Database Theory Column!

An Overview of Semistructured Data

Dan Suciu
AT&T Labs
suciu@research.att.com

1 Introduction

Research on semistructured data started from the observation that much of today’s electronic data
does not conform to traditional relational, or object oriented data models. Several applications
store their data in non-standard data formats, legacy systems, structured documents, like HTML
or SGML etc. Another instance is the integration of heterogeneous data sources: often these
sources belong to external organizations, or partners, not under the application’s control, and their
structure is only partially known, and may change without notice. Data in these applications
could be modeled as an object-oriented data, but it’s structure is irregular: some objects may have
missing attributes, others may have multiple occurrences of the same attribute, the same attribute
may have different types in different objects, semantically related information may be represented
differently in various objects. Data with these characteristics has been called semistructured data.

Recent research has aimed at extending database management techniques to semistructured
data. The result of this work is a new paradigm in databases, complementing the relational and
object-oriented one. The new model has been applied to a few research prototypes, like data
integration [PGMW95, PAGM96], Web site management [FFK 98], general-purpose management
of semistructured data [QRST95, AQM*97, MAG'97], and data conversion [SCJK98]. Other
research work has addressed query language design [AQM™97, BDHS96a, PAGM96, FFLS97a,
FFLS97b] schema specification [BDFS97, MS99, DGM98, BM99], schema extraction [NUWC97,
BDFS97, GW97, NAM97], optimizations [AV97b, Suc96, Suc97, FS98, MW97], indexing [MWA 98,
MS99], as well as formal aspects [AV97a, AV97b, MM97, FLS98]. The interested reader may want
to consult the tutorials by Abiteboul [Abi97] and Buneman [Bun97].

In the traditional relational paradigm a database is modeled as a finite, first order structure.
The first order vocabulary, i.e. the names and arities of the relations of that structure models the
database schema (the list of all table names and their attributes), and first order logic, or higher
logic formulae model queries. Database theory is related to both finite model theory and descriptive
complexity.

It makes no sense however to talk about finite structures or formulae without fixing the vocab-
ulary first. In semistructured databases we do not have an a priory schema, hence no vocabulary.
One way to model semistructured databases is to represent them as graphs. Thus, the vocabulary
is fixed once and forever to be that of graphs. The real schema of a given database instance is now
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moved into the graph itself, in the form of labels attached to the graph’s nodes or edges. Thus,
schema components, like table and attribute names, become constants in the first order structure.
Formulae in the logic can now explicitly refer to the schema’s components by means of constants
in the formula. To retrieve the value of an attribute one traverses an edge in the graph labeled
with the name of that attribute. For example to retrieve a person’s address, we traverse an edge
labeled address from the node corresponding to that person. To obtain a person’s zip code we
may have to follow a path of length two, labeled address.zip. New possibilities arise: one can
query the schema’s components (e.g. “find all attribute names”), or write queries which ignore part
of the schema (e.g. “retrieve all attribute values, regardless of the attribute name”). More complex
queries can traverse the data with only partial knowledge of the schema, by means of regular path
expressions on the graph data. For example if we don’t know whether phone is an attribute of the
person, or of the address component of that person, we write the regular path expression *.phone,
which follows any path whose last label is phone. The distinction between schema and the data is
eliminated in semistructured databases.

Modeling semistructured data as a graph has been the preferred approach so far, and we will
review it in this paper. The model however has its limitations, since it ignores some characteristics
of semistructured data, like the fact that edges in the graph can be traversed only forwards, or that
sometimes the order of the attributes matters.

The purpose of paper is to give an overview of the research on semistructured data and briefly
illustrate some of its theoretical and formal aspects. We describe the semistructured data model in
Sec. 2 and illustrate a few query languages in Sec. 3. We discuss schema formalisms for semistruc-
tured data in Sec. 4 and conclude in Sec. 5.

