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Abstract

XML is becoming the most relevant new standard for data
representation and exchange on the WWW. Novel languages
for extracting and restructuring the XML content have been
proposed, some in the tradition of database query languages
(i.e. SQL, OQL), others more closely inspired by XML. No
standard for XML query language has yet been decided, but
the discussion is ongoing within the World Wide Web Con-
sortium and within many academic institutions and Internet-
related major companies. We present a comparison of �ve,
representative query languages for XML, highlighting their
common features and di�erences.

1 Introduction to the �ve languages

1.1 LOREL

LOREL was originally designed for querying semistructured
data and has now been extended to XML data; it was con-
ceived and implemented at Stanford University (S. Abite-
boul, D. Quass, J. McHugh, J. Widom, J. Wiener) and its
prototype is at http://www-db.stanford.edu/lore. It is a
user-friendly language in the SQLnOQL style, it includes a
strong mechanism for type coercion and permits very pow-
erful path expressions, extremely useful when the structure
of a document is not known in advance [AQ*97, AG*97,
GMW99].

1.2 XML-QL

XML-QL was designed at AT&T Labs (A. Deutsch, M.
Fernandez, D. Florescu, A. Levy, D. Suciu); its prototype
is reachable at the url: http://www.research.att.com/sw/
tools/xmlql as part of the Strudel Project. The XML-QL
language extends SQL with an explicit CONSTRUCT clause
for building the document resulting from the query and uses
the element patterns (patterns built on top of XML syntax)
to match data in an XML document. XML-QL can express
queries as well as transformations, for integrating XML data
from di�erent sources [DF*98, DF*99].

�This research was done when the authors were visiting Stan-

ford University. It was supported by ESPRIT Project 28771 W3I3,
MURST Project Interdata, CNR-CESTIA, and the HP Internet Phil-
anthropic Initiative.

1.3 XML-GL

XML-GL is a graphical query language, relying on a graph-
ical representation of XML documents and DTDs by means
of labelled XML graphs. It was designed at Politecnico di
Milano (S. Ceri, S. Comai, E. Damiani, P. Fraternali, S.
Paraboschi and L. Tanca); an implementation is ongoing.
All the elements of XML-GL are displayed visually; there-
fore, XML-GL is suitable for supporting a user-friendly in-
terface (similar to QBE) [C*99].

1.4 XSL

The Extensible Stylesheet Language (XSL) has facilities that
could serve as a basis for an XML query language. An XSL
program consists of a collection of template rules; each tem-
plate rule has two parts: a pattern which is matched against
nodes in the source tree and a template which is instanti-
ated to form part of the result tree. XSL makes use of the
expression language de�ned by XPath [Cl99b] for selecting
elements for processing, for conditional processing and for
generating text. It was designed by the W3C XSL working
group (J. Clark editor) [Cl99a, SLR98, W*98] .

1.5 XQL

XQL is a notation for selecting and �ltering the elements
and text of XML documents. XQL can be considered a
natural extension to the XSL pattern syntax; it is designed
with the goal of being syntactically very simple and compact
(a query could be part of a URL), with a reduced expressive
power. It was designed by J. Robie, Texcel Inc., J. Lapp,
webMethods, Inc., and D. Schach, Microsoft Corporation
[RLS98, Ro99a, Ro99b, Ro99c, SLR98].

1.6 Other languages

Several other languages for XML have been proposed, in-
cluding XMAS [LP*99] and XQuery [DeR98].

1.7 Outline

The paper is organized as follows: in Section 2, we describe
how the languages support various orthogonal features; in
Section 3, we give some comparative examples of queries in
the �ve languages; in light of these discussions, Section 4
summarizes the desired qualities of the languages, and the
concluding Section 5 proposes a language taxonomy which



shows, in a synthetic and e�ective way, a comparison of the
expressive power of the �ve languages.

2 Features Classi�cation

In the following, we examine how the considered languages
support the various features of database query languages.

A. Data Model

1. Speci�c data model. The designers of LOREL, XML-
QL, XML-GL and XSL have felt the need of introduc-
ing their own data model explicitly, while XQL relies
on the data modeling features of XML.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL:Yes XQL: No

In the LOREL data model, an XML element is a pair
< eid; value >, where eid is a unique element iden-

ti�er, and value is either an atomic text string or a
complex value containing a string-valued tag, followed
by a (possibly empty) ordered list of pairs of attribute
names and atomic values (representing XML attributes),
followed by a (possibly empty) ordered list of pairs
< eid; value > called crosslink subelements (represent-
ing XML IDREF attributes), followed by a (possi-
bly empty) ordered list of pairs < eid; value > called
normal subelements (representing the XML contain-
ment relationship). A graph representation of the data
model is provided; nodes correspond to the XML data
elements and edges are designed as either crosslink

edges or normal edges; edges are labeled. Each XML
graph has one or more node designed as entry points.

In XML-QL, an XML document is modeled by an
XML Graph; each node is associated to an object iden-

ti�er (OID); edges are labeled with element tag identi-
�ers, intermediate nodes are labeled with sets of attribu-
te-value pairs representing attributes, leaves are la-
beled with values (e.g., CDATA or PCDATA); each
graph has a distinguished node called the root.

In XML-GL, an XML Graphical Data Model (XML-

GDM) is used to represent both XML DTDs and ac-
tual documents; XML-GDM is also used for formulat-
ing queries. XML elements are represented as rectan-
gles and properties as circles; these include attributes
(as pairs of label and value) as well as printable val-
ues CDATA or PCDATA (with value but no label);
IDREFs are denoted by black circles. Edges between
nodes represent containment or reference relationships.

