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Abstract

This paper proposes the use of repetitive broadcast as a way of augmenting the memory hierarchy of
clients in an asymmetric communication environment. We describe a new technique called “Broadcast
Disks” for structuring the broadcast in a way that provides improved performance for non-uniformly
accessed data. The Broadcast Disk superimposes multiple disks spinning at different speeds on a single
broadcast channel — in effect creating an arbitrarily fine-grained memory hierarchy. In addition to
proposing and defining the mechanism, a main result of this work is that exploiting the potential of the
broadcast structure requires a re-evaluation of basic cache management policies. We examine several
“pure” cache management policies and develop and measure implementable approximations to these
policies. These results and others are presented in a set of simulation studies that substantiates the basic
idea and develops some of the intuitions required to design a particular broadcast program.

1 Introduction
1.1 Asymmetric Communication Environments

In many existing and emerging application domains the downstream communication capacity from servers
to clients 1s much greater than the wpsiream communication capacity from clients back to servers. For
example, in a wireless mobile network servers may have relatively high bandwidth broadcast capability,
while clients cannot transmit or can do so only over a lower bandwidth cellular link. Systems with these
characteristics have been proposed for many application domains, including traffic information systems,
hospital information systems, public safety applications, and wireless classrooms (e.g.,[Katz94, Tmie94a]).
We refer to such environments as Asymmetric Communications Environments.

Communications asymmetry can arise in two ways: the first is from the bandwidth limitations of the
physical communications medium. An example of physical asymmetry is the wireless environment as de-
scribed above; stationary servers have powerful broadcast transmitters while mobile clients have little or no
transmission capability. Perhaps less obviously, communications asymmetry can also arise from the patterns

of information flow in the application. For example, an information retrieval system in which the number of
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clients is far greater than the number of servers is asymmetric because there is insufficient capacity (either

in the network or at the servers) to handle the simultaneous requests generated by the multiple clients.
Because asymmetry can arise due to either physical devices or workload characteristics, the class of

asymmetric communications environments spans a wide range of important systems and applications, en-

compassing both wired and wireless networks. Examples include:
e Wireless networks with stationary base stations and mobile clients.

e Information dispersal systems for volatile, time-sensitive information such as stock prices, weather

information, traffic updates, factory floor information, etc.

e Cable television networks with set-top boxes that allow viewers to communicate with the broadcasting

home office, and video-on-demand servers.

e Information retrieval systems with large client populations, such as mail-order catalog services, mutual

fund information services, software help desks, etc.

1.2 Broadcast Disks

In traditional client-server information systems, clients initiate data transfers by sending requests to a server.
We refer to such systems as pull-based; the clients “pull” data from the server in order to provide data to
locally running applications. Pull-based systems are a poor match for asymmetric communications environ-
ments, as they require substantial upstream communications capabilities. To address this incompatibility,
we have proposed a new information system architecture that exploits the relative abundance of downstream
communication capacity in asymmetric environments. This new architecture is called Broadcast Disks. The
central idea is that the servers exploit their advantage in bandwidth by broadcasting data to multiple clients.
We refer to this arrangement as a push-based architecture; data is pushed from the server out to the clients.

In this approach, a server continuously and repeatedly broadcasts data to a client community. In effect,
the broadcast channel becomes a “disk” from which clients can retrieve data as it goes by. Broadcasting
data has been addressed previously by other researchers [Herm87, Imie94b]. Our technique differs, however,
in that we superimpose multiple disks of different sizes and speeds on the broadcast medium.

The broadcast is created by multiplexing chunks of data from different disks on the same broadcast
channel. The chunks of each disk are evenly interspersed with each other. The chunks of the fast disks are
repeated more often than the chunks of the slow disks. The relative speeds of these disks can be adjusted as a
parameter to the configuration of the broadcast. This use of the channel effectively puts the fast disks closer
to the client while at the same time pushing the slower disks further away. This presents an opportunity to
more closely match the broadcast to the workload at the clients. Assuming that the server has an indication
of the client access patterns (either by watching their previous activity or from a description of intended
future use from each client), then hot pages or pages that are more likely to be of interest to a larger part

of the client community can should be brought closer while cold pages can be pushed further away. This



n effect creates an arbitrarily fine-grained memory hierarchy, as the expected delay in obtaining an item

depends upon how often that item is broadcast.

1.3 Scope of the Paper

Organizing data on a multi-disk broadcast medium raises a number of new research problems. On the server
side, the issues involve designing the broadcast program to satisfy a number of conflicting criteria. On the
client side, the challenges relate to developing new caching strategies which take into account the serial
nature of the broadcast medium. The work described in this paper makes several assumptions that restrict

the scope of the environment in order to make an initial study feasible. These assumptions include:

e The client population and their access patterns do not change. This implies that the broadcast program

can be determined statically.
e Data is read-only; there are no updates either by the clients or at the servers.
e Clients retrieve data items from the broadcast one item at-a-time; there is no prefetching.

e Clients make no use of their upstream communications capability, i.e., they provide no feedback to

SErvers.

Given this environment, there are two main interrelated issues that must be addressed:

1. Given a client population and a specification of the access probabilities for data items of each client,

how does the server construct a broadcast program to satisfy the needs of the clients?

2. Given that the server has chosen a particular broadcast program, how does each client manage its local

data cache to maximize its own performance?

In this paper, we describe several important results with regards to these issues, that have been obtained

through a simulation-based study of this environment. These results include:

e Significant performance benefits can be gained by broadcasting some data items more frequently than
others. Broadcasting also has the advantage of scalability; additional clients can monitor the broadcast

without impacting the performance of existing clients.

e The broadcast disk fundamentally changes the nature of cache (memory) management at the clients.
Rather than caching the locally “hottest” pages, clients must use their local resources to remove local

idiosyncrasies from the access stream they present to the broadcast disk.

e We have looked at idealized broadcast and caching policies that will serve as upper bounds in our
analysis. We have also developed several easily implementable cache replacement policies based on the

1dealized case.



The remainder of the paper is organized as follows. Section 2 discusses the way in which we structure
the broadcast program and Section 3 shows how the client’s cache management policy should be designed
to complement this choice. Section 4 describes our simulation model and Section 5 develops the main
experimental results derived from this model. Section 6 compares our work to previous work on repetitive

broadcast. Section 7 summarizes our results and describes our future work.

