
A Super Scalar Sort Algorithm for RISC Processors

Ramesh C. Agarwal

IBM T.J. Watson Research Center

P.O. BOX 218

Yorktown Heights, NY 10598

agarwal@wat son.ibm.com

Abstract

The compare and branch sequences required in a traditional

sort algorithm can not efficiently exploit multiple execution

units present in currently available high performance RISC

processors. This is because of the long latency of the

compare instructions and the sequential algorithm used in

sorting. With the increased level of integration on a chip,

this trend is expected to continue. We have developed new

sort algorithms which eliminate almost all the compares,

provide functional parallelism which can be exploited by

multiple execution units, significantly reduce the number of

passes through keys, and improve data locality. ‘These new

algorithms outperform traditional sort algorithms by a large

factor.

For the Datamation disk to disk sort benchmark (one

million 100-byte records), at SIGMOD’94, Chris Nyberg et

al presented several new performance records using DEC

alpha processor based systems.

We have implemented the Datamation sort benchmark

using our new sort algorithm on a desktop IBM RS/6000

model 39H (66.6 MHz) with 8 IBM SSA 7133 disk drives

(total cost $73K). The total elapsed time for the 100 MB

sort was 5.1 seconds (VS the old uni-processor record of 9.1

seconds). We have also established a new price performance

record (0.2# vs the old record of 0.9#, as the cost of the sort).

The entire sort processing was overlapped with 1/0. During

the read phase, we achieved a sustained BW of 47 MB/see

and during the write phase, we achieved a sustained BW of

39 MB/see. Key extraction and sorting of one million 10-

byte keys took only 0.6 second of CPU time. The rest of the

CPU time was used in moving records, servicing 1/0, and

other overheads.

Algorithmic details leading to this level of performance

are described in this paper. A detailed analysis of the CPU

time spent during various phases of the sort algorithm and

1/0 is also provided.

Permission to make digital~ard copy of part or all of this work for personal
or classroom use is granted without fee provided that mpies are not made
or distributed for profit or commercial advantage, the rxpyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGMOD ’96 6/96 Montreal, Canada
01996 ACM 0-89791 -794-4/96/0006 ...$3.50

1 Introduction

In 1985 [1], a group of database experts defined three

basic benchmarks to measure the transaction processing

performance of computer systems. One of these

benchmarks does a disk to disk sort of one million

records of 100 bytes each. The relevant measures are

elapsed time and cost. The following is a direct quote

from [1].

“The sort benchmark measures the performance

possible with the best programmers using all the mean

tricks in the system. It is an excellent test of the

inputioutput architecture of a computer system and its

operating system.

The definition of the sort benchmark is simple. The

input is 1 million records stored in a sequential disk file,

The first 10 bytes of each record are the key. The keys

of the input file are in random order. The sort program

produces an output file containing the input sorted in

key order. The sort may use as many scratch disks and

as much memory as it likes.”

The elapsed time is the time from start to the end

of the sort program and cost is the time-weighted cost

of the hardware and software packages used in the sort.

The article uses a five year cost averaging and a second

costs about 6 .3 E-9 of the five year capital cost. Thus if

a workstation costing $ 100K takes 10 seconds to do the

benchmark, then cost of 100 MB sort is 0.63#.

2 Prior work on the sort benchmark

Over last ten years, several authors [2]- [10] have

presented their results on this sort benchmark. Nyberg

et al. [9]- [1 O] have given an excellent summary of prior

work. During these ten years, the time required to do

this benchmark has reduced from an hour to just a few

seconds, an improvement by three orders of magnitude

or roughly by a factor of two every year. The cost of

sort has also reduced from $4.61 to under a penny which

is roughly a 2x improvement every year.

At SIGMOD’94, Nyberg et al. [10] presented

several results which established new records in many

categories. The best single processor performance of

240

9.1 seconds was obtained on a 200 MHz DEC-7000-AXP

system using 16 disk drives, The system cost was $247K

resulting in a cost of 1.4# for the 100 MB sort. The best

price/performance record of O.9/ was obtained on a 150

MHz DEC-3000-AXP using 10 disk drives. The system

cost was $97K and the benchmark took 13.7 seconds.

