read phase), the 100 MB
data file is read. Clearly, we can not begin to sta writing
the output file (second phase - writing phase) until the

241

input file is fully read. Thus, there is no opportunity to
simultaneously do disk reads and disk writes.

The minimum sort time is the time required to
read a 100 MB file from disk and to write the sorted
file back to disk. Qur goal was to come very close
to this minimum. This requires overlapping almost
all the sort processing with I/O. In addition, we
should use the highest bandwidth I/O supported by the
system. We deliberately chose a low cost desktop system
(RS/6000 model 39H) to keep the system cost low. We
also decided to use as few disks as possible, without
compromising on the I/O bandwidth. We chose IBM’s
7133 SSA disk storage sub-system model 500 (a stand
alone tower) with eight 1.1 GB disk drives. Each of
these disks is capable of sustaining an I/O rate of about
7 MB/sec. Four of these disks were connected to an
IBM SSA 4-port adapter which attaches to the RS/6000
microchannel. Two such adapters (total of 8 disks) were
connected to the microchannel (80 MB/sec. peak). The
input and output files were striped across 8 disks. The
striping was handled in software. The stripe size used
was a multiple of 128 KB. Steve Watts of IBM Santa
Teresa Lab provided I /O kernels to do raw asynchronous
I/0O. With this configuration, a 100 MB disk read lasted
for 2.1 seconds resulting in a sustained read bandwidth
of 47 MB/sec. The write phase lasted for 2.55 seconds
resulting in a sustained bandwidth of 39 MB/sec. The
disk sub-system can provide a slightly higher BW during
the write phase. However, during this phase, because of
sort processing, the CPU was saturated.

The disk subsystem was inactive for about 0.45
second. This includes the initial launch of the sort
program, opening the disk files, a gap of approximately
0.1 second between the end of the read phase and the
beginning of the write phase (this is the sort processing
needed before the first write block can be written out),
and the final shut down of the sort program. Thus
total sort time is sum of the read phase (2.1 seconds),
the write phase (2.55 seconds), and an overhead of
0.45 second, for a total of 5.1 seconds. Clearly,
performance of the disk sub-system was crucial to the
overall performance of our disk to disk sort.

Our Datamation sort program is primarily written
in Fortran with I/O kernel extensions (written in C)
provided by Steve Watts of IBM Santa Teresa Lab. In
all three executables are created. The first executable
generates 100 byte records with 10-byte random keys
and writes it out on a set of nr logical volumes using a
disk stripe of size kr*128KB where kr is a an integer.
The parameters nr, kr, and the number of records
to be generated are chosen at the run time. The
second program reads the data generated by the record
generation program, using the parameters nr and kr
(chosen during record generation phase). It sorts the
file in memory and writes out the sorted file on nw

Table 1: Performance and price/performance of 100MB Datamation Sort Benchmark

System # cpu & clock controllers drives memory time total disk + ¢/sort
MHz MB seconds price ctrl

Results from [10] presented at SIGMOD’94:

DEC-7000-AXP 3-200 7 fast-SCSI 28 RZ26 256 7.0 312K$ 123K$ 1.4¢

DEC-7000-AXP 1-200 6 fast-SCSI 16 RZ74 256 9.1 247TK$ 65K$ 1.4¢

DEC-3000-AXP 1-150 5 SCSI 10 RZ26 256 13.7 97K$ 48K$ 0.9¢

Results from [11] presented at SIGMOD’95:

SGI Challenge XL 12-CPUs ? 96 2GB 35 ? ? ?

Qur Results:

IBM RS/6000 39H 1-66.6 2 SSA 8 7133 256 5.1 73K$ 20K$ 0.2¢

logical volumes using a disk stripe of size kw*128KB.
The parameters nw, kw, and the number of records
to be sorted are chosen at the run time. Finally, the
third program reads the sorted file generated by the
sort program and checks it to make sure that records are
indeed correctly sorted. In this paper, we will describe
details of the sort program. In our experiments, we
obtained best performance using eight disks for reads
and writes (nr = nw = 8), read stripe size of 256 KB,
and write stripe size of 512 KB.