XSL operates on source, result and stylesheet docu-
ments using the same data model, de�ned in the XPath
speci�cation. An XML document is modeled as a
tree that contains seven types of nodes (root nodes,
element nodes, text nodes, attribute nodes, names-
pace nodes, processing instruction nodes and comment
nodes). For every type of node, there is a way of de-
termining a string value for it, that is either part of
the node or computed from the string-values of its de-
scendants. Some types of node also have an expanded
name, which is a pair consisting of a local part and a
namespace URI.

XQL designers assume the \XML implied data model",
highlighting that each node has a type and either con-

tent or a value, and that semantic relationships be-
tween nodes can be hierachical (parent/child, ances-
tor/descendant), positional (absolute, relative, range)
and sequential (precedes, immediately precedes) [Ro99c].

All of the data models introduced in LOREL, XML-
QL, XML-GL and XSL may consider the elements in a
given XML document as either unordered or ordered;
however, only XML-QL is able to query the ordering of
the underlying data model, as discussed in point G.3.

The data models of LOREL, XML-QL, and XML-GL
are substantially equivalent; the only signi�cant dif-
ference concerns the management of IDREFS, which
is discussed next. XSL data model is a tree rather
than a graph, so it cannot be considered equivalent to
the previous ones.

2. Di�erential management of IDREFs. To support ele-
ment sharing, XML reserves an attribute of type ID,
which associates an unique key to the element. An
attribute of type IDREF allows an element to refer to
another element with the designed key. Thus, IDREFs
are particular strings that can be interpreted as refer-
ences between elements. With such an interpretation,
it is possible to navigate from one element to another;
the data model supports object references, possibly
cyclic. However, if IDREFs are interpreted as strings,
then nodes are connected only by containment rela-
tionships, and the data model does not support object
references. These two interpretations of IDREFs may
lead to two di�erent interpretations of the same query.
We indicate this property as di�erential management
of IDREFs.

LOREL: Yes XML-QL: No XML-GL: No

XSL: No XQL: No

In LOREL, there are two modes of viewing the data
model: semantic and literal. In the semantic mode,
the database is viewed as an interconnected graph; in
the literal mode, the database is viewed as an XML
tree, and IDREFs are represented as textual strings. 1

B. Basic Query Abstractions

1. Document selection. Given a document and a query on
the document, the document selection is the result of
the application of the query to the document, picking
up the elements, speci�ed in the select expression of
the query, that satisfy the query condition.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: Yes XQL: Yes

Of course this feature is supported by all the languages.
We next introduce simpli�ed descriptions of the syntax
of the �ve languages.

A query in LOREL is structured according to the fol-
lowing, simpli�ed grammar (for full details, the reader
can refer the [AQ*97] paper) 2:

1
FollowLinks is a command line directive which enables the seman-

tic interpretation of the data model in the Lore implementation.

2We use a BNF notation where nonterminals are enclosed within

quotes, curly brackets denote a list of zero or more elements sepa-
rated by commas, square brackets denote optionality, and the symbol

j denotes alternatives.



`select' { select_expr }

[ `from' { from_expr } ]

[ `where' { where_expr } ]

Select expressions, from expressions, and where ex-
pressions, as in OQL, can in turn contain queries.

A simpli�ed syntax for de�ning a query in XML-QL
is:

Query ::= `where' { Predicate }

`construct' { `{` Query '}' }

The result speci�ed in the construct clause is a piece
of XML document, fully speci�ed in terms of tag names
and content; content is typically constructed from the
object bindings which are determined by the predicate
evaluation (for full details on the XML-QL syntax, see
[DF*98]).

An XML-GL query consists of two sets of directed
acyclic graphs displayed side by side and separated
by a vertical line, where the LHS express the query
sources (which documents are selected) and predicate
(which condition must be satis�ed), while the RHS
represents the construction (which document is pro-
duced as result); explicit connections or implicit homo-
nims, where unambiguous, indicate the bindings be-
tween the LHS and RHS.

In XSL, a template rule is speci�ed within the xsl:tem-
plate tags. The match attribute is a pattern that iden-
ti�es the source node or nodes to which the rule ap-
plies. If it is omitted, the template rule is matched
against all the nodes of the document. The follow-
ing is the approximate skeleton of a template rule (see
[Cl99a] for complete information):

`<xsl:template' [`match=' pattern_expr] `>'

{`<xsl:directive>'}

{`<result-elements>'}

`</xsl:template>'

where pattern expr represents an expression written
in the XPath language (see section C.1 for more de-
tails), result-elements are the new elements' tags
produced in the result and xsl:directive is one of
the following (for a complete list, refer to [Cl99a]):

`<xsl:apply-templates'[`select=' pattern_expr]`>'

`<xsl:for-each' `select=' pattern_expr `>'

`<xsl:value-of' [`select=' pattern_expr] `>'

`<xsl:copy-of' `select=' pattern_expr `>'

where the select attribute is used to process nodes
selected by an expression instead of all the children
of the current node. The xsl:apply-templates di-
rective invokes the application of templates which are
separately de�ned; the xsl:for-each directive iterates
on other directives which are statically nested within
it; the xsl:value-of directive extracts information
from a pattern expression and converts it into a string;
the xsl:copy-of directive extracts information from a
pattern expression and puts it into the result, with its
original format.

The basic XQL syntax mimics the URI directory nav-
igation syntax, but instead of specifying navigation
through a physical structure, the navigation is through
elements in the XML tree. A simpli�ed syntax for XQL
is (see [RLS98] for the complete syntax):

Query ::= [ `./' | `/' | `//' | `.//']

Element [ `[' Predicate `]' ][Path]

Path ::= [ `/' | `//' ] Element

[ `[' Predicate `]' ] [Path]

Therefore, a query is speci�ed along a speci�c hier-
archical path within the document; predicates (�lters
in XQL terminology) typically apply to the elements
being accessed during the navigation along the path,
although syntactically they may reach elements which
are quite distant in the hierarchical structure.

