The Five-Minute Rule Ten Years Later,
and Other Computer Storage Rules of Thumb

Jim Gray, Goetz Graefe
Microsoft Research, 301 Howard St. #830, SF, CA 94105
{ Gray, GoetzG} @Microsoft.com

Abstract:

Simple economic and performance arguments sug-
gest appropriate lifetimes for main memory pages
and suggest optimal page sizes. The fundamental
tradeoffs are the prices and bandwidths of RAMs and
disks. The analysisindicates that with today’s tech-
nology, five minutes is a good lifetime for randomly
accessed pages, one minute is a good lifetime for
two-pass sequentially accessed pages, and 16 KB isa
good size for index pages. These rules-of-thumb
change in predictable ways as technology ratios
change. They also motivate the importance of the
new Kaps, Maps, Scans, and $/Kaps, $/Maps,
$/TBscan metrics.

1. The Five-Minute Rule Ten Years Later

All aspects of storage performance are improving,
but different aspects are improving at different rates.
The charts in Figure 1 roughly characterize the per-
formance improvements of disk systems over time.
The caption describes each chart.

In 1986, randomly accessed pages obeyed the five-
minute rule [1]: pages referenced every five minutes
should have been kept in memory rather than reading
them from disk each time. Actualy, the break-even
point was 100 seconds but the rule anticipated that

future technology ratios would move the break-even
point to five minutes.

The five-minute rule is based on the tradeoff between
the cost of RAM (e.g., DRAM) and the cost of disk
accesses. The tradeoff is that caching pages in the
extra memory can save disk 10s. The break-even
point is met when the rent on the extra memory for
cache ($/page/sec) exactly matches the savings in
disk accesses per second ($/disk_access/sec). The
break even time is computed as:
BreakEvenReferencel nterval (seconds) =
PagesPerMBofRAM _ x PricePerDiskDrive (1)
AccessPerSecondPerDisk PricePer MBofRAM

The disk price includes the cost of the cabinets and
controllers (typically 30% extra) The equations in
[1] were more complex because they did not realize
that you could factor out the depreciation period.

The price and performance from a recent DELL
TPC-C benchmark [2] gives the following parameters
for Equation 1:

PagesPerMBofRAM = 128 pages/MB (8KB pages)
AccessesPerSecondPerDisk = 64 access/sec/disk
PricePerDiskDrive = 2000 $/disk (9GB + controller)
PricePerMBofRAM = 15 $/MB_DRAM

Disk Performance vs Time

100 - 100 100

=
o
)
(

access time (ms)
=
o
bandwidth (MB/s)

Disk Performance vs Time
_(accesses/ second & Capacity,

Storage Price vs Time

Accesses per
Second

T

1980 1990 2000 980

Year

10 10000
1000
2
§ _ 100 4
§ Bl= 10
X
) 14
o 4
0.1
~
0.1 0.01 ; 1
2000 1980 1990 2000

Year

Figure 1: Performance of magnetic storage disks over time. The first two graphs show features that improved
10x or 100x while the third graph shows features that improved 10,000x in the same time. The graphs show
that access times have improved relatively little, while prices have dropped by a factor of 10,000; unit capacity
and accesses per second have grown by a factor of 100. Higher bandwidth and cheaper DRAM buffers have
allowed larger pages. That is one theme of this paper.

Evaluating Equation 1 with these values gives a ref-
erence interval of 266 seconds -- about five minutes'.
So, even in 1997, data referenced every five minutes
should be kept in main memory.

Prices for the same equipment vary enormously, but
al the categories we have examined follow some-
thing like a five-minute rule. Server hardware prices
are often three times higher than "street prices’ for
the same components. DEC Polaris RAM is half the
price of DELL. Recent TPC-C Compaq reports have
3x higher RAM prices (47$/MB) and 1.5x higher
disk prices (3129%/drive) giving a two-minute rule.
The March 1997 SUN+Oracle TPC-C benchmark [3]
had prices even better than DELL (13$/MB of RAM
and 1690$ per 4GB disk and controllers). These
systems al are near the five-minute rule. Main-
frames are at 130$/MB for RAM, 10K$/MIPS, and
12k$/disk. Thus, mainframes follow a three-minute
rule.

