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Abstract

The choice of database layout, i.e., how database
objects such as tables and indexes are assigned to disk
drives can significantly impact the I/O performance of the
system. Today, DBAs typically rely on fully striping
objects across all available disk drives as the basic
mechanism for optimizing 1/O performance. While full
striping maximizes 1/O parallelism, when query execution
involves co-access of two or more large objects, e.g., a
merge join of two tables, the above strategy may be sub-
optimal due to the increased number of random I/O
accesses on each disk drive. In this paper, we propose a
framework for automating the choice of database layout
for a given database that also takes into account the
effects of co-accessed objects in the workload faced by the
system. We formulate the above as an optimization
problem and present an efficient solution to the problem
that judiciously takes into account the trade-off between
I/O parallelism and random 1I/O accesses. Our
experiments on Microsoft SQL Server show the superior
I/O performance of our techniques compared to the
traditional approach of fully striping each database
object across all disk drives.

1. Introduction

In today’s enterprises, relational database systems
(RDBMSs) play a crucial role in the back-end for storing
and retrieving information. As databases continue to get
larger, achieving good overall performance for queries
and updates that execute against a database requires good
I/O performance. The appropriate choice of access
methods such as indexes and materialized views is an
integral part of ensuring good I/O performance of queries
that execute against the RDBMS. However, another
significant factor affecting I/O performance of queries is
database layout, i.e., how database objects such as tables,
indexes, materialized views etc., are assigned to the
available disk drives in the system.

Traditionally, enterprise databases have relied on
solutions that spread out each database object uniformly
over all available disk drives, thereby obtaining good I/O
parallelism. A typical solution is to use one or more disk
drives, each of which may itself be an array of disks (e.g.,
a RAID (Redundant Arrays of Inexpensive Disks) array),
and then use full striping to spread each database object
across all disk drives. Such a solution has the advantage
that it is relatively easy to manage since the database
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administrator (DBA) does not have to be concerned about
which disk drive(s) each object should be placed on.
However, as the following example shows, for queries in
which multiple large objects (tables or indexes) are
accessed together during execution (e.g., queries in DSS
applications), a solution that spreads each object over all
available disk drives may perform sub-optimally.

Example 1. Consider queries Q3 and Q;, of the TPC-H
benchmark [15]. The execution plan of both these queries
accesses the tables lineitem and orders together and
performs a Merge Join. We measured the execution time
of these queries on a 1GB TPC-H database on Microsoft
SQL Server 2000 for the following two database layouts
over a set of 8 disk drives: (1) Full striping: Each table
was spread uniformly across every disk drive (2) lineitem
was spread uniformly on 5 disk drives, orders was spread
uniformly on the 3 other disk drives. Q; executed about
44% faster on the database layout (2) as compared to (1),
and Qj similarly executed about 36% faster. In both
queries, the key factor that made the second database
layout faster was that the objects that were co-accessed
during the execution of each query (lineitem and orders)
were on different disk drives, thereby eliminating a large
number of random access I/Os that were incurred in the
first database layout. ¢

As illustrated by the above example, a database layout
such as full striping, that is optimized for I/O parallelism
may suffer in performance when the workload consists of
queries and updates having significant co-access among
objects. Thus, when determining a good database layout,
there is a need to take into account the trade-off between
benefit due to I/O parallelism and overhead due to
random I/O accesses introduced by co-locating objects
that are co-accessed during query execution. For
workloads containing queries that co-access multiple
objects, the gain in I/O performance by choosing an
appropriate database layout other than full striping can be
significant.

While the specific problem of high random I/O
accesses due to large co-accessed objects could be
reduced by modifying the query execution strategy inside
the server (e.g., by issuing larger reads), in this paper we
consider an alternative approach that allows us to also
incorporate other aspects of database layout such as
manageability and availability requirements, which are
crucial for practical deployment of any solution. This
paper makes the following contributions. We present a
framework for specifying the database layout problem —
i.e., the problem of automatically choosing a database
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layout that is appropriate for the workload faced by a
database system, while satisfying manageability and
availability requirements. We develop a cost model for
quantitatively capturing the above trade-off between I/O
parallelism and random I/O accesses for a given
workload. Such a cost model is essential to allow us to
compare the relative “goodness” of two different database
layouts for the workload. We show that the database
layout problem can be formulated as an optimization
problem, and establish that this problem is provably hard.
We present a principled approach for solving the database
layout problem that judiciously addresses the above based
on characteristics of the workload. Finally, we
demonstrate via experiments on Microsoft SQL Server
2000 that the database layouts chosen by our solution
result in superior I/O performance than the solution of full
striping (which only maximizes I/O parallelism).

This work was done in the context of the AutoAdmin
project [1] at Microsoft Research. The goal of the
AutoAdmin project is to reduce the total cost of owning a
RDBMS by automating important and challenging
database administrative tasks. The rest of this paper is
structured as follows. In Section 2, we formulate the
database layout problem as an optimization problem, and
describe the architecture of our solution in Section 3. In
Section 4, we show how we exploit information about the
workload in our solution. Section 5 presents our model of
the I/O performance of the workload, which is the metric
that we wish to optimize. We describe the strategy for
solving the optimization problem in Section 6, and in
Section 7 we present results of experiments comparing
our solution to the approach of full striping. We discuss
related work in Section 8 and conclude in Section 9.

2. Problem Formulation

In this section, we present a framework for specifying
the database layout problem. We first describe the two
key concepts in our framework: (1) A database layout,
and how it can be specified in today’s commercial
database systems. (2) Our model of the workload. We
then present a formulation of the database layout problem
and show how to include manageability and availability
requirements into the formulation.