2. Joins. A join condition compares two or more XML
attributes or data belonging to the same document or
to two di�erent documents. The typical comparison
(equality) is called equi-join.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: No XQL: No

In LOREL, join conditions are fully supported, within
the same document and among several documents. They
are written in a SQL-like form, by explicitly specifying
the variables involved in the joins.

In XML-QL, joins are implicitly expressed by means
of the equality on variable names, which must match
their value. They can range on the same document or
on several di�erent documents, de�ning arbitrary join
conditions (e.g., n-way joins correspond to associating
the same variable name to n labels in the query).

In XML-GL, join conditions are expressed by connect-
ing, by means of a comparison operator, two node
leaves of XML documents, representing arbitrary at-
tributes or data; equi-joins are represented by edges
pointing to the same node, possibly with two labels
(in many cases joined nodes have the same label).

XSL does not allow neither joins nor semi-joins: each
template rule currently addresses a single document
and no connection conditions can be built within the
same document or among several documents.

XQL allows semi-joins, i.e., joins of data which is reach-
able along a path with other data which may be present
in the same document; it does not allow joins among
di�erent documents. For instance, it is possible to ask
for all books whose author is the same as the author
of Moby Dick within a given document:

book[author=//book[title=`Moby Dick']/author]

3. Semantics of the query result. The result of a query
can be de�ned in terms of the current content of the
database (i.e., by pointing to object identi�ers of nodes
in the document base) or as a new document, which
can be then queried and possibly updated indepen-
dently. In general, we expect that all languages can
adapt to either solutions. We anyway indicate the de-
fault solution adopted by the �ve languages.

LOREL:SetOfOIDs XML-QL:XMLDoc XML-GL:XMLDoc

XSL: XMLDoc XQL: XMLDoc

In LOREL, the result of a query is a set of object
identi�ers pointed by a new element. Therefore, the
standard interpretation is that the current state of ob-
jects being selected is the one present in the database,



and subsequent accesses to the query result may give
di�erent documents. In LOREL it is also possible to
de�ne views (with clause), and in such case the query
returns a document with all the nodes which are spec-
i�ed by the with clause. In the standard interpreta-
tions, XML-QL, XML-GL, XSL and XQL return new
documents, whose content is then independent on sub-
sequent database manipulations.

C. Path expressions

1. Partially speci�ed path expressions. When querying
semistructured data, especially when the exact struc-
ture is not known, it is convenient to use a form of
\navigational" query based on path expressions. The
most powerful form of path expression does not need
to list all the elements of the path, as it uses wildcards
and regular expressions: we denote it as a partially
speci�ed path expression. All languages support par-
tially speci�ed path expression and actually consider
this feature as one of the most important in the lan-
guage.

LOREL: Yes XML-QL: Yes XML-GL: Partially

XSL: Yes XQL: Yes

In LOREL, path expressions are very powerful and

exible; they admit several Unix-like wildcards. Each
path expression must have a context (the root element
of the document).

In XML-QL, path expressions are admitted within the
tag speci�cation and they permit the alternation, con-
catenation and Kleene-star operators, similar to those
used in regular expressions. XML-QL path expressions
have the same expressive power as those of LOREL.

In XML-GL, the only path expressions supported are
arbitrary containment, by means of a wildcard * as
edge label; this allows traversing the XML-GL graph
reaching an element at any level of depth.

In both XSL (XPath language) and XQL, path expres-
sions de�ne relative and absolute locations. A relative
location path consists of one or more location steps
(XML nodes) separated by the child `/' operator or
by the descendant `//' operator. An absolute location
path has a `/' or `//' optionally followed by a relative
location path. Admitted wildcards are both alterna-
tion and Kleene-star closure operator.

2. Matching of partially speci�ed expressions with cyclic

data. Partially speci�ed expressions may be the source
of in�nite computations in the case of cyclic instances.
Therefore, it is common practice to specify halt con-
ditions in the matching algorithm that binds object
instances to path expressions when the same object
binding is associated to the same query node more
than once.

LOREL: Yes XML-QL: Undefined XML-GL: Yes

XSL: No XQL: Undefined

Some systems do not mention the halt condition as
part of the query language semantics (we expect it to
be part of the implementation).

In XSL, xsl:apply-templates are used to process only
nodes that are descendants of the current node, and

this cannot result in non-terminating processing loops.
However, non-terminating loops may arise when xsl:ap-

ply-templates is used to process elements that are
not descendants of the current node. For example, the
template rule:

<xsl:template match="foo">

<xsl:apply-templates select="."/>

</xsl:template>

matches the <FOO> elements at all levels of nesting, in-
cluding the level on which the matching occurs, yield-
ing to a possible in�nite call sequence. Implementa-
tions may be able to detect such loops in some cases,
but a stylesheet may enter a non-terminating loop, de-
pending on the matching algorithm.

D. Quanti�cation, Negation, and Reduc-
tion

1. Existential quanti�cation. An existential predicate over
a set of instances (e.g., bound to a variable) is satis�ed
if at least one of the instances satis�es the predicate.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: Yes XQL: Yes

In all languages, predicates are assumed as existen-
tially quanti�ed.

2. Universal quanti�cation. An universal predicate over
a set of instances (e.g., bound to a variable) is satis�ed
if all the instances satis�es the predicate.

LOREL: Yes XML-QL: No XML-GL: No

XSL: No XQL: Yes

In LOREL, a variable can be universally quanti�ed
with the SQL-like predicate for all. Similarly, in
XQL universal quanti�cation is obtained by pre�xing a
predicate expression with the keyword $all$. In XML-
QL and XML-GL3 universal quanti�cation cannot be
expressed. In the XSL pattern language, conditions
cannot be universally quanti�ed.