Our results significantly improve on both these numbers

using a 66.6 MHz RS/6000 desktop workstation model

39H with 256 MB of memory, 128 KB of L1 cache, no

L2 cache, and 8 IBM 7133 1.1 GB SSA disk drives.

The sort application needed only 160 MB of memory

to run. Therefore, for the same system cost, we could

sort a bigger file (approximately 180 MB or so). The

base cost of the system with 64 MB of memory is $31K.

The overall system cost including all the hardware and

software is $73K. On this system, the benchmark ran

in 5.1 seconds, resulting in the sort cost of about 0.2$.

This is more than a factor of four cheaper compared to

the previous best result.

In the same paper, they also presented results on

shared memory systems. They created a new record

time of 7.0 seconds on a 200 MHz, 3-CPU DEC-7000-

AXP system using 28 disk drives, The cost of this

system was $312K. Our results have improved on this

time by a factor of 1.37 on a system costing five times

less. However, our results are not the fastest ever

reported. That distinction goes to SGI. At SIGMOD’95

they [11] reported a time of 3,5 seconds on a 12-CPU

Challenge XL system using 96 disk drives. SGI did

not report the system cost. Chris Nyberg of Ordinal

Technology provided the sort software. At that time,

SGI also announced a new record of 1.6 GB for the

minute sort benchmark [9]-[10] on the same system. The

estimated system cost of this machine is $700K (could

be off by 2x either way). This was the system cost to

do the 1.6 GB sort. Clearly, to do just the 100 MB

Datamation sort benchmark will require less memory

and therefore a somewhat cheaper system. For the

purpose of this paper, we will ignore the system cost

for the SGI machine. The table below summarizes the

results reported at SIGMOD’94, SIGMOD’95, and our

results.

3 Overview

Because memory is cheap, it is reasonable to implement

a one-pass sorting for a 100 MB file. All recent

implementations of the benchmark have used a one-pass

approach to sorting. This requires a main memory of

slightly over 100 MB. Our implementation required 116

MB to run the benchmark and some additional memory

for the operating system for a total of 160 MB. There

are two distinct phases of the sort benchmark. During

the first phase (also called the read phase), the 100 MB

data file is read. Clearly, we can not begin to sta writing

the output file (second phase - writing phase) until the

input file is fully read. Thus, there is no opportunity to

simultaneously do disk reads and disk writes,

The minimum sort time is the time required to

read a 100 MB file from disk and to write the sorted

file back to disk. Our goal was to come very close

to this minimum. This requires overlapping almost

all the sort processing with 1/0. In addition, we

should use the highest bandwidth 1/0 supported by the

system. We deliberately chose a low cost desktop system

(RS/6000 model 39H) to keep the system cost low. We

also decided to use as few disks as possible, without

compromising on the 1/0 bandwidth. We chose IBM’s

7133 SSA disk storage sub-system model 500 (a stand

alone tower) with eight 1.1 GB disk drives. Each of

these disks is capable of sustaining an 1/0 rate of about

7 MB/see. Four of these disks were connected to an

IBM SSA 4-port adapter which attaches to the RS/6000

microchannel. Two such adapters (total of 8 disks) were

connected to the microchannel (80 MB/see. peak). The

input and output files were striped across 8 disks. The

striping was handled in software. The stripe size used

was a multiple of 128 KB. Steve Watts of IBM Santa

Teresa Lab provided 1/0 kernels to do raw asynchronous

1/0. With this configuration, a 100 MB disk read lasted

for 2.1 seconds resulting in a sustained read bandwidth

of 47 MB/see. The write phase lasted for 2.55 seconds

resulting in a sustained bandwidth of 39 MB/see. The

disk sub-system can provide a slightly higher BW during

the write phase. However, during this phase, because of

sort processing, the CPU was saturated.