2.1 Database Layout

We assume that a relational database consists of a set
of tables and physical design structures defined on the
tables. The database objects that we consider include
tables, indexes, materialized views, and in principle, other
access methods that may be present in the database. We
denote the set of n database objects in a database by {Rj,

. Ry}. The DBA is responsible for determining the
placement of the database objects on the available set of

m disk drives {D;, ... D,}. Each disk drive is a single
addressable entity that itself could be comprised of a set
of disks bound together into a disk array. For our
purposes, the following properties of a disk drive D; are
relevant: capacity C; (e.g., 8GB), average seek time Sj
(e.g., 10msec), average read transfer rate TR; (e.g.,
10MB/sec) and average write transfer rate TW;, and
availability property AVAIL; which can take on one of
the following values: {None, Parity, Mirroring}. For
example, AVAIL property of a RAID 0 disk drive or a
stand alone disk is None; AVAIL property of a RAID5
disk drive is Parity. and AVAIL property of a RAID 1
disk drive is Mirroring. We discuss the relevance of the
availability property to the database layout problem in
Section 2.3.

Ry R, R,
Taes e
Indexes e
Filegroups FG; . FGy

e

Disk
Drives ' e

D, D, Dy,

Figure 1: A Database Layout.

Today’s commercial database systems allow the DBA
the flexibility of allocating each object over multiple disk
drives. For example, in Microsoft SQL Server 2000, an
object can be allocated on multiple disk drives by
defining a filegroup, and assigning the object to the
filegroup as shown in Figure 1. A filegroup is a collection
of files that are present on one or more disk drives (The
concept of filegroups is similar to fablespaces in Oracle
and IBM DB2). Each object can be assigned to exactly
one filegroup, although it is possible to assign more than
one object to a given filegroup. Finally, any set of
filegroups may overlap in the set of disk drives over
which they are defined. For example, in the figure, we
note that disk drive D, is common to filegroups FG; and
FGy.

When an object is assigned to a filegroup that is
defined over more than one disk drive, the storage engine
component of the database system distributes the pages of
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the object in a particular manner (e.g., round robin
fashion) across the disk drives. The allocation is done not
at the granularity of a page, but at the granularity of a
block, (e.g., 8 pages in Microsoft SQL Server 2000).
Furthermore, we can control the fraction of the total
number of blocks of an object that is allocated to each
disk drive. Thus, a database layout is an assignment of
each database object to a filegroup, along with a
specification of the fraction of the object that is allocated
to each file in that filegroup. Since, for our purposes, each
filegroup can itself be viewed as the set of disk drives on
which it is defined, we equivalently define a database
layout as follows:

Definition 1. Database Layout: A database layout is
an assignment of each database object to a set of disk
drives along with a specification of the fraction of the
object that is allocated to each disk drive. &

Definition 2. Valid Database Layout: We define a
database layout as valid if it satisfies the following two
criteria: (1) For each disk, the database layout does not
violate the capacity constraint of that disk. (2) Each object
is allocated in its entirety. ¢

Logically, a database layout is specified by a two-
dimensional matrix where each row corresponds to an
object and each column corresponds to a disk drive. The
value of a cell x;; (0 < x;; <1) in the matrix is the fraction
of the total number of blocks of object R; that is placed on
disk drive D;. We denote the size of object R; by IR;l and
the capacity in blocks of disk D; by C;. In terms of the
above notation, a layout is valid if it satisfies the
following three constraints (» is the number of objects and
m is the number of disk drives).

Vie[l...n],Vje[l...m] X >0

Vie[l..n]) x;, =1
j=1

Vjiell..mY IR, lx; <C,

i=1

The first two constraints together ensure that each
object is allocated sufficient disk space, and the third
constraint ensures that the capacity constraint for each
disk is not violated. Finally, we note that objects created
temporarily during query execution can also have a
significant impact on I/O performance (e.g., large sorts,
hash joins). We can incorporate these effects by modeling
temporary tables as objects in our formulation (which are
stored in the fempdb database) with the constraint that all
these objects should be stored on the same filegroup.

2.2 Workload

The appropriate choice of database layout depends on
the nature of the workload faced by the system, i.e., the

I/0 access patterns of queries and updates that execute
against the system. For example, for a single-table query
that involves the scan of a large table (or index), it may be
advantageous to define a layout in which the referenced
table (or index) is allocated on a large number of disks.
This is because the object can be scanned in parallel on
all disks, thereby reducing the I/O response time for that
query. On the other hand, if the query requires
simultaneously accessing two or more large objects (e.g.,
a merge join of two tables), it may be better to allocate the
objects on disjoint sets of disk drives. The reason is that if
the two objects are co-located on a disk drive, then a
potentially large number of random I/O accesses are
introduced on that disk drive when the two objects are
simultaneously accessed by the query, thereby making
that disk a potential I/O bottleneck for the query.

In this paper, we assume that a workload is provided as
input. We define a workload as a set of SQL DML
statements, i.e., SELECT, INSERT, UPDATE and
DELETE statements. Optionally, each statement Q in the
workload may have associated with it a weight (denoted
by wq) that signifies the importance of that statement in
the workload. For example, weight may indicate the
multiplicity of that statement in the workload. A
representative workload for the system can be gathered
using profiling tools available in modern commercial
database systems, e.g., the SQL Server Profiler in
Microsoft SQL Server. Alternatively, DBAs can specify a
custom representative workload, e.g., an organization or
industry specific benchmark. In Section 4 we show how
given such a workload, we can extract the relevant access
and co-access information about database objects.

Since we model the workload as a set of statements,
we do not take into account the impact on database layout
by statements that execute concurrently with one another.
In particular, this has the effect of underestimating the
amount of co-access between objects. Incorporating
effects of concurrent query execution into the workload
model by exploiting sequence and execution overlap
information in the workload is part of our ongoing work.

2.3 Problem Statement

In this section, we first present a formulation of the
database layout problem that focuses on I/O performance.
We then show how to extend this formulation to
incorporate important manageability and availability
requirements. We define the I/0 response time of a given
statement as the total elapsed time spent performing 1I/O
to execute that statement. Our goal is to automatically
choose a database layout that minimizes the (weighted)
sum of the I/O response time over all statements in the
workload. We denote the I/O response time of a query Q
for a given valid database layout L by Cost (Q, L). The
formal statement of the database layout problem is shown
in Figure 2. We now discuss how manageability and
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availability requirements in database layout can be
incorporated in our formulation. We model these
requirements as additional constraints in the problem
formulation described in Figure 2.

