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9 Conclusion

We have presented a detailed overview of the architecture of the Dali Main-Memory Storage
Manager. To our knowledge, Dali is the only main-memory storage manager tuned for fine-
grained concurrency and small transactions. Also, to our knowledge, it is the only explicit
implementation of multi-level recovery for main-memory, and one of very few for disk-based
systems. We have described the storage architecture for Dali, and the implementation of the
T-tree and extendible hash index structures. We have presented an overview of our multi-
level concurrency control and recovery services, and described how the design of these services
allows for minimal conflict with running transactions — in particular through the use of fuzzy
checkpoints and through techniques for physical versioning of index structures. We have also
described the extensive features for detection of bad writes by processes, and for recovery from
process failure. We have briefly described the two databases currently built on Dali, the Dali
Relation Manager, and the MM-0Ode main-memory object-oriented database.

With the exception of physical versioning and the extendible hash, which are actively being
added to the system at this time, all features of the design described here are implemented in the
current version of Dali at Bell Laboratories. Our future work includes logical versioning at the
relational level, and data-shipping distributed versions based on the shared disk or client-server
model.
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second database management system built on Dali is a main memory version of the ODE Ob ject-
Oriented Database. MM-ODE includes a compiler (O++) which supports a small superset of
the C++4 syntax. We now provide a brief overview of these high-level interfaces to Dali.

8.1 Dali Relational Manager

The Dali Relational Manager is a C++ class library interface to a relational system with SQL
support limited to definition statements. Access to data is through C4++ classes, corresponding
to tables, iterators, search criteria, etc. Schema information is stored in tables, and limited views
(projection only) are allowed. Indices may be created on arbitrary subsets of the attributes in
a table. Referential integrity is supported (foreign key constraints), as are null values. Locking
strategies avoid “phantom” anomalies (see e.g. [KS91]).

Navigation is supported through iterators over a single table. A conjunctive query may be
specified for the iterator, and automatic index selection is performed.

The one extension to the relational model is that inter-table joins may be stored in the
schema. From one open iterator, a new iterator on the matching tuples in the other table may
be easily opened. This join relationship may be materialized leading to underlying pointer list
structures similar to a network database. This last feature is required for the relational interface
to allow navigation which competes with object-oriented models without explicit pointer types.

Building this interface has served the dual purposes of providing a higher-level interface for
users and serving as a validation of the storage manager functionality. The interface described
here took approximately one staff-year to produce, which we feel is very reasonable for a full-
featured system, and illustrates the leverage gained from a good storage manager.

8.2 MM-Ode Object Oriented Database

MM-Ode<Dali>, also known as MM-QOde, is the main-memory version of the Ode object-
oriented database system. It is built using the Dali main memory storage manager. MM-
Ode supports a user interface identical to that provided by Ode<EOS>, also known as Ode,
an object database described in [AG89, AGGLI6, LGA96] The primary interface for both
database management systems is the database programming language O++, which is based on
C++. A few facilities have been added to C++ to make it suitable for database applications.
O++ provides facilities for creating persistent objects which are stored in the database and for
querying the database by iterating over these objects. Navigation is supported through pointers
to persistent objects. It also has support for versioned objects. Indexes can also be built to
speed-up object access. The run-time system checks for the existence of an index relevant
to each query that may benefit from index use. The most recent release of MM-Ode allows
triggers to be associated with objects.® Use of Ode allows applications to be used on both a
disk-based (Ode) and a main-memory (MM-Ode) database. Recompilation is the only porting
effort required. MM-Ode programs are often significantly shorter and easier-to-understand than
the corresponding Dali program. However, this convenience comes at a significant performance
cost. We are looking into reducing these costs.

8For more information on MM-Ode, see http://www-db.research.att.com/ode-announce.univ.html.
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the following is true.

1. Search value is bounded by N, and either the version number of N is unchanged or N does
not contain a key value between search value and target value.

2. Search value is less than the smallest key in N, and the version number of N has not
changed, and N has no left child (thus, no new key between search value and target value
could have been inserted, and target value itself, could not have been deleted) .

3. Search value is greater than largest key in N, and the version number of N has not changed,

and N has no right child.

In case validation fails, the lock on the target key is released and the search is resumed from
the most recently visited node in the stack whose version number is the same as that noted in
the stack. The intuition for this is based on the observation that no target key could “escape”
from a subtree without modifying, and therefore changing the version number of the root of
that subtree. Note that restarting as described above implies that termination of the algorithm
is probabilistic, but this is true of every scheme that follows the unlatch-lock-validate model
[Moh90, ML92]. Successive key values in a range are obtained by repeatedly invoking the search
procedure with the key value returned by the previous invocation and the stack at the end of
the previous search.

Inserts and deletes on the T-tree are implemented as described in the overview above.
Inserts on the tree invoke the search procedure to obtain a short duration (exclusive lock) lock
on the key value larger than the key being inserted to ensure that no scans are in progress
(this is referred to as next-key locking [Moh90]). Once this is done, modifications to T-tree
nodes and rotations are performed while holding the T-tree latch in exclusive mode. Updates
also increment the version number for any node which has been changed (note, however, that
changing balance information does not require changing the version number).  [[[ fix next
sentence ]]] Deletes, on the other hand, obtain an additional transaction duration lock on the
key value larger than the key value being deleted. This lock (combined with next-key locking
on inserts) ensures the ability to abort the transaction by reinserting the missing key, and also
prevent scans from proceeding past the deleted key, avoiding the phantom problem. Once this
next-key lock is acquired which, the key delete on the node is performed while holding the T-tree
latch in exclusive mode. Both inserts and deletes on the T-tree are treated as operations and
multi-level recovery techniques described in Section 4 are employed for maintaining consistency
in the presence of system crashes. For example, the undo operation for an insert is a delete,
but any rotations caused by the insert are not necessarily undone by the delete (though new
rotations may be caused).

8 Higher level Interfaces

There are currently two database management systems built on the Dali Storage Manager. The
Dali Relational Manager is a C++ class library interface built on the relational model. This
product retains the name Dali, following our principle of offering multiple levels of interface. The
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in the left subtree into the node, or by merging the node with its right child.

In both insert and delete, allocation/de-allocation of a node may cause the tree to become
unbalanced and rotations (RR, RL, LL, LR) described in [LC86b] may need to be performed.
(The heights of subtrees in the following description include the effects of the insert or delete.)
In the case of an insert, nodes along the path from the newly allocated node to the root are
examined until either 1) a node for which the two subtrees have equal heights is found (in this
case no rotation needs to be performed), or 2) a node for which the difference in heights between
the left and the right subtrees is more than one is found and a single rotation involving the
node is performed. In the case of delete, nodes along the path from the de-allocated node’s
parent to the root are examined until a node is found whose subtrees’ heights now differ by one.
Furthermore, every time a node whose subtrees’ heights differ by more than one is encountered,

a rotation is performed. Note that de-allocation of a node may result in multiple rotations.

7.3.2 Concurrency control Issues in T-trees

We now describe the features of our implementation of T-trees in Dali. We implement T-trees
with a single tree latch which is obtained in shared mode for readers and exclusive mode for
updaters. In our implementation, each node contains a version number which is incremented
whenever the node is modified. Also, a stack is used for all operations on the T-tree. The
stack stores the nodes visited during a traversal, whether the left or right child was taken when
leaving the node, and the version number of the node when it was first encountered. In the
following, a version number is said to have changed if the current version number in the node
is different from the version number stored in the stack.

Our T-tree implementation supports next-key-locking [ML92, Moh90] to avoid the phantom
phenomenon (see e.g. [KS91]). Thus, in our implementation, a key in the range of an in-progress
scan cannot be inserted or deleted since this could result in a non-serializable execution. This
is controlled by passing lock modes to each operation, so that transactions running at lower
degrees of consistency can be mixed with those running at higher degrees [GLPT76].

Even though search operations on T-trees obtain the tree latch, concurrent inserters and
deleters could cause problems. For example, consider searching for a key greater than a certain
value. Once the target key has been found, a lock on it needs to be obtained. However, the lock
request cannot be made while holding the latch since this could result in deadlocks involving
latches and locks. As a result, the latch must be released before the lock request is made — this,
however, opens up a window for inserters who could insert a key value in between the value
being searched for and the target key determined by the search procedure. Thus, after the lock
is obtained, the search procedure needs to perform a walidalion to ensure that the target key
has not been invalidated due to a concurrently executing insert or delete.

In general, the search proceeds as described in Section 7.3.1 except that each node visited
is pushed onto the stack. We describe only the search for a “greater-than” value, though all
comparisons are supported in the implementation. After a lock on the target key is obtained,
validation is performed. Let N be the top node on the stack (which is the last node seen in the
search), and let search value be the key value on which the search was initiated and target value
the key value locked just prior to the validation. Then validation is said to succeed if any of
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7.3 T-tree Indexes

In [LC86b], the authors proposed T-trees as a storage efficient data structure for main memory
databases. T-trees are based on AVL trees proposed in [AHU74]. In this subsection, we provide
an overview of T-trees as implemented in Dali. For a detailed description, the reader is referred

to [BLR*95].