One can think of the first ratio of Equation 1 (Pages-
PerMBofRAM/AccessesPer SecondPerDisk) as a
technology ratio. The second ratio of Equation 1
(PriceofDiskDrive/PriceOfMBofRAM) is an eco-
nomic ratio. Looking at the trend lines in Figure 1,
the technology ratio is shifting. Page size has in-
creased with accesses/second so the technology ratio
has decreased ten fold (from 512/30 = 17 to 128/64 =
2). Disk drive prices dropped 10x and RAM prices
dropped 200x, so that the economic ratio has in-
creased ten fold (20k$/2k$=10 to 2k$/15$=133). The
consequent reference interval of equation (1) went
from 170 seconds (17x10) to 266 seconds (2x133).

These calculations indicate that the reference in-
terval of Equation (1) isalmost unchanged, despite
these 10x, 100x, and 1,000x changes. It is gtill in
the 1-minute to 10-minute range. The 5-minute
rule still appliesto randomly accessed pages.

The original paper [1] also described the 10-byte rule
for trading CPU ingtructions off against RAM. At
the time one instruction cost the same as 10 bytes.
Today, PCs follow a 1-byte rule, mini-computers
follow a 10 byte rule, while mainframes follow a
kilobyte rule because the processors are so over-
priced.

! The current 2 KB page-size of Microsoft SQL Server 6.5
gives a reference interval of 20 minutes. MS SQL is
moving to an 8 KB page size in the 1998 release.

1.2. Sequential Data Access: the One-Minute
Sequential Rule

The discussion so far has focused on random access
to small (8KB) pages. Sequential access to large
pages has different behavior. Modern disks can
transfer data a 10 MBps if accessed sequentially
(Figure 1a). That is a peak value, the analysis here
uses amore realistic 5 MB/s as a disk sequential data
rate. Disk bandwidth drops 10x (to 0.5 MBps) if the
application fetches random 8KB pages from disk.
S0, it should not be surprising that sequential 10 op-
erations like sort, cube, and join, have different
RAM/disk tradeoffs. As shown below, they follow a
one-minute-sequential rule.

If a sequential operation reads data and never refer-
ences it, then there is no need to cache the data in
RAM. In such one-pass algorithms, the system needs
only enough buffer memory to alow data to stream
from disk to main memory. Typically, two or three
one-track buffers (~100 KB) are adequate. For one-
pass sequential operations, less than a megabyte of
RAM per disk is needed to buffer disk operations and
alow the device to stream data to the application.

Many sequential operations read a large data-set and
then revisit parts of the data. Database join, cube,
rollup, and sort operators all behave in this way. Con-
sider the disk access behavior of Sort in particular.
Sort uses sequential data access and large disk trans-
fers to optimize disk utilization and bandwidth. Sort
ingests the input file, reorganizes the records in
sorted order, and then sequentially writes the output
file. If the sort cannot fit the file in main memory, it
produces sorted runs in a first pass and then merges
these runs into a sorted file in the second pass.
Hash-join has a similar one-pass two-pass behavior.

The memory demand of a two pass sort is approxi-
mately given in equation 2:
MemoryFor TwoPassSort

=~ 6 x Buffer _Size+4/3x Buffer _Szex File_Sze....(2)

Equation 2 is derived as follows. The first sort pass
produces about File Sze/Memory Sze runs while
the second pass can merge Memory_Sze/Buffer_Sze
runs. Equating these two values and solving for
memory size gives the square root term. The con-
stants (3 and 6) depend on the particular sort algo-
rithm. Equation 2 is graphed in Figure 2 for file sizes
from megabytes to exabytes.