Given: A set of database objects {Rj,...R;}, a
workload W (set of queries/updates with associated
weights), and a set of disk drives {Dy, ... Dy}

Find: A valid database layout with the smallest total
estimated I/O response time for the workload, i.e.,
find a valid layout L such that for any valid layout L’
Ygew W . Cost (Q, L) <Xgew wq. Cost (Q, L)

Figure 2: The Database Layout Problem

2.3.1. Manageability Requirements. DBAs often use a
filegroup for manageability reasons as a unit of backup
and restore. For example, a DBA may want to backup a
set of frequently updated tables more often, and may want
this set of tables to belong to a single filegroup. We
incorporate such a specification by adding a co-location
constraint Co-Located (R;, Ry) to the definition of a valid
layout. Co-Located (R;, Ry) means that objects R; and Ry
must be placed in the same filegroup, i.e., we need to
ensure that both R; and Ry are assigned to exactly the
same set of disk drives. Semantically, Co-Located (R;, Ry)
can be expressed as follows:

Vjiell..m] (x; =0 x,;, =0)

A second manageability requirement arises from the
fact that while DBAs may occasionally be willing to
completely re-design the current database layout, in many
common situations (e.g., adding an index, adding a disk
drive) they would prefer an incremental solution. One
way to incorporate such incrementality into our problem
formulation is to introduce a constraint that that limits the
total amount of data movement required for transforming
the current database layout to the proposed layout. We
note that these constraints can affect the nature of the
optimization problem itself, and hence the solution to the
problem as well.

2.3.2. Availability Requirements. When different disk
drives have different availability characteristics — e.g.,
some disk drives are RAID 1 (Mirroring), others are
RAID 5 (Parity), and still others are RAID 0 (no
availability), the DBA may want to specify an availability
constraint Avail-Requirement (R;) that enforces a specific
degree of availability for object R;. For example, the DBA
may want Mirroring for a particular critical table. Once
again, we can incorporate availability requirements in the
problem formulation by introducing additional constraints
to the validity of a Ilayout. Semantically, Avail-
Requirement (R;) can be expressed as:

Vje[l...m] (x, >0=> AVAIL, = A)

3. Architecture of Solution

Disk drives

information,
Constraints
Optimize
Anal Query Query
nhalyze Optimizer
Workload [ .
Execution
¢ Plan
Cost Database
Search “—>| Model Server
v
Database Layout
Recommendation Database

Figure 3. Architecture Overview

The architecture of our solution to the database layout
problem is shown in Figure 3. We take as input the
following information: (1) A database that consists of a
set of tables as well as a set of other physical design
objects such as indexes and materialized views. The
database has a current database layout, which can be
inferred by looking up the database system catalogs. (2) A
workload file consisting of a set of SQL DML statements
that execute against the given database. Each statement in
the workload may (optionally) have associated with it a
weight that denotes the importance of that statement in
the workload. (3) A file containing a list of disk drives
with the associated disk characteristics. The disk drives
listed in this file need not be existing disk drives. (4)
Optionally, manageability and availability constraints (as
discussed in Section 2.3) that the DBA may wish to
impose on the solution.

We produce as output a recommendation for the
database layout that is appropriate for the given database,
workload, disk drives and specified constraints. Along
with this recommendation, we include an estimate of the
percentage improvement in I/O response time if the
recommended layout were to be actually implemented.
These estimates are based on our Cost Model of I/O
response time (Section 5). A novel aspect of our solution
is the manner in which we exploit information about the
workload to guide the choice of an appropriate layout. In
our architecture, the Analyze Workload component
(described in Section 4) is a preprocessing step executed
prior to solving the optimization problem, that extracts
information about which objects (e.g., tables, indexes) are
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accessed during the execution of the workload. The
Analyze Workload component is efficient since it does
not actually execute the workload. Instead, it examines
the execution plan that is generated by the query
optimizer for the statement. This information is passed
into the Search component, which uses the information to
guide its strategy for solving the optimization problem.

The goal of the Search component is, to enumerate
over the space of possible database layouts that satisfy the
specified constraints, and choose the one that has the
lowest total I/O response time for the given workload.
The Search component relies on the Cost Model
component to provide accurate information about the
estimated I/O response time for the workload. The
optimization problem is provably hard (Section 6.1), and
thus the key challenge is to design an efficient and
scalable search algorithm that ensures good quality
recommendations in practice. Since the cost model may
be invoked many times by the search algorithm, the
scalability of the solution relies on the cost model being
computationally efficient. In particular, the cost model
estimates the I/O response time for a layout, without
physically materializing the layout or actually executing
the workload. We now describe each of the components
of our solution in detail.

4. Analyzing Workload

There are two key aspects of the workload that affect
the choice of database layout. The first is information
about which objects are accessed during execution of the
workload and total number of blocks accessed for each
object. The second aspect is which sets of objects are co-
accessed during execution, and the total number of blocks
co-accessed. For the rest of the paper we refer to the
above information as workload information. In this
section, we describe: (a) How we represent workload
information (Section 4.1) and (b) How such workload
information can be extracted from a given workload
(Section 4.2).