7.3.1 Overview of T-trees

We now describe the T-tree from [LC86b]. Like AVL trees, the height of left and right subtrees
of a T-tree may differ by at most one. Unlike AVL trees, each node in a T-tree stores multiple
key values in a sorted order, rather than a single key value. The left-most and the right-most
key value in a node define the range of key values contained in the node. Thus, the left subtree
of a node contains only key values less than the left-most key value, while the right subtree
contains key values greater than the right-most key value in the node. A key value which is
falls between the smallest and largest key values in a node is said to be bounded by that node.
Note that keys equal to the smallest or largest key in the node may or may not be considered
to be bounded based on whether the index is unique and based on the search condition (e.g.
“greater-than” versus “greater-than or equal-to”).

A node with both a left and a right child is referred to as an internal node, a node with only
one child is referred to as a semi-leaf, and a node with no children is referred to as a leaf. In
order to keep occupancy high, every internal node has a minimum number of key values that
it must contain (typically k& — 2, if £ is the maximum number of keys that can be stored in a
node). However, there is no occupancy condition on the leaves or semi-leaves.

Searching for a key value in a T-tree is relatively straightforward. For every node, a check
is made to see if the key value is bounded by the left-most and the right-most key value in the
node; if this is the case, then the key value is returned if it is contained in the node (else, the
key value is not contained in the tree). Otherwise, if the key value is less than the left-most key
value, then the left child node is searched; else the right child node is searched. The process is
repeated until either the key is found or the node to be searched is null.

Insertions and deletions into the T-tree are a bit more complicated. For insertions, first a
variant of the search described above is used to find the node that bounds the key value to
be inserted. If such a node exists, then if there is room in the node, the key value is inserted
into the node. If there is no room in the node, then the key value is inserted into the node
and the left-most key value in the node is inserted into the left subtree of the node (if the left
subtree is empty, then a new node is allocated and the left-most key value is inserted into it).
If no bounding node is found then let N be the last node encountered by the failed search and
proceed as follows: If N has room, the key value is inserted into N; else, it is inserted into a new
node that is either the right or left child of N depending on the key value and the left-most and
right-most key values in N.

Deletion of a key value begins by determining the node containing the key value, and the
key value is deleted from the node. If deleting the key value results in an empty leaf node, then
the node is deleted. If the deletion results in an internal node or semi-leaf containing fewer
than the minimum number of key values, then the deficit is made up by moving the largest key
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Other than our work, [AP92] describes a variation of extendible hashing for main memory
which is related to constructing a trie on the hash value rather than having a single large table.
This more complicated scheme significantly decreases space overhead, while keeping a single
key compare to determine if the correct record has been found.

In contrast, we maintain the simple directory structure of [FNPS78], but avoid the space
problems of this scheme by not splitting the structure on overflow of a single bucket. In
[FNPS78], fixed bucket sizes were implied by disk page sizes, and exceeding this limit triggered
the doubling of the directory. In fact, we do not use a fixed size bucket at all, but have a chain
of key values for each bucket. We keep space overhead lower by basing the decision to double
the directory size on an approximation of occupancy rather than on the local overflow of a
bucket.

The advantage of a simple directory structure arises when implementing a concurrency
control mechanism. While our implementation may suffer more key comparisons (which may
or may not be more expensive than index node traversals in a main memory database), the
flat directory structure leads to a simple concurrency control mechanism which nevertheless
provides good concurrency.

Permitting insert, delete and find operations to execute concurrently could result in several
problems. For example, suppose find for a key causes it to reach a hash header which is split due
to a concurrently executing insert. In such a case, the key being search for may be transferred
from the current list to a different list, and find would not be able to locate the key. In order
to prevent the above problem, a lock is maintained with each hash header, and two directory
locks, the find-directory-lock and the split-directory-lock, are maintained. The directory locks are
obtained in exclusive mode when the directory is resized; the split-directory-lock is held while
the new directory is being initialized while the find-directory-lock is held only when the pointer
to the directory is toggled to point to the new larger directory.

Operator find begins by first obtaining the find-directory-lock in shared mode — this ensures
that the directory stays stable during the find operation. It then obtains a lock on the hash
header. Furthermore, in order to ensure that the hash header has not been split between the
time it reached the hash header and the time it obtained a shared lock on it, it checks to see if
the directory entry that initially pointed to its hash header is still unchanged. If this is the case,
find can release the find-directory-lock and proceed; else, it releases the lock on the hash header
and re-traverses the directory structure to reach the correct hash header. Operator Insert, on
the other hand, obtains the hash header lock in exclusive mode. If it is decided to split the
header, then a shared lock is obtained on the split-directory-lock to ensure that the directory is
not being resized while the split is taking place. Since splits are an optimization, an insert may
choose not to wait if this lock is held, allowing the next insert to perform the split.

Note that maintaining the find and split directory locks as separate locks ensures that find
operations and normal insert operations (those that do not cause splits) are only blocked for
the very short time required to toggle the directory pointer when a directory is being resized.
Since the split-directory-lock is acquired in exclusive mode for the duration of the doubling, it
ensures that two processes do not try to double the directory at the same time. Note that if a
process cannot get this lock, it simply gives up, since another process is already accomplishing

the doubling.
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our structure appears in Figure 7. The structure matches that of [FNPS78], except that the
bucket concept from standard extendible hashing is broken into a hash header and a list of key
entries. Thus, each directory entry points to a hash header, and multiple directory entries can
point to a single hash header. A variable 7 is maintained with the hash index, and the first
¢ bits of the computed hash value for a key are used to determine the directory entry for the
key (the directory itself contains 2 entries). Allowing multiple directory entries to point to
the same bucket prevents too many hash headers from being allocated for directory entries to
which very few key values have hashed. With each hash header is stored a variable 5 which has
the property that for all the keys whose directory entries point to the hash header, the first 5
bits of their computed hash value are equal. In addition, the number of directory entries that
point to the hash header is given by 2¢=7.

Searching for a key value is fairly straightforward, and involves searching for the key value
in the list of key entries pointed to by the directory entry for the key. Insertions, however,
are more complex and could involve splitting individual key entry lists, and in certain cases
doubling the entire directory. The algorithm attempts to keep lists below some threshold in
size. If an insert pushes a list over the threshold, then that list is split. If j in the header for
the list to be split is less than 7, the list is immediately split into two lists based on the value
of the first j 4+ 1 bits. Also, the 2'~7 entries pointing to the original list are modified to point
to one of the two lists based on the first 7 + 1 bits of the hash value the entry represents. After
the split, the value of the variable 7 in the lock headers for the two lists is incremented by 1,
and the keys in each list are again equal on the first j bits. Note that j also represents the
number of times that the list has split.

The description of splitting above assumed that 7 in the hash header is less than ¢ for the
table. If it is found that j in that list’s hash header is equal to ¢ for the hash table then only
one entry in the directory points to this list. In this case, a split requires that the directory
structure be doubled in size. Our algorithm will forego this split, tolerating somewhat longer
lists, until the utilization factor (keys/lists) of the hash table has exceeded a certain threshold.
Once the threshold has been exceeded, the first attempted split that finds 7 = ¢ will double the
directory structure, and then proceed with the split as above. Other lists whose lenght exceeds
the threshold will be split by the next insert on that list.

The first step in doubling the directory is to allocate a new directory structure twice the
size of the original. Directory entries in the new directory that are equal for the first ¢ bits
are set to point to the hash header pointed to by the directory entry in the old directory with
the same value for the first ¢ bits. The variable ¢ is then incremented (and the original split is
carried out). Deletes could similarly cause lists to be merged and possibly the directory size to
be halved.

In the original proposal, the goal of the work was to provide fast location of records in
a disk file. The “directory” size varied linearly with the number of keys in the table, while
providing a guaranteed maximum of two disk reads. A similar approach may be worthwhile in
main-memory, since keeping space overhead in line with usage is very important, as is speed of
access. The cost of accessing a record consists of the cost of navigating the directory structure,
followed by key comparisons between the search key and any keys on the overflow chain pointed
to by the directory.
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Figure 7: Extendible Hashing in Dali

7.1 Heap File

The heap file is Dal{’s abstraction for handling a large number of fixed-length data items. It is
a thin layer provided on top of the power-of-two allocator and the segment headers provided by
the allocation system. A separate chunk at the storage allocator level is created for each heap
file, and fixed-length items are allocated from segments of the chunk. When creating a heap
file, its itemsize — the length of objects in that heap file — is specified. All allocation is done
by the underlying allocator, so that the associated logic and concurrency mechanisms are not
disturbed. However, it is assumed by the heap file that the underlying allocator will allocate
items on exactly itemsize-byte boundries. This is the case with the power-of-two allocator when
the minimum allocation size is equal to the fixed size of the items. In addition to insertion and
deletion, the heap file supports locking and an unordered scan of items.

Item locking is supported either via lock names (the lock name is derived from the database
file and the offset of the item in the database file) or by allocating an array of lock headers for
items in each segment. A pointer to this array of lock headers is stored in the segment header,
and the page table (described in Section 3.3.2) is used to determine the lock header for an item.
Item locks are obtained transparently when items are inserted, deleted, updated or scanned.
Responsibility for implementing a lock which covers the entire heap file is not implemented in
the heap file itself. This corresponds to the principle, which we have encountered repeatedly,
that locking for a structure is best left to the encapsulating structure. This has been borne out
by very significant difference in the locking needs of the relational and object-oriented databases
implemented on Dali, while the item locking needs are uniformly served by the heap file.