Sort shows a clear tradeoff of memory and disk 10.
A one-pass sort uses half the disk 10 but much more
memory. When is it appropriate to use a one-pass

sort? This is just an application of Equation 1 to
compute the break-even reference interval. Use the
DEC TPC-C prices [2] and components in the previ-
ous section. If sort uses to 64KB transfers then there
are 16 pages/MB and it gets 80 accesses per second
(about 5 MBY/s).

PagesPerMBofRAM = 16 pages/MB
AccessesPerSecondPerDisk = 80 access/sec/disk

Using these parameters, Equation 1 yields a break-
even reference interval of 26 seconds (= (16/80) x
(2,000/15)). Actually, sort would have to write and
then read the pages, so that doubles the 10 cost and
moves the balance point to 52 seconds. Anticipating
higher bandwidths and less expensive RAM, we pre-
dict that this value will slowly grow over time.

Consequently, we recommend the one-minute-
sequential rule: hash joins, sorts, cubes, and other
sequential operations should use main memory to
cache data if the algorithmwill revisit the data within
a minute.

For example, a one-pass sort is known to run at about
5 GB/minute [4]. Such sorts use many disks and lots
of RAM but they use only half the IO bandwidth of a
two-pass sort (they pass over the data only once).
Applying the one-minute-sequential rule, below 5 GB
a one-pass sort is warranted. Beyond that size, a
two-pass sort is warranted. With 5GB of RAM a two-
pass sort can sort 100 terabytes. This covers ALL
current sorting needs.

DRAM Needed for a Two-pass Sort
Gigabytes Can Sort PetaBytes

1E+12 5

1.E+09 3

DRAM size needed

1.E+06

1.E+06 1EF09 . 1B+ 1.E+15
i Size of |nput+fﬁe (bytesE)+

1.E+18

Figure 2: A two-pass sort can process 100 terabyte
files with a 5 GB DRAM buffer. The two pass sort
balances the run length against the number of runs
to merge in the second pass. If it generates a thou-
sand runs of 100 MB each, it can merge them using
100 MB of merge buffers in phase 2. This is a 100
GB sort. With current technology, use a 1-pass
sort up to 5GB files. For larger files, do a 2-pass

Similar comments apply to other sequential opera-
tions (group by, rollup, cube, hash join, index build,
etc...). In general, sequential operations should
use high-bandwidth disk transfers and they
should cache data that they will revisit the data
within a minute.

In the limit, for large transfers, sequential access cost
degenerates to the cost of the bandwidth. The tech-
nology ratio of equation 1 becomes the reciprocal of
the bandwidth (in megabytes):
TechnologyRatio

= (PagesPerMB)/(AccessesPer Second)

= (1E6/TransferSze)/

(DiskBandwidth/Transfer Size)

for purely sequential access

= 1E6/DiskBandwidth. (3)
This is an interesting result. It gives rise to the as-
ymptote in Figure 3 that shows the reference interval
vs. page size. With current disk technology, the ref-
erence interval asymptotically approaches 40 seconds
as the page size grows.

Reference Inverval vs Page Size
(DRAM (s disk or tape storage)

Q

100,000

10,000

Tape
robot

L

1,000

100

10

(minutes)

1

Reference Interval

[T s mroe GG OIS0

0
1E+0 1E+3 1E+6 1E+9 1E+12

Page Size (bytes)

Figure 3: The break-even reference interval for disk
vs. DRAM asymptotically approaches something like
one minute for current technology. The asymptote is
the product of the technology ratio (which becomes
le6/bandwidth) and the economic ratio. A later sec-
tion discuses the disk-tape tradeoff. Fundamentally,
tape technology is VERY expensive to access. This
encourages very large tape page sizes and very cold
data on tape. The tape asymptote is approached at 10
GB (tape hardware is described in Table 4).

1.4. RAID and Tape

RAID 0 (striping) spreads 10 among disks and so
makes the transfer size smaller. Otherwise, RAID 0
does not perturb this analysis. RAID 1 (mirroring)
slightly decreases the cost of reads and nearly dou-

bles the cost of writes. RAID 5 increases the cost of
writes by up to a factor of 4. In addition RAID5
controllers usually carry a price premium. All these
factors tend to increase the economic ratio (making
disks more expensive, and raise the technology ratio
(lower accesses per second). Overal they tend to
increase the random access reference interval by a
factor of 2x to 5x.