2 Structuring the Broadcast Disk
2.1 Properties of Broadcast Programs

In a push-based information system, the server must construct a broadcast “program” to meet the needs of
the client population. In the simplest scenario, given an indication of the data items that are desired by each
client listening to the broadcast, the server would simply take the union of the requests and broadcast the

resulting set of data items cyclicly. Such a broadcast i1s depicted in Figure 1. When an application running
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Figure 1: A Flat Broadcast Program

on a client needs a data item, 1t first attempts to retrieve that item from the local memory or disk. If the
desired item is not found, then the client monitors the broadcast and waits for the desired item to arrive.!
With the flat broadcast, the expected delay required prior to obtaining an item is the same for all items
broadcast (namely, half a broadcast period) regardless of their relative importance to the clients. This “flat”
approach has been adopted in earlier work on broadcast-based database systems such as Datacycle[Bowe92]
and [Tmie94a].

Alternatively, the server can broadcast different items with differing frequency: important items can be
broadcast more often than others. Assuming that the server has knowledge of the access probability for
each data item at each client, the server can determine a broadcast program that will emphasize the most
popular items and de-emphasize the less popular ones.

Theoretically, broadcast program generation can be addressed as a bandwidth allocation problem; given
all of the client access probabilities, the server determines the optimal percentage of the broadcast bandwidth
that should be allocated to each item. The broadcast program can then be generated randomly according

to those bandwidth allocations, such that the average inter-arrival time between two instances of the same

1This discussion assumes that broadcast items are self-identifying. Another option is to provide an index, as is discussed
in [Imie94b].



item matches the needs of the client population. However, such a random broadcast will not be optimal in
terms of minimizing expected delay due to the variance in the inter-arrival times.

A simple example demonstrating these points is shown in Figure 2. The figure shows three different
broadcast programs for a data set containing three equal-length items (e.g., pages). Program (a) is a flat
broadcast, while disks (b) and (c) both broadcast page A twice as often as pages B and C. Program (b) is
a skewed broadcast, in which subsequent broadcasts of page A are clustered together. In contrast, program
(c) is regular; there is no variance in the inter-arrival time for each page. The performance characteristics
of program (c) are the same as if page A was stored on a disk that was spinning twice as fast as the disk on

which pages B and C are stored. For this reason, we refer to program (c) as a Multi-disk broadcast.

S a5 HER

(@

Salale R
(b)
Salel A R

(©

Figure 2: Three Example Broadcast Programs

Access Probability | Expected Delay (in broadcast units)
A | B ] C Flat (a) | Skewed (b) | Multi-disk (c)
0.333 | 0.333 | 0.333 1.50 1.75 1.67
0.50 | 0.25 | 0.25 1.50 1.63 1.50
0.75 | 0.125 | 0.125 1.50 1.44 1.25
0.90 | 0.05 | 0.05 1.50 1.33 1.10
1.0 0.0 0.0 1.50 1.25 1.00

Table 1: Expected Delay Under Various Access Probabilities

Table 1 shows the overall expected delay for page accesses for the different broadcast programs given
varying skew in the access probabilities for the three pages. The expected delay is calculated by multiplying
the probability of access for each page times the expected delay for that page and summing the results.
There are three major points that are demonstrated by this table. The first point is that for uniform page
access probabilities (1/3 each), a flat disk has the best expected performance. This fact demonstrates a
fundamental constraint of the Broadcast Disk paradigm, namely, that due to fixed bandwidth, increasing
the broadcast rate of one item must necessarily decrease the broadcast rate of one or more other items. The
second point, however, is that as the access probabilities become increasingly skewed, the non-flat programs

perform increasingly better.



The third point demonstrated by Table 1 is that the Multi-disk program always performs better than the
skewed program. This behavior is the result of the so-called Bus Stop Paradox. If the inter-arrival rate (i.e.,
broadcast rate) of a page is fixed, then the expected delay for a request arriving at a random time is one-half
of the gap between successive broadcasts of the page. In contrast, if there is variance in the inter-arrival
rate, then the gaps between broadcasts will be of different lengths. In this case, the probability of a request
arriving during a large gap is greater than the probability of the request arriving during a short gap. Thus
the expected delay is greater as the variance in inter-arrival rate increases.

In addition to performance benefits, a Multi-disk broadcast has several other advantages over a random
(skewed) broadcast program. First, the randomness in arrivals can reduce the effectiveness of some prefetch-
ing techniques that require knowledge of exactly when a particular item will next be broadcast [Zdon94].
Second, the randomness of broadcast disallows the use of “sleeping” to reduce power consumption (as in
[Tmie94b]). Finally, there is no notion of “period” for such a broadcast. Periodicity may be important for
providing correct semantics for updates (e.g., as was done in Datacycle [Herm87, Bowe92]) and for intro-
ducing changes to the structure of the broadcast program. For these reasons, we argue that a broadcast

program should have the following features:

e The inter-arrival times of subsequent copies of a data item should be fixed.

e There should be a well defined unit of broadcast after which the broadcast repeats (i.e., it should be

periodic).

e Furthermore, subject to the above two constraints, as much of the available broadcast bandwidth

should be used as possible.

2.2 Broadcast Program Generation

In this section we present a model for describing the structure of broadcast programs and describe an
algorithm that generates broadcast programs with the desired features listed in the previous section. The
algorithm imposes a Multi-disk structure on the broadcast medium in a way that allows substantial flexibility
in fitting the relative broadcast frequencies of data items to the access probabilities of a client population.
The algorithm has the following steps (for simplicity, assume that data items are “pages”, that is, they

are of a uniform, fixed length):
1. Order the pages from hottest (most popular) to coldest.

2. Partition the list of pages into multiple ranges of pages, where each range contains pages with similar

access probabilities. These ranges are referred to as disks.

3. Choose the relative frequency of broadcast for each of the disks. The only restriction on the relative
frequencies is that they must be integers. For example given two disks, disk 1 could be broadcast three

times for every two times that disk 2 is broadcast, thus, rel_freq(1) = 3, and rel_freq(2) = 2.