4.1 Representing Workload Information

We represent workload information in the form of a
weighted undirected graph that we refer to as the access
graph (denoted in this paper by G). Each node u in the
access graph represents an object in the database. A node
u has a weight N, equal to the total number of blocks of
that object that is referenced during the execution of all
statements in the workload. An edge exists between two
objects u and v if there are one or more statements in the
workload such that both u and v are co-accessed during
the execution of that statement. The weight of the edge
between u# and v (denoted by N,,) is the sum over all
statements in the workload of the total number of blocks

of u and v that are co-accessed during the execution of the
workload. Note that the access graph depends on the
actual execution plan of the statements in the workload.
The following example shows the access graph for a
workload consisting of two queries:

Merge Join M Merge Join M
/ N\ 400 /N s00
Merge Join [ R, Merge Join X R,
/\ aoo /N
200[ g, R, |300 R, R, [200

Execution Plan for Q, Execution Plan for Q,

Figure 4: Execution Plans for Q; and Q,

R, (600)
R, 600
(200) . 700
500
R4
900  (500)
R,
(700)

Figure 5: Access Graph for {Q, Q,}

Example 2: Suppose the workload consists of two
queries with the execution plans shown in Figure 4. Q,
simultaneously accesses objects R;, R, and Rj3, and Q,
simultaneously accesses objects R,, R3 and R4. The total
number of blocks of each object accessed in each query is
also shown in the plans. Figure 5 shows the access graph
for the workload {Q;, Q,}. The value in parenthesis on
each node represents the node weight. The value on the
edge represents the edge weight. For example, the edge
between R, and R; shows that a total of 1300 (= 700 for
Q,; + 600 for QQ,) blocks of R; and R, are co-accessed in
the workload. ¢

Finally, we note that rather than keeping information
over all subsets of objects that are co-accessed, the access
graph only keeps pair wise information. However, we
have found in our experiments that this simplification
does not significantly affect the quality of the final
solution.

4.2 Extracting Workload Information

We extract workload information by analyzing the
execution plan of each statement in the workload. We do
not need to execute a statement in order to examine the
execution plan of the statement. Most modern database
systems provide functionality to submit a statement in a
“no-execute” mode in which the query is optimized but
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not executed. For example, in Microsoft SQL Server 2000
and IBM DB2, the Showplan option and EXPLAIN mode
respectively provide this functionality. We note that our
strategy of extracting workload information from the
execution plan is not sensitive to the current database
layout since today’s query optimizers ignore the current
database layout when determining a plan.

There are two important observations that guide the
process of extracting information from a given execution
plan. First, simply because two objects appear in the same
plan does not imply that they will be co-accessed during
the execution of the statement. The reason for this is that
in many cases, there are blocking operators in the
execution plan that ensure that access to one object does
not begin until another object is completely accessed. We
refer to the maximal subtree in the execution plan that
does not contain any blocking operators as a non-blocking
subplan. The example below highlights this point.

Example 3: Consider Qs of TPC-H benchmark. The
query references 6 tables: nation, region, customer,
orders, lineitem and supplier. Thus, without looking any
further we could assume that all relations are co-accessed
during query execution. However, in the actual execution
plan for Qs, which is a left-deep join tree, the tables
{nation, region, customer, orders} are co-accessed and
similarly {lineitem, supplier} are co-accessed, but no pair
of tables across these two sets is co-accessed. This is due
to the fact that after nation, region, customer, and orders
are joined, there is a blocking sort operator that appears
prior to the join with lineitem and supplier. ¢

Second, even if an object is accessed in the execution
plan, the total number of blocks of that object accessed
may be significantly different than the total size of that
object. The following example illustrates this point:

Example 4: Consider an execution plan that involves
an index seek that retrieves RIDs of the records matching
the filter condition(s), and the records corresponding to
those RIDs are then retrieved from the table. Note that the
number of blocks of the table accessed in the plan can,
and usually does differ from the total number of blocks of
the table. This number is determined by the selectivity of
the predicate(s) for which the index seek is being
performed, and whether the index is clustered or non-
clustered. Thus, the access graph should reflect this
number, rather than the total size of the table. ¢

Based on the above observations, our method for
constructing the access graph from a given execution plan
is described in Figure 6. Our method first decomposes the
execution plan into sub-plans, each of which consists only
of non-blocking (i.e., pipelined) operators. This
decomposition is achieved by introducing a “cut” in the
execution plan at each blocking operator. Next, for each
database object accessed in a sub-plan, we determine the
total number of blocks (say B) of that object accessed and
increment the node value for that object in G by B. The
total number of blocks of an object that is accessed can be

determined based on the query optimizer’s estimate of the
number of rows accessed and the estimated average size
of each row (available from the execution plan). For each
pair of distinct objects in the sub-plan, we add an edge to
G (if such an edge is not already present) and increment
the weight of the edge by the sum of the number of blocks
of both objects.

Input: Workload W

Output: Access graph G for W

1. [Initialize G to have one node for each object in
the database, and set the node value of each
node to 0

2. For each statement Q € W, obtain execution
plan Py,

3. For each object R accessed in Pg increment the
node value for object R in G by total number of
blocks of R accessed in Pq

4. For each non-blocking subplan S in Pg

5. Introduce an edge, if one does not exist, in G
between each pair of distinct objects accessed
in S. Increment the weight of the edge by the
sum of the number of blocks of the two objects
that define the edge.

Figure 6. Algorithm for constructing the
access graph.

5. Cost Model

Our goal is to find a database layout that minimizes the
total I/O response time over all statements in the
workload (see Section 2.3). Any search method that
solves this problem will therefore need to compute the I/O
response time of statements in the workload for different
database layouts. It is, however, not feasible to compute
the total I/O response time for the workload by actually
altering the database layout and executing statements.
Thus, we instead rely on a cost model that estimates the
I/O response time for a given statement Q and database
layout L, without physically altering the layout or
executing the query. In this section, we describe the cost
model that we have adopted. Note that it is not possible to
use the query optimizer’s cost estimates for this purpose,
because today’s query optimizers are insensitive to
database layout.