Tape technology has moved quickly to improve ca
pacity. Today the Quantum DLTstor™ is typical of
high performance robots. Table 4 presents the per-
formance of this device.

Table 4: Tape robot price and performance char-
acteristics (source Quantum DLTstor™).
Quantum DLT Tape Robot 9,000$ price
Tape capacity 35 GB
Number of tapes 14
Robot Capacity 490 GB
Mount time (rewind, un- 30 seconds
mount, put, pick, mount, posi-
tion)
Transfer rate 5 MBps

Accessing a random data record on a tape requires
mounting it, moving to the right spot and then read-
ing the tape. If the next access is on another tape and
S0 one must rewind the current tape, put it away, pick
the next one, scan to the correct position, and then
read. This can take several minutes, but the specifi-
cations above charitably assumed it takes 30 seconds
on average.

When should you store data on tape rather than in
RAM? Using Equation 1, the break-even reference
interval for a 8KB tape block is about two months
(keep the page in RAM rather than tape if you will
revisit the page within 2 months).

Another alternative is keeping the data on disk. What
is the tradeoff of keeping data on disk rather than on
tape? The tradeoff is that tape-space rent is 10x less
expensive but tape accesses are much more expensive
(100,000x more for small accesses and 5x more for
large (1GB) accesses). The reference interval bal-
ances the lower tape rent against the higher access
cost. The resulting curve is plotted in Figure 3.

1.5. Checkpoint Strategies In Light of
the 5-minute Rule
Buffer managers typically use an LRU or Clock2

(two round clock) algorithm to manage the buffer
pool. In general, they flush (write to disk) pages

when (1) there is contention for cache space, or (2)
the page must be checkpointed because the page has
been dirty for a long time. The checkpoint interval is
typically five minutes. Checkpoint limits recovery to
redoing the last five or ten minutes of the log.

Hot-standby and remote-disaster-recovery systems
reduce the need for checkpoints because they con-
tinuously run recovery on their version of the data-
base and can take over within seconds. In these dis-
aster-tolerant systems, checkpoints can be very infre-
quent and almost all flushes are contention flushes.

To implement the N-minute rule for contention
flushes and evictions, the buffer manager keeps a list
of the names of all pages touched within the last N
minutes. When a page is re-read from disk, if it is in
the N-minute list, it is given an N-minute lifetime (it
will not be evicted for N-minutes in the future). This
simple algorithm assures that frequently accessed
pages are kept in the pool, while pages that are not
re-referenced are aggressively evicted.

1.6. Five-Minute Summary

In summary, the five-minute rule still seems to apply
to randomly accessed pages, primarily because page
sizes have grown from 1KB to 8KB to compensate
for changing technology ratios. For large (64KB
pages) and two-pass sequential access, a one-minute
rule applies today.

2.How Large Should Index Pages Be?

The size of an internal index page determines its re-
trieval cost and fan-out (EntriesPerPage). A B-tree
indexing N items will have a height (in pages) of:

Indexheight ~ log,(N)/log,(EntriesPerPage) pages (4).

The utility of an index page measures how much
closer the index page brings an associative search to
the destination data record. It tells how many levels
of the binary-tree fit on a page. The utility is the divi-
sor of the Equation 4:

IndexPageUtility = log,(EntriesPerPage) 5)

For example, if each index entry is 20 bytes, then a 2
KB index page that is 70% full will contain about 70
entries. Such a page will have a utility of 6.2, about
half the utility of a 128 KB index page (see Table 6).

Reading each index page costs a logical disk access
but each page brings us IndexPageUtility steps closer
to the answer. This cost-benefit tradeoff gives rise to
an optimal page size that balances the IndexPageAc-
cessCost and the IndexPageUtility of each 10.