Scans are supported through a bitmap stored in the segment header for items in the segment.
Bitmap entries for items that have been deleted from the heap file are 0. Heap file scans thus
simply return items in the chunk for which the corresponding bitmap entry is 1. Note that zero
entries in the bitmap mirror the allocator’s free lists for that segment. The bitmap makes the
process of determining valid records very eflicient, and is necessary because information about
allocated data is not stored by the allocator due to the implied space overhead for all allocated
data.

7.2 Extendible Hash

Dali includes a variation on Extendible Hashing as described in [FNPS78]. An overview of

25



a process from the list of potential owners when it dies or sets its wants variable to point to
null or another lock. In all cases, a process must only advance by a few instructions to either
register ownership, or notice that the cleanup-in-progress flag is set, and relinquish its interest in
the latch. Should our list of potential owners become empty, we can conclude that the owner is
dead. Further, if we reach this conclusion, and yet there is no registered owner for the latch, we
may conclude that the owner had just acquired it or was about to release it, and thus the system
structure guarded by the latch could not be in an inconsistent state. However, if during this
cleanup process we find that a dead process is the registered owner, then the cleanup function
associated with this latch must be called, as described in Section 5.1.

6.2 Locking System

Having discussed latching, we turn to locking, usually used as the mechanism for concurrency
control at the level of a transaction. Locks are normally used to guard accesses to persistent
data, and can support modes richer than shared and exclusive. At the lowest level, lock requests
in Dali are made on a lock header structure which simply stores a pointer to a list of locks that
have been requested (but not yet been released) by transactions. A lock request that does not
conflict with outstanding locks on the lock header is granted. Lock requests that conflict are
handled by adding the requested lock to the list of locks for the lock header, and are granted
when the conflicting locks are released. If a lock request cannot be granted within a certain
interval (specified at system startup time), then the request simply times out. Users can thus
pre-allocate lock headers and associate each lock header with a data structure to be locked.

Lock requests in Dali can also be made on 64-bit lock names which are mapped internally
by the Dali system to lock headers via a hash table. The lock names save space at the cost
of time since lock headers are dynamically allocated when locks are requested on a lock name.
Blocks of lock nodes are allocated to a transaction when it begins, and locks requested by the
transaction are quickly allocated from this set.

Lock modes are easily added to the system through the use of two boolean tables, conflicts
and covers. The former is obvious, and the second is an optimization which indicates whether
a holder of lock type A needs to check for conflicts when requesting a new lock of type B. If A
covers B, then this check is unnecessary, since A conflicts with any lock mode B would conflict
with.

Locks default to transaction duration, but may be requested for instantaneous duration,
operation duration, or post-commit duration, in which case they ensure the ability to carry out

a post-commit action.

7 Collections and Indexing

The storage allocator provides a low-level interface for allocating and freeing data items. Dali
also provides higher-level interfaces for grouping related data items, and performing scans as

well as associative access on data items in a group.
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hold the latch.

As described in Section 5.1, a cleanup server handles recovery from process failure. The
first step it takes on detecting the death of a process is to determine if that process held the
latch, if any, pointed to by its wants field. If that process is also the owner of the latch, then
the work is done. If it is not, the ownership is ambiguous, and the cleanup server must examine
the wants field for all processes,

The set of processes that want the latch may, however, change even as the cleanup server
attempts to determine which processes have set their “wants” field. To solve this problem, we
introduce a flag associated with the latch called cleanup-in-progress, and forbid processes to at-
tempt to get the latch if this flag is set. This flag provides a barrier which, when “raised” (set to
True), prevents any new processes from becoming owners of the latch. The cleanup-in-progress
flag for a particular latch is set by the cleanup process while it attempts to resolve the owner-
ship of that latch. Without this “barricade,” the (remote) possibility exists that one or more
processes can repeatedly acquire and release the latch, always leaving the latch acquired but
unregistered while its status is tested by the cleanup process. We cannot distinguish between
this case and the death of a single process in an indeterminate state. The data structures used
by our system latches are summarized in Figure 6. The method described in the rest of this
section avoids these problems, and guarantees resolution of the latch if all live processes receive
CPU time. (Actually, extensions to handle starved processes have also been developed and are
used in Dali.)

The acquisition protocol of a simple spin-lock implementation is modified so that the process
starts by setting its wants field to point to the latch. It then checks cleanup-in-progress for the
latch. If a cleanup is found to be in progress, wants is set back to null, and the process waits for
the cleanup to end before retrying. Otherwise, it attempts to acquire the lock with a test-and-set
instruction.

Given these additional tools, how does the cleanup server determine whether a dead process
holds a latch? It starts by setting the cleanup-in-progress flag to True, then gathering a list
of potential owners from the wants variables for each process. Now it becomes reasonable to
wait until the situation resolves itself, as we must only wait for a finite number of processes
to give up their interest in, or register their ownership of, the latch. We do this by removing
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First, regardless of the type of atomic instruction available, the fact that the process holds or
may hold a latch must be observable by the cleanup server (see Section 5.1) so that it can
determine that a dead process held a system resource. This is implemented by maintaining an
array of pointers to held (or possibly held) latches from a process’s entry in the Active Process
List.

However, if the target architecture provides only test-and-set or register-memory-swap as
atomic instructions (as opposed to compare-and-swap or load-linked /store-conditional), then extra
care must be taken to determine if the process did in fact own the latch. In this section, we
provide an overview of the technique used to handle this in Dali, which is based on [BLS195].

To allow the cleanup server to determine ownership of the latch, a process having acquired
a latch must also register itsell as the owner, for example by writing its process identifier
to a known location. Unfortunately, the act of acquiring the latch using the basic hardware
instruction test-and-set (or register-memory-swap) cannot be used to also atomically register
ownership. At best, the atomic instruction can be followed by a conditional branch testing for
a successful acquisition, which can be followed by an instruction writing the process id of the
new owner. If the process that is trying to acquire a latch is interrupted between the test-and-
set and the write, the ownership of a latch is left in doubt until the process gets to execute
the write. If the process fails in this interval, the ownership of the latch will never become
clear. Worse still, it is impossible to distinguish between a process that has failed at this step
and a process that has not failed, but has not yet carried out the write, either because it is
servicing an interrupt, or because it has not been allocated CPU cycles. A symmetric problem
can also arise when releasing the semaphore, since the de-registration and release may have to
be accomplished using separate instructions (depending on the exact atomic instruction used).

Although acquisition and registration are separate operations and cannot be executed atom-
ically, we now present an overview of the technique used in Dali to examine the status of other
processes that are attempting acquisition of a latch and thereby determine ownership.

We now present the intuition behind our approach. Details of our algorithms are presented
in [BLST95].

Consider an atomic test-and-set based implementation of a latch. The first and most obvious
step in tracking ownership of such a latch is to require that a successful attempt to acquire the
test-and-set latch be immediately followed by a write which stores the new owner’s identifier
(process or thread identifier, which we abbreviate to process id) in an owner field associated
with the latch. Clearly, if these two steps were atomic, we could always find out which process
currently owns the latch. (Note that if a compare-and-swap instruction is available, the two
steps can be made atomic.)

Unfortunately, detection of ownership is complicated by the fact that processes may get
interrupted, and may even be killed, in between acquisition and registration, and thus a latch
may be in a state where it has been acquired by some process, but we do not know which one.

As a first step toward solving these problems, we require that all processes that are trying
to acquire a latch keep a pointer to that latch in a per-process shared location. We call this
location the process’s wants field. The collection of all processes’ wants fields provides us with
an overestimate of the set of possible owners of the latch (there are zero or one owners, but an
arbitrary number of “interested” parties). This helps establish a set of all processes that might
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5.2.2 Codewords

The codeword strategy of error detection is to associate a logical parity word with each page
of data. Whenever data is updated using valid Dali system calls, the codeword is updated
accordingly. An erroneous write will update only the physical data and not the codeword. We
then use the strategy of protecting the checkpoint image on disk. Before writing a page to a
checkpoint, its contents are verified against the codeword for that page. Should a mismatch
be found, a simulated system crash is caused, and the database is recovered from the last
checkpoint.

Our current implementation of codewords, based on page-level latching, is as follows. Each
page has an associated latch and codeword. While updating a page, the latch for the page is
held in shared mode by the updater. At the end, the change to the codeword for the page is
computed from the current contents of the updated region, and the contents of the region before
the update (this is determined from the physical undo log record for the update). A short term
exclusive latch on the codeword table is then obtained to actually apply the computed change
to the codeword value for the page. The latch ensures that concurrent updaters to different
regions on a page do not install an incorrect value for the codeword. The checkpointer, on
attempting to checkpoint a page, obtains an exclusive latch on the page long enough to copy
it and the codeword associated with it to a separate area. The codeword for the copy is then
computed and compared with the value from the table.

This implementation is the only use of page-level latching in Dali. Note that we are currently
designing a new scheme which uses the global redo log to avoid this page latching. We expect
this will reduce blocking as well as the performance cost associated with the codeword scheme.

The advantages of codewords over memory protection are that lower overhead is incurred
during normal updates, and it is less likely that an application error will escape detection.
For example, an erroneous write to a page which has just been updated will be caught. The
disadvantage is that erroneous writes are not detected immediately, making debugging based
on this information difficult. (We do allow user-driven codeword audits to make debugging with

codewords possible.)