An effective cost model must satisfy two properties:
(1) Accuracy — the error incurred in estimating the I/O
response time should be as small as possible. Although
accuracy in absolute terms is desirable, in general, it is
difficult to accurately model the complex behavior of
modern disk drives that perform prefetching, /O
reordering etc. Thus, similar to a query optimizer in a
RDBMS, in which the goal is to accurately model the
relative costs across different execution plans for a given
query, our goal to accurately model the relative I/O
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response time of a given query across different database
layouts. (2) Efficiency — the computational overhead of
each invocation of the cost model should be small, since
the cost model may be invoked many times by the search
method.

For a given layout L and a given query Q the cost
model estimates the I/O response time, denoted by
Cost (Q,L). When the objects required for answering the
query are distributed over more than one disk drive, we
define Cost (Q,L) as the I/O response time on the disk
drive with the largest 1/0 response time for that query;
i.e., the last disk drive to complete I/O for that query
determines the I/O response time for the query. Note that
the actual execution time of the query is, in general,
different from the I/O response time for that query, and
also depends on the CPU time taken by the query.

Input: Execution Plan Pg, for SQL statement Q,

Layout L

Output: Estimated 1/O response time for Q assuming

layout L

1. Cost=0

2. For each non-blocking sub-plan P of Pq

3 MaxCost =0

4. For each disk drive Dj

5 TransferCost = X; x;;. B(IR,P) / T; , where
B(IR;l,P) is the number of blocks of R; accessed
in P, Tjis the read or write transfer rate (as
appropriate) of disk drive D; and the summation
is taken over an object R; if and only if R; is
accessed in P

6. Let k be the number of objects on D;
accessed in P.
7. If k> 1 Then

SeekCost = k. S;. min; (x;;. B(R,P)) ,
where Sj is the average seek time, and the minimum
is taken

over all objects R; that are accessed in P

8. Else SeekCost = 0 End If

9. If (TransferCost + SeekCost) > MaxCost
Then

10. MaxCost = (TransferCost + SeekCost)

11. End If

12.  End For

13.  Cost += MaxCost

14. End For

15. Return Cost

Figure 7: Cost Model

Our cost model assumes conventional magnetic disk
technology. We model the time to service an I/O request
as consisting of two parts: seek time and transfer time. We
define the seek time to include the time to position the
disk arm onto the appropriate cylinder and bring the
appropriate sector on the cylinder under the head. The
transfer time is the time taken to read (or write) the

requested data once the arm and the head are in the
appropriate position, and is inversely proportional to the
average read (or write) transfer rate. The average transfer
rate can be determined using any disk calibration tool or
from the disk manufacturer specifications. Finally, we
note that the read and write transfer rates are typically
different.

Figure 7 presents the pseudocode for our cost model.
We model the transfer time (Step 5) on a particular disk
as the time taken to transfer all blocks accessed by the
query on that disk. The seek time (Steps 6-8) on a disk
drive is modeled by assuming that on average all objects
that are co-accessed on a disk drive (i.e., in a given non-
blocking sub-plan) are accessed at a rate proportional to
the number of blocks accessed of each object. For
example, if on a given disk drive, 10 blocks of object A
and 20 blocks of object B are co-accessed, then we
predict that on average, after accessing each block of A, a
seek is necessary to access two blocks of B, followed by
another seek to access one more block of A etc. Such a
model is reasonable for most binary relational operators
such as Nested Loops Join and Merge Join, as well as
plans involving index seek followed by table lookup.

We now illustrate how the cost model works through
the following example.

C OO oS
A A A Al A
B B B B

D, D, D; D, D, D;

Layout L, Layout L,
C Y 3 £33
A A
D, D, D;
Layout L3

Figure 8. Cost model example.

Example 5. Consider the query “SELECT * FROM A, B
WHERE A.a=B.b”. Assume we find from the execution
plan of this query that the object A (consisting of 300
blocks) and the object B (consisting of 150 blocks) are
scanned together (e.g., in a Merge Join operator). Assume
we have three identical disk drives D,, D,, D; with
transfer rate T and average seek time S. Consider the
layout L, (full striping) shown in Figure 8, in which each
object is allocated on all three disk drives. Assuming
equal distribution, each disk drive contains 100 blocks of
A and 50 blocks of B. Thus the estimated transfer time on
each disk drive is (100+50)/T and the estimated seek time
is (2-50-S) for a total estimated I/O response time of
(150/T + 100-S). In contrast, in layout L,, D; and D, each
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contain 150 blocks of A, and D, and D5 each contain 75
blocks of B. Thus D, is the bottleneck disk drive for the
query and its total estimated I/O response time is
(150+75)/T + 2-75-S = (225/T + 150-S). In layout L;
however, D, and D, each contain 150 blocks of A, and Ds
contains 150 blocks of B. Since there is no seek time on
any of the disks and all disks contain the same number of
blocks to be accessed by the query, the total estimated I/O
response time of the query is 150/T. Therefore, for the
above query, layout L; is better than layout L,, which in
turn is better than layout L,. ¢

Our cost model is an analytical model, and thus it
sidesteps the need to physically alter the database layout
and actually execute queries. We present an experimental
validation of our cost model in Section 7.

6. Search Strategy

In this section we present our algorithm for solving the
database layout problem, i.e., finding a valid database
layout having minimum total estimated I/O response time
for the given workload. A popular solution to the
database layout problem is full striping, where each object
is allocated on all available disk drives (we refer to this
solution in our experiments as FULL STRIPING)'. The
advantage of full striping is that: (a) The method is simple
to understand and manage (b) for each statement in the
workload the I/O parallelism for each object accessed in
the statement is maximized. However, this solution
ignores the additional random I/O accesses incurred due
to co-access of objects in queries, and can therefore under
perform significantly.

Our search strategy uses the cost model described in
Section 5 for estimating the I/O response time of the
workload for a given database layout is determined. We
begin by showing that for this cost model, the database
layout problem is provably hard. Thus we do not expect
to find a polynomial time algorithm that solves the
problem optimally. Moreover, we note that the objective
function we are trying to optimize, i.e., Cost (Q, L) is
non-linear. Thus, rather than using generic search
techniques for solving non-linear optimization problems,
which tend to be computationally expensive, we try to
leverage domain knowledge to develop a scalable
heuristic solution.