The disk subsystem was inactive for about 0.45

second. This includes the initial launch of the sort

program, opening the disk files, a gap of approximately

0.1 second between the end of the read phase and the

beginning of the write phase (this is the sort processing

needed before the first write block can be written out),

and the final shut down of the sort program. Thus

total sort time is sum of the read phase (2.1 seconds),

the write phase (2.55 seconds), and an overhead of

0,45 second, for a total of 5.1 seconds. Clearly,

performance of the disk sub-system was crucial to the

overall performance of our disk to disk sort.

Our Datamation sort program is primarily written

in Fortran with 1/0 kernel extensions (written in C)

provided by Steve Watts of IBM Santa Teresa Lab. In

all three executable are created. The first executable

generates 100 byte records with 10-byte random keys

and writes it out on a set of nr logical volumes using a

disk stripe of size kr* 128KB where kr is a an integer.

The parameters nr, kr, and the number of records

to be generated are chosen at the run time. The

second program reads the data generated by the record

generation program, using the parameters nr and kr

(chosen during record generation phase). It sorts the

file in memory and writes out the sorted file on nw

241

Table 1: Performance and price/performance of 100MB Datamation Sort Benchmark

System # cpu & clock controllers drives memory time total disk + #/sort

MHz MB seconds Price ctrl

Results from [10] presented at SIGMOD’94:

DEC-7000-AXP 3-200 7 fast-SCSI 28 RZ26 256 7.0 312K$ 123K$ 1.4{

DEC-7000-AXP 1-200 6 fast-SCSI 16 RZ74 256 9.1 247K$ 65K$ 1.4f!

DEC-3000-AXP 1-150 5 SCSI 10 RZ26 256 13.7 97K$ 48K$ o.9#

Results from [11] presented at SIGMOD’95:

SGI Challenge XL 12-CPUS ? 96 2GB 3.5 ? ? ?

Our Results:

IBM RS/6000 39H 1-66.6 2 SSA 87133 256 5.1 73K$ 20K$ o.2#

logical volumes using a disk stripe of size kw*128KB.

The parameters nw, kw, and the number of records

to be sorted are chosen at the run time. Finally, the

third program reads the sorted file generated by the

sort program and checks it to make sure that records are

indeed correctly sorted. In this paper, we will describe

details of the sort program. In our experiments, we

obtained best performance using eight disks for reads

and writes (nr = nw = 8), read stripe size of 256 KB,

and write stripe size of 512 KB.

4 Read Phase

The sort benchmark is launched from AIX command

line. A shared memory segment is obtained for read

and write buffers. This is followed by opening of the

striped input file (nr logical volumes). At this point,

we are roughly 0.1 second into the sort program, Now,

we are ready to begin reading the input file. All read

requests are initiated using a read block size of 256 KB.

These are issued asynchronously and the control returns

to the program. However, as part of the read request,

the corresponding 256 KB block of memory is initialized

by the operating system. This is also referred to as

“pinning the memory” by some authors. This takes

approximately 2 msec. of CPU time for a 256 KB block.

We used double buffering for read requests and therefore

initially two read requests were issued for each disk.

After all initial reads have been initiated, a checkio

routine is called to see if any of the reads have

completed. When a read is completed, another read

request is immediately initiated for the corresponding

device so that at all times there are two read requests

for each of the logical volumes. After initiating the read

request, bucket sorting (explained in a later section) is

done on the block which was just read. During bucket

sorting, it was decided to use 128 buckets, primarily

based on the TLB consideration [15]. When this bucket

sorting is completed, checkio routine is called to see

if another block has arrived and the process described

above is repeated.