4. Split each disk into a number of smaller units. These units are called chunks (Cj; refers to the jth
chunk in disk 7). First, calculate maz_chunks as the Least Common Multiple (LCM) of the relative
frequencies. Then, split each disk ¢ into num_chunks(i) = max_chunks/rel_freq(i) chunks. In the

previous example, num_chunks(1) would be 2, while num_chunks(2) would be 3.
5. Create the broadcast program by interleaving the chunks of each disk in the following manner:

01 for 7 := 0 to maz_chunks — 1
02 for j := 1 to num_disks
03 Broadcast chunk Cj
04 endfor

(2 mod num_chunks(j))

05 endfor

Figure 3 shows an example of broadcast program generation. Assume a list of pages that has been
partitioned into three disks, in which pages in disk 1 are to be broadcast twice as frequently as pages in
disk 2, and four times as frequently as pages in disk 3. Therefore, rel_freq(l) = 4, rel_freq(2) = 2, and
rel_freq(3) = 1. These disks are split into chunks according to step 4 of the algorithm. That is maz_chunks
is 4, so num_chunks(1) = 1, num_chunks(2) = 2, and num_chunks(3) = 4. Note that the chunks of different
disks can be of differing sizes. The resulting broadcast consists of 4 minor cycles (containing one chunk of
each disk) which is the LCM of the relative frequencies. The resulting broadcast has a period of 16 pages.
This broadcast produces a three-level memory hierarchy in which disk one is the smallest and fastest level
and disk three is the largest and slowest level. Thus, the multi-level broadcast corresponds to the traditional

notion of a memory hierarchy.

Dtabase 1[2[3]4[s]6|7[8[0]1012
Disks 4[s[67/8[oj10n
D D, Dy
Chunks 455 (67 89 1
Cl,O c 2,0 ¢ 2,1 ¢ 3,0 ¢ 31 ¢ 3,2 C3,3

Major Cycle (Period)

e — T e — e
e ——— ——— e
— —— —_——

i _—

g BB EE HE
15,0 ©20 C30 1€10C2,1 C31 G,0C20 C32 C1,0C21 C33
Minor Cycle

Figure 3: Deriving a Server Broadcast Program

The algorithm produces a periodic broadcast program with fixed inter-arrival times per page. Some

broadcast slots may be unused however, if it 1s not possible to evenly divide a disk into the required number



of chunks (i.e., in Step 4 of the algorithm). Of course, such extra slots need not be wasted, they can be used
to broadcast additional information such as indexes, updates, or invalidations; or even for extra broadcasts
of extremely important pages. Furthermore, it is anticipated that the number of disks will be small (on the
order of 2 to 5) and the number of pages to be broadcast will be substantially larger, so that unused slots (if
any) will be only a small fraction of the total number of slots; also, the relative frequencies can be adjusted
slightly to reduce the number of unused slots, if necessary.

The disk model, while being fairly simple, allows for the creation of broadcast programs that can be fine-
tuned to support a particular access probability distribution. There are three inter-related types of knobs
that can be turned to vary the shape of the broadcast. First, the number of disks (num_disks) determines
the number of different frequencies at which pages will be broadcast. Then, for each disk, the number of
pages per disk, and its relative frequency of broadcast (rel_freq(i)) determine the size of the broadcast, and
hence the arrival rate (in real, rather than relative time) for pages on each disk. For example, adding a page
to a fast disk can significantly increase the delay for pages on the slower disks. Intuitively, we expect that
fast disks will be configured to have many fewer pages than the slower disks, although our model does not
enforce this constraint.

Recall that the only constraint on the relative broadcast frequencies of the disks is that they be expressed
as positive integers. Thus, it is possible to have arbitrarily fine distinctions in broadcasts such as a disk that
rotates 141 times for every 98 times a slower disk rotates. However, this ratio results in a broadcast that
has a very long period (i.e., nearly 14,000 rotations of the fast disk). Furthermore, this requires that the
slower disk be of a size that can be split into 141 fairly equal chunks. In addition, it is unlikely that such
fine tuning will produce any significant performance benefit (i.e., compared to a 3 to 2 ratio). Therefore, in
practice, relative frequencies should be chosen with care and when possible, approximated to simpler ratios.

While the algorithm specified above generates broadcast programs with the properties that we desire,
it does not help in the selection of the various parameter values that shape the broadcast. The automatic
determination of these parameters for a given access probability distribution is a very interesting optimization
problem, and is one focus of our on-going work. This issue i1s beyond the scope of the current paper, however.
In this paper we focus on examining the basic properties of this new paradigm of broadcast disks. The
broadcast disk changes many basic assumptions on which traditional pull-based memory hierarchies are
founded. As a result, it is imperative to first develop an understanding of the fundamental tradeoffs that
affect the performance of a broadcast system. The performance study described in Section 5 presents an

initial investigation of these issues.

3 Client Cache Management

The shared nature of the broadcast disk, while in principle allowing for nearly unlimited scalability, in fact
gives rise to a fundamental tradeoff: tuning the performance of the broadcast is a zero-sum game; improving
the broadcast for any one access probability distribution will hurt the performance of clients with different

access distributions. The way out of this dilemma is to exploit the local memory and/or disk of the client



machines to cache pages obtained from the broadcast. This observation leads to a novel and important result
of this work: namely, that the introduction of broadcast fundamentally changes the role of client caching in a
client-server information system. In traditional, pull-based systems (e.g., [Arch86, Howa88, Wilk90, Care91,
Wang91, Fran92a] etc.), clients cache their hottest data (i.e., the items that they are most likely to access
in the future). In the push-based environment, this use of the cache can lead to poor performance if the
server’s broadcast is poorly matched to the client’s page access distribution. This difference arises because
of the serial nature of the broadcast disk — all non cache-resident pages are not equidistant from the client.

If the server can tailor the broadcast program to the needs of a particular client, then the client can
simply cache its hottest pages. Once the client has loaded the hottest pages in its cache, then the server can
place those pages on a slower spinning disk. This frees up valuable space in the fastest spinning disks for
additional pages. In general, however, there are several factors that could cause the server’s broadcast to be

sub-optimal for a particular client:

e The access distribution that the client gives the server may be inaccurate.
e A client’s access distribution may change over time.
e The server may give higher priority to the needs of other clients with different access distributions.

e The server may have to average its broadcast over the needs of a large client population. Such a

broadcast program is likely to be sub-optimal from the point of view of any one client.

For these reasons, in a push-based system clients must use their cache not to store simply their hottest
pages, but rather, to store those pages for which the local probability of access is significantly greater than
the page’s frequency of broadcast. For example, if there 1s a page P that is accessed frequently only by client
C and no other clients, then that page is likely to be broadcast on a slow disk. To avoid long waits for the
page, client C must keep page P cached locally. In contrast, a page Q that is accessed frequently by most
clients (including client C), will be broadcast on a very fast disk, reducing the value of caching it.