6.1 Hardness of Database Layout Problem

Claim: The decision version of the database layout
problem presented in Section 2.3 is NP-Complete when

' To ensure a fair comparison with our search method, we
assume that the fraction of each object allocated to a disk is
proportional to the transfer rate of that disk.

Cost (Q,L) is defined by the cost model described in
Section 5.

Proof: Omitted due to lack of space. The reduction is
from the Partition problem [7]. ¢

6.2 Two-Step Greedy Enumeration

We describe a two-step (heuristic) search method for
the database layout problem (Section 2.3). This algorithm
focuses on the performance aspect, and does not describe
the modifications necessary for handling manageability
and availability constraints. We omit these extensions due
to lack of space. The intuition behind this method is as
follows: the first step obtains an initial (valid) database
layout that attempts to minimize the co-location of objects
that are co-accessed in the workload; and the second step
improves the initial solution by attempting to increase the
I/0 parallelism of objects in a greedy manner. We refer to
this method in our experiments as TS-GREEDY. We
now describe each of the two steps in more detail.

Input: Workload W, Access graph G, k

Output: Database layout LL

1. Partition nodes in G into m partitions using a
graph partitioning algorithm so as to maximize
the sum of edge weights across partitions.

2. For each partition P in descending order of
total node weight

3. Assign objects in P to the smallest set of disk
drive(s) ordered by decreasing transfer rate that
can (a) hold the objects in the partition (b) Is
disjoint from the disk drives to which previous
partitions have been assigned. If a disjoint set
of disk drive(s) does not exist, find a
previously assigned partition P’ such that sum
of edge weights between P and P’ is smallest,
and assign P to same set of disk drives as P’.

4. End For

5. Let L be the layout obtained at end of Step 4,
and let C = Xgcw wq. Cost(Q, L) // L is the
starting layout for the greedy step

6. For each object, consider all layouts derived
from L by adding at most k remaining disk
drives to the object. For each layout
considered, the object is allocated across the
chosen disk drives in ratio of the transfer rate
of chosen disk drives.

7. Of all layouts explored in Step 6, let L’ be the

layout with the smallest value of C’ = Xqcw

wq. Cost(Q, L)

If C<C,ThenL=L";C=C’; Goto 6 End If

9. ReturnL

*®

Figure 9. Two-Step Greedy Search Algorithm
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Recall that the access graph (see Section 4.1) captures
the co-access information of objects in the workload.
Each edge (u,v) in the co-access graph represents the total
number of blocks of objects u and v that are co-accessed
in the workload. The first step (Steps 1-4 in Figure 9),
which aims to minimize the amount of co-location of
objects that are co-accessed in the workload is, in fact, the
problem of partitioning the nodes of the access graph into
a given number of partitions (p) such that the sum of the
weights of edges that go across partitions (i.e., the total
weight of the edge cut sef) is maximized. Intuitively, each
partition contains objects that are rarely or never co-
accessed together. The above problem is in fact the well
known graph partitioning problem, which itself is known
to be NP-Complete [7]. Fortunately, the graph
partitioning problem has been well studied since it has
many applications, and there are efficient heuristic
solutions to the problem; and we use one such algorithm
in our solution, namely the Kernighan-Lin algorithm [9].
We allocate objects in a partition on to the same disk
drive(s). One issue in using a graph partitioning algorithm
is deciding the value of p to use, i.e., how many partitions
to create. Since increasing p beyond the number of
available disk drives (m) cannot further reduce the co-
location of co-accessed objects, we set p = m.

The second step (Steps 5-8 in Figure 9), which
proceeds iteratively, improves the solution obtained in the
first step by attempting to increase parallelism of objects.
In each iteration, we try to increase parallelism of each
object by at most k (a parameter to the algorithm)
additional disk drives on which the object is not already
allocated. Intuitively, the parameter k controls how
exhaustive this step of the search is. At the end of the
iteration, the layout that reduces the cost of the workload
the most is chosen as the starting point for the next
iteration. The algorithm terminates when it encounters an
iteration in which a layout with lower cost of the
workload is not found.

Note that for an object which has little or no co-access
with other objects, the greedy strategy will eventually
allocate sufficient (possibly all) disk drives and will
thereby achieve good parallelism for that object (similar
to FULL STRIPING). However, due to its greedy nature,
it is possible that the algorithm will get stuck in a local
minimum. This is because when the number of disk drives
on which two co-accessed objects are co-located goes
from O to 1, the cost of the query can increase
significantly (due to increased seek cost), but as the
number of disk drives on which the objects are co-located
increases beyond 1, the cost can decrease (below the cost
for the no overlap case). Despite the above potential
shortcoming, in our experiments on real and synthetic
workloads (see Section 7), we have found that TS-
GREEDY finds very good solutions (i.e., comparable to
exhaustive enumeration in most cases) even when k = 1.

The running time of the first step, i.e., the Kernighan-
Lin algorithm on a graph G = (V,E) is O (IEl log IEl).
Thus, in the worst case, when the number of edges in the
access graph is O (n%), the running time of the first step is
O(nz.log(n)), where n is the number of objects in the
access graph. The greedy step runs in time O (m*n), and
thus the overall algorithm runs in time O(m*'n® +
nz.log(n)). In our experiments, we use k=1 and thus the
running time of the algorithm is o(m*n* + nz.log(n)). In
Section 7 we present an experimental comparison of TS-
GREEDY to FULL STRIPING for different databases

and workloads.

7. Experiments

We have implemented the techniques described in this
paper and evaluated their quality and scalability on
Microsoft SQL Server 2000. In this section, we
demonstrate through our experiments that:

e The cost model (Section 5) provides good relative
estimations of I/O response time for different
database layouts.

e The greedy search algorithm (TS-GREEDY)
presented in Section 6.2 recommends significantly
better layouts than full striping (FULL STRIPING)
in almost all the test workloads/databases.

e The running time of TS-GREEDY scales
quadratically with the number of disks and number of
database objects.