The scheme just described extracts maximum band-

width from the disk system by keeping them fully busy

reading a large sequential file. The disk system band-

width is primarily limited by the microchannel. How-

ever, the CPU is also fully utilized in servicing 1/0,

generating and initializing 100 MB addressing space for

the read buffer, and in bucket sorting of 100 MB of in-

put data. The disk read phase for the input file lasts for

about 2.1 seconds resulting in a sustained disk system

bandwidth of 47 MB/see. During this period, estimated

breakdown of the CPU time is as follows: initiating,

servicing, and checking on 1/0 accounts for about 1.1

seconds, initializing 100 MB of addressing space takes

about 0.75 second, and bucket sorting on 100 MB of

input buffer takes about 0.25 second.

At the end of the read phase, we close all input files

and now we are ready to begin the write phase. At this

point, we are approximately 2,2 seconds into the sort

program.

5 Write Phase

During the read phase, we utilized a read buffer of size

100 MB and therefore any read block of size 256 KB

could be read independent of other blocks. However,

during write phase, to save memory, we utilized a much

smaller write buffer. We created two write buffers of

size 4 MB each. Each of these buffers consisted of eight

blocks of size 512 KB each; one for each disk. We

overlapped writing of one output buffer with creation

of the other output buffer.

In the write phase, first we open all the output files.

Then we begin with completely sorting (on 10-byte

242

keys) individual buckets (starting with bucket O) and

moving records from the input buffer to the output

buffer (in the sorted sequence). This continues till a

complete output buffer is obtained.

At this point, we are about 0.1 second into the write

phase andnowwe areready to start writing the output

file. We initiate eight writes (one foreachdisk) for the

first buffer and then resume sorting to fill the second

output buffer. Now, we must wait forcompletionof I/O

for the first buffer before utilizing it to process the next

set of records. Our measurements indicate that CPU

never had to wait in this phase. The output buffer was

always available (1/0 completed) when needed. This

phase turned out to be CPU bound rather than 1/0

bound. The only time CPU was idle was during writing

of the last 4 MB buffer.

The entire write phase lasted for approximately 2.65

seconds. During this period, disk subsystem was busy

for about 2.55 seconds resulting in a sustained write

bandwidth of 39 MB/see. The 1/0 subsystem could

have delivered more bandwidth if more CPU cycles

were available. This could be achieved by reducing

the operating system overhead in servicing 1/0. The

approximate breakdown of the CPU time during the

write phase is as follows: initializing memory needed

for the output buffers and opening the output files is

about 0.1 second, initiating, servicing, and checking on

1/0 is about 1.1 seconds, and sorting of one million

keys (already bucket sorted on high order 7 bits) took

about 0.35 second, moving one million 100 byte records

from the input buffer (random access) to output buffers

(sequential access) accounted for about 1 second, and

waiting for the last buffer to be written out took about

0.1 second. Now we are 4.85 second into the sort

program.

The write phase is followed by the shutdown phase.

During this phase, we close all output files and release

all the memory back to the system (this takes approxi-

mately 0.2 second), and return to AIX command shell.

6 Summary Of Results

To summarize, the sort program takes 5.1 seconds from

launch to termination. During this period, the 1/0

subsystem takes 2.1 seconds to read 100 MB of data

and 2..55 seconds to write out the output file. There

is an overall overhead of 0.45 second where the 1/0

system is not active. The approximate breakdown of

the CPU time is as follows: initiating, servicing, and

checking on 1/0 - 2.2 seconds, initializing and releasing

the memory required for the sort application - 1.05

seconds, extraction and sorting of one million keys -

0.6 second, moving of 100 MB of data from input buffer

(random access) to output buffer (sequential access) -

1.0 second, and miscellaneous overheads and wait time

-0.25 seconds.

Note that actual sorting of keys takes only a small

fraction (12%) of the total CPU time. The rest of the

time is taken in servicing 1/0, memory, and moving

records. By using sort algorithms well suited to RISC

super scalar processors, we have reduced the actual

sort time to a small fraction. Now the only limiting

factor is 1/0. If the operating system involvement in

servicing 1/0 and memory can be reduced, then CPU

can profitably exploit a higher bandwidth disk system,

resulting in an even higher level of performance. The

bandwidth is eventually limited by the capacity of

the bus connecting the memory system with the disk

system. In the near future, we expect faster buses

connecting the two sub-systems. Even at present, high

end servers have multiple buses connecting the two.