4 Read Phase

The sort benchmark is launched from AIX command
line. A shared memory segment is obtained for read
and write buffers. This is followed by opening of the
striped input file (nr logical volumes). At this point,
we are roughly 0.1 second into the sort program, Now,
we are ready to begin reading the input file. All read
requests are initiated using a read block size of 256 KB.
These are issued asynchronously and the control returns
to the program. However, as part of the read request,
the corresponding 256 KB block of memory is initialized
by the operating system. This is also referred to as
“pinning the memory” by some authors. This takes
approximately 2 msec. of CPU time for a 256 KB block.
We used double buffering for read requests and therefore
initially two read requests were issued for each disk.
After all initial reads have been initiated, a checkio
routine is called to see if any of the reads have
completed. When a read is completed, another read
request is immediately initiated for the corresponding
device so that at all times there are two read requests
for each of the logical volumes. After initiating the read
request, bucket sorting (explained in a later section) is
done on the block which was just read. During bucket
sorting, it was decided to use 128 buckets, primarily

242

based on the TLB consideration [15]. When this bucket
sorting is completed, checkio routine is called to see
if another block has arrived and the process described
above is repeated.

The scheme just described extracts maximum band-
width from the disk system by keeping them fully busy
reading a large sequential file. The disk system band-
width is primarily limited by the microchannel. How-
ever, the CPU is also fully utilized in servicing 1/0,
generating and initializing 100 MB addressing space for
the read buffer, and in bucket sorting of 100 MB of in-
put data. The disk read phase for the input file lasts for
about 2.1 seconds resulting in a sustained disk system
bandwidth of 47 MB/sec. During this period, estimated
breakdown of the CPU time is as follows: initiating,
servicing, and checking on I/O accounts for about 1.1
seconds, initializing 100 MB of addressing space takes
about 0.75 second, and bucket sorting on 100 MB of
input buffer takes about 0.25 second.

At the end of the read phase, we close all input files
and now we are ready to begin the write phase. At this
point, we are approximately 2.2 seconds into the sort
program.

5 Write Phase

During the read phase, we utilized a read buffer of size
100 MB and therefore any read block of size 256 KB
could be read independent of other blocks. However,
during write phase, to save memory, we utilized a much
smaller write buffer. We created two write buffers of
size 4 MB each. Each of these buffers consisted of eight
blocks of size 512 KB each; one for each disk. We
overlapped writing of one output buffer with creation
of the other output buffer.

In the write phase, first we open all the output files.
Then we begin with completely sorting (on 10-byte

keys) individual buckets (starting with bucket 0) and
moving records from the input buffer to the output
buffer (in the sorted sequence). This continues till a
complete output buffer is obtained.

At this point, we are about 0.1 second into the write
phase and now we are ready to start writing the output
file. We initiate eight writes (one for each disk) for the
first buffer and then resume sorting to fill the second
output buffer. Now, we must wait for completion of I/O
for the first buffer before utilizing it to process the next
set of records. QOur measurements indicate that CPU
never had to wait in this phase. The output buffer was
always available (I/O completed) when needed. This
phase turned out to be CPU bound rather than I/O
bound. The only time CPU was idle was during writing
of the last 4 MB bufler.

The entire write phase lasted for approximately 2.65
seconds. During this period, disk subsystem was busy
for about 2.55 seconds resulting in a sustained write
bandwidth of 39 MB/sec. The I/O subsystem could
have delivered more bandwidth if more CPU cycles
were available. This could be achieved by reducing
the operating system overhead in servicing I/O. The
approximate breakdown of the CPU time during the
write phase is as follows: initializing memory needed
for the output buffers and opening the output files is
about 0.1 second, initiating, servicing, and checking on
I/O is about 1.1 seconds, and sorting of one million
keys (already bucket sorted on high order 7 bits) took
about 0.35 second, moving one million 100 byte records
from the input buffer (random access) to output buffers
(sequential access) accounted for about 1 second, and
waiting for the last buffer to be written out took about
0.1 second. Now we are 4.85 second into the sort
program.

The write phase is followed by the shutdown phase.
During this phase, we close all output files and release
all the memory back to the system (this takes approxi-
mately 0.2 second), and return to AIX command shell.