7.1 Experimental Setup

The experiments were conducted on a 1 GHz 256 MB
Intel Pentium III machine running Microsoft SQL Server
2000 on Windows 2000 Server. The machine has 8
external disks with an aggregate capacity of 48 GB. The
characteristics of the disks viz. average transfer rates and
seek times were gathered using the Ziff Davis Media
WinBench calibration tool [18]. The differences between
the fastest and slowest disks are about 30% for both the
average transfer rate and seek times. Although our
problem formulation allows incorporating temporary
objects, our current implementation does not support this,
and therefore for fair comparison, in all our experiments
we placed tempdb on a separate (9") disk drive.

Databases: We used the following databases: (1)
TPCHIG, a 1GB TPC-H database [15]. (2) APB database
[3] with about 250MB data and 40 tables. (3) SALES, an
internal database that tracks the sales of the products
within the company, is about 5GB in size and has 50
tables.

Workloads: The workloads we use in the experiments
are summarized in Table 1. We use two benchmarks,
TPC-H and APB as a part of our experiments. Both these
benchmarks have complex queries that reference multiple
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tables and have aggregations. We also use SALES-45, a
workload that is used to analyze the sales data in the
company; the queries in SALES-45 reference 8 tables on
average. WK-CTRL workloads were generated to study
the specific aspects of the scheme viz. the validation of
cost model itself. These workloads have a small number
of queries; the queries have count (*) aggregate and
access almost all the table data, here lineitem, orders,
partsupp and part tables in TPC-H schema.

Name #queries | Remarks
TPCH-22 22 Standard TPC-H benchmark
SALES-45 | 45 Real-world  workload on

SALES database

APB-800 800 Workload on APB database

WK- N=100 Workloads of increasing size

SCALE to 3200 | on TPCH1G

(N) queries

WK- 5 Workloads of two table joins

CTRL1 on TPCHIG with a simple
aggregation.

WK- 10 Mix of single table and multi-

CTRL2 table queries, with a simple

aggregation.

Table 1: Summary of workloads

7.2 Experimental Results

Validation of Cost Model: In this experiment, we
validate the cost model described in Section 5. We use the
following workloads: TPCH-22 (the original benchmark),
WK-CTRL1 and WK-CTRL2 (see Table 1) on the
TPCHI1G database. For each workload, we estimate the
cost of a layout using our cost model and then actually
execute the workload after materializing the layout. For
execution times, we used the average of three cold runs.

Queries Execution Estimated
Improvement Improvement

Query 3 44% 54%

Query 9 30% 40%

Query 10 36% 51%

Query 12 32% 55%

Query 18 16% 31%

Query 21 40% 9%
TPCH-22 | 25% 20%

Table 2: Estimated vs. Actual for
TPCH-22 queries compared to full striping

In the first part of the experiment, we analyze the
behavior of individual TPCH-22 queries. We use a layout
where lineitem is on 5 disks and orders is allocated on 3
disks and are completely separated; all other tables are
striped across all 8 disks. Table 2 shows the improvement
of the above layout in actual execution times and

estimated I/O response times compared to FULL
STRIPING. For Qs, in which the I/O response time for
accessing the objects is about 90% of the execution time,
we get good estimation. We observe similar behavior for
queries 9, 10, 12 and 18 where cost of accessing lineitem
and orders accounts for most of the query cost. For query
21, we get a relatively poor approximation. This is
because lineitem is used multiple times in the query and
reflects the shortcoming of the cost model in capturing
effects of buffering.

In the second part of the experiment, we generated 4
layouts, where in each case, the layout of all the TPCH1G
tables is determined at random. We also generated 5
controlled layouts with different degrees of overlap
between the lineitem and orders tables, as well as the
FULL STRIPING layout (for a total of 10 different
layouts). We used the following workloads: (a) WK-
CTRL-1, (b) WK-CTRL-2 (c¢) TPCH-22 and (d) Five
synthetically generated workloads with 25 queries each
on TPCHIG with varying selection and join conditions,
Group By and Order By clauses. For each workload and
layout combination, we computed the cost as predicted by
the cost model and then measured the actual execution
time. For each pair of layouts we order them first by
estimated cost and then by actual execution times for a
given workload. We observe that the order in execution is
matched by the cost model in 82% of these cases. On
analyzing some of the cases where the cost model fails to
identify the right order, we found those workloads to have
large I/O time accessing temporary objects (e.g., ORDER
BY/GROUP BY operations on large number of rows).
This is because in our implementation of the cost model,
we did not factor in the I/O times of temporary objects.

Effectiveness of TS-GREEDY: First we compare the
estimated quality of the TS-GREEDY search strategy to
FULL STRIPING. Figure 10 shows the comparison for
different workloads. Note that for controlled workloads
viz. WK-CTRL1 and WK-CTRL2, the estimated
improvement is more than 25% higher compared to FULL
STRIPING:; this results from recommendations where the
tables — lineitem and orders are placed on separate disks.
For TPCH-22, TS-GREEDY recommends a layout where
lineitem and orders are separated (5 disks for lineitem and
3 for orders) and so are partsupp and part (5 disks for
partsupp and 3 for part). This separation causes the
respective joins between these tables to be faster, however
the individual table scans becomes slightly slower (about
5% slower for table scans on an average) as the I/O
parallelism per table is reduced. The overall estimated
improvement is about 20%. On materializing the above
layout, we observe actual improvement of about 25%. We
observe that on the SALES database, the estimated
improvement is about 38%. The queries in the SALES
database involve multi-table joins — TS-GREEDY
separates the two largest tables in the database on 4 disks
each; these tables are joined in almost all the queries. The
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results remained similar even the number of disks is
increased for SALES up to 64. For APB-800, the TS-
GREEDY scheme recommends the same layout as FULL
STRIPING. This is not surprising since the database has
two large tables and several small tables; however no
queries co-access the two large tables. This experiment
demonstrates that TS-GREEDY can significantly
outperform FULL STRIPING for workloads in which
large objects are co-accessed.