The above argument leads to the need for cost-based page replacement. That is, the cost of obtaining a
page on a cache miss must be accounted for during page replacement decisions. A standard page replacement
policy tries to replace the cache-resident page with the lowest probability of access (e.g., this is what LRU
tries to approximate). It can be shown that under certain assumptions, an optimal replacement strategy is
one that replaces the cache-resident page having the lowest ratio between its probability of access (P) and
its frequency of broadcast (X). We refer to this ratio (P/X) to as PZX (P Inverse X). As an example of
the use of PZX, consider two pages. One page is accessed 1% of the time at a particular client and is also
broadcast 1% of the time. A second page is accessed only 0.5% of the time at the client, but is broadcast
only 0.1% of the time. In this example, the former page has a lower PZX value than the latter. As a result,
a page replacement policy based on PZX would replace the first page in favor of the second, even though
the first page is accessed twice as frequently.

While PZX can be shown to be an optimal policy under certain conditions, it is not a practical policy to

implement because it requires: 1) perfect knowledge of access probabilities and 2) comparison of PZX values



for all cache-resident pages at page replacement time. For this reason we have investigated implementable
cost-based algorithms that are intended to approximate the performance of PZX. One such algorithm, adds
frequency of broadcast to an LRU-style policy. This new policy is called LZX and is described and analyzed

n Section 5.4.

4 Modeling the Broadcast Environment

In order to better understand the properties of broadcast program generation and client cache management
we have constructed a simulation model of the broadcast disk environment. The simulator, which is imple-
mented using CSIM [Schw86], models a single server that continuously broadcasts pages and a single client
that continuously accesses pages from the broadcast and from its cache. In the simulator, the client generates
requests for logical pages. These logical pages are then mapped to the physical pages that are broadcast by
the server.

The mapping of logical pages to physical pages allows the server broadcast to be varied with respect to
the client workload. This flexibility allows the simulator to model the impact of a large client population
on the performance of a single client, without having to model the other clients. For example, having the
client access only a subset of the pages models the fact that the server is broadcasting pages for other clients
as well. Furthermore, by systematically perturbing the client’s page access probabilities with respect to the
server’s expectation of those probabilities, we are able to vary the degree to which the server broadcast favors

the particular client that we are modeling. The simulation model is described in the following sections.

4.1 Client Execution Model

The parameters that describe the operation of the client are shown in Table 2. The simulator measures
performance in logical time units called broadcast units. A broadcast unit is the time required to broadcast
a single page. In general, the results obtained from the simulator are valid across many possible broadcast
media. The actual response times experienced for a given medium will depend on the amount of real time

required to broadcast a page.

| Parameter | Meaning |

CacheSize Client cache size (in pages)

Think Time Time between client page accesses (in broadcast units)

AccessRange | # of pages in range accessed by client

g Zipf distribution parameter

RegionSize # of pages per region for Zipf distribution

Table 2: Client Parameter Description

The client runs a continuous loop that randomly requests a page according to a specified distribution.
The client has a cache that can hold CacheSize pages. If the requested page is not cache-resident, then
the client waits for the page to arrive on the broadcast and then brings the requested page into its cache.

Client cache management is done similarly to buffer management in a traditional system; if all cache slots
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Parameter Meaning

ServerDBSize | Number of distinct pages to be broadcast
NumDisks Number of disks

DiskSize; Size of disk ¢ (in pages)

A Broadcast shape parameter

Offset Offset from default client access

Noise % workload deviation

Table 3: Server Parameter Description

are occupied, then a page replacement policy is used to choose a victim for replacement.? Once the requested
page is cache resident, the client waits ThinkTtme broadcast units of time and then makes the next request.
The ThinkTime parameter allows the cost of client processing relative to page broadcast time to be adjusted,
thus it can be used to model workload processing as well as the relative speeds of the CPU and the broadcast
medium.

The client chooses the pages to access from the range 0 to AccessRange — 1, which can be a subset
of the pages that are broadcast. All pages outside of this range have a zero probability of access at the
client. Within the range the page access probabilities follow a Zipf distribution [Knut81, Gray94], with
page 0 being the most frequently accessed, and page AccessRange — 1 being the least frequently accessed.
The Zipf distribution is typically used to model non-uniform access patterns. It produces access patterns
that become increasingly skewed as 6 increases — the probability of accessing any page numbered 7 or less
is (i/N)?, where N is the total number of pages. Similar to earlier models of skewed access [Dan90], we
partition the pages into regions of RegionSize pages each, such that the probability of accessing any page
within a region is uniform; the Zipf distribution is applied to these regions. Regions do not overlap so there

are AccessRange/RegionSize regions.

4.2 Server Execution Model

The parameters that describe the operation of the server are shown in Table 3. The server broadcasts pages
in the range of 0 to Server DBSize, where Server DBSize > AccessRange. These pages are interleaved into
a broadcast program according to the algorithm described in Section 2. This program is broadcast repeatedly
by the server. The structure of the broadcast program is described by several parameters. NumDisks is the
number of levels (i.e., “disks”) in the multi-disk program. By convention disks are numbered from 1 (fastest)
to N=NumDisks (slowest). DiskSize;, i € [1..N], is the number of pages assigned to each disk ;. Each
page is broadcast on exactly one disk, so the sum of DiskSize; over all ¢ is equal to the Server DBSize.

In addition to the size and number of disks, the model must also capture their relative speeds. As
described in Section 2, the relative speeds of the various disks can be any positive integers. In order to
make experimentation tractable, however, we introduce a parameter called A, which determines the relative
frequencies of the disks in a restricted manner. Using A, the broadcast frequency of each disk can be

computed relative to the broadcast frequency of the slowest disk (disk N) as follows:

2We discuss the performance of various replacement policies in Section 5.
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Figure 4: Using Offset to vary client access

broadcast_frequency;

=(N—)A + 1

broadcast_frequencyn

When A is zero, the broadcast is flat: all disks spin at the same speed. As A is increased, the speed
differentials among the disks increase. For example, for a 3-disk broadcast, when A =1, disk 1 spins three
times as fast as disk 3, while disk 2 spins twice as fast as disk 3. When A = 3, the relative speeds are 7, 4,
1 for disks 1, 2, and 3 respectively. It is important to note that A is used only in the performance study to
organize the space of disk configurations that we examine. It is not part of the disk model as described in
Section 2.