2 Data Model

OEM The most popular model of semistructured data is the OEM model (Object Exchange
Model), originally introduced for the Tsimmis [PGMW95] data integration project. In OEM data
is represented by a collection of objects. Each object can be atomic or complex. The value of an
atomic object is of some base type (integer, string, image, sound, etc). The value of a complex
object is a set of (attribute, object) pairs: here attribute is any string, usually drawn from
a universe A of attribute names. Thus OEM data is a graph, where the nodes are the objects, the
edges are labeled with attributes, and in which some leaf nodes have an associated atomic value.
The graph also has a root, i.e. a distinguished object with all other objects are accessible from
it?. Formally a semistructured data is G = (V, E,r,v) where the set of nodes V is partitioned into
complex and atomic nodes V = V., UV, the edges are E C V, x A x V, r € V is the root, and
v : V, — D assigns values to atomic objects; here D is the universe of atomic values.

Figure 1 illustrates an example of some OEM bibliography data. A textual representation of
the same data is given in Fig. 2. Here &012, &043, etc. are object identifiers, oids: when the
underlying graph is a tree, oid’s can be omitted from the textual representation completely without
any loss of information. For example the value of the object &024 can be written as:

{author: "Abiteboul",

author: "Hull",

author: "Vianu",

title: "Foundations of Databases",
publisher: "Addison Weseley"}

20EM actually allows several named roots: we restrict to a single root to simplify the presentation.
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Figure 1: OEM Data

Bib:&o1
{paper: &o12
{author: &o43
{firstname: &23 "Serge",
lastname: &76 "Abiteboul"},
title: &o063 "Querying semi-structured data",
year: &o42 1997,
references: &o024,
http: &o091
"http://www-rocq.inria.fr/~abitebou/pub
/icdt97.semistructured.ps"},
book: &o024
{author: &o023 "Abiteboul",
author: &o62 "Hull",
author: &o082 "Vianu",
title: &097 "Foundations of Databases",
publisher: &o022 "Addison Weseley"},
paper: &o29
{author: &o052 "Abiteboul",
author: &o096 {firstname: &243 "Victor",
lastname: &0206 "Vianu"},
title: &093 "Regular path queries with constraints",
references: &ol2,
references: &o024,
page: &025 {first: &o64 122, last: &o092 133}}}

Figure 2: Textual representation of OEM data



Name | Phone
John | 3634 ”W/’h\ge Nar/\ NM
Sue | 6343
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Figure 3: Relational data viewed as semistructured data

Comparison to the Relational Model A relation is a set of records [Ull89]. Both sets and
records can be easily represented in OEM: the set {5,2,9} can be represented as, say, {elm:5,
elm:2, elm:9}, whilearecord [a=5, b="seven", c=3.14] can berepresented as {a:5, b:"seven",
c:3.14}. Sets are OEM objects where all attributes are the same, and records are objects where all
attributes are distinct. Relational data can be easily represented as a particular case of semistruc-
tured data, e.g. Fig. 3. The scope of semistructured data however is not to offer a graph view of
relational data, but to enable us to deal precisely with data which is not relational.

Object Equality Like in object-oriented languages, there are two operators for testing object
equality in OEM: shallow equality returns true iff the two are the same object, and deep equality
returns true if the graphs accessible from the two objects are isomorphic. None of the two equalities
would identify {a:{b:1,c:2},a:{b:1,c:2}} with {a:{b:1,c:2,}}, because of the distinct
object identifiers omitted from the textual representation. This is a departure from the relational
model: like in object-oriented systems, objects in OEM have an existence of their own.

The UnQL Variation on the Data Model A variant of the semistructured data model is
in UnQL [BDS95, BDHS96a], in which {a:{b:1,c:2},a:{b:1,c:2}} and {a:{b:1,c:2}}
are equal. Data is still a labeled graph, but the model explicitly states that two graphs G, G’
are equal if they are bisimilar. The notion of bisimulation has bee used in non-well founded set
theory [Acz88] and in process algebra [Mil89], and intuitively equates two graphs when they become
equal after each graph is transformed by (1) unfolding from the root, and (2) eliminating duplicates
at each node. We refer the reader to [BDS95, BDFS97] for the formal definition of bisimulation
in the context of semistructured data. Paige and Tarjan have shown that a bisimulation between
two unlabeled graphs can be computed in time O(mlogn) [PT87] where n is the total number of
nodes and m the total number of edges. Since semistructured data are multigraphs (we may have
multiple edges between the same two nodes, as long as they are labeled with distinct attributes),
that algorithm takes O(mlogm) time on semistructured data [BDFS97].