Quality: TS-GREEDY vs. FULL STRIPING

50%
% Estimated
Improvement 30%
20%
o ——1 01 P Pl
WK: WK TPCH- SA APB-

CTRL1 CTRL2 22 LES-45 800
WORKLOAD

Figure 10: Comparing quality of TS-
GREEDY to FULL STRIPING

Scalability of TS-GREEDY: In this experiment we
demonstrate the scalability of TS-GREEDY with respect
to (a) number of disks and (b) number of objects in
database. For (a), we use all 3 databases viz. TPCH-22 for
TPCHI1G, APB-800 for APB and SALES-45 for SALES.
Figure 11 shows the running time of TS-GREEDY as the
number of disks are varied from 4 to 64 (doubled in every
step). We plot the ratio of the running time as compared
to the running time for 4 disks. The figure shows that the
increase in running time is slightly more than quadratic
(about 6 times as the number of disks is doubled). This is
in line with our expectation from analysis of running time
of the algorithm (see Section 6.2). Adding more disks also
increases the evaluation time for each layout explored;
and that accounts for “more than quadratic” increase in
TS-GREEDY running time.

Running Time vs. Number of Disks

o . 10000

g g 1000 —e— TPCH22
% g 100 —= MSSALES
§ é 10 —a— APB

1

0 8 162432 40485664 72

Number of Disks

Figure 11: Running Time of TS-GREEDY vs.

Number of Disks.
In the second part of experiment we study the variation

of the running time of TS-GREEDY as the number of

database objects is increased. We generate TPCHI1G-N,
versions of TPCH1G database where N is the number of
copies of all the tables in database TPCHI1G; this allows
us to vary the number of objects in database. For example,
TPCHI1G-2 has 2 copies of all the tables in the database.
We fix the number of disks to 8 anduse N=1, 2, 3,4, 5
and 6. We generate workloads for TPCH1G-N as follows:
we generate TPCH-88-N, all with 88 queries using the
qgen query generation program of the TPC-H benchmark
[15]. Next we randomly replace table names in a query
with one of the N copies of table names using a program.
This allows us to have almost identical workloads for the
experiment. Figure 12 shows the running time of TS-
GREEDY compared to the time taken for N=1. We
observe that the running time of the greedy scheme is
quadratic — it increases about 40 times when N=6. Based
on these experiments, we expect that that TS-GREEDY
scales well up to a few hundred disks and database
objects.

Running Time vs. number of objects
50 4
40 |
30 -
20 4

10 A

Ratio of Average Running
Time

0

0 2 4 6 8

x Number of Objects

Figure 12: Running Time of TS-GREEDY vs.
Number of Objects.

8. Related Work

There are three key distinguishing features of our work
that compared to previous work. First, we exploit
workload information at the level of SQL query execution
plans. In previous work, workload information is either
specified in terms of the average I/O request rate and
average I/O request size per file in the system [2,14].
Second, to the best of our knowledge, ours is the first
paper to exploit knowledge of co-access of objects in
determining an appropriate layout. Third, unlike the work
in [2,14] in which the goal is to minimize the average
time of an I/O request executing against the system, our
goal is to minimize the total I/O response time for a given
workload.

There has been a significant amount of work in the
area of storage administration and management. Early
work in the HP AutoRAID project [17] demonstrated how
the problem of configuring disk arrays could be made
simpler by automatically moving data between two
different RAID levels (RAID 1 vs. RAID 5) depending on
I/O access patterns. More recently, the Minerva paper [2]
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addresses the problem of not only determining which disk
arrays (RAID 1/0 or RAID 5) to place the objects on
based on workload information, but also looks at the
capacity planning issues, i.e., what is the minimum
number of disk drives that would support the throughput
requirements of the workload. Similar to our approach,
they also develop a cost model for predicting impact of
different layouts on the workload.

The work in [14] studies a related problem — assuming
files are always striped across all available disks, what
should be the striping unit, i.e., the granularity at which
the files should be striped. The paper also explores the
issue of dynamic load balancing similar to [17], where
disk bottlenecks due to hot data on a given disk are
reduced by moving blocks to other disks. The issues
studied in this paper are complementary to our work. We
note that tissue of dynamic load balancing has also been
explored in several other studies, including [1,4,6,
10,11,16]. These above studies are in contrast to our
“offline” approach where we are interested in achieving a
good static layout for a (given) fixed workload.

In [12], the issue of whether to cluster a file (relation)
on a single disk (or as few disks as possible) or to
decluster it across all disks is explored via a simulation
study. The clustering option is similar to the first step of
our solution (see Section 6.2) where we try to minimize
co-access in the initial layout by placing an object on as
few disk drives as possible. However, this may not be the
best solution since it potentially gives up I/O parallelism
that is explored in our second (greedy) step. In [9], it is
argued that striping data across all disks is not appropriate
for OLTP workloads. They propose a scheme in which
only the parity data is striped and the database objects
themselves are not necessarily striped across all disks.

Another area of related work [5,13] is studying how to
decluster a single table across a set of disks for the case of
grid-queries. The goal of these papers is to maximize I/O
parallelism for the above restricted class of queries.
Unlike these papers in our work (a) co-access of objects is
a significant issue that affects the optimization problem
and hence the search strategies, and (b) queries are more
general, i.e., arbitrary SQL.

9. Summary

In this paper we present a framework for addressing
the problem of assigning database objects to disk drives to
optimize the I/O performance of the workload, while
incorporating manageability and availability
requirements. We show that exploiting knowledge of co-
access of database objects is important in achieving a
database layout with better I/O performance as compared
to full striping. An important area of future work is
extending the cost model to capture effect of concurrent
execution of statements in the workload.
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