6 Summary Of Results

To summarize, the sort program takes 5.1 seconds from
launch to termination. During this period, the I/O
subsystem takes 2.1 seconds to read 100 MB of data
and 2.55 seconds to write out the output file. There
is an overall overhead of 0.45 second where the I/O
system is not active. The approximate breakdown of
the CPU time is as follows: initiating, servicing, and
checking on I/0O - 2.2 seconds, initializing and releasing
the memory required for the sort application - 1.05
seconds, extraction and sorting of one million keys -
0.6 second, moving of 100 MB of data from input buffer
(random access) to output buffer (sequential access) -
1.0 second, and miscellaneous overheads and wait time

- 0.25 seconds.

243

Note that actual sorting of keys takes only a small
fraction (12%) of the total CPU time. The rest of the
time is taken in servicing I/O, memory, and moving
records. By using sort algorithms well suited to RISC
super scalar processors, we have reduced the actual
sort time to a small fraction. Now the only limiting
factor is I/O. If the operating system involvement in
servicing I/O and memory can be reduced, then CPU
can profitably exploit a higher bandwidth disk system,
resulting in an even higher level of performance. The
bandwidth is eventually limited by the capacity of
the bus connecting the memory system with the disk
system. In the near future, we expect faster buses
connecting the two sub-systems. Even at present, high
end servers have multiple buses connecting the two.
Therefore, in the near future, we can expect bandwidths
in excess of 100 MB/sec. To actually realize this
bandwidth, the operating system has to be made more
efficient in handling large block sequential I/0O. This
is particularly important for decision support systems
where high bandwidth is very important. There is no
technical reason why this can not be done.

7 Bucket Sorting

In bucket sorting, keys are assigned to one of the
k = 2™ buckets, based on the high order m bits of
the keys. This is a very powerful technique, especially
for randomly distributed keys. It avoids m compares
per key. This also improves data locality in sorting
keys within a bucket, because now each bucket is much
smaller and may actually fit in cache. We first used this
technique to sort an integer array of size 33 million on
an IBM R/S 6000 SP2 scalable parallel computer. This
is one of the kernels of an established supercomputer
benchmark published by the NAS group of NASA Ames
[12]. The key distribution for this benchmark was
Gaussian and therefore we modified our implementation
to work well on non-uniformly distributed keys [13]-
[14]. The sorting is repeated 10 times on integer arrays
of size 2%% (33 million). Since keys are generated as
part of the program, this program does not require
any I/O. However, it does require rather extensive
communication between all nodes of the machine to
exchange keys and ranks. On a 64 node SP2, it takes
less than four seconds to do the benchmark (less than
0.4 second per sort, as ten sorts are done during the
benchmark). By comparison, a Cray T3-D with alpha
processors requires four times as many nodes to achieve
this level of performance [13]. For SP2, this works out
to about 1.25 million keys sorted per node per second.
More than half the time was spent in communication.
The actual compute time per million keys per node was
about 0.32 second. The Datamation benchmark takes
approximately 0.6 second (or about 40 cycles per key).
The increase is primarily due to the additional cost of

extracting keys from 100 byte records. The cost due to
longer keys (80 bits vs 21 bits for the NAS benchmark)

is minimal.

In implementing a bucket sort, the number of buckets
used is limited primarily by cache and TLB considera-
tions. If & = 2™ buckets are used, then during bucket
sorting, there are k active memory pointers where data
is being written. To avoid cache/TLB thrashing, cache
and TLB should have at least k slots. RS/6000 39H has
1024 cache lines of size 128 bytes each and 512 TLB slots
for 4K size pages. Based on the TLB considerations and
actual measurements, we decided to do bucket sorting
on high order 7 bits (m = 7), resulting in 128 buck-
ets. In bucket sorting, we stored next 31 bits of the key
(after masking off high order 7 bits which have already
been sorted in the bucket sorting phase) as an integer
word (32 bits). We decided to use only 31 key bits so
that we do not have to deal with negative integers. We
also stored the location of the record in memory (cor-
responding to the key), as another 32-bit integer word
next to it. Throughout rest of the processing, these two
integers (middle key bits and record pointer) are kept
together so that when sorting is completed and keys
have been arranged in sorted order, we have the loca-
tion of the corresponding record available next to it.
This record location information is eventually used to
move records from the input buffer to the output buffer.
For the purpose of moving data, these two 32-bit inte-
gers can also be treated as a 64-bit floating point num-
ber. On many machines, load/stores on 64-bit floating
point numbers do not take any longer than load/stores
for 32 bit integers. This considerably improves perfor-
mance. RS/6000 power2 processors also support quad
load/store instructions which can load/store 128-bits of
data into floating point registers. It can do two such
instructions in a cycle. As long as we are only doing
copies, it does not matter what type of registers are
used. Floating point turns out to be better than fixed
point.