3 Query Languages

Lorel LORE [QRS'95, MAG*97, AQM*97] (Lightweight Object REpository) is a general pur-
pose data management system for semistructured data, and Lorel is its query language. We il-
lustrate Lorel in a few examples. The following query returns the titles of papers written since
1995:

select X.title
from Bib.paper X
where X.year > 1995



The meaning of the query is as follows: (1) find all paths in the database which start at the
root and are labeled Bib.paper, and bind X successively to each end node (referring to Fig. 1, X
will be bound successively to &012, &o024, &029). (2) retain only those bindings where X has some
year attribute whose value is > 1995 (in the example: &012), (3) return all titles of all these X’s
(in the example: "Querying semi-structured data").

A more complicated example is with reqular path expressions. For example consider the query
“find all papers referenced directly or indirectly by Ullman”:

select X.title

from Bib.paper X, Bib.paper Y

where Y.author.(lastname)? = "Ullman",
Y. (reference)+ X

Here ()7 denotes an optional path expression, and ( )+ denotes the strict Kleene closure. Other
regular expressions are Kleene closure ( )*, concatenation ( ).( ), and alternation () | ( ). Regular
expressions are important in the context of semistructured data because they allow users to write
queries which traverse data whose structure is not fully known. For example in the query above
"Ullman" can be either the value of Y.author or of Y.author.lastname.

UnQL The language UnQL (Unstructured Query Language) [BDS95, BDHS96a| was derived
from structural recursion, a construct introduced in [BBW92, BLST94, BNTW95] for programming
with sets, bags, and lists. For semistructured data structural recursion is particularly attractive
because it can express both queries and transformations in the same formalisms. Here queries just
return a subset of nodes from the input data, while transformations may a construct a new graph.
Lorel is mostly suited for expressing queries (it has special constructs for transformations, but their
expressive power is limited). Structural recursion expresses both: we illustrate this next.
The first example is a query retrieving all integers in the database:

(1) £(v) = if isInt(v) then {result : v}
else {}

2) £f{H = {}

(3) £({1 : t}) = £(¢)

(4) £(t1 U t2) = £(t1) U £(£2)

This defines a recursive function f by pattern matching, with four rules. We illustrate its
computation on the database D in Fig. 2. Here D = {Bib : &o1} hence rule (3) applies, and
f(D) = f£(&ol). Next &ol = {paper:&ol2, book:&024, paper:&o029}, which is a union &ol =
{paper:&o012} U {book:&024} U {paper:&029}: hence rule (4) applies twice, then rule (3) ap-
plies three times, and we get £ (&012) U f(&024) U f(&029). Eventually we reach the leaves, for
which rule (1) applies: the end result is {result : 122, result : 133, result : 1997}

The second example illustrates a transformation. It takes some bibliography database and
makes a copy of it, converting all integers to strings in books, and leaving integers untouched in
other publications:

g(v) =v
g({}) = {}
g({1 : t}) = if 1 = book then {book : h(t)}

else {1 : g(t)}

g(tl U t2) = g(tl) U g(t2)



h(v) if isInt(v) then Int2String(v)

else v
h({}) = {}
h({1 : t}) = {1 : h(t)}
h(t1 U t2) = h(t1) U h(t2)

Here we have two mutually recursive functions: g only looks for a book label and returns
everything unchanged, while h converts Ints to Strings and leaves everything else unchanged.

The general form of structural recursion consists of a definition of m > 1 mutually recursive
functions, with certain restrictions. Each function f is defined by pattern matching, with four
rules (as above) and must return {} on {} and £(t1) U £(t2) on t1 U t2 (rules 2 and 4). In the
rule £({1:t}) it may call recursively f(t), and the other functions on t, and use their values to
construct the result. We refer the reader to the references for the details.

Note that it is not immediately clear whether structural recursion has any meaning on graphs
with cycles. It turns out that it has, and that its meaning admits two independent, equivalent
definitions. An operational one, where recursive calls are memoizes to avoid infinite loops, and a
declarative one, where the rule for ({1 : t}) is fired in parallel, on all edges in the graph.