3. Negation. The negation of a predicate over a set of
instances is satis�ed if none of the instances satis�es
the predicate.

LOREL: Yes XML-QL: No XML-GL: Yes

XSL: Yes XQL: Yes

In LOREL, a predicate is negated with the key-word
not. In XML-GL, the negation is expressed graphi-
cally by a dashed edge (see Figure 1, where all profes-
sors without a name element are selected). In XQL,
the boolean operator $not$ negates the value of an
expression within a �lter, e.g.:

professor[$not$ name]

3However, in XML-GL the presence of negation and existential

quanti�cation allows the expression of universal quanti�cation by
means of views.



Its meaning is to select all the instances of the con-
text associated with the �lter with a negation predi-
cate where the expression is false or not valuable (e.g.,
the name attribute is missing). XML-QL does not
support negation (it supports the unequal comparison
operator in simple predicate expressions). In the XSL
pattern language, negation is expressed by means of
the boolean function not that operates on a boolean
value and returns a boolean (before using the not func-
tion, a number, a string, a node set and an object must
be �rst converted to their boolean value by applying
the boolean function to them).

NAME

PROFESSOR PROFESSOR

ANY

*

Figure 1: Example of negation in XML-GL

4. Reduction. Given a document and a query on this
document, the reduction prunes from the document
those elements speci�ed in the selection part of the
query that satisfy its condition.

LOREL: No XML-QL: No XML-GL: No

XSL: No XQL: No

In LOREL, XML-QL, XML-GL and XSL document
reduction is not supported, also if it could be obtained
through a construction which includes only the ele-
ments that should remain. This is feasible only when
the underlying DTD of the document is known in ad-
vance. In XQL no construction can be expressed, and
therefore this approach is not feasible.

E. Restructuring abstractions

1. Building new elements. A new XML element can be
created through the query's construction mechanism.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: Yes XQL: No

In LOREL, a new XML element is built by invoking
the xml() function with three parameters (the �rst two
not mandatory): the type, the label and the value(s),
explicitly given through the OID or implicitly given
specifying the query that generate it.

In XML-QL, restructuring is speci�ed in the Construct
clause, which contains the new tags, constants, and
variables (bound from the XML-QL predicate evalua-
tion) of the new document, arbitrarily named.

In XML-GL, a new element is constructed through a
new element box arbitrarily named. New elements can
be added and arbitrarily named.

In XSL, the new elements of the query result are spec-
i�ed through their tag names within the template rule.

In XQL, no new element can be added to the existing
ones, because no construction mechanism is provided.

2. Grouping. Elements of the result can be aggregated or
reorganized as speci�ed by means of special functions,
such as group by.

LOREL: Yes XML-QL: No XML-GL: Yes

XSL: No XQL: No

In LOREL, the group by clause is that inherited from
the OQL language. Objects extracted in XML-GL can
be grouped according to the distinct values of one of
their attributes or PCDATA; each class is associated to
an element instance carrying the representative value
of the class and then the rest of the XML tree as sub-
element. Apparently, a group-by clause is missing from
the current descriptions of XML-QL, XSL and XQL.

3. OID invention with a Skolem function. A Skolem func-
tion associates to a given value a unique, generated
OID; the Skolem function applied to the same value
produces the same OID. Skolem functions are needed
for integrating existing documents into one.

LOREL: Yes XML-QL: Yes XML-GL: Partially

XSL: No XQL: No

In LOREL, XML-QL and XML-GL the Skolem func-
tion takes as input a list of variables as argument and
returns one unique element for every binding of ele-
ments andnor attributes to the argument. In Lorel
and XML-QL, the Skolem function associates to each
element a unique object identi�er, that can be refer-
enced by means of variables; XML-GL, instead, does
not provide the possibility of explicitly referencing the
object identi�ers. In XSL and XQL, the Skolem func-
tions are not used.

F. Aggregation, Nesting, and Set opera-
tions

1. Aggregates. Aggregate functions compute a scalar value
out of a multi-set of values. Classical aggregates, sup-
ported by SQL, are min, max, sum, count, avg.

LOREL: Yes XML-QL: No XML-GL: Yes

XSL: Partially XQL: Partially

In LOREL, the aggregate functions are present and
fully implemented. In XML-QL, as of the current date
they are not supported, but they are indicated as to
be supported in the next version. In XML-GL, aggre-
gates are represented graphically. In XSL and XQL, we
found the method count() that evaluates to the num-
ber of reference nodes that appear in the associated
set. We are not aware of further aggregate functions.

2. Nesting of queries. As in SQL, a query can be com-
posed of nested subqueries.

LOREL: Yes XML-QL: Yes XML-GL: No

XSL: Yes XQL: No



In LOREL and in XML-QL, both inspired to the SQL
paradigm, queries can be nested at an arbitrary level.
In XML-GL and XQL nesting is not supported. In
XSL, templates can be nested.

3. Set operations. As in SQL, a query can be binary,
composed of the union, intersection, or di�erence of
subqueries.

LOREL: Yes XML-QL: Partially XML-GL: Yes

XSL: Yes XQL: Yes

LOREL supports union, di�erence, and intersection.
XML-QL supports union and intersection but has no
di�erence. In XML-GL, queries allow multiple graphs
in the left side of the query; this gives the expressive
power of union. Negation gives to XML-GL the ex-
pressive power of a di�erence, and intersection can be
built by repeatedly applying negation. XSL admits
union and negation in the pattern language; there is
not explicit intersection. XQL supports union and in-
tersection; negation gives to XQL the expressive power
of a di�erence.