In bucket sorting, we are accessing and extracting
only 38 (7 + 31) high order bits of the key. However,
this requires bringing a 100 byte record into cache. This
is where most of the time is spent. However, fortunately
records are accessed sequentially. To minimize the cache
miss penalty, we implemented a software cache pre-
fetching scheme, whereby, we load (but not actually use
it) a four byte data in a register, from the second next
record. This results in a cache miss which is serviced
concurrently with processing of the current record (key
extraction, storing two 32-bit integers in appropriate
buckets, update pointers etc.). This software cache
pre-fetching is crucial to high performance in memory
systems with long latencies [15]. For sequential access,
some form of hardware pre-fetching can be implemented
which can bring the next set of cache lines. However,

244

for random access, hardware pre-fetching does not
work and only software pre-fetching can provide the
performance.

As mentioned before, this phase is estimated to take
about 0.25 second for one million records on a 66.6 MHz
machine. This works out to about 17 cycles per record.
The record size is slightly smaller than cache line size of
128 bytes. Almost all the time in this phase is taken
in servicing the cache misses. Fortunately, all other
processing can be overlapped with it.

Because of the random distribution of keys, every
bucket consists of approximately 1,000,000/128 = 7812
(key, pointer) pairs. This occupies 64 KB of memory per
bucket. The machine has a 128 KB cache and therefore,
two such buffers can fit in cache. This makes further
sorting of keys, almost entirely cache resident.

8 Radix/Distribution Count Sorting

Let us discuss further sorting which is done one bucket
at a time. In radix sorting, you start sorting from low
order key bits and move towards high order key bits. To
implement pure radix sorting, you will need to sort on
all the remaining key bits (80 — 7 = 73). However, this
is an overkill for random keys. As a rule of thumb, for
random keys, the probability of a tie rapidly reduces,
once you go past log(n) key bits where n is the number
of keys to be sorted. In our case, log(n) is 20, and we
have already sorted on high order 7 bits. We decided
to sort on 22 additional key bits. This will bring total
number of key bits sorted = 7+ 22 = 29, and it reduces
the probability of a tie in 29 bits to be approximately
(27%) x n = 0.002. This is a low enough probability
that a simple scan and exchange algorithm (described
in the next section) will sort the entire sequence at a
very low cost. Remember, one of the primary aims in
developing this sort algorithm is to avoid compares for
RISC processors. In a high performance RISC system
with multiple functional units (such as RS/6000 39H),
compare and branch sequences are very expensive.

Let us discuss how we sort on the next 22 bits, These
are grouped into two pairs of 11 bits each. We set up
two count arrays of size 2'! each. Countl array is used
to count on all 11-bit patterns in the low order, and
Count2 array is used to count on all 11-bit patterns
in the high order. One pass through the key array
{on a single bucket), provides the count information
for Countl as well as Count2. These two arrays are
integrated (discrete summation) to produce Rankl and
Rank?2 atrays of size 2!! each. Rankl(i) is the count
of keys having their low order 11-bit value less than
i. Rank2(¢) is defined similarly. Next, Rankl array is
used to sort on low order bits. The (key, pointer) pair is
moved to an AUX array, using the Rankl array value
corresponding to 11 low order bits. This is followed by
updating the Rankl value to point to the next location

in AUX array. This scheme is also called a distribution
count sort. It has 21! active memory pointers. However,
since AU X array fits in cache, there is no performance
impact. Floating point values are used to represent the
64-bit (key, pointer) pair. This improves performance
in moving data from one array to another array.