6 Concurrency Control

In this section we describe the concurrency control facilities available in Dali. These facilities
include latches (low-level locks for mutual exclusion) and queueing locks. Our latch implemen-
tation is novel in its contribution to recovery from process failure, and our lock implementation
makes the task of adding new locking modes trivially easy.

6.1 Latch Implementation

Latches in Dali are implemented using the atomic instructions supplied by the underlying
architecture. The decision to implement latches in Dali was made since operating system
semaphores are too expensive due to the overhead of making system calls. However, to support
the process failure scenarios described above, there are certain issues that must be dealt with.
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spawn multiple cleanup agents concurrently. This is required since a transaction for one dead
process may have to wait for a resource held by another dead process in order for it to complete
its abort. (Note that these locks must be at lower levels of abstraction than the transaction
level, as a transaction level lock would have been held by the transaction until commit and thus
not need to be reacquired.) If the dead process were threaded, the cleanup agent must include
a separate thread for each active transaction for the same reason.

5.2 Protection from Application Errors

The direct access principle of Dali implies that at least some user application code will be linked
directly with Dali libraries and access the data stored in the database through shared memory.
With this comes the inevitable chance that an application error will lead to writes which can
cause persistent data to become corrupted. Dali provides two mechanisms for minimizing the
probability that such errors will lead to corrupting persistent data. The first mechanism is
memory protection and the second is codewords.

Both mechanisms are designed only to prevent updates which are not correctly logged from
becoming reflected in the permanent database. This would occur if a database pointer used for
direct memory access were used later for an update as if it were a normal pointer. Similarly,
such a problem might occur due to a random garbage value in a pointer. This second case
becomes much more probable as database sizes approach virtual memory address range sizes.
This is very conceivable in modern 32-bit systems, where it is very reasonable to find multiple
gigabytes of RAM.

These mechanisms do not protect from erroneous updates which follow the proper database
conventions. Nor are they capable of protecting from all erroneous updates which do not use
database conventions, and such limits are described for each scheme. However, these schemes
vastly reduce the probability that a programming error can corrupt the persistent database.
The codeword scheme also protects against bit errors in memory, which are a significant worry
with gigabytes of RAM.

The schemes are independent, and can be used in conjunction.

5.2.1 Memory Protection

Applications wishing to prevent corruption due to stray pointers can map a database file in a
special protected mode. For such database files, Dali uses the mprotect system call to disable
updates to the file by the process. Before a page is updated, when an undo log record for
the update is generated, munprotect is called on the page. At the end of the transaction, all
the unprotected pages are re-protected. Thus, an erroneous update would attempt to update
a protected page, thus resulting in a protection violation. The advantage of this scheme is
that erroneous writes are detected immediately, and can be traced to their source using a
debugger. The disadvantage is that the system calls are a significant performance hit. As a
result, this scheme is more beneficial when debugging applications, and for read-only databases
or databases with low update rates. Note also that since unprotected pages stay unprotected
until the end of transaction, erroneous writes in a transaction following a correct write to the
same page will not be detected with this scheme.
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5.1.1 Detecting Process Death

The first step in cleanup of crashed processes is to detect that a process crashed. When a process
connects to the Dali system, information about the process such as its operating system process
identifier are noted in an Active Process Table in the system database. Dali server processes
also register themselves in the same table. When a process terminates its connection via
DaliSys::close(), it is deregistered from the table. The cleanup process periodically goes through
the table and checks (via the operating system) if each registered process is still alive.

If a registered process is found not to exist, cleanup actions have to be taken.

5.1.2 Low Level Cleanup

Once a dead process has been found, the cleanup process determines what low-level latches, if
any, were held by the crashed process. Whenever a process acquires a latch, an entry is made
in the Active Process Table.” This table is consulted by the cleanup process to determine if
the process was holding a latch. The detection is complicated significantly by the fact that
in many machine architectures it is not possible to atomically acquire a spin-lock and register
ownership. A technique for getting around the problem is presented in Section 6.1.

If any system latches are held by the process, then a cleanup function associated with the
latch is called. This is an example of a “functional recovery procedure” and may require that
a few words of undo information be stored in the system structure. A special return code is
reserved to indicate that the structure could not be repaired by this function. In this case, the
system must simulate a full crash, causing a recovery which does not depend on the corrupted
structure (or any other transient system data).

However, if the dead process did not hold any such latches, or if the latches it held were
successfully cleaned up, then the cleanup server may proceed to the next phase which involves

cleaning up transactions owned by the dead process.

5.1.3 Cleaning Up Transactions

Once low-level structures have been restored to a consistent state, the cleanup server spawns a
new process, called a cleanup agent, to take care of cleaning up any transactions still running
on behalf of this process. This amounts to scanning the transaction table, and aborting any
in-progress transactions owned by the dead process, or executing any post-commit actions for
a committed transaction which had not been executed.

Two subtle points arise here. First, the in-progress transaction may have already started an
abort. Similarly, the dead process may have been executing its post-commit actions. Thus, the
transaction must indicate during these activities (and in fact during all activities) whether the
transaction table entry for that transaction is in a consistent state. If not, then that is handled
as if the process held a low-level latch, which is described above.

The subtle point concerns the case that multiple processes have died, or the case that a new
process dies while the old one was being cleaned up. In these cases, the cleanup server must

"These are stored with the process rather than the transaction to handle very low level latches, such as the

one used to allocate transaction table entries.
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A separate post-commit log is maintained for each transaction — every log record contains the
description of a post-commit operation to be executed. These are appended to the system log
immediately before the commit record for a transaction (when it pre-commits) or immediately
before the operation commit record when the operation pre-commits. Once transaction com-
mit/operation pre-commit completes, the post-commit operations are executed. Furthermore,
the checkpoint of the ATT writes out post-commit log records along with undo log records for
the transaction. Thus, for every committed transaction, post-commit log records for the trans-
action are contained on disk, in the log, and possibly also in the checkpointed ATT (in cases
where post-commit log records in the log precede the begin-recovery point). As a result, during
restart recovery, the post-commit operations can be determined and executed for transactions
that were in the process of executing post-commit operations when the system crashed.

5 Fault Tolerance

In this section, we present features for fault tolerant programming in Dali, other than those
provided directly by transaction management. These techniques help cope with process failure
scenarios. The first technique returns the system to a fully available state if a process dies with
transactions in progress. The second and third techniques help detect and recover from user
programs with “stray pointers” which might corrupt persistent data stored in shared memory.

5.1 Process Death

In this section, we discuss how Dali handles “untimely” process death. This may be caused
by the process violating hardware protection such as attempting to access invalid memory, or
by a process being killed by an operator. In either case, we assume that the process did not
corrupt any system control structures. Recovering from process death primarily consists of
returning any shared data partially updated by the process to a consistent state. Since no
volatile memory has been lost, this is in some ways easier than crash recovery. However, during
crash recovery, one can assume that internal system structures (such as the transaction table
and lock tables) are in a consistent state, as they are recreated on recovery. It is the lack of
this low-level consistency which complicates process recovery.

Obviously, the main approach to handling a dead process is to abort any uncommitted
transactions owned by that process. Also, in our system, for committed transactions and
pre-committed operations, post-commit actions must also be executed on behalf of the process.
However, this cannot be begun immediately upon determining that a process died. That process
may hold latches on low-level system structures, such as the system log. Any attempt to abort
a transaction would attempt to get that latch, causing the process attempting to clean up the
resource to wait on the (dead) process it is trying to clean up. Thus, process recovery must be
done carefully.

A Dali system process known as the cleanup serveris primarily responsible for handling the
cleanup of dead processes. We now describe the actions taken by this server.
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records in the transaction’s undo log for the operation are replaced by a higher-level undo
description.

Once all the redo log records have been applied, the active transactions are rolled back. To
do this, all completed operations that have been invoked directly by the transaction, or have
been directly invoked by an incomplete operation have to be rolled back. However, the order
in which operations of different transactions are rolled back is very important, so that an undo
at level L; sees data structures that are consistent [Lom92]. First, all operations (across all
transactions) at L that must be rolled back are rolled back, followed by all operations at level
L1, then Ly and so on.

Note that for certain uncommitted updates present in the redo log, undo log records may not
have been recorded during the checkpoint — this could happen for instance when an operation
executes and commits after the checkpoint, and the containing transaction has not committed.
However, this is not a problem since the undo description for the operation would have been
found in operation commit log records during the forward pass over the system log earlier during
recovery. Any redo log records for updates performed by an operation whose commit log record
is not found in the system log are ignored (since these must be due to a crash during flush and
are at the tail of the system log).

4.8 Post-commit Operations

Some types of operations that a transaction may need to execute cannot be rolled back. For
example, consider the deletion of a record from the database when physical pointers are em-
ployed. If the space for the record were de-allocated as part of the delete, then problems may be
encountered during rollback if the transaction were to abort. The reason for this is that, for high
concurrency, we need to permit storage allocation and de-allocation to continue once the space
for the record was de-allocated but before the transaction (or operation) that de-allocated the
space committed. As a result, the space may potentially be allocated by another transaction,
making it impossible for the transaction that freed it to re-obtain it in case it were to abort.
Thus, new storage space would need to be allocated for the record and old references/pointers
to the record (e.g., in the index) may no longer be valid.