G. Order Management

1. Ordering the result. Consists of ordering the element
instances according to the ascending or descending val-
ues of some data of the result, as performed by the
order by clause in SQL.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: Yes XQL: No

LOREL and XML-QL may order the result is gained
through the order by clause. In XML-GL, a leaf node
can be labelled with ASC, DESC ORDER and the elements
extracted are in ascending or descending order with re-
spect to that node; multiple labelings are possible. In
XSL, sorting is speci�ed by adding xsl:sort elements
as children of xsl:apply-templates or xsl:for-each.
Each xsl:sort speci�es a sort key: the elements are
ordered according to the speci�ed sort keys, instead
of being ordered on the basis of the document order
(default). In XQL, (as from available documentation)
there are no clauses concerning the order of the result.

2. Order-preserving result. Consists of ordering the el-
ements in the result in the same way as the original
document.

LOREL: Yes XML-QL: Yes XML-GL: Yes

XSL: Yes XQL: Yes

In LOREL, the order by document ordermeans that
the retrieved elements are ordered in the same way as
the original document, and the new ones are placed
at the end of the document with an unspeci�ed order
among them; otherwise, the order of elements in the
result is left unspeci�ed. XML-QL, XSL and XQL pro-
duce ordered XML, therefore the order can be speci�ed
to be the same as the source document (but such an
order must be known). XML-GL produces an ordered
XML element when one of the edges is marked (then,
the elements are produced in counterclockwise order
w.r.t. the marked edge).

3. Querying the schema order. Consists of asking for
XML elements andnor attributes in a given order re-
lationship, as they are speci�ed in the schema.

LOREL: No XML-QL: Yes XML-GL: No

XSL: No XQL: No

In XML-QL it is possible to query about the relative
position of tags within documents (asking if a tag pre-
cedes or follows another tag); this is not supported by
the other languages.

4. Querying the instance order. Consists of asking for
XML elements andnor attributes in a given order re-
lationship, as they are appear in the instance of the
document. This is accomplished adding to the lan-
guage the range quali�er operator, that enables the
selection of a single number (or of a set of numbers)
instances.

LOREL: Yes XML-QL: No XML-GL: No

XSL: Yes XQL: Yes

In Lorel, the operator \[<range>]" is introduced into
both the query and update language and it is applied
against both a path expression or variable. In XML-
QL and XML-GL, it seems that there is no range selec-
tion. In XSL pattern language and in XQL, a speci�c
node within a set of nodes is extracted simply enclos-
ing the index ordinal within square brackets in the
pattern.

H. Typing & Extensibility

1. Support of abstract data types. This feature concerns
the necessity of embedding inside an XML query lan-
guage specialized operations, i.e for selecting di�erent
kinds of multimedia content.

LOREL: Yes XML-QL: No XML-GL: No

XSL: No XQL: No

LOREL supports audio, video, images, and specialized
data types such as Jpeg, Gif, and Ps.

2. Type coercion. This feature concerns the ability of
implicit data casting among di�erent types, as well as
the ability to compare values represented with di�erent
type constructors (e.g., scalars, singleton sets , and
lists with one only element). Because of the nature
of semistructured data, the type coercion provided by
an XML query language should be much more 
exible
than that of a database query language.

LOREL: Yes XML-QL: No XML-GL: No

XSL: No XQL: Partially

In LOREL, comparison between objects andnor values
is forced to do \the most intuitive thing" when com-
paring objects and values of di�erent types. Coercion
rules are provided for the various atomic types and the
corresponding predicates or functions. Furthermore, a
comparison between atomic objects, complex objects,
and sets of objects is accepted when there is an obvious
interpretation.

In XQL, two values are comparable only after explicit
casting of them, as happens in a traditional program-
ming language. The other languages do not mention
type coercion.



I. Integration with XML

1. Support of RDF and/or XML Schemas. RDF and
XML Schemas are emerging standards for represen-
tation of metadata regarding XML documents and it
may be desiderable to embed them into the query lan-
guage.

LOREL: No XML-QL: No XML-GL: No

XSL: No XQL: No

2. Support of XPointer and XLink. Intra-document and
inter-document linking could in
uence the evolution
of the XML query language; a query should be able
to give as result not only XML data, but also XML
pointers and links.

LOREL: No XML-QL: No XML-GL: No

XSL: No XQL: No

3. Support of tag variables. This feature concerns the
possibility of explicitly querying the tag name rather
than the tag content.

LOREL: Yes XML-QL: Yes XML-GL: No

XSL: No XQL: No

In LOREL, path expressions return into variables of a
special path type the fully speci�ed names of all paths
that are reachable from the path expressions them-
selves. Such names can be used for building the names
of the query result using the unquote() function. In
XML-QL, variables can be associated to tags and then
used to generate the tags of the result.

J. Update language

1. Support for insert, delete, and update of elements.

LOREL: Yes XML-QL: No XML-GL: Yes

XSL: No XQL: No

LOREL has an update language. It is possible to cre-
ate and delete object names, create a new atomic or
complex object, and modify the value of an existing
object. Update operations in XML-GL are graphically
indicated as arrows labelled with I, D, U. Each prim-
itive (except for delete that does not need the RHS)
has a LHS element and a RHS graph: the LHS is the
target element of the operation and the RHS graph
represents the values to be inserted or replaced by the
primitive. In XML-QL, XSL and XQL there is no up-
date language.