The next step is to do similar sorting based on the
Rank?2 array, which corresponds to 11 high order bits.
This time, the (key, pointer) pairs are moved back
to the original bucket. It can be shown that this
results in sorting on 22 high order bits. This has
been accomplished without any compares and using
instructions which can execute in parallel resulting in
a large number of instructions executed per cycle on
a processor having multiple execution units. This
concept can be extended to sort on any number of bits.
Typically, one pass through data can sort 11-12 key bits.
At the end of this phase, we have an almost sorted key
list. The probability of a tie (on 29 bits sorted so far)
is around 0.002. Furthermore, the probability of having
multiple ties is even lower. The final sorting to resolve
these ties is described in the next section.

9 Final Sorting

During this phase, we use all 31 key bits stored in the
bucket. If key(i) is less than key(i + 1), then keys are
in the right sequence, if key(i) equals key(i + 1), then
we have to examine the remaining (80 — 38 = 42) key
bits to decide on their ordering. If key(7) is greater than
key(i+1), then keys are in the wrong sequence and they
have to be exchanged, the ¢ pointer has to be reduced
by one, and further comparisons are needed to make
sure that they are in the right order. All this requires
compare and branch sequences which we want to avoid.
Therefore, we work on a section of keys (of size 64, a
tunable parameter). For this section, the probability
of having any key in a wrong order is approximately
0.602 %64 = 0.128. This is low enough for our purposes.
We compute differences, key(i) - key(:+1), and “AND”
them together for a section. During this computing, a
high degree of functional parallelism can be exploited,
by unrolling the code. If the overall “ANDED?” value is
negative then all keys are in the right order. Otherwise,
we process the section using compares, one element at
a time. Note that by reducing the probability of ties,
we have eliminated most of the compares. Overall, we
have reduced the number of compares per key from
log(n) = 20 to approximately 0.128.

10 Record Permutation

After a bucket is fully sorted, its (key, pointer) array is
used to move records from the input buffer to the output
buffer. Pointer(:) points to the input record which
is to be stored in i-th position of the output buffer.
This requires random access on the input buffer and

245

sequential access on the output buffer. Random access
on the input buffer is very expensive. It invariably
results in a cache and TLB miss; possibly two misses
if the record crosses cache line and/or page boundary.
Again, software pre-fetching helps in hiding some of
these latencies. While, we are moving the current
record, we pre-fetch the next record. Floating point
quad load/store instructions are used to copy data. As
explained before, a single quad load/store instruction
can handle 16 bytes of data and two such instructions
can be executed in one cycle. This also improves
performance.

This phase is estimated to take about 1.0 second.
This works out to about 66 cycles in moving a 100 byte
record from input buffer to the output buffer. Most of
this time is spent in cache and TLB miss penalties. This
penalty could have been reduced if we had implemented
a two-stage move. However, this will require moving
records twice and overall performance may not improve.

11 Summary and Conclusions

In this paper, we have described a sort technique which
essentially eliminates all compares and additionally
requires very few passes through data. On a desktop
IBM RS/6000 39H workstation, it takes only 0.6 second
to extract and sort one million keys. The ideas
presented in this paper can be generalized to sort
variable length keys with skews.

We were able to exploit functional parallelism pro-
vided by power2 processor line of RS/6000. We also
reduced the number of passes through keys from 20 to
5. All these factors are responsible for very high per-
formance in (key, pointer) sorting. Although our cur-
rent implementation is for this benchmark, similar ideas
can be applied to implement a general sorting routine
with variable length binary keys. We have already im-
plemented a routine to sort 32-bit integer keys which
gives comparable performance for almost any kind of
key skews.

The Datamation sort benchmark sorts a 100 MB disk
resident file and stores the sorted output file back to
disk. We combined our high performance sort algorithm
with a high performance I/O system (IBM SSA disks)
to achieve a new performance {for a uni-processor) and
price/performance record. Clearly, more work needs to
be done to further advance the state of the art. One of
the major issue relates to significant operating system
overhead in servicing I/O. If this can be improved, even
higher level of performance can be achieved.