The above problem can be avoided by using the notion of post commit operations, that is,
operations that are guaranteed to be carried out after the commit of a transaction or operation,
even in the face of system/process failure. (Recoverable queues are used for the same purpose
in other systems [BHM90].) Transaction operations that cannot be undone can be performed
as post-commit operations, preserving the all-or-nothing property of the transaction. Thus,
by executing the de-allocation of storage space for the record as a post-commit operation,
we can permit high concurrency on the storage allocator (no transaction duration locks on
the allocator are required), and at the same time, ensure that space gets de-allocated if the
transaction commits, whether or not the system fails after the commit. This facility is also
valuable for implementing externally visible writes, such as sending a message on commit of
a transaction, which are especially important in work-flow situations. Similarly, the notion of
post-commit operations can be extended to operations by permitting an operation at level L;
to require post-commit operations at level L;_; to be executed once it pre-commits.
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For any uncommitted update whose effects have made it to the checkpoint image, undo log
records would be written out to disk after the database image has been written. This is
performed by checkpointing the ATT after checkpointing the data; the checkpoint of the ATT
writes out undo log records, as well as some other status information.

At the end of checkpointing, a log flush must be done before declaring the checkpoint
completed (and consistent) by toggling cur_ckpt to point to the new checkpoint, for the following
reason. Undo logs are deleted on transaction/operation pre-commit, which may happen before
the checkpoint of the ATT. If the checkpoint completes, and the system then fails before a
log flush, then the checkpoint may contain uncommitted updates for which there is no undo
information. The log flush ensures that the transaction/operation has committed, and so the
updates will not have to be undone (except perhaps by a compensating operation, for which

undo information will be present in the log).

4.6 Abort Processing

When a transaction aborts, that is, does not successfully complete execution, updates/operations
described by log records in the transaction’s undo log are undone by traversing the undo log
sequentially from the end. Transaction abort is carried out by executing, in reverse order, every
undo record just as if the execution were part of the transaction.

Following the philosophy of repeating history [MHLT92], new physical-redo log records are
created for each physical-undo record encountered during the abort. Similarly, for each logical-
undo record encountered, a new “compensation” or “proxy” operation is executed based on
the undo description. Log records for updates performed by the operation are generated as
during normal processing. Furthermore, when the proxy operation commits, all its undo log
records are deleted along with the logical-undo record for the operation that was undone. The
commit record for the proxy operation serves a purpose similar to that served by compensation
log records (CLRs) in ARIES — during restart recovery, when it is encountered, the logical-undo
log record for the operation that was undone is deleted from the transaction’s undo log, thus

preventing it from being undone again.

4.7 Recovery

As part of the checkpoint operation, the end-of-the-system-log on disk is noted before the
database image is checkpointed, and becomes the “begin-recovery-point” for this checkpoint
once the checkpoint has completed. All updates described by log records preceding this point
are guaranteed to be reflected in the checkpointed database image. Thus, restart recovery, after
initializing the ATT and transaction undo logs with the copy of the ATT and undo logs stored
in the most recent checkpoint, loads the database image and sets dpt to zero. It then applies
all redo log records following the begin-recovery-point for the last completed checkpoint of the
database (appropriate pages in dpt are set to dirty for each log record). During the application
of redo log records, necessary actions are taken to keep the checkpointed image of the ATT
consistent with the log applied so far. These actions mirror the actions taken during normal

processing. For example, when an operation commit log record is encountered, lower-level log
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a single unifying resource to coordinate the applications interaction with the recovery system,

and this approach has proven very useful.

4.5 Ping-pong Checkpointing

Consistent with the terminology in main-memory databases, we use the term checkpoint to
mean a copy of main-memory, stored on disk, and checkpointing refers to the action of creating
a checkpoint. This terminology differs slightly from the terminology used, for example, in
ARIES [MHL*92].

Traditional recovery schemes implement write-ahead logging (WAL), whereby all undo logs
for updates on a page are flushed to disk before the page is flushed to disk. To guarantee the
WAL property, a latch on the page (or possibly on the system log) is held while copying the page
to disk. In our recovery scheme, we eliminate latches on pages during updates, since latching
can significantly increase access costs in main memory and interferes with normal processing,
as well as increasing programming complexity. However, as a result, it is not possible to enforce
the WAL policy, since pages may be updated even as they are being written out.

For correctness, in the absence of write-ahead logging, two copies of the database image are
stored on disk, and alternate checkpoints write dirty pages to alternate copies. This strategy
is called ping-pong checkpointing (see, e.g., [SGM90b]). The ping-pong checkpointing strategy
permits a checkpoint that is being created to be temporarily inconsistent; i.e., updates may
have been written out without corresponding undo records having been written. However, after
writing out dirty pages, sufficient redo and undo log information is written out to bring the
checkpoint to a consistent state. Even if a failure occurs while creating one checkpoint, the
other checkpoint is still consistent and can be used for recovery.

Keeping two copies of a main-memory database on disk for ping-pong checkpointing does
not have a very high space penalty, since disk space is much cheaper than main-memory. As
we shall see later, there is an I/O penalty in that dirty pages have to be written out to both
checkpoints even if there was only one update on the page. However, this penalty is small for hot
pages, and the benefits outweigh the /O cost for typical main-memory database applications.

Before writing any dirty data to disk, the checkpoint notes the current end of the stable
log in the variable end_of stable_log, which will be stored with the checkpoint. This is the start
point for scanning the system log when recovering from a crash using this checkpoint. Next, the
contents of the (in-memory) ckpt_dpt are set to those of the dpt and the dpt is zeroed (noting
of end_of stable_log and zeroing of dpt are done atomically with respect to flushing). The pages
written out are the pages that were either dirty in the ckpt_dpt of the last completed checkpoint,
or dirty in the current (in-memory) ckpt_dpt, or in both. In other words, all pages that were
modified since the current checkpoint image was last written, namely, pages that were dirtied
since the last-but-one checkpoint, are written out. This is necessary to ensure that updates
described by log records preceding the current checkpoint’s end_of stable_log have made it in
the database image in the current checkpoint.

Checkpoints write out dirty pages without obtaining any latches and thus without interfering
with normal operations. This fuzzy checkpointing is possible since physical-redo log records are
generated by all updates; these are used during restart recovery and their effects are idempotent.
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4.3 Transactions and Operations

Transactions, in our model, consist of a sequence of operations. Similar to [Lom92], we assume
that each operation has a level L; associated with it. An operation at level L; can consist of a
sequence of operations at level L;_;. Transactions, assumed to be at level L,, call operations at
level L,,_1. Physical updates to regions are level Ly operations. For transactions, we distinguish
between pre-commit, when the commit record enters the system log in memory establishing a
point in the serialization order, and commil when the commit record hits the stable log. We use
the same terminology for operations, where only the pre-commit point is meaningful, though
this is sometimes referred to as “operation commit” in the paper.

Fach transaction obtains an operation lock before an operation executes (the lock is granted
to the operation if it commutes with other operation locks held by active transactions), and
Lo operations must obtain region locks. The locks on the region are released once the L4
operation pre-commits; however, an operation lock at level L; is held until the transaction
or the containing operation (at level L;;1) pre-commits. Thus, all the locks acquired by a
transaction are released once it pre-commits. The notion of pre-commit for transactions and a
locking optimization related to the one implemented in Dal{ is described in [DKO*84].

4.4 Logging Model

The recovery algorithm maintains separate undo and redo logs in memory for each transaction.
These are stored as linked lists off the entry for the transaction in the ATT. Each update (to
a part of a region) generates physical-undo and redo log records that are appended to the
transaction’s undo and redo logs respectively. When a transaction/operation pre-commits, all
the redo log records for the transaction in its redo log are appended to the system log, and the
logical-undo description for the operation is included in the operation commit log record in the
system log. Thus, with the exception of logical-undo descriptors, only redo records are written
to the system log during normal processing.

Also, when an operation pre-commits, the undo log records for its sub-operations/updates
are deleted (from the transaction’s undo log) and a logical-undo log record containing the undo
description for the operation is appended to the transaction’s undo log. In-memory undo logs
of transactions that have pre-committed are deleted since they are not required again. Locks
acquired by an operation/transaction are released once they pre-commit.

The system log is flushed to disk when a transaction decides to commit. Pages updated by
a redo log record written to disk are marked dirty in the dirty page table, dpt, by the flushing
procedure. In our recovery scheme, update actions do not obtain latches on pages — instead
region locks ensure that updates do not interfere with each other.® In addition, actions that are
normally taken on page latching, such as setting of dirty bits for the page, are now performed
based on log records written to the redo log. For example, the flusher uses physical log records
to set per-page dirty bits, avoiding contention on the dirty page table. The redo log is used as

5In cases when region sizes change, certain additional region locks on storage allocation structures may need
to be obtained. For example, in a page-based system, if an update causes the size of a tuple to change, then in
addition to a region lock on the tuple, an X mode region lock on the storage allocation structures on the page

must be obtained.
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Figure 5: Overview of Recovery Structures

value, record pointer> pair. Also, the X region locks on the free list and the bucket are no
longer required, and are released. Only the insert operation lock is held till end of transaction.

Note that if the physical-undo log records were not replaced by the logical-undo log record,
it would not have been possible to release locks on the free list and the bucket. Once the region
locks are released, other operations can update the same regions (bucket and free list), and
attempting to roll back the first operation using physical-undo records would damage the effects
of the later actions. Once the region locks are released, only a compensating undo operation can
be used to undo the operation. The replacement of lower-level undo operations by higher-level
undo operations is, in a nutshell, the idea underlying multi-level recovery. Without multi-level
recovery, other allocation operations on the storage allocator would have been blocked until
the end of the transaction — resulting in a lower degree of concurrency. Multi-level recovery is
supported in, for example, ARIES [MHL*92].