The remaining two parameters, Offset and Noise, are used to modify the mapping between the logical
pages requested by the client and the physical pages broadcast by the server. When Offset and Noise are
both set to zero, then the logical to physical mapping is simply the identity function. In this case, the
DiskSize; hottest pages from the client’s perspective (i.e, 0 to DiskSize; — 1) are placed on disk 1, the
next DiskSizey hottest pages are placed on disk 2, etc. However, as discussed in Section 3, this mapping
may be sub-optimal due to client caching. Some client cache management policies tend to fix certain pages
in the client’s buffer, and thus, those pages do not need to be broadcast frequently. In such cases, the best
broadcast can be obtained by shifting the hottest pages from the fastest disk to the slowest. Offset is the
number of pages that are shifted in this manner. An offset of K shifts the access pattern by K pages, pushing
the K hottest pages to the end of the slowest disk and bringing colder pages to the faster disks. The use of
offset is demonstrated in Figure 4.

In contrast to Offset, which is used to provide a better broadcast for the client, the parameter Noise is
used to introduce disagreement between the needs of the client and the broadcast program generated by the
server. As described in Section 2, such disagreement can arise in many ways, including dynamic client access
patterns and conflicting access requirements among a population of clients. Noise determines the percentage
of pages for which there may be a mismatch between the client and the server. That is, with probability

Noise the mapping of a page may be switched with a different page.
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The generation of the server broadcast program works as follows. First, the mapping from logical to
physical pages i1s generated as the identity function. Second, this mapping is shifted by Offset pages as
described above. Third, for each page in the mapping, a coin weighted by Noise is tossed. If based on the
coin toss, a page 7 is selected to be swapped then a disk d is uniformly chosen to be its new destination®. To

make way for ¢, an existing page j on d is chosen, and ¢ and j exchange mappings.

5 Experiments and Results
5.1 Parameter Settings and Overview of Experiments

In this section, we use the simulation model to explore the performance characteristics of the broadcast
disk. First, we examine the performance of a number of different disk configurations in the case when
clients perform no caching. These experiments provide insight into the basic properties of the broadcast
program in a simple environment. While the performance in the no cache case is relatively straightforward,
the introduction of client caching raises a number of new issues to study. The first set of cache-based
experiments (described in Section 5.3.2) investigate the performance of standard caching techniques with
multiple disks. These results highlight some of the drawbacks of standard page replacement techniques for
the broadcast disk and motivate the need for cost-based cache management, which is studied in Section 5.4
and Section 5.5.

The primary performance metric employed in this study is the response time at the client, measured
in broadcast units. The server database size (ServerDBSize) was 5000 pages, and the client access range
AccessRange was 1000 pages. We studied several different configurations of broadcast programs, including
both two-disk and three-disk cases in our experiments. All of the results presented in the paper were obtained
once the client performance reached steady state. The cache warm-up effects were eliminated by beginning
our measurements only after the cache was full.

The parameter values used in the experiments are summarized in Table 4. It should be noted that the
results described in this section are a very small subset of the results that have been obtained. These results
have been chosen because they demonstrate many of the unique performance aspects and tradeoffs of the

broadcast disk environment, and because they identify important areas for future study.

5.2 Experimental Results for the Non-Caching Case
5.2.1 Experiment 1: No Caching, 0% Noise

The first set of results examine the case where the client performs no caching (i.e., it has a cache size of one
page). Figure 5 shows the client response time vs. A for a number of two and three disk configurations.
In this graph, Noise is set to 0%, meaning that the server is providing preferential treatment to the client
(i.e., it is giving highest priority to this client’s pages). As A is increased along the x-axis of the figure, the

skew in the relative speeds of the disks is increased (as described in Section 4). As shown in the figure, the

3Note that a page may be swapped with a page on its own disk. Such a swap does not affect performance in the steady
state, so Notse represents the upper limit on the number of changes.
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ThinkTime 2.0
ServerDBSize | 5000
AccessRange 1000

CacheSize 50(5%), 250(25%), 500(50%)
A 1,2,...7

0 0.95

Offset 0, CacheSize

Noise 0%, 15%, 30%, 45%, 60%, 75%

RegionSize 50

Table 4: Parameter Settings

general trend in these cases is that response time improves with increasing disk skew. When A = 0, the
broadcast is flat (i.e., all disks rotate at the same speed). In this case, as would be expected, all disks result
in a response time of 2500 pages — half the ServerDBSize. As A is increased, all of the disk configurations
shown provide an improvement over the flat disk. The degree of improvement begins to flatten for most

configurations around a A value of 3 or 4.
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Figure 5: Client Performance, Cache Size = 1, Noise = 0%

Turning to the various disk configurations, we first examine the two-disk configurations: D1, D2, and D3.
For D1, 500 pages fit on the first (i.e., fastest) disk. Because Noise and Offset are both zero, the hottest half
of the client’s access range is on the fast disk, and the colder half is on the slower disk. Note that as A is
increased, performance improves until A = 3 because the hotter pages are brought closer. Beyond this point,
the degradation caused by the access to the slow pages (which get pushed further and further away) begins
to lower performance. In contrast, D2, which places 90% of the client access range (900 pages) on the fast
disk improves with increasing A for all values of A in this experiment. Because most of the accessed pages
are on the fast disk, increasing A pushes the colder and unused pages further away, allowing the accessed
pages to arrive more frequently. At some point, however, the penalty for slowing down the 10% will become
so great that the curve will turn up again as in the previous case. The final two-disk configuration, D3, has
equal sized disks. Although all of the accessed data fits on the fast disk, the fast disk also includes many

unaccessed pages. The size of the fast disk causes the effective frequencies of the pages on this disk to be
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lower than the frequencies of pages on the fast disks of D2 and D1 at corresponding values of A. As a result,
D3 has the worst performance of the two-disk configurations for most of the A values shown.

Turning to the three-disk configurations: D4 and D5, it can be seen that configuration D4, which has a
fast disk of 300 pages has the best performance across the entire range. At a A of 7, its response time is only
one-third of the flat-disk response time. D5, which is simply the D3 disk with its first disk split across two
disks, performs better than its two-disk counterpart. The extra level of disk makes it easier to match the
broadcast program to the client’s needs. However, note that response time for D5 is typically higher than

the two-disk D2, and thus, the extra disk level does not necessarily ensure better performance.