3 Comparative examples

In the following, we present a comparison of LOREL, XML-
QL, XML-GL and XQL on the basis of the query exam-
ples originally proposed by David Maier in a Position Pa-
per \Database Desiderata for an XML Query Language"
[Mai98]; a preliminary version of the XML-QL examples
were originally presented by Peter Fankhauser in a message
to the XML Query language mailing list (message of Dec
22, 1998). The underlying case study is that of a car dealer
o�ce, with documents from di�erent auto dealers and bro-
kers. The manufacturer documents list the manufacturer's

name, year, and models with their names, front rating, side
rating, and rank; the vehicle documents list the vendor,
make, year, color and price. We consider XML data of the
form:

<manufacturer>

<mn_name>Mercury</mn_name>

<year>1999</year>

<model> <mo_name>Sable LT</mo_name>

<front_rating>3.84</front_rating>

<side_rating>2.14</side_rating>

<rank>9</rank>

</model>

....

</manufacturer>

<vehicle>

<vendor>Scott Thomason</vendor>

<make>Mercury</make>

<model>Sable LT</model>

<year>1999</year>

<color>metallic blue</color>

....

<price>26800</price>

</vehicle>

3.1 Query 1: Selection and Extraction

We want to select and extract < manufacturer > elements

where some < model > has < rank > less or equal to 10.

1A. LOREL

select M

from nhsc.manufacturer M

where M.model.rank <=10

1B. XML-QL

WHERE <manufacturer>

<model>

<rank>$r</rank>

</model>

</manufacturer> ELEMENT_AS $m IN

www.nhsc\manufacturers.xml,

$r<=10

CONSTRUCT $m

1C. XML-GL See Figure 2:

MANUFACTURER

MODEL

<=  10

RANK

www.nhsc/manuf.xml

*

MANUFACTURER

Figure 2: Query 1

1D. XSL

<xsl:template match="/">

<xsl:for each select="manufacturer[model/rank<=10]">

<xsl:value-of />

</xsl:for each>

</xsl:template>



1E. XQL

manufacturer[model/rank<=10]

COMMENTS

� In LOREL, the result is a collection of manufacturer
object identi�ers.

� In XML-QL, the query applies to the XML document
www.nsch/manufacturers.xml. It matches every <

manufacturer > in the XML document that has at
least one < model >, whose < rank > is less or equal
to 10. The presentation of the result is a piece of XML
document whose exact structure appears not to be de-
�ned in the references currently available.

� In XML-GL, the query applies to the XML document
www.nsch/manufacturers.xml; it extracts all the oc-
currences of the manufacturer elements satisfying the
conditions stated in the LHS side. The elements used
in the RHS to construct the result are exactly those
manufacturer objects retrieved in the LHS with all the
sub-elements as appearing in the input XML docu-
ments (but without including the elements pointed by
IDREFs links). The result is a new XML document
enclosed within the standard element result.

� In XSL, the rule applies to the root node and the
xsl:for-each directive is instantiated for each manufac-

turer node having at least one model whose rank is
less or equal to 10. Through the xsl:value-of in-
struction a text node is included in the result tree for
each selected manufacturer element.

� XQL does the job pretty concisely, having a naviga-
tion pattern with a �lter condition on the < rank >.
The �lter is existentially quanti�ed. The result is con-
ventionally enclosed within a standard element named
xql:result.

� Summary: All languages cover the proposed example.

3.2 Query 2: Reduction

From the < manufacturer > elements, we want to drop

those < model > sub-elements whose < rank > is greater

than 10. We also want to elide the < front rating > and

< side rating > elements from the remaining models.

2A. LOREL

select Z.mn_name, Z.year,

(select Z.model.mo_name, Z.model.rank

where Z.model.rank <= 10)

from nhsc.manufacturer Z

2B. XML-QL

WHERE <manufacturer>

<mn_name>$mn</mn_name>

<year>$y</year>

</manufacturer> CONTENT_AS $m IN

www.nhsc\manufacturers.xml

CONSTRUCT

<manufacturer>

<mn_name>$mn</mn_name>

<year>$y</year>

{ WHERE <model>

<mo_name>$mon</mo_name>

<rank>$r</rank>

</model> IN $m,

$r<=10

CONSTRUCT<model>

<mo_name>$mon</mo_name>

<rank>$r</rank>

</model>

}

</manufacturer>

2C. XML-GL See Figure 3:

MN-NAME YEAR

MANUFACTURERMANUFACTURER

MODEL

RANK

<=  10

MANUFACTURER

MODEL

MANUFACTURER

MODEL

MO-NAME
RANK

YEAR

MN-NAME

Figure 3: Query 2

2D. XSL

<xsl:template match="manufacturer[model/rank<=10]">

<model>

<xsl:value-of select="mo-name"/>

<xsl:value-of select="rank"/>

</model>

</xsl:template>

2E. XQL

Cannot be expressed.

COMMENTS

� In LOREL the query consists of two nested subqueries
one inside the other; both are existentially quanti�ed.

� Also in XML-QL, the job is performed by nesting two
subqueries; nesting occurs within the construct clause
of the �rst query.

� XML-GL has no nesting, so the query selects �rst the
elements of < manufacturer > that do not have a
< model > sub-element and puts them in the re-
sult; then, it selects those elements having at least
one < model > element with suitable < rank > value
and inserts them in the result, by including only the
selected models.

� In XSL, the template rule matches the manufacturer

elements satisfying the condition and, then, constructs
the new model elements with the subelements mo-name
and rank.

� In XQL, the query cannot be expressed neither as re-
duction nor as construction, because XQL does not
allow restructuring, nested queries or joins.

� Summary: This example indicates that current query
languages lack of one relevant feature: reduction. All
languages must resort to a solution based on the con-
struction of the \remainder" of the document, rather
than eliding some elements. This is possible only if
the DTD of the document is known. XQL does not
support construction, so it cannot use this solution.



3.3 Query 3: Joins

We want our query to generate pairs of < manufacturer >

and < vehicle > elements where < mn name > = < make >,

< mo name > = < model > and < year > = < year >.