4.2 System Overview

Figure 5 gives an overview of the structures used for recovery. The database® is mapped into
the address space of each process as described in Section 3. Two checkpoint images of the
database, Ckpt_A and Ckpt_B, reside on disk. Also stored on disk are 1) cur_ckpt, an “anchor”
pointing to the most recent valid checkpoint image for the database, and 2) a single system
log containing redo information, with its tail in memory. The variable end_of_stable_log stores
a pointer into the system log such that all records prior to the pointer are known to have been
flushed to the stable system log.

There is a single active transaction table (ATT), stored in the system database, that stores
separate redo and undo logs for each active transaction. A dirty page table, dpt, is maintained
for the database (also in the system database) which records the pages that have been updated
since the last checkpoint. The ATT (with undo logs) and the dirty page table are also stored
with each checkpoint. The dirty page table in a checkpoint is referred to as ckpt_dpt.

®The database here represents a single database file. In fact, different database files can be checkpointed at
different times, and transactions can span database files arbitrarily. The generalization for multiple database
files is straightforward, but is omitted for clarity and space.
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Figure 4: Overview of Multi-level Recovery

region locks on the particular nodes involved in an insert can be released, while an operation
lock on the newly inserted key that prevents the key from being accessed or deleted is retained.

We illustrate multi-level recovery under this model. Consider a unique hash index that
stores a <key value, pointer to record> pair for every record in a database. Let the hash index
support operations insert, delete and find with the obvious meanings.

Note that each operation takes a key value as a parameter; it is on this key value that the
operation gets an operation lock when it begins. Operation locks here are of three kinds: insert,
delete and find locks. Operation locks on different key values do not conflict with each other.
Furthermore, insert and delete locks conflict with every other operation lock (find/insert/delete)
on the same key value; however, find locks on the same key value do not conflict with each
other.

In order to see how operation locking can help enhance concurrency, consider an implemen-
tation of the hash index with buckets, (see Figure 4), where each bucket points to a linked list of
nodes, each node containing a single <key value, record pointer> pair. In this implementation,
it was decided that each bucket including the linked list constitute a region, and thus one region
lock is associated with one bucket. In addition, there is also a free list of nodes from which
nodes are obtained when inserting into the hash index. The free list is a separate region with
its own lock.

A find operation obtains a find operation lock on the key value, and then an S region lock
on the bucket containing the key value and releases the lock on the bucket once the node in the
bucket chain containing the key value has been found. However, the find lock on the key-value
is held for the duration of the transaction.

An insert operation first obtains an insert operation lock on the key value, and then obtains a
region lock on the free list in X mode, and deletes a node from the free list. It then determines
the bucket into which the key value is to be inserted and obtains an X region lock on the
bucket. It then copies the <key value, pointer> pair into the free node and links the node into
the bucket chain. Obtaining the free node and linking it into the bucket chain result in several
updates, which are all physically logged. Once the node has been added to the chain, the insert
operation is complete. At this point, the physical-undo log records are deleted and replaced by
a logical-undo log record, which if executed, would call the delete operation on the new <key
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segment is updated to point to the segment header for the segment. The segment header, in
addition to containing the start address for the segment and the chunk containing the segment,
can also contain additional information about data in the segment to support higher-level ab-
stractions (e.g., lock and type information). This last facility is used by the heap file described
in Section 7.1.

4 Transaction Management in Dali

In this section we present how transaction atomicity, isolation and durability are achieved in
Dali. Transaction management in Dali is based on principles of multi-level recovery [WHBM90,
MHL*92, Lom92]. To our knowledge, Dali is the only implementation of multi-level recovery
for main-memory, and one of the few implementations of explicit multi-level recovery reported
to date (Weikum [WHBM90] reports use of explicit MLR in a prototype database management
system).

We begin with a review of multi-level recovery concepts, followed by a description of the
structures used in Dali for transactions, logging and other recovery support mechanisms. Our
implementation extends the scheme presented in [JSS93] with multiple levels of abstraction,
and a fuzzy checkpointing scheme that only writes dirty pages. Low-level details of our scheme
are described in [BPRT96].

In our scheme, data is logically organized into regions. A region can be a tuple, an object,
or an arbitrary data structure like a list or a tree. Each region has a single associated lock with
exclusive (X) and shared (S) modes, referred to as the region lock, that guards accesses and
updates to the region.

4.1 Multi-Level Recovery

Multi-level recovery provides recovery support for enhanced concurrency based on the semantics
of operations. Specifically, it permits the use of weaker operation locks in place of stronger
shared/exclusive region locks.

A common example is index management, where holding physical locks until transaction
commit leads to unacceptably low levels of concurrency. If undo logging has been done physically
(e.g. recording exactly which bytes were modified to insert a key into the index) then the
transaction management system must ensure that these physical-undo descriptions are valid
until transaction commit. Since the descriptions refer to specific updates at specific positions,
this typically implies that the region locks on the updated index nodes are retained to ensure
correct recovery, even though they are no longer needed for correct concurrent access to the
index.

The multi-level recovery approach is to replace these low-level physical-undo log records
with higher-level logical-undo log records containing undo descriptions at the operation level.
Thus, for an insert operation, physical-undo records would be replaced by a logical-undo record
indicating that the inserted key must be deleted. Once this replacement is made, the region

locks may be released, and only (less restrictive) operation locks are retained. For example,
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e The inline power-of-two allocator is the same except that the free space list uses the first

few bytes of each free block to implement the list.

o The coalescing allocator merges adjacent free space and uses a free tree, described below.

In both power-of-two allocators, space requests are rounded up to a bucket size. Free-space
lists are maintained per-bucket, where a bucket represents an allocation size, with a maximum
item size of 23! x m. Free-space lists are stored in a separate chunk, making it much harder
for simple programming errors to corrupt the system-wide free space tables. Requested (freed)
space that is rounded up to size 2° x m is allocated (freed) from (to) the i** bucket. The inline
allocator is faster and more space efficient, but susceptible to corruption from simple off-by-one
programming errors. This allocator is mostly used for system-maintained data (such as the free
space lists for the power-of-two allocator). Since the power-of-two allocators do not coalesce
adjacent free space, they are subject to fragmentation and are thus primarily used for fixed size
data.

The coalescing allocator provided by Dali is implemented using a free tree. Qur implemen-
tation of this structure is based on the T-tree described in Section 7.3. It consists of a T-tree
of free space which uses the starting address of free blocks as the key. Thus, any two free
blocks which are candidates to be merged will be adjacent in the tree. Fach node is annotated
with the largest free block in the subtree rooted at that node. This information is used during
allocation to traverse the free tree — at each node the subtree chosen is one which contains a free
block larger than the requested size. Traversal halts once a sufficiently large free block is found.
Each time space is freed, it is inserted into the free tree and an attempt is made to merge it
with its in-order successor and predecessor in the tree. In the case that allocation or freeing of
space causes the sizes of free blocks in the free tree to change, this information is propagated
upwards to all the ancestors of the node in the free tree, if necessary. This structure provides
logarithmic time for both allocation and freeing, while keeping all adjacent free space coalesced
and providing exact allocation.

In the allocation schemes described above, contiguous unallocated space at the end of the
last segment for the chunk is not contained in the free lists and the free tree. Thus, if no
free blocks are found in the free lists or the free tree, space is allocated from the end of the
last segment in the chunk if possible. If sufficient space is not available at the end of the last
segment, then a new segment is allocated for the chunk from the database file and space is
allocated from it (the new segment is also appended to the list of segments for the chunk, and
the insufficient free space in the former last segment is added to free space list).

3.3.2 The Page Table and Segment Headers

Database systems which use physical addressing may need to associate some information about
the segment or the chunk with a physical database pointer. For this reason, we have imple-
mented segment headers in Dali, and use a page table to map pages to segment headers. The
page table is pre-allocated based on the maximum number of pages in the database (and real-
located if the database is resized). Segment headers are allocated when a new segment is added

to a chunk. Furthermore, each page table entry corresponding to a page in the newly-allocated
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negate that advantage. Thus, Dali items can be of arbitrary size.

Different recovery characteristics should be available for different regions of the database.
Not all data needs to be recovered in case of a system crash. For example, indexes could
be recovered by recreating the index (at a substantial cost in recovery time). Similarly, lock
and semaphore contents do not need to persist across system crashes — they simply need to
be re-initialized at recovery time. We distinguish two levels of non-recovered data: zeroed
memory and transient memory. Zeroed memory remains allocated upon recovery but each byte
is set to zero. With transient memory, the data is no longer allocated upon recovery. These
characteristics can be applied at the database level, and at the sub-database level as described
in the next section.

3.3.1 Segments and Chunks

We now describe the storage allocation mechanism in Dali, and show how it meets the re-
quirements described above. Each database file in Dali is comprised of segments, which are
contiguous page-aligned units of allocation, similar to clusters in a file system. As illustrated
in Figure 3, a chunk is a collection of segments. Recovery characteristics (transient memory,
zeroed memory, or persistent memory) are specified on a per-chunk basis at the time of chunk
creation. Users allocate within a chunk, and do not specify a particular segment. Since seg-
ments can be arbitrarily large (within the size of the database), arbitrarily large objects can
be stored contiguously. Upon allocation within a chunk, the system returns a standard Dali
pointer to the space, which specifies the offset within the file. Thus, indirection is not imposed
at the storage manager level. The elements shown linking together segments in a chunk are
themselves stored in a special chunk used for control information.