5.2.2 Experiment 2: Noise and No Caching

In the previous experiment, the broadcast program generation was done giving our client’s access pattern the
highest priority. In this experiment we examine the performance of the broadcast disk as the server shifts its
priority away from this client (i.e., as Noise is increased). These results are shown in Figures 6(a) and 6(b),
which show how the client performs in the presence of increasing noise for configurations D3 (two-disks)
and D5 (three-disks) from Figure 5 respectively. As expected, performance suffers for both configurations as
the Noise is increased; as the mismatch between the broadcast and the client’s needs increases, the skew in
disk speeds starts to hurt performance. Ultimately, if the mismatch becomes great enough, the multi-disk
approach can have worse performance than the flat disk. This is shown in the performance disk of D3
(Figure 6(a)). This susceptibility to a broadcast mismatch is to be expected, as the client accesses all of its
data from the broadcast channel. Thus, it is clear that if a client does not have a cache, the broadcast must

be well suited for that client’s access demands in order to gain the benefits of the multi-disk approach.
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5.3 Experiments and Results for the Caching case

The results of the previous section demonstrated that even in the absence of caching, a multi-level disk
scheme can improve performance, but that without a cache, performance can suffer if the broadcast program
is poorly suited to the client’s access demands. In this section we introduce the use of a client cache, to
increase the client’s tolerance to mismatches in the broadcast program. We initially use an idealized page
replacement policy called P, which keeps the pages with the highest probability of access in the cache. P,
however, it is not an implementable policy, as it requires perfect knowledge of access probabilities and a
great deal of local computation*. We use P, therefore, in order to gain an understanding of the performance

in a simplified setting and as a point-of-reference for other (implementable) policies.

5.3.1 Experiment 3: Caching and Offset

In the no caching case, the client performs best when there is a perfect match with the broadcast, i.e.,
when the server fills its disks from the fastest to the slowest with the client’s pages in decreasing order of
probability of access. Alternatively said, the best broadcast for a client with no cache is at an Offset of
zero. The introduction of a client cache, however, changes this. A page replacement policy tends to favor a
subset of pages over others; in steady state, therefore, some pages are more likely to be cache-resident. Such
“hot” pages, are less likely to be obtained from the broadcast disk and thus, they should not be broadcast
frequently. Assuming that clients choose to cache pages based on their probability of access, then the best
broadcast will be obtained with a non-zero Offset. A non-zero Offset implies that the server broadcasts a
portion of the client’s hottest pages on the slowest disk and fills the faster disks with the remainder of the
client’s access range.

Figures 7(a) and 7(b) show the response time of the client for varying offset when the two-disk D3, and
the three-disk D5 are used (in this case, with A = 3), respectively. Each graph shows the results for three
different cache sizes under the P page replacement policy. The two-disk D3 (see Figure 7(a)) shows the
most sensitivity to Offset. In the figure, the best response time occurs when the Offset is equal to the client
cache size. Because the P policy retains the CacheSize hottest pages, these pages should be pushed to the
slower disk, which is exactly what an Offset of size CacheSize does. If the Offset is too small then the server
wastes a significant portion of the fastest disk for pages already in the client’s cache. If it is too large, then
more hot pages than will fit in the client’s cache are pushed to the slowest disk resulting in huge penalties
for cache misses on these pages. The three-disk configuration (D5) (Figure 7(b)), is not as sensitive to an
undersized Offset because the middle disk provides a buffer between the fast and slow disks for those pages
that should have been on the fast disk. However, it is much more sensitive to an oversized Offset, as the

differential between the fast and slow disks is greater making cache misses on the slow disk more expensive.

41t is trivial to implement P in the simulator, as the probability of each page is known from the client access distribution.
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Figure 8: Noise sensitivity, 3-Disk broadcast, for (a) P and (b) PZX

5.3.2 Experiment 4: Caching and Noise

Using an Offset of CacheSize, which provides the best broadcast for the client, we now examine the effec-
tiveness of a cache (using the idealized P replacement policy) in allowing a client to tolerate Noise in the
broadcast. Figure 8(a) shows the impact of increasing Noise on the performance of the three-disk configura-
tion Db as A is varied. In the case shown, CacheSize and Offset are both set to 500 pages. Comparing these
results with the results obtained in the no caching case (see Figure 6(b)), we see that although as expected
the cache greatly improves performance in an absolute sense, surprisingly, the cache-based numbers are if
anything, somewhat more sensitive to the degree of Noise than the non-caching numbers. For example, in
the caching case, when A is greater than 2, the higher degrees of noise have multi-disk performance that is
worse than the flat disk performance, whereas this crossover did not occur for similar A values in the non-
caching case. The reason for this additional sensitivity is that when Noise 1s low and Offset = CacheSize, P

does exactly what it should do - it caches those hot pages that have been placed on the slowest disk, and it
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obtains the remainder of the hottest pages from the fastest disk. However, as noise increases, P caches the
same pages regardless of what disk they are stored on. Caching a page that is stored on the fastest disk is
often not a good use of the cache, as those pages are broadcast frequently. As noise increases, P’s cache hit
rate remains the same, but its cache misses become more expensive, as it has to retrieve some pages from

the slower disks. These expensive cache misses are the cause of P’s sensitivity to Noise.

5.4 Cost Based Replacement Algorithms

In the previous section, it was shown that while standard caching can help improve performance in a multi-
disk broadcast environment, it can actually increase the client’s sensitivity to Noise. Recall that Noise
represents the degree to which the server broadcast deviates from what is best for a particular client. It is
likely, therefore, that some type of “noise” will be present in any application in which there are multiple clients
that access the broadcast disk. Thus, the sensitivity to Noise is a prime consideration in the performance of
such systems. As discussed in the previous section, the P replacement policy was found to be sensitive to
noise because it ignored the cost of obtaining a page when choosing a victim for replacement. To address this
deficiency, we examine a second idealized algorithm called PZX | that extends P with the notion of cost. As
stated in Section 3, PZX always replaces the page with the lowest ratio of access probability to broadcast

frequency. Thus, the cost of re-accessing a replaced page is factored into the replacement decision.