Therefore, in the near future, we can expect bandwidths

in excess of 100 MB/see. To actually realize this

bandwidth, the operating system has to be made more

efficient in handling large block sequential 1/0. This

is particularly important for decision support systems

where high bandwidth is very important, There is no

technical reason why this can not be done.

7 Bucket Sorting

In bucket sorting, keys are assigned to one of the

k = 2m buckets, based on the high order m bits of

the keys. This is a very powerful technique, especially

for randomly distributed keys. It avoids m compares

per key. This also improves data locality in sorting

keys within a bucket, because now each bucket is much

smaller and may actually fit in cache. We first used this

technique to sort an integer array of size 33 million on

an IBM R/S 6000 SP2 scalable parallel computer. This

is one of the kernels of an established supercomputer

benchmark published by the NAS group of NASA Ames

[12], The key distribution for this benchmark was

Gaussian and therefore we modified our implementation

to work well on non-uniformly distributed keys [13]-

[14]. The sorting is repeated 10 times on integer arrays

of size 225 (33 million). Since keys are generated as

part of the program, this program does not require

any 1/0. However, it does require rather extensive

communication between all nodes of the machine to

exchange keys and ranks. On a 64 node SP2, it takes

less than four seconds to do the benchmark (less than

0.4 second per sort, as ten sorts are done during the

benchmark). By comparison, a Cray T3-D with alpha

processors requires four times as many nodes to achieve

this level of performance [13]. For SP2, this works out

to about 1.25 million keys sorted per node per second.

More than half the time was spent in communication.

The actual compute time per million keys per node was

about 0.32 second. The Datamation benchmark takes

approximately 0.6 second (or about 40 cycles per key).

The increase is primarily due to the additional cost of

243

extracting keys from 100 byte records. The cost due to

longer keys (80 bits vs 21 bits for the NAS benchmark)

is minimal.

In implementing a bucket sort, the number of buckets

used is limited primarily by cache and TLB considera-

tions. If k = 2m buckets are used, then during bucket

sorting, there are k active memory pointers where data

is being written. To avoid cache/TLB thrashing, cache

and TLB should have at least k slots. RS/6000 39H has

1024 cache lines of size 128 bytes each and 512 TLB slots

for 4K size pages. Based on the TLB considerations and

actual measurements, we decided to do bucket sorting

on high order 7 bits (m = 7), resulting in 128 buck-

ets. In bucket sorting, we stored next 31 bits of the key

(after masking off high order 7 bits which have already

been sorted in the bucket sorting phase) as an integer

word (32 bits). We decided to use only 31 key bits so

that we do not have to deal with negative integers. We

also stored the location of the record in memory (cor-

responding to the key), as another 32-bit integer word

next to it. Throughout rest of the processing, these two

integers (middle key bits and record pointer) are kept

together so that when sorting is completed and keys

have been arranged in sorted order, we have the loca-

tion of the corresponding record available next to it.

This record location information is eventually used to

move records from the input buffer to the output buffer.

For the purpose of moving data, these two 32-bit inte-

gers can also be treated as a 64-bit floating point num-

ber. On many machines, load/stores on 64-bit floating

point numbers do not take any longer than load/stores

for 32 bit integers. This considerably improves perfor-

mance. RS/6000 power2 processors also support quad

load/store instructions which can load/store 128-bits of

data into floating point registers. It can do two such

instructions in a cycle. As long as we are only doing

copies, it does not matter what type of registers are

used. Floating point turns out to be better than fixed

point.