Within a chunk, different allocators are available which trade off speed, safety and size. In
all allocators, no record of allocated space is retained, and the user must remember the size of
the allocated data. This is required to avoid excessive overhead for small items. A layer above
the allocator can be implemented to store this data above the allocated space, if required. The
currently defined and implemented allocators in Dali are

o The power-of-two allocator allocates storage in buckets of size 2* x m where m is some
minimum item size.



The primary kind of database pointer in Dali contains a database file local-identifier and an
offset within the database file. Dereferencing a database pointer p simply involves adding the
offset contained in p to the virtual memory address at which the database file is mapped, looked
up from the offset table. A second form of database pointer is available for cases where the
database file is known from context. For example, all pointers out of a certain index might reside
in a particular database file. In this case, we may store just the offset within the database file
as the pointer. Both offsets and full pointers are implemented as simple C4++ template classes
which allow them to be used as “smart pointers”.

3.3 Storage Allocation

We next describe how storage for data is allocated within a database file. Designing storage
allocation structures consists primarily of trading speed for generality and flexibility. Our
particular choices are motivated by the following requirements: 1) control data should be stored
separately from user data, 2) indirection should not exist at the lowest level, 3) large objects
should be stored contiguously, and 4) different recovery characteristics should be available for
different areas. We now describe each requirement in more detail.

Control data should be stored separalely from user data. Since processes map the entire
database file into their address space, stray pointers in applications can easily corrupt the
database. Maintaining the integrity of control data (e.g., information about free storage space)
is crucial since it’s corruption implies the corruption of the entire database file. If control data
is stored with the data itself, then the control data would be very susceptible to corruption by
simple errors such as improper bounds checking or accessing recently freed memory. However,
if control information is stored separately from the data, then stray application pointers are
more likely to corrupt other user data rather than control data. Thus, the corruption of the
entire database file can be avoided.

Indirection should not exist at the lowest level. Most disk-based storage managers (e.g.,
Exodus, EOS, System R) have a slotted page architecture in which data is allocated in pages
and a slot array at the bottom of the page contains pointers to allocated data. Fach data item
is then identified by the page containing it and the index of the slot containing a pointer to it.
This indirection has the advantage that data items in a page can be moved around in order to
reclaim space, and only the pointers in the slots need to be updated. However, the indirection
almost certainly adds a level of latching to each data access, as well as adding path length for
the dereference itself. Finally, there is an additional storage cost for the extra pointers. In
Dali, since the database is main-memory resident, these costs are proportionally much higher
than in a disk resident system. Further, for an object-oriented database, a level of indirection
may already exist in the mapping from object identifier to objects which offers many of these
advantages, such as the ability to move and resize objects, making the overhead of slotted pages
redundant. For these reasons, we did not adopt the slotted page architecture in Dali. Instead,
the storage allocator exposes direct pointers to allocated data providing both time and space
efficiency.

Large objects should be stored contiguously. If large objects are stored in main memory, the
advantage is obviously speed. Having to reconstruct them from smaller objects will serve to
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files, and may map the same database file to different locations in their address space. This
feature precludes using virtual memory addresses as physical pointers to data (in database files),
but provides two important benefits. First, a database file may be easily resized. Second the
total active database space on the system may exceed the addressing space of a single process.
This is useful on machines with 32-bit addressing (e.g., the SPARCCenter) in which physical
memory can significantly exceed the amount of memory addressable by a single process.

However, in a 64-bit machine, both of these considerations may be significantly mitigated,
leading us to consider using physical addressing. If a single database file can be limited to
something like 64 Gigabytes, then each process could still map close to a billion database files
(which can be expected to far exceed the total database space).

3.1 Layers of Abstraction

An important feature of Dali’s architecture is that it is organized in multiple layers of abstraction
to support the toolkit approach discussed earlier. Figure 2 illustrates this architecture. At the
highest level, users can interact with either Dali’s relational manager or the Main-Memory
Ode object database. These two layers are described later in sections 8.1 and 8.2. Below that
level is what we call the “heap-file/indexing layer,” which provides support for fixed-length and
variable-length collections, as well as template-based indexing abstractions. In general, at this
level, one does not need to interact with individual locks or latches. Instead, one specifies a
policy to the lower level, such as “no locking” or “lock-plus-handle-phantoms”.

Services for logging, locking, latching, multi-level recovery and storage allocation are exposed
at the lowest level. New indexing methods can be built on this layer, as can special-purpose
data structures for either an application or a database management system. Of course, this
level has the most complex user-interface, but it has proven itsell during the creation of the
higher-level interfaces and database systems described above.

3.2 Pointers and Offsets

It is crucial for performance that mapping from database pointers to virtual memory addresses
be domne efficiently. In Dali, each process maintains a database-offset table, which specifies
where in memory each database file is mapped. The table is currently implemented as an array
indexed by the (integer) database file identifier.
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considerations. To our knowledge, no prior work addresses concurrency control and recovery
issues for T-trees in particular. Further details of our scheme can be found in [BLR195]. A
structure for hashing in main-memory was proposed in [AP92]. Our hashing structure is much
simpler at the cost of more-than-one compare for some searches (no concurrency control scheme
was given in [AP92]). Our concurrency control and recovery mechanisms take advantage of its
simplicity; these mechanisms are described in Section 7.2.

The latch recovery techniques are based on work in [BLST95]. A significant body of work
on making data structures tolerant to process slow-downs and failures exists under the title
of “wait free” data structures (see e.g. [Her89, Her88, TSP92]). This work is not designed
for transaction processing systems, however, and depends on the presence of a compare-and-
swap instruction, which is not available in many architectures (such as SPARC). Sullivan and
Stonebraker address the problem of protection from erroneous writes in [SS91], but they assume

inexpensive operating system support for protecting and unprotecting data.

3 Architecture

In the Dali architecture, the database consists of one or more database files, along with a special
system database file. User data itself is stored in database files while all data related to database
support, such as log and lock data, is stored in the system database file. This enables storage
allocation routines to be uniformly used for (persistent) user data as well as (non persistent)
system data like locks and logs. The system database file also persistently stores information
about the database files in the system.

As shown in Figure 1, database files opened by a process are directly mapped into the
address space of that process. In Dali, either memory-mapped files or shared-memory segments
can be used to provide this mapping. Different processes may map different sets of database



transaction processing applications but with much lower latency and higher throughput re-
quirements. In a typical Dali application, transactions are small, multiple processes may access
shared data, and high concurrency — especially on index structures —is important. As a result,
Dali supports item level locking. Also, the recovery algorithm used in Dali is designed to work
well with small transactions.

There has been a good deal of prior work in the area of main-memory databases. Much of
this work has concentrated on recovery schemes, and will be discussed in the context of other
recovery research below. An early paper by DeWitt et al, [DKO%84], covered a number of topics
including query processing, recovery and data organization. A later work by Lehman and Carey
on indexing and query evaluation issues, [LC86a], introduced the T-Tree. (A concurrent version
of T-Trees is implemented in Dali.) Garcia-Molina and Salem [GMS92] provide an excellent
overview of research on main-memory databases. Lehman et al. [LSC92] and Gottemukkala and
Lehman [GL92] discuss the relative costs of operations such as locking and latching in the main-
memory storage component of the Starburst extensible database system. They demonstrate
that once the I/O bottlenecks of paging data into and out of the database are removed, other
factors such as latching and locking dominate the cost of database access, and they provide
techniques for reducing such costs. Thus, they provide an excellent motivation for closely
examining the system design of a main-memory database and tuning it to remove bottlenecks,
and have thereby influenced our work significantly.

Much of the work on main-memory databases has concentrated on recovery [Eic89, Hag86,
LC87, LE93, SGM90a]. The work by Eich [Eic89] provides a survey, and the performance
studies using System M by Salem and Garcia-Molina [SGM90a] provide both a good review
and performance comparison of many of the schemes suggested by earlier work. Our recovery
algorithm is in many ways similar to the “fuzzy” checkpointing schemes of [SGM90a], including
use of ping-pong checkpointing and dirty page bits. One difference is that updates in Dali
are in-place, requiring that undo information is sometimes necessary. We use the techniques
developed for Dali in [JSS93] to limit this undo logging to during checkpointing so that the
majority of undo log information is never written to disk. Our main contribution to this
earlier scheme is integration with multi-level recovery, which allows early release of low-level
locks for indexing and storage allocation, while retaining the benefits of fuzzy checkpointing
for consistency of response times. Multi-level recovery (MLR) schemes have been proposed in
the literature [WHBM90, Lom92, MHL*92]. Like these schemes, our scheme repeats history,
generates log records during undo processing and logs operation commits when undo operations
complete (similar to CLRs described in [MHL192]). Also, as in [Lom92], transaction rollback
at crash recovery is performed level-by-level. By integrating MLR with the main-memory
recovery techniques described above and in [JSS93], we have produced a significantly optimized
multi-level recovery algorithm for main memory database management systems.