Acknowledgments: This work could not have been
done without help and support from many individuals.
John Cocke made me aware of this benchmark and the
work on Alpha Sort. Steve Watts was instrumental in

completing this project. He provided the crucial I/O
software and ran the benchmark on various platforms.
Mahesh Joshi helped me in installing the I/O software.
Eliot Lum provided SSA hardware. Mike Andreasan
assembled the benchmark system. Pat Buckland, Steve
Furniss, and David Whitworth provided very important
performance data and advice on SSA hardware. My
manager Fred Gustavson was very supportive of this
work and he arranged for all the resources needed
to carry out this work. I also benefited from many
technical discussions with him and M. Zubair. Clod
Barrera, Mike Blasgen, Ashok Chandra, John Forrest,
Dan Graham, Ambuj Goyal, James Hamilton, Paul
Horn, Bala Iyer, David Jensen, Anant Jhingran, Jai
Menon, Alan Petersburg, Bill Pulleyblank, Deepu
Rathi, Bernie Rudin, and Irving Wladawsky-Berger
provided constant support and encouragement. I had
many useful interchanges with Jim Gray and Chris
Nyberg that helped me understand issues related to
sorting. They also provided a pre-print of their paper.
Several other people helped me in various phases of this
work.

References

(1] Anon-Et-Al. ”A Measure of Transaction Processing
Power”, Datamation, V. 31(7), pages 112-118,

1985.

Baugsto, B.A.W., Greipsland, J.F. ”Parallel Sorting
Methods for Large Data Volumes on a Hypercube
Database Computer”, Proc. 6th Intl. Workshop
on Database Machines, Deauville, France, Springer
Verlag Lecture Notes No. 368, June 1989, pp. 126-
141.

Baugsto, B.A.W., Greipsland, J.F., Kamerbeek,
J. ”Sorting Large Data Files on POMA”, Proc.
CONPAR-90 VAPPIV, Springer Verlag Lecture
Notes No. 357, Sept. 1990, pp. 536-547.

Cvetanovic, Z., Bhandarkar, D. ”Characterization
of Alpha AXP Performance using TP and SPEC
Workloads”, Proc. Int. Symposium on Computer
Arxchitecture, April 1994.

DeWitt, D.J.,, Naughton, J.F., Schneider, D.A.
"Parallel Sorting on a Shared Nothing Architecture
Using Probabilistic Splitting”, Proc. First Int. Conf.
on Parallel and Distributed Info Systems, IEEE
Press, pp- 280-291, Jan. 1992.

Gray J. (ed.) The Benchmark Handbook for Database
and Transaction Processing Systems, Morgan Kauf-

man, San Mateo, 1991. pp. 18-32, 1988.

Knuth, D.E., Sorting and Searching, The Art of
Computer Programmang, Addison Wesley, Reading,
MA, 1973.

Tsukerman, A., "FastSort - An External Sort Using
Parallel Processing”, Proc. SIGMOD 1990, pp. 88-
101.

2]

(8]

246

[13]

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J.,
Lomet D., ”AlphaSort: A RISC Machine Sort”,
Proc. SIGMOD 1994, pp. 233-242.

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J.,
Lomet D., "AlphaSort: A Cache Sensitive Parallel
External Sort”, To be published in the Proc. of
VLDB.

SGI Media Brief dated May 22, 1995.

Bailey, D., Barszcz, E., Barton, J. Browning, D.,
Carter, R., Dagum, L., Fatoohi, R., Fineberg, S.,
Frederickson, P., Lasinski, T., Schereiber, R., Simon,
H., Venkatakrishnan, V., Weerantunga, S., The NAS
Parallel Benchmarks, Technical Report RNR-94-007,
NASA Ames Research Center, March, 1994.

Agarwal R. C., Gustavson F. G., Zubair M., ”A Scal-
able Parallel Implementation of the NAS Integer Sort
Benchmark”, Proc. Int. Workshop on Parallel Pro-
cessing, Bangalore, India, pp. 463-477, December,
1994.

Agarwal R. C., Alpern B., Carter, L., Gustavson, F.
G., Klepacki, D. J., Lawrence, R., Zubair, M., "High
performance Parallel Implementations of the NAS
Kernel Benchmarks on the IBM SP2”, IBM Systems
Journal, V. 34(2), pp. 263-272, 1995.

Agarwal R. C., Gustavson F. G., Zubair M., "Ex-
ploiting Functional Parallelism of Power2 to De-
sign High-Performance Numerical Algorithms”, IBM
Journal of Research and Development, V. 38(5), pp.
563-574, 1994.