Formal properties of UnQL have been investigated in more detail in [BDHS96b]. Its data com-
plexity is NLOGSPACE (due to the regular path expression), yet on relational data like that in
Fig. 3 it expresses exactly the class of first order logic queries. As a consequence UnQL cannot
express the transitive closure of a binary relation. Also, UnQL queries are invariant under bisim-
ulations: if the data graphs D and D’ are bisimilar, then so are Q(D) and Q(D') for every query

Q.

Expressing Transformations with Skolem Functions A different approach to express trans-
formations of semistructured data is with Skolem Functions. These have been introduced in object-
oriented systems by Maier [Mai86], and have been extensively studied in the context of deductive
query languages by Hull and Yoshikawa in [HY90]. For transforming semistructured data, they
have been first used by Papakonstantinou et al. [PAGM96] in the Mediator Specification Language
MSL, and later in StruQL [FFLS97a, FFLS97b], the query language of the Web site management
system Strudel system [FFK'98], and also in YAT, a data conversion system [SCJK98]. In all
three applications transforming semistructured data is a central task, and Skolem functions proved
a useful technique to express such transformations. We illustrate Skolem functions next in the
context of Strudel.

Assume we have a bibliography data like in Fig. 1 and would like to construct a Web site
organized as follows. (a) There is a root page, (b) it has links to persons’ pages (c) from each
person’s page there are entries for each year when that person has published, and (d) each year
entry has links to the actual publications. This can be achieved with the following StruQL query:

where Root -> "Bib".L -> X, X -> "year" -> Y
X -> "author".("lastname")? -> Z, isString(Z),
create RootPage(), PersonPage(Z), YearEntryPage(Z,Y)
link RootPage() -> "Person" -> PersonPage(Z),
PersonPage(Z) -> "YearEntry" -> YearEntryPage(Z,Y),
YearEntryPage(Z,Y) -> L -> X

The where clause is quite similar to Lorel’s, with minor variation in syntax. For example the
condition X -> "year" -> Y looks for an edge labeled "year" from X to Y. The variable L in
Root -> "Bib".L -> X is a label variable, and is bound to attribute constants like "book" and



"paper" (see Fig. 1). The new nodes and edges are constructed in the create and link clauses.
Here RootPage, PersonPage, YearEntryPage are Skolem Functions that create new oid’s. By
definition a Skolem function applied to the same inputs produces the same node oid: for example if
X is bound several times to ” Abiteboul”, the result of PersonPage ("Abiteboul") will be the same,
new oid. Note that YearEntryPage(Z,Y) needs to have two arguments since we need a new node
for each author and for each year.

Formal Properties of Query Languages All query languages for semistructured data dis-
cussed here share the ability to traverse the data graph, hence to compute transitive closure. Their
exact expressive power differs, however. UnQL cannot compute any transitive closure, but only
that of the input graph. StruQL has been shown in [FFLS97b] to have the same expressive power
as FO(TC) (first order logic extended with a transitive closure construct [Imm87]). For example,
StruQL can express transitive closure of binary relations expressed as trees (which UnQL cannot).
For that one composes two where-create-1link blocks, like in the following example in which the
input graph G is a tree encoding of a binary relation with attributes A and B (as illustrated in
Fig. 3), and which tests whether the pair ("abc", "cde") is in its transitive closure:

input (

input G

where Root -> "elm" -> X, X -> "A" -> Y, X -> "B" -> Z

create Start(), Stop(), F(Y), F(Z)

link Start() -> "C" -> F("abc"), F(X) -> "C" -> F(Y), F("cde") -> "C" -> Stop(Q))
where Start() -> ("C")* -> Stop()

The first block constructs an intermediate data graph based which is a instantiation of the
graph represented by the binary relation (all its edges are labeled "C"), while the outer block just
searches for a path in this new graph. In Lorel one cannot construct the intermediate graph, hence
Lorel cannot express transitive closure of binary relations.

Another line of research has addressed query containment and equivalence in the presence of
regular expressions. Abiteboul and Vianu [AV97b] consider single path queries (i.e. given by
a single regular path expression) in the presence of path equations. Query equivalence without
equations is equivalence of regular expression, which is known to be PSPACE-complete. A path
equation is illustrated by part. (subpart)*.description = catalog.part.description, which
says says that all descriptions of all subparts can be reached directly through the catalog. Then
the query part. (subpart)*.description.section.paragraph can be replaced with the simpler
catalog.part.description.section.paragraph. In general, we have a set of path equations
and would like to decide whether two given path expressions pl,p2 are equivalent, over databases
satisfying /. The authors have shown the surprising result that this problem is decidable, and
moreover that its complexity is tractable under certain natural restrictions.