In bucket sorting, we are accessing and extracting

only 38 (7 + 31) high order bits of the key. However,

this requires bringing a 100 byte record into cache. This

is where most of the time is spent. However, fortunately

records are accessed sequentially. To minimize the cache

miss penalty, we implemented a software cache pre-

fetching scheme, whereby, we load (but not actually use

it) a four byte data in a register, from the second next

record. This results in a cache miss which is serviced

concurrently with processing of the current record (key

extraction, storing two 32-bit integers in appropriate

buckets, update pointers etc.). This software cache

pre-fetching is crucial to high performance in memory

systems with long latencies [15]. For sequential access,

some form of hardware pre-fetching can be implemented

which can bring the next set of cache lines. However,

for random access, hardware pre-fetching does not

work and only software pre-fetching can provide the

performance,

As mentioned before, this phase is estimated to take

about 0.25 second for one million records on a 66.6 MHz

machine. This works out to about 17 cycles per record.

The record size is slightly smaller than cache line size of

128 bytes. Almost all the time in this phase is taken

in servicing the cache misses. Fortunately, all other

processing can be overlapped with it.

Because of the random distribution of keys, every

bucket consists of approximately 1,000,000/128 = 7812

(key, pointer) pairs. This occupies 64 KB of memory per

bucket. The machine has a 128 KB cache and therefore,

two such buffers can fit in cache. This makes further

sorting of keys, almost entirely cache resident.

8 Radix/Distribution Count Sorting

Let us discuss further sorting which is done one bucket

at a time. In radix sorting, you start sorting from low

order key bits and move towards high order key bits. To

implement pure radix sorting, you will need to sort on

all the remaining key bits (80 — 7 = 73). However, this

is an overkill for random keys. As a rule of thumb, for

random keys, the probability of a tie rapidly reduces,

once you go past log(n) key bits where n is the number

of keys to be sorted. In our case, log(n) is 20, and we

have already sorted on high order 7 bits. We decided

to sort on 22 additional key bits. This will bring total

number of key bits sorted = 7 + 22 = 29, and it reduces

the probability of a tie in 29 bits to be approximately

(2-2’) * n = 0.002. This is a low enough probability

that a simple scan and exchange algorithm (described

in the next section) will sort the entire sequence at a

very low cost. Remember, one of the primary aims in

developing this sort algorithm is to avoid compares for

RISC processors. In a high performance RISC system

with multiple functional units (such as RS/6000 39 H),

compare and branch sequences are very expensive.

Let us discuss how we sort on the next 22 bits. These

are grouped into two pairs of 11 bits each. We set up

two count arrays of size 211 each. Count 1 array is used

to count on all 1 l-bit patterns in the low order, and

Coun-t2 array is used to count on all 1 l-bit patterns

in the high order. One pass through the key array

(on a single bucket), provides the count information

for Count 1 as well as C’ount2. These two arrays are

integrated (discrete summation) to produce Rank 1 and

Rank2 arrays of size 211 each. Rank 1(z) is the count

of keys having their low order 1 l-bit value less than

i. Rank2(i) is defined similarly. Next, Rank 1 array is

used to sort on low order bits. The (key, pointer) pair is

moved to an AUX array, using the Rank 1 array value

corresponding to 11 low order bits. This is followed by

updating the Rank 1 value to point to the next location

244

in AUX array. This scheme is also called a distribution

count sort. It has 211 active memory pointers. However,

since AUX array fits in cache, there is no performance

impact. Floating point values are used to represent the

64-bit (key, pointer) pair. This improves performance

in moving data from one array to another array.

The next step is to do similar sorting based on the

Rank2 array, which corresponds to 11 high order bits,

This time, the (key, pointer) pairs are moved back

to the original bucket. It can be shown that this

results in sorting on 22 high order bits. This has

been accomplished without any compares and using

instructions which can execute in parallel resulting in

a large number of instructions executed per cycle on

a processor having multiple execution units. This

concept can be extended to sort on any number of bits.

Typically, one pass through data can sort 11-12 key bits,

At the end of this phase, we have an almost sorted key

list. The probability of a tie (on 29 bits sorted so far)

is around 0.002. Furthermore, the probability of having

multiple ties is even lower. The final sorting to resolve

these ties is described in the next section.