3A. LOREL

temp:= select (M,V) as pair

from nhsc.manufacturer M, nhs.vehicle V

where M.mn_name = V. make

and M.model.mo_name = V.model

and M.year = V.year

3B. XML-QL

WHERE <manufacturer>

<mn_name>$mn</mn_name>

<year>$y</year>

<model>

<mo_name>$mon</mo_name>

</model> CONTENT_AS $mo

</manufacturer> CONTENT_AS $m IN

www.nhsc\manufacturers.xml

<vehicle>

<model>$mon</model>

<year>$y</year>

<make>$mn</make>

</vehicle> CONTENT_AS $v IN www.nhsc\vehicles.xml

CONSTRUCT

<manufacturer>

<mn_name>$mn</mn_name>

<year>$y</year>

<vehiclemodel>

$mo,$v

</vehiclemodel>

</manufacturer>

3C. XML-GL See Figure 4:

MANUFACTURER

MN-NAME

YEAR

VEHICLEMODEL

MODEL VEHICLE

**

MANUFACTURER

MODEL

YEAR YEAR

MAKE

MODEL

MN-NAME

MO-NAME

VEHICLE

www.nhsc/manuf.xml www.nhsc/veh.xml

Figure 4: Query 3

3D. XSL

Cannot be expressed.

3E. XQL

Cannot be expressed.

COMMENTS

� In LOREL, the join builds pairs of OIDs of the relevant
documents after their joins. The joined elements are
accessed creating a new entry point temp.

� In XML-QL, a new piece of XML document is created
and wrapped into the tags < vehiclemodel >, with the
content of the < model > and < vehicle > elements
that match on join conditions.

� In XML-GL, the pairs from< model > and< vehicle >

are extracted and made the sub-elements of a new ele-
ment named < vehiclemodel >, which is placed inside
the < manufacturer > element.

� In XSL, joins cannot be expressed.

� XQL does not support joins.

� Summary: Join is supported well by LOREL, XML-
QL and XML-GL; XSL and XQL lack the possibility
of joining two documents.

3.4 Query 4: Restructuring

We want our query to collect < car > elements listing their

make, model, vendor, rank, and price, in this order.

4A. LOREL

select xml(car: (select X.vehicle.make, X.vehicle.model,

X.vehicle.vendor, X.manufacturer.rank,

X.vehicle.price

from temp.pair X))

4B. XML-QL

WHERE <manufacturer>

<mn_name>$mn</mn_name>

<vehiclemodel>

<model>

<mo_name>$mon</mo_name>

<rank>$r</rank>

</model>

<vehicle>

<price>$y</price>

<vendor>$mn</vendor>

</vehicle>

</vehiclemodel>

</manufacturer> IN www.nhsc\queryresult3.xml

CONSTRUCT

<car>

<make>$mn</make>

<mo_name>$mon</mo_name>

<vendor>$v</vendor>

<rank>$r</rank>

<price>$p</price>

</car>

4C. XML-GL See Figure 5:

MANUFACTURER

MODEL

YEAR YEAR

MODELMO-NAME

VEHICLE CAR

VENDOR

RANK

PRICE

PRICE

VENDOR

RANK

www.nhsc/manuf.xml www.nhsc/veh.xml

MAKE MODEL

Figure 5: Query 4

4D. XSL

<xsl:template match="manufacturer">

<car>

<xsl:value-of select="vehiclemodel/vehicle/make"/>

<xsl:value-of select="vehiclemodel/model/mo-name"/>

<xsl:value-of select="vehiclemodel/vehicle/vendor"/>

<xsl:value-of select="vehiclemodel/model/rank"/>

<xsl:value-of select="vehiclemodel/vehicle/price"/>

</car>

</xsl:template>

4E. XQL

Cannot be expressed.



COMMENTS

� In LOREL, the elements are extracted in the order in
which they appear in the query. The query result is
associated with an element named car by invoking the
function xml(car : querystring).

� XML-QL deals with the ordering of the result explic-
itly in the construct clause.

� In XML-GL, a new < car > element is introduced
in the result and enriched with the corresponding sub-
elements, which are ordered counterclock-wise by means
of the graphic notation of marking one of the edges.

� In XSL, the template rule matches the manufacturer

elements and constructs in the result, the new car tags
�lled with the appropriate sub-elements.

� In XQL, the query cannot be written, as it includes a
join.

� Summary: this is a less interesting query, again it
shows that join and ordering are feasible with LOREL,
XML-QL, XML-GL, while joins are unfeasible with
XSL and XQL.

4 Desired Qualities

Besides the comparative review of features, summarized in
Table 1, we can brie
y discuss the desired qualities of query
languages, and propose a relative ranking of the �ve lan-
guages.

� Declarativeness. A query language is declarative when
the speci�cation of the query de�nes the content of the
result rather than a strategy to compute it. According
to the above de�nition, all the �ve query languages
are declarative. LOREL resembles OQL and there-
fore a calculus-based language. XML-QL has variable
uni�cation as one of its ingredients and as such re-
calls a logic language, although with a very peculiar
XML style. XML-GL recalls QBE. Both XSL and
XQL make use of URL-like patterns extensively.

� Expressive power. Indicates how powerful is the lan-
guage in expressing queries. From this perspective,
XML-QL and LOREL are the two most powerful lan-
guages. According to the features that we have listed,
LOREL is more powerful for what concerns the di�er-
ential management of IDREFs, universal quanti�ca-
tion, negation, aggregate management, abstract data
types, type coercion, and updates; XML-QL enables
predicates on tag ordering that are lacking in LOREL.
Both languages lack of a reduction operation and of
support for RDF, XPointers, and Xlinks, other emerg-
ing W3C standards. However, it appears that the
missing features could be easily added to both lan-
guages so as to make them equally expressive. Then,
the two languages would have comparable semantics
embedded within quite di�erent syntaxes, as LOREL
is OQL-like, while XML-QL queries resamble XML
documents; we may say that XML-QL is XML-like.