Queries in which regular expressions are mixed with joins are considered in [FLS98]. For
conjunctive queries, query containment and equivalence are decidable by an algorithm which takes
exponential space. When the regular expressions consist only of constant labels and « (as a wildcard,
meaning any path), then containment and equivalence are in NP.

4 Schemas

Semistructured data is self-describing. That is, the schema is embedded with the data, and no a
priori structure is assumed. This gives us flexibility to process (store, query, etc) any data, and



we can deal with changes in the data’s structure seamlessly. But this extreme view has a few
drawbacks:

e Data is inefficient to store, since the schema needs to be replicated with each data item.

e Queries are hard to evaluate efficiently: even a simple regular path expression may require
the entire graph to be traversed.

e Queries are hard to formulate: the user has to rely on undocumented information about the
data in order to formulate relevant queries.

In the applications of semistructured data one observes that the data often has some regular
structure which can, and should be exploited to address the problems above. Researchers have
looked for ways to describe and exploit regularities in the data’s structure, without having to fully
specify a rigid schema ahead of time. Proposals fall into two categories: (1) Schema formalisms
described independently on the data. These formalisms offer a continuous scale of precision in
describing the data’s structure. In all these formalisms there exists a “universal” schema that
does not impose any structure on the data, and schemas are partially ordered according to how
much structure they impose on the data. Examples are graph schemas [BDFS97], description
logics [DGM98], Schema Definition Language [BM99]. (2) Inferred schemas, which are inferred
automatically from the data. These are rigid, and describe the data’s structure accurately. They
have to be recomputed, or incrementally updated, every time the data changes. Examples are data
guides [NUWC97, GW97], unary datalog types [NAM97], T-indexes [MS99].

In contrast to relational data, semistructured data can exist independently of the schema. This
generates a new kind of problem: given a database G and schema S, check whether the data G
conforms to the schema S. The complexity of this problem ranges from PTIME for the case of
graph schemas [BDFS97], to NP-complete for the case of SDL’s [BM99]. One question is whether
schemas are closed under set operations: e.g. given two schemas S1, S2, does there exists a schema
S describing precisely the databases conforming to both S1 and S2 (intersection) ? For the case of
inferred schemas, the central problem is the complexity of the inference algorithm, and the size of
the inferred schema, in terms of the data size: for dataguides this is exponential, for T-indexes it
is polynomial. Another problem is to simplify the inferred schema, assuming that one can tolerate
deviations of the data from the schema.

The interplay between schemas and queries is still being studied. One possibility is to exploit
the schema during query evaluation. For example considering the Lorel query select X where
*.subpart.*.description X (where * means any sequence of labels), we normally need to traverse
the entire graph data to find all bindings of X. This is inefficient. A schema may describe in which
parts of the data one should expect a description attribute to follow a subpart one, and this can
be exploited during query evaluation: this idea has been pursued in [FS98]. Another problem is
type checking for queries defining data transformations. Given an input schema S, output schema
S’, and query Q, check whether Q(G) conforms to S’ for every database G conforming to S.

5 Conclusions

The semistructured data model represents a new paradigm in databases. Unlike the relational
and object-oriented paradigms, in semistructured data the schema is embedded in the data, mak-
ing it easier to exchange across applications, business units, or organizations. An independent
but strongly relevant development is now happening in the WWW community. Recently, the
World Wide Web Consortium has approved the standard for the Extensible Markup Language,



XML [Con98]. A central XML application is Electronic Data Interchange, in which XML is used as
a data exchange format. The data expressed in XML is strikingly similar to semistructured data: it
consists of objects and attributes (called elements and tags respectively), and, like semistructured
data, has the schema embedded in the data. Today, most data exchanged on the Web consists of
HTML documents, and is sent from applications to humans. In the near future, many believe that
even larger amounts of data will be exchanged in XML format, and will be sent from applications
to applications. This will generate a whole new class of data management problems, some of which
may benefit from the research done on semistructured data.
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