9 Final Sorting

During this phase, we use all 31 key bits stored in the

bucket. If key(i) is less than key(i + 1), then keys are

in the right sequence, if key(i) equals key(i + 1), then

we have to examine the remaining (80 – 38 = 42) key

bits to decide on their ordering. If key(i) is greater than

key(i + 1), then keys are in the wrong sequence and they

have to be exchanged, the z pointer has to be reduced

by one, and further comparisons are needed to make

sure that they are in the right order. All this requires

compare and branch sequences which we want to avoid.

Therefore, we work on a section of keys (of size 64, a

tunable parameter). For this section, the probability

of having any key in a wrong order is approximately

0.002 *64 = 0.128. This is low enough for our purposes.

We compute differences, key(i) - key(i + 1), and “AND”

them together for a section. During this computing, a

high degree of functional parallelism can be exploited,

by unrolling the code. If the overall ‘{ANDED” value is

negative then all keys are in the right order. Otherwise,

we process the section using compares, one element at

a time. Note that by reducing the probability of ties,

we have eliminated most of the compares. Overall, we

have reduced the number of compares per key from

log(n) = 20 to approximately 0.128.

10 Record Permutation

After a bucket is fully sorted, its (key, pointer) array is

used to move records from the input buffer to the output

buffer. Pointer(i) points to the input record which

is to be stored in i-th position of the output buffer.

This requires random access on the input buffer and

sequential access on the output buffer. Random access

on the input buffer is very expensive. It invariably

results in a cache and TLB miss; possibly two misses

if the record crosses cache line and/or page boundary.

Again, software pre-fetching helps in hiding some of

these latencies. While, we are moving the current

record, we pre-fetch the next record. Floating point

quad load/store instructions are used to copy data. As

explained before, a single quad load/store instruction

can handle 16 bytes of data and two such instructions

can be executed in one cycle. This also improves

performance.

This phase is estimated to take about 1.0 second.

This works out to about 66 cycles in moving a 100 byte

record from input buffer to the output buffer. Most of

this time is spent in cache and TLB miss penalties. This

penalty could have been reduced if we had implemented

a two-stage move. However, this will require moving

records twice and overall performance may not improve,

11 Summary and Conclusions

In this paper, we have described a sort technique which

essentially eliminates all compares and additionally

requires very few passes through data. On a desktop

IBM RS/6000 39H workstation, it takes only 0.6 second

to extract and sort one million keys. The ideas

presented in this paper can be generalized to sort

variable length keys with skews.

We were able to exploit functional parallelism pro-

vided by power2 processor line of RS/6000. We also

reduced the number of passes through keys from 20 to

5. All these factors are responsible for very high per-

formance in (key, pointer) sorting. Although our cur-

rent implementation is for this benchmark, similar ideas

can be applied to implement a general sorting routine

with variable length binary keys. We have already im-

plemented a routine to sort 32-bit integer keys which

gives comparable performance for almost any kind of

key skews.

The Datamation sort benchmark sorts a 100 MB disk

resident file and stores the sorted output file back to

disk. We combined our high performance sort algorithm

with a high performance 1/0 system (IBM SSA disks)

to achieve a new performance (for a uni-processor) and

price/performance record. Clearly, more work needs to

be done to further advance the state of the art. One of

the major issue relates to significant operating system

overhead in servicing 1/0. If this can be improved, even

higher level of performance can be achieved.

Acknowledgments: This work could not have been

done

John

work

without help and support from many individuals.

Cocke made me aware of this benchmark and the

on Alpha Sort. Steve Watts was instrumental in

245

completing this project. He provided the crucial 1/0

software and ran the benchmark on various platforms.

Mahesh Joshi helped me in installing the 1/0 software.