XML-GL is less powerful than both the above lan-
guages, mainly because of the limitations in support-
ing nested queries, certain speci�ed path expressions,

and Skolem functions. However, the language sup-
ports what is naturally speci�ed in a graphical formal-
ism, and can be considered as a QBE-equivalent of the
other two languages, in the sense that also QBE is less
expressive than SQL in the relational world, however
capturing the essential expressive power of relational
languages.

XSL and XQL are quite comparable in their expressive
power, and less expressive than the other languages.

XSL is a stylesheet language enabling a single docu-
ment query language with transformation capabilities.
It lacks joins, update operations and Skolem functions.
But it allows, with respect to XQL, restructuring of
documents.

Finally, XQL captures a restricted class of queries; its
major limitations are the lack of support of joins and
result construction. The class of queries supported
by XQL are those relative to a single document being
tested and projected out when the test is satis�ed.

A visualization of the expressive power of languages is
given in Figure 6.

� Ease of use. This property indicates how easy it is
to write and/or to understand a query for an XML
query programmer. From this perspective, XML-GL
is easy to read and to understand, as it is associated
to a graphic interface, while XQL is also simple and
easy, but much less powerful; these two languages are
the easiest to use. With respect to XQL, XSL is less
readable because of the instruction tags and of the
template rules. LOREL and XML-QL are compara-
ble with respect to the ease of formulation, although
database experts will be probably more familiar with
the LOREL style, and XML experts will probably be
more familiar with XML-QL. One should also notice,
e.g., from the examples of Section 3, that XML-QL
queries are rather verbose if compared with LOREL
queries.

5 Conclusions: A Uni�ed View

The �ve reviewed languages can be organized in a taxonomy,
where:

� LOREL and XML-QL are the OQL-like and XML-like
representatives of Class 2 of expressive query lan-
guages for XML, playing the same role as high-level
SQL standards and languages (e.g., SQL2) in the rela-
tional world. Our study indicates that they need cer-
tain additions in order to become equivalent in power,
in which case it would be possible to translate between
them. Currently, a major portion of the queries that
they accept can be translated from any language to
another.

� XSL and XQL are representative ofClass 1 of single-
document query languages, playing the same role
as core SQL standards and languages (e.g., the SQL
supported by ODBC) in the relational world; as a ma-
jor limitation, we recall that they cannot join two
di�erent documents. Their expressive power is in-
cluded within the expressive power of Class 2 lan-
guages. Their rationale is to extract information from
a single document, to be expressed as a single string
and passed as one of the URL parameters.



� XML-GL can be considered as a graphical query

interface to XML, playing the same role as graphical
query interfaces (e.g., QBE) in the relational world.
The queries being supported by XML-GL are the most
relevant queries supported by Class 2 languages.

When the common features (as initially identi�ed in this
paper) will become fully understood, it will be possible to
envision a collection of translators between languages of the
same class, and/or between languages of di�erent classes,
and/or from the graphic language XML-GL to the program-
mative languages of Classes 1 and 2. In this way, query lan-
guages for XML will constitute a language hierarchy sim-
ilar to the one existing for relational and object-relational
databases.
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LOREL XML-QL XML-GL XSL XQL
Speci�c data model Yes Yes Yes Yes No

Di�erential mgmnt of IDREFs Yes No No No No
Document selection Yes Yes Yes Yes Yes

Joins Yes Yes Yes No No
Semantics of result Set of OIDs XML Doc XML Doc XML Doc XML Doc

Partially speci�ed path expr. Yes Yes Partially Yes Yes
Halt on matching cyclic data Yes Unde�ned Yes No Unde�ned

Existential quanti�cation Yes Yes Yes Yes Yes
Universal quanti�cation Yes No No No Yes

Negation Yes No Yes Yes Yes
Reduction No No No No No

Construct new elements Yes Yes Yes Yes No
Construct Groups Yes No Yes No No
Skolem functions Yes Yes Partially No No

Aggregates Yes No Yes Partially Partially

Nested queries Yes Yes No Yes No
Set operations Yes Partially Yes Yes Yes

Ordering the result Yes Yes Yes Yes No
Order-preserving result Yes Yes Yes Yes Yes

Querying the schema order No Yes No No No
Querying the instance order Yes No No Yes Yes

Abstract data types Yes No No No No
Type coercion Yes No No No Partially

Support of RDF No No No No No
Support of XPointer & XLink No No No No No

Tag variables Yes Yes No No No
Update language Yes No Yes No No

Table 1: Comparison table for XML query languages

IT LACKS:
different mgmnt of IDREFs
universal quantification
negation

WRT XSL IT LACKS:
result construction
ordering the result
BUT IT HAS:
universal quantification
partially type coercion

querying the schema order

XML-QL
IT LACKS:

update language

construct groups

type coercion
abstract data types
aggregates

CLASS 2: EXPRESSIVE, MULTI-DOCUMENT
QUERY LANGUAGES

: SINGLE-DOCUMENTCLASS 1
  QUERY LANGUAGES

WRT XML-GL IT LACKS:
joins 
update language

GRAPHIC QUERY INTERFACE

WRT LOREL IT LACKS:

type coercion
abstract data types
nested queries
Skolem functions
universal quantification

XML-GL

different mgmnt of IDREFs

XSL XQL

LOREL

Figure 6: Summarization of the expressive power of the languages.
None of the �ve languages supports: Reduction, RDF embedding, XPointer and XLink embedding