As mentioned above, T-trees were proposed by Lehman and Carey in [LC86a]. Our imple-
mentation supports concurrent access, scans, and addresses recovery issues. Earlier work on
concurrency for binary and AVL trees relates to our work due to the similarity of the struc-
tures. The index techniques of [KL80] do not address all the concurrency control issues needed
to implement transaction semantics, while the treatment of [ML82] requires pre-ordering all ac-
cesses to a tree by a given transaction by key value. Neither of [KL80, ML82] address recovery



the architecture and the storage structures used in Dali. Details of how Dali recovers data
from system crashes and process failures are given in Sections 4 and 5. Section 6 covers the
implementation of latches (semaphores) and locks. Section 7 describes support for collections of
data items and indexes, while higher-level relational and object-oriented interfaces are described

in Section 8. Finally, concluding remarks are offered in Section 9.

2 Related Work

A storage manager provides the core functionality of a database system, such as concurrency
control, recovery mechanisms, storage allocation /free space management, and transaction man-
agement. There have been numerous implementations of storage managers for disk resident
data. These include the storage managers of Exodus [CDRS89], Starburst [HCLT90], Object-
Store [LLOWO91], EOS [BP93], Texas [SKW92], Cricket [SZ90], and QuickStore [WD94]. After
describing how Dali relates to other storage managers and main-memory database research in
general, we will briefly address related work for the various novel aspects of Dali’s implemen-
tation.

With the exception of the Starburst main-memory storage component [LSC92] we are not
aware of any storage manager that is tailored for main-memory resident data.* The Starburst
main-memory storage component is a relational storage manager used as a component of the
Starburst database system. Its emphasis is on data allocation and structuring issues; the
Starburst main-memory storage component described in [LSC92] uses the recovery manager
of Starburst rather than implementing its own recovery manager. In contrast, the recovery
mechanisms of Dali are based on a recovery algorithm tailored to main memory, evolved from
those proposed in [JSS93].

Unlike Dali and the Starburst main-memory storage component, the other (existing or
proposed) storage managers of which we are aware are not tailored for memory-resident data.
The storage managers for disk-resident data can be divided into two groups. The first group
consists of traditional storage managers, such as Exodus and EOS, that provide their own buffer
management facilities. The second category consists of storage managers that map the database
into virtual memory. Included in this category are the storage manager of ObjectStore, the
Texas system, Cricket, and QuickStore.

Storage managers in this second category are more closely related to Dali, since Dali also uses
a memory-mapped architecture. However, the architecture of existing memory-mapped storage
managers, in particular their recovery mechanism, does not take advantage of the database
being resident in main memory. For instance, ObjectStore uses page-wise checkpointing, and
Texas uses a shadow paging architectures which, while providing support for old versions of
data, results in slow commit processing. Also, the storage managers were designed for CAD
environments where transactions are long, concurrency control at the level of pages is sufficient,
and fast sharing of data is not a primary concern.

Dali, on the other hand, is designed for high performance applications similar to traditional

*System M [SGM90a] is a transaction processing test-bed for memory resident data, but is not a full feature

storage manager.



the direct access principle by allowing the user access to the data without a copy.? A related
principle is no interprocess communication for basic system services. All concurrency control
and logging services are provided via shared memory rather than communication with a server.
While Dali does provide servers to orchestrate system activity, take checkpoints, cope with
process failure, etc., a typical user process only communicates with them when connecting to
and disconnecting from the database.

The next guiding principle of Dali is that it enables the creation of fauli-tolerant applica-
tions. The primary expression of this principle is the use of the transactional paradigm, the
dominant technology for providing fault-tolerance to critical applications. In fact, Dali pro-
vides an advanced, explicitly multi-level transaction model which has facilitated the production
of high-concurrency indexing and storage structures, and the description of this transaction
management facility and these storage structures is the primary focus of this paper. The Dali
system also includes other features supporting the principle of fault-tolerance. One is support
for recovery from process failure in addition to system failure. Another is the use of codewords
and memory protection to help ensure the integrity of data stored in shared memory. Describing
these features is a secondary focus of this paper.

Another key requirement for applications which expect to store all their data in main mem-
ory is consistency of response time. Support for fine-grained concurrency control and minimal
interference with the checkpointer due to latching help provide this consistency in Dali. Other
principles that have guided Dali’s implementation have been a toolkit approach and support for
multiple interface levels. The former implies, for example, that logging facilities can be turned
off for data which need not be persistent, and locking can be turned off if data is private to a
process. The second principle means that low-level components are exposed to the user so that
critical system components can be optimized with special implementations. Most applications
will prefer the high-level relational and object-oriented interfaces, however.

As a storage manager, Dali is intended to support a variety of data models — for example,
relational and object-oriented models have been implemented in Dali already. Our intention, like
that of the Genesis system [BBG190] and the Exodus Storage Manager [CDRS89], is to provide
the implementor of a database management system flexible tools for storage management,
concurrency control and recovery, without dictating a particular storage model or precluding
optimizations. Some of the aspects of Dali which support this goal are subtle, including a
flexible recovery model and storage abstractions which do not build in significant per-item
overheads. This last point is particularly important in a main-memory system.

While Dali can be used in systems where the database is larger than main-memory (as long
as the database fits in the virtual address space of the process), the architecture of Dali, from
storage allocation and indexing to its recovery facilities, has been designed to deliver high per-
formance when the database fits into main memory. With minor variations, the version of Dali
described in this paper is currently implemented as a research prototype in Bell Laboratories.?

The remainder of the paper is organized as follows. Related work on storage managers
and recovery techniques is surveyed in Section 2. In Section 3, we present an overview of

2For some of the interfaces, a copying mode is also supported.
®For more information, see http://www.bell-labs.com/org/1123/what/dali/



1 Introduction

There are a number of database applications, particularly in the telecommunications industry
(and other industries involved in real-time content delivery), where very high performance access
to data is required. Such applications typically need high transaction rates, coupled with very
low latency for transactions, and impose stringent durability and availability requirements.
As as example, consider a real phone-company application where phone call data is recorded,
and queries against the data can be issued. The application requires several thousand (albeit
small) requests (lookups/updates) to be processed per second, with less than 50 milliseconds
latency for lookups, and less than a few minutes of down-time a year. Such applications have
been previously implemented as stand-alone programs that run in main memory and provide
their own (usually limited) forms of sharing and persistence mechanisms. It is increasingly
being realized that the storage needs of these types of applications would best be met by using
an underlying main-memory storage manager that supports an array of functionality such as
transaction management, data organization, concurrency control and recovery services. Using
the same storage manager across multiple applications can greatly reduce development costs.

The increasing availability of large and relatively cheap memory also suggests that more
database applications could reside entirely or almost entirely in main memory. Such applications
will experience performance benefits by having data cached in main memory. However, if the
storage manager supporting such applications is tailored to main memory, significant additional
performance benefits can be achieved, as shown in [LSC92]. Thus, storage managers tailored
to main memory would also be ideally suited for such databases.

The Dali' system [JLRT94], implemented at Bell Laboratories, is a storage manager for
persistent data whose architecture has been optimized for environments in which the database
is main-memory resident. While not directly suitable for storing large multimedia objects, Dali
can be used in a number of ways to facilitate delivery of multimedia content. First, it can be
used to store meta-data such as allocation information about multimedia objects, and has been
used in this manner in a prototype of the Fellini continuous media storage server [ORS+96]. In
such an environment, Dali may also be used to coordinate shared access to main memory buffers,
providing concurrency control and allowing recovery from process failure. Another increasingly
significant target application for Dali is real-time billing and control of multimedia content
delivery. In fact, Dali’s original target application, aiding in control and billing for real-time
voice data in telephony applications, is just one example of the need for high-speed transactional
access to data in multimedia content delivery. We expect a number of new applications in this
category to arise from novel content delivery services provided over the World Wide Web.

A number of principles have evolved with Dali over the past three years and now guide
its design and evolution. The first of these principles is direct access to dala. As described
above, we have found that this requirement has already been imposed by the architects of
high performance applications. Dali uses a memory-mapped architecture, where the database
is mapped into the virtual address space of the process, allowing the user to acquire pointers
directly to information stored in the database. The various interface levels further support

!Named in honor of Salvadore Dali, for his famous painting, “The Persistence of Memory”.
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Abstract

Performance needs of many database applications dictate that the entire database be
stored in main memory. The Dali system is a main memory storage manager designed
to provide the persistence, availability and safety guarantees one typically expects from a
disk-resident database, while at the same time providing very high performance by virtue of
being tuned to support in-memory data. User processes map the entire database into their
address space and access data directly, thus avoiding expensive remote procedure calls and
buffer manager interactions typical of accesses in disk-resident commercial systems available
today.

Dali recovers the database to a consistent state in the case of system as well as process
failures. It also provides unique concurrency control and memory protection features, as well
as ordered and unordered index structures. Both object-oriented and relational database
management systems have been implemented on top of Dali. Dali provides access to multiple
layers of application programming interface, including its low-level recovery, concurrency
control and indexing components as well as its high-level relational component. Finally,
various features of Dali can be tailored to the needs of an application to achieve high
performance — for example, concurrency control and logging can be turned off if not desired,
enabling Dali to efficiently support applications that require non-persistent memory-resident
data to be shared by multiple processes.

*A Ph.D. candidate in the Department of Computer Science at Rutgers University.