Eliot Lum provided SSA hardware. Mike Andreasan

assembled the benchmark system. Pat Buckland, Steve

Furniss, and David Whitworth provided very important

performance data and advice on SSA hardware. My

manager Fred Gustavson was very supportive of this

work and he arranged for all the resources needed

to carry out this work. I also benefited from many

technical discussions with him and M. Zubair. Clod

Barrera, Mike Blasgen, Ashok Chandra, John Forrest,

Dan Graham, Ambuj Goyal, James Hamilton, Paul

Horn, Bala Iyer, David Jensen, Anant Jhingran, Jai

Menon, Alan Petersburg, Bill Pulleyblank, Deepu

Rathi, Bernie Rudin, and Irving Wladawsky-Berger

provided constant support and encouragement. I had

many useful interchanges with Jim Gray and Chris

Nyberg that helped me understand issues related to

sorting. They also provided a pre-print of their paper.

Several other people helped me in various phases of this

work.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Anon-Et-Al. “A Measure of Transaction Processing

Power”, Datamat~on, V. 31(7), pages 112-118,

1985.

Baugsto, B.A. W., Greipsland, J .F. “Parallel Sorting

Methods for Large Data Volumes on a Hypercube

Database Computer”, Proc. 6th Intl. Workshop

on Database Machines, Deauville, France, Springer

Verlag Lecture Notes No. 368, June 1989, pp. 126-

141.

Baugsto, B.A. W., Greipsland, J F., Kamerbeek,

J. “Sorting Large Data Files on POMA, Proc.

CONPAR-90 VAPPIV, Springer Verlag Lecture

Notes No. 357, Sept. 1990, pp. 536-547.

Cvetanovic, Z., Bhandarkar, D. “ Characterization

of Alpha AXP Performance using TP and SPEC

Workloads”, Proc. Int. Symposium on Computer

Architecture, April 1994.

DeWitt, D. J., Naughton, J. F., Schneider, D.A.

“Parallel Sorting on a Shared Nothing Architecture

Using Probabilistic Splitting”, Proc. First Int. Conf.

on Parallel and Distributed Info Systems, IEEE

Press, pp. 280-291, Jan. 1992.

Gray J. (cd.) The Benchmark Handbook for Database

and Transaction Processing Systems, Morgan Kauf-

man, San Mateo, 1991. pp. 18-32, 1988.

Knuth, D. E., Sorting and Searching, The Art Oj

Computer Programmmg, Addison Wesley, Reading,

MA, 1973.

Tsukerman, A., “FastSort - An External Sort Using

Parallel Processing”, Proc. SIGMOD 1990, pp. 88-

101.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J.,

Lomet D., “AlphaSort: A RISC Machine Sort”,

Proc. SIGMOD 1994, pp. 233-242.

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J.,

Lomet D., “ AlphaSort: A Cache Sensitive Parallel

External Sort”, To be published in the Proc. of

VLDB.

SGI Media Brief dated May 22, 1995.

Bailey, D., Barszcz, E., Barton, J. Browning, D.,

Carter, R., Dagum, L., Fatoohi, R., Fineberg, S.,

Fredrickson, P., Lasinski, T., Schereiber, R., Simon,

H., Venkatakrishnan, V.l Weerantunga, S., The NAS

Paraliet Benchmarks, Technical Report RNR-94-007,

NASA Ames Research Center, March, 1994.

Agarwal R. C., Gustavson F. G., Zubair M., “A Scal-

able Parallel Implementation of the NAS Integer Sort

Benchmark”, Proc. Int. Workshop on Parallel Pro-

cessing, Bangalore, India, pp. 463-477, December,

1994.

Agarwal R. C., Alpern B., Carter, L., Gustavson, F.

G., Klepacki, D. J., Lawrence, R., Zubair, M., “High

performance Parallel Implement ations of the NAS

Kernel Benchmarks on the IBM SP2°, IBM Systems

Journal, V. 34(2), pp. 263-272, 1995.

Agarwal R. C., Gustavson F. G., Zubair M., “Ex-

ploiting Functional Parallelism of Power2 to De-

sign High-Performance Numerical Algorithms”, IBM

Journal of Research and Development, V. 38(5), pp.

563-574, 1994.

246