Figure 5: The utility of an
index page is the number
of levels of the binary tree

AN R The utility rises as the log
index @ O of the page size. The cost
page O/\O N of the access goes up line-
e o arly with page sizeConse-
o N quently, for a particular
I e disk latency and transfer
& o rate, there is an optimal
O/\O index page size. The tree

a left shows just the
search path (it is not bal-
anced because the drawing

that it traverses. would be too cluttered).

Reading a 2 KB page from a disk with a 10 ms aver-
age access time (seek and rotation) and 10 MB/s
transfer rate uses 10.2 ms of disk device time. So the
read cost is 10.2 milliseconds. More generaly, the
cost of accessing an index page is either the storage
cost in main memory if the page is cached there, or
the access cost if the page is stored on disk. If pages
near the index root are cached in main memory, the
cache saves a constant number of 10s on average.
This constant can be ignored if one is just optimizing
the 1O subsystem. Theindex page disk accesscost is
IndexPageAccessCost = Disk Latency + PageSize /
DiskTransferRate (6)

The benefit-cost ratio of a certain page size and entry
sizeistheratio of the two quantities.
IndexPageBenefit/Cost = IndexPageUtility /

IndexPageAccessCost. (7)
The right column of Table 6 shows this computation
for various page sizes assuming 20-byte index en-
tries. It indicates that 8 KB to 32 KB pages are near
optimal for these parameters.

Figure 7 graphs the benefit/cost ratios for various
entry sizes and page sizes for both current, and next-
generation disks. The graphs indicate that, small
pages have low benefit because they have low utility

Table 6: Tabulation of index page utility and bene-
fit/cost for 20 byte index entries assuming each
page is 70% full and assuming a 10ms latency 10
MBps transfer rate.

pagesize| entries | Index Index |Index Page

KB |per page| Page Page Benefit/
Fan-out | Utility | Access |Cost (20B)
Cost (ms)
2 68 6.1 10.2 0.60
4 135 7.1 10.4 0.68
8 270 8.1 10.8 0.75
16 541 9.1 11.6 0.78
32 1081 10.1 13.2 0.76
64 2163 111 16.4 0.68
128 4325 12.1 22.8 0.53

and high fixed disk read costs. Very large pages also
have low benefit because utility grows only as the log
of the page size, but transfer cost grows linearly with
page size.

Table 6 and Figure 7 indicate that for current devices,
index page sizesin the range of 8 KB to 32 KB are
referable to smaller and larger page sizes. By the
year 2005, disks are predicted to have 40 MB/s trans-
fer rates and so 8 KB pages will probably be too
small.

Table 6 and Figure 7 indicate that for current devices,
index page sizes in the range of 8 KB to 32 KB are
preferable to smaller and larger page sizes. By the
year 2005, disks are predicted to have 40 MB/s trans-
fer rates and so 8 KB pages will probably be too
small.

3. New Storage Metrics

These discussions point out an interesting phenome-
non -- the fundamental storage metrics are changing.
Traditionally, disks and tapes have been rated by ca
pacity. As disk and tape capacity approach infinity
(50 GB disks and 100 GB tapes are in beta test to-
day), the cost/GB goes to zero and the cost/access
becomes the dominant performance metric.

The traditional performance metrics are:
GB: storage capacity in gigabytes.
$/GB: device price divided by capacity.
Latency: time between issue of 10 and start of data
transmission.
Bandwidth: sustained transfer rate from the device.

The latter two are often combined as a single access
time metric (time to read a random KB from the de-
vice).

Kaps: kilobyte accesses per second.

As device capacities grow, additional metrics become
important. Transfers become larger. Indeed, the
minimum economical tape transfer is probably a one
MB object

Increasingly, applications use a dataflow style of
programming and stream the data past the device.
Data mining applications and archival applications
are the most common example of this today. These
suggest the following two new storage metrics.

M aps. Megabyte accesses per second.

Scan: how long it takes to sequentially read or write

al the datain the device?