5.4.1 Experiment 5: PZX and Noise

Figure 8(b) shows the response time of the client using PZX for the same case that the previous experiment
showed for P (see Figure 8(a)). Comparing the two figures it can be seen that PZX is much more successful
at insulating the client response time from effects of Noise. Of course, an increase in Noise still results in
a degradation of performance; this is to be expected. However, unlike the case with P, using PZX the
performance of the client remains better than the corresponding flat disk performance for all values of Nouse
and A in this experiment. Under PZ X, the performance of the client for a given Noise value remains stable
as A 1s increased beyond a certain point. In contrast, under P, in the presence of noise, the performance of
the client actually degrades as A is increased beyond a certain point. Thus, this experiment demonstrates the
potential of cost-based replacement for making the broadcast disk practical for a wider range of applications.

Figures 9(a) and 9(b) show results from the same set of experiments in a slightly different light. Figure 9(a)
shows the relative performance of P and PZX for the same set of conditions as Figure 8(b) with noise fixed
at 30%. As A increases, response time for P begins to increase quickly whereas PZX falls to about half the
value of that of the flat disk (at A=4) before rising again. Figure 9(b) shows the relative response of the two
algorithms for A = 3 and A = 5 with increasing noise. The performance for the flat disk (A = 0) is given
as a baseline.® Note that P degrades faster than PZX and eventually becomes worse than the flat disk at
around Noise = 45%. PZX rises gradually and manages to perform better than the flat disk within these
parameters. Also, notice how P’s performance degrades for A = 5; unlike PZX it fails to adapt the cache

5Note that at A = 0 (i.e., a flat disk), P and PZX are identical, as all pages are broadcast at the same frequency.
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contents with increasing differences in disk speeds.

The performance differences between the two algorithms result from the differences in the places from
which they obtain their pages (as shown in Figure 10 for the case where Noise = 30%). It is interesting to
note that PZA has a lower cache hit rate than P. A lower cache hit rate does not mean lower response times
in broadcast environments; the key is to reduce expected latency by caching important pages that reside on
the slower disks. PZX gets fewer pages from the slowest disk than P even though it gets more pages from

the first and second disks, and this results in a net performance win.
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5.5 Implementing Cost Based Policies

The previous sections have shown that multi-disk broadcast environments have special characteristics which
when correctly exploited can result in significant performance gains. They also demonstrated the need for
cost-based page replacement and examined a cost-based algorithm (PZX"). Unfortunately, like P, the policy
on which it is based, PZX is not an implementable algorithm. However, based on the insight that we gained

by examining P and PZX we have designed and implemented an approximation of PZX, which we call

LIX.
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LZX is a modification of LRU that takes into account the broadcast frequency. LRU maintains the cache
as a single linked-list of pages. When a page in the cache is accessed, it is moved to the top of the list. On
a cache miss, the page at the end of the chain is chosen for replacement.

In contrast, £LZX maintains a number of smaller chains: one corresponding to each disk of the broadcast
(LZX reduces to LRU if the broadcast uses a single flat disk). A page always enters the chain corresponding
to the disk in which it is broadcast. Like LRU, when a page is hit, it is moved to the top of its own chain.
When a new page enters the cache, LIX evaluates a liz value (see next paragraph) only for the page at the
bottom of each chain. The page with the smallest liz value is ejected, and the new page is inserted in the
appropriate queue. Because this queue might be different than the queue from which the slot was recovered,
the chains do not have fixed sizes. Rather, they dynamically shrink or grow depending on the access pattern
at that time. LZX performs a constant number of operations per page replacement (proportional to the
number of disks) which is the same order as that of LRU. Figure 11 shows an example of LZX for a two-disk
broadcast. Pages g and k are at the bottom of each chain. Since g has a lower liz value it is chosen as the
victim. The new page z, being picked from the second disk, joins Disk2Q. Note the relative changes in the
sizes of both the queues.

In order to compute the liz value, the algorithm maintains two data items per cached page (p;): a running
probability estimate (p;. Access Prob) and the time of the most recent access to the page (p;.Last AccessTime).
When a page p; enters a chain, p;.AccessProb is initially set to zero and p;.Last AccessTime is set to the

current time. If p; is hit again, the new probability is calculated using the following formula:
pj.AccessProb = HistoryFactor x [1/(CurrentTime — p; . Last AccessTime)] +
(1 — HistoryFactor) * pj. Access Prob
pj.Last AccessTime is subsequently updated to the current time. HistoryFactor is a constant used to
appropriately weigh the most recent access with respect to the cumulative probability; in these experiments,
it is set to 0.25. This formula is evaluated for the least recently used pages of each chains to estimate their

current probability of access. This value is then divided by the frequency for the page (which is known
exactly) to get the liz value. The page with the lowest liz value is ejected from the cache. LZX is a
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simple approximation of PZX, yet in spite of this, it performs surprisingly well (as is shown below). Better
approximations of PZX | however, might be developed using some of the recently proposed improvements to

LRU like 2Q[John94] or LRU-k[ONei93].

5.5.1 Experiment 6: LZX vs. LRU

The next set of experiments are similar to those for P and PZX and compare LZX and LRU. However, unlike
P, the best performance for LRU isn’t at an offset equal to the cache size. Being only an approximation of
P, LRU isn’t able to retain all of the hot pages that are stored on the slowest disk and thus, it performs
poorly at this offset. For similar reasons, LZX also does not perform best at this offset. As a result, we also
compared the performance of LZX and LRU to a modified version of LZX called £. £ behaves exactly like
LIX except that it assumes the same value of frequency for all pages. Thus, the difference in performance
between £ and LRU indicates how much better (or worse) an approximation of probability £ provides over
LRU, and the performance difference between £ZX and L shows the role that broadcast frequency plays (if
any) in the performance of the caching strategies.

Figures 12(a) and 12(b) show the performance of the three algorithms for different values of A and for a
large and a medium cache size, respectively. Figure 12(a) shows the sensitivity of the algorithms to changing
A for the same case as in Figure 9(a) (i.e., Offset=CacheSize=500, Noise= 30%). In this experiment, LRU
performs worst and consistently degrades as A is increased. L does better at A = 1 but then degrades.
The benefits of using frequency are apparent from the difference in response time between £LZX and £. The
response time of LZX is only between 25% to 50% that of £. A similar observation can be made for the
medium size cache in Fig 12(b). While the absolute numbers are lower due to the smaller cache, the relative
ratios still hold. The solid lines on the bottom of both the graphs show how the ideal policy (PZX) performs;
it does better than £LZX', but only by a small margin. The factors underlying these results can be seen in
Figures 13(a) and 13(b), which show the distribution of page access locations for Figures 12(a) and 12(b),
respectively, when A is set to 3. In both cases, LZ X obtains a much smaller proportion of its pages from the
slowest disk than do the other algorithms. Given that the algorithms have roughly similar cache hit rates,
the differences in the distributions of access to the different disks is what drives the performance results in
this case.