Index Page Utility vs Page Size Index PdagD? t)tgltyfvs Page Size
0.90 and Index Elemet Size an ISk Feriormance
0.80 40 MB/s
>
>0.70 £
z 5
=0.60 |
0.50 .
128 byte entries
0.40 0.40 2 4 8 32 | 64 | 128
’ 2 4 8 32 | 64 | 128 @40 MB/s | 0.645|0.741|0.832 | 0.969 | 0.987 | 0.94
016 B |0.6355|0.7191/0.7843|0.7898|0.6938|0.5403| | |10 MB/s |0.636 |0.719|0.784 | 0.79 |0.694| 0.54
O32B [0.5375|0.623 |0.6919|0.7144|0.6334| 0.497 05 MB/s |0.623]0.692|0.729 |0.633 | 0.497 | 0.345
m64 B [0.4395(0.527 |0.5994(0.6391| 0.573|0.4538| | ||m3 MB/s |0.511| 0.56 |0.576 [0.457 [0.339|0.224
[128 B |0.3415(0.4309 0.507 |0.5638|0.5126|0.4105| | ||@m1 MB/s |0.405|0.439|0.444 [0.334 | 0.24 |0.155
Page Size (KB) Page Size (KB)

index page size grows from 8KB to 64KB.

Figure 7. (a) The left graph shows the utility of index pages versus page size for various index entry sizes using
a high-performance disk (10ms latency, 10 MB/s transfer rate). (b) The graphs at right use a fixed-sized 16-byte
entry and show the impact of disk performance on optimal page size. For high-performance disks, the optimum

These metrics become price/performance metrics
when combined with the device rent (depreciated
over 3 years). The Scan metric becomes a measure
of the rent for aterabyte of the media while the media
is being scanned. Table 8 displays these metrics for
current devices:

rated these differential changes. This growth pre-
served the five-minute rule for randomly accessed
pages. A one- minute rule applies to pages used in
two-pass sequential algorithms like sort. As tech-
nology advances, secondary storage capacities grow
huge. The Kaps, Maps, and Scans metrics that meas-
ure access rate and price/access are becoming in-

Table 8: Performance Metrics of high-performance devices

circa1997.
RAM Disk Taperobot
Unit capacity 1GB 9GB 14 x 35 GB
Unit price$ 15,000% 2,000% 10,000%
$/GB 15,000 $/GB 222%/GB 20 $/GB
Latency (ms) | 0.1 microsec | 10 milli sec 30 sec
Bandwidth 500 MBps 5MBps 5MBps
Kaps 500,000 Kaps | 100 Kaps .03 Kaps
M aps 500 Maps 4.8 Maps .03 Maps
Scan time 2 seconds 30 minutes 27 hours
$/Kaps 0.3nano $ | 02micro$ | 3milli$
$/M aps .3micro $ 4 micro $ 3milli $
$/TRscan 32% 4.23% 296%

creasingly important.

5. Acknowledgments

Paul Larson, Dave Lomet, Len Seligman and
Catharine Van Ingen helped us clarify our presen-
tation of optimum index page sizes. The Kaps,
Maps, and Scans metrics grew out of discussions
with Richie Larry.

6. References

[1] J. Gray & G. F. Putzolu, "The Five-minute
Rule for Trading Memory for Disc Accesses, and
the 10 Byte Rule for Trading Memory for CPU
Time," Proceedings of SIGMOD 87, June 1987,

4. Summary

The fact that disk access speeds have increased ten-
fold in the last twenty years is impressive. But it
pales when compared to the hundred-fold increase in
disk unit capacity and the ten-thousand-fold decrease
in storage costs (Figure 1). In part, growing page
sizes sixteen-fold from 512 bytesto 8 KB has amelio-

pp. 395-398.

[2] Ddll-Microsoft TPC-C Executive summary:
http://www.tpc.org/results/individual_results/D
ell/dell.6100.es.pdf

[3] Sun-Oracle TPC-C Executive summary:
http://www.tpc.org/results/individual_results/Su
n/sun.ue6000.oracle.es.pdf

[4] Ordina Corp. http://www.ordinal.com/