Figures 14(a) and 14(b) show the performance of the three algorithms with varying Noise, for the large
and medium cache sizes, respectively. In the large cache (500 pages) case with A = 3, (Figure 14(a)) it can
be seen that £ performs only slightly better than LRU. The performance of LZX degrades with noise as
expected, but it outperforms both £ and LRU across the entire region of Noise values. The graph for the
medium cache (Figure 14(b)) is similar: £ZX does significantly better than LRU even though £ doesn’t
provide any additional benefit. These results demonstrate that LZ X 1s effective at isolating clients from the

effects of noise.
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6 Previous Work

While no previous work has addressed multilevel broadcast disks and the related cache management tech-
niques described in this paper, several projects in mobile databases and other areas have performed related
work. As stated previously, the notion of using a repetitive broadcast medium for database storage and query
processing was investigated in the Datacycle project at Bellcore [Herm87, Bowe92]. Datacycle was intended
to exploit high bandwidth, optical communication technology and employed custom VLSI data filters for
performing associative searches and continuous queries on the broadcast data. Datacycle broadcast data us-
ing a flat disk approach and so the project did not address the multi-level disk issues that we have addressed
in this paper. However, the Datacycle project did provide an optimistic form of transaction management
which employed an “upstream network” that allowed clients to communicate with the host. We intend to
investigate issues raised by allowing such upstream communication through low-bandwidth links as part of

our ongoing work.

More recently, the mobile computing group at Rutgers has investigated techniques for indexing broadcast
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data [Imie94b]. The main thrust of this work has been to investigate ways to reduce power consumption at
the clients in order to preserve battery life. Some of the indexing techniques described in [Imie94b] involve the
interleaving of index information with data, which forms a restricted type of multilevel disk. However, this
work did not investigate the notion of replicating the actual data to support non-uniform access patterns and
did not investigate the impact of caching. In our current work we have assumed a fixed broadcast program,
so that indexing was not needed. However, we are currently investigating ways to integrate indexes with the
multilevel disk in order to support broadcast program changes due to client population changes and updates.
Caching in a mobile environment has been considered in [Barb94]. However, their model was different in
that it considered volatile data and clients who could be inactive (and/or disconnected) over long periods of
time. Thus, the focus of both broadcasting and caching in this work was to efficiently detect and avoid access
to stale data in the cache. Very recently, another approach to broadcasting data for video on demand has
been taken in [Vish94]. The technique, called pyramid broadcasting, splits an object (e.g., a video clip) into
a number of segments of increasing sizes. To minimize latency the first segment is broadcast more frequently
than the rest. While similar in spirit, a key difference is that the data needed by the client is known a priori
once the first segment (the choice of movie) is decided upon and thus, they do not need to address the issues
related to caching dealt in this paper.

The issues that arise due to our use of a broadcast medium as a multi-level device also arise in other, more
traditional types of complex memory hierarchies. The need for cost-based caching and page replacement
has been recognized in other domains in which there is a wide variation in the cost of obtaining data from
different levels of the storage hierarchy. For example, [Anto93] describes the need for considering “cost of
acquisition” for page replacement in deep-store file systems involving tertiary mass storage. This issue is
also addressed for client-server database systems in which a global memory hierarchy is created by allowing
clients to obtain data from other clients that have that data cached [Fran92b]. In this work, server page

replacement policies are modified to favor pages that are not cached at clients, as they must be obtained from
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disk, which is more expensive. Recently, a technique called “Disk-Directed I/O” has been proposed for High
Performance Computing applications [Kotz94]. Disk-Directed I/O sends large requests to I/O devices and
allows the devices to fulfill the requests in a piecemeal fashion in an order that improves the disk bandwidth.
Finally, the tradeoff between replication to support access to hot data while making cold data more expensive

to access has been investigated for magnetic disks [Akyu92].

7 Summary and Future Work

In this paper, we have described our design of a multilevel broadcast disk and cache management policies for
this style of memory. We believe that this approach to data management is highly applicable to asymmetric
network environments such as those that will naturally occur in the NII as well as many other modern
data delivery systems. We have demonstrated that in designing such disks, the broadcast program and the
caching policy must be considered together.

It has been shown that there are cases in which the performance of both two and three level disks can
outperform a flat broadcast even when there is no caching. We have argued that our scheme for interleaving
the data is desirable because it provides a uniform expected latency.

We have further shown that introducing a cache can provide an advantage by smoothing out disagreement
between the broadcast and the client access patterns. The cache gives the clients a way to hoard their hottest
pages regardless of how frequently they are broadcast. However, doing page replacement solely on probability
of access can actually increase a client’s sensitivity to the server’s broadcast.

We then introduced a caching policy that also took into account the broadcast frequency during replace-
ment. We showed that this not only improves client performance and but also shields it from vagaries of
the server broadcast. This is because the clients can cache items that are relatively hot and reside on a slow
disk and thus, avoid paying high cache miss penalties.

Finally, we demonstrated a straightforward implementation technique that approximates our ideal cost-
based caching scheme. This technique is a modification of LRU which accounts for the differences in broadcast
frequency of the data.

We believe that this study while interesting and useful in its own right, is just the tip of the iceberg.
There are many other opportunities that can be exploited in future work. Here, we have only considered
the static read-only case. How would our results have to change if we allowed the broadcast data to change
from cycle to cycle? What kinds of changes would be allowed in order to keep the scheme manageable, and
what kinds of indexing would be needed to allow the client to make intelligent decisions about the cost of
retrieving a data item from the broadcast?

We are currently investigating how prefetching could be introduced into the present scheme. The client
cache manager would use the broadcast as a way to opportunistically increase the temperature of its cache.
We are exploring new cache management metrics for deciding when to prefetch a page.

We would also like to provide more guidance to a user who wants to configure a broadcast. We have

experimental results to show that good things can happen, but given a workload, we would like to have
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concrete design principles for deciding how many disks to use, what the best relative spinning speeds should
be, and how to segment the client access range across these disks. We are pursuing an analytic model to
address this.

Finally, once the basic design parameters for broadcast disks of this kind are well-understood, work is

needed to develop query processing strategies that would exploit this type of media.